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Abstract

Chemical derivatization, especially silylation, is widely used in gas chromatography coupled 

to mass spectrometry (GC-MS). By introducing the trimethylsilyl (TMS) group to substitute 

active hydrogens in the molecule, thermostable volatile compounds are created that can be easily 

analyzed. While large GC-MS libraries are available, the number of spectra for TMS-derivatized 

compounds is comparatively small. In addition, many metabolites cannot be purchased to produce 

authentic library spectra. Therefore, computationally generated in silico mass spectral databases 
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need to take TMS derivatizations into account for metabolomics. The quantum chemistry method 

QCEIMS is an automatic method to generate electron ionization (EI) mass spectra directly from 

compound structures. To evaluate the performance of the QCEIMS method for TMS-derivatized 

compounds, we chose 816 trimethylsilyl derivatives of organic acids, alcohols, amides, amines, 

and thiols to compare in silico-generated spectra against the experimental EI mass spectra from 

the NIST17 library. Overall, in silico spectra showed a weighted dot score similarity (1000 is 

maximum) of 635 compared to the NIST17 experimental spectra. Aromatic compounds yielded 

a better prediction accuracy with an average similarity score of 808, while oxygen-containing 

molecules showed lower accuracy with only an average score of 609. Such similarity scores are 

useful for annotation of small molecules in untargeted GC-MS-based metabolomics, suggesting 

that QCEIMS methods can be extended to compounds that are not present in experimental 

databases. Despite this overall success, 37% of all experimentally observed ions were not 

found in QCEIMS predictions. We investigated QCEIMS trajectories in detail and found missed 

fragmentations in specific rearrangement reactions. Such findings open the way forward for future 

improvements to the QCEIMS software.

Graphical Abstract

Gas chromatography coupled to mass spectrometry (GC-MS) requires volatile compounds 

for analysis. The generation of volatile derivatives from polar or thermo-labile 

compounds using silylation derivatization reactions is still the first choice for many 

modern applications.1 The most common reagents for such applications are MSTFA (N-

methyl-N-(trimethylsilyl) trifluoroacetamide), TMCS (trimethylchlorosilane), BSA (N,O-

bis(trimethylsilyl)acetamide), and BSTFA (N,O-bis(trimethylsilyl) trifluoroacetamide).2 

Reactive functional groups that can be silylated with these reagents under mild conditions 

include alcohols, aldehydes, carboxylic acids, amines, amides, thiols, and inorganic acids.2

Silylation is used in many applications including medical investigations, metabolic profiling, 

toxicological screening, and environmental research.3,4 All these approaches use mass 

spectral library matching for compound annotations and identifications. An experimental 

spectrum is compared against a reference spectrum in a database. The reference spectra were 

obtained from authentic reference compounds that underwent silylation reactions.
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Licensed libraries such as Wiley or NIST205 contain around 5000 TMS derivatives. Smaller 

TMS libraries for GC-MS4,6,7 are also freely available in MassBank of North America 

(https://massbank.us/), including retention indices that are used to improve automatic 

compound annotations. However, these libraries contain less than 3000 compounds 

combined, which is in stark contrast to the estimated 300,000 known natural products8 

and the more than 12 million commercially available compounds of more than 100 million 

known structures in PubChem. Furthermore, many silylation reactions are incomplete. 

While hydroxyls, thiols, and carboxylic acid moieties are always completely derivatized, 

primary and secondary amines may be not be exhaustively derivatized.9

Even with softer chemical ionization and accurate mass GC-MS, it is very difficult to 

elucidate the structures of unknown compounds.10 To increase the size of available EI-MS 

libraries, mass spectra can be predicted in silico from molecular structures.11 While machine 

learning models have been used to model TMS compound spectra, accuracy in EI-MS 

predictions was found to be lacking.12,13 EI-MS spectra also can be predicted from first-

principles simulation by quantum chemical modeling using QCEIMS14–17 with the semi-

empirical GFNn-xTB18–20 method. Recent work showed that in silico spectra generated by 

QCEIMS can help structure elucidation and identify unknowns.21 However, these methods 

have not been tested so far on TMS-derivatized molecules. We here present data testing the 

performance of QCEIMS to generate theoretical mass spectra for a diverse set of compound 

classes using 816 TMS-derivatized compounds.

METHODS

Parallel Fragmentation Prediction.

To test the general performance of QCEIMS for TMS-derivatized compounds (Figure 1), 

816 molecules with TMS groups at less than 700 Da were selected from the NIST17 

mass spectral database. While we used mono-TMS compounds to test the impact of TMS 

derivatives on different compound classes, we also calculated nine doubly (2TMS) and 

nine triply (3TMS) silylated derivatives to demonstrate the extensibility of the QCEIMS 

method. Starting with the IUPAC International Chemical Identifier (InChI), we generated 

3D structures with the Merck Molecular Force Field (MMFF9422) and saved them in 

mol (∗.mol) and TurboMole format (∗.tmol) using OpenBabel (v2.3.90).23 We then used 

QCEIMS (v4.0) to generate in silico mass spectra, for which a new version QCxMS24 

including an EI-MS prediction module has recently been released at https://github.com/

qcxms/QCxMS. Details of partitioning the components of kinetic energy into translational, 

rotational, and vibrational energies are given in the Supporting Information.25 Default 

settings for QCEIMS were used, with GFN1-xTB18 used for force/energy calculations and 

IPEA parameters used for ionization potential (IP) calculations. The CYLview26 program 

was used to visualize compound structures.

Substructure Compound Classification.

Chemical compounds can be classified by substructure analysis into many different 

classes.27 To evaluate the simulation accuracy on different compound classes, we here used 

the α-position of heteroatoms next to the silicon in TMS groups to classify compounds. For 
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example, if the α-heteroatom belonged to a carboxyl substructure, such compounds were 

annotated as acid, regardless which other functional groups were present in the molecule. A 

Python script based on RDKit28 was used to classify molecules into five main compound 

classes: alcohols, acids, amines, amides, and thiols. A detailed classification tree is presented 

in Scheme S1.

In Silico Accurate Mass Spectra.

The QCEIMS program currently generates integer mass-to-charge ratios. One advantage 

of using quantum chemistry for MS simulations is that the type and frequency of 

molecule fragments are counted, while element and isotopic masses are computed. 

Therefore, we programmed an extension to the QCEIMS program that also incorporates 

accurate isotopic masses for elemental compositions (Supporting Information, Zenodo 

repository). Such accurate mass in silico spectra are important when using high-resolution 

GC-MS instruments, which are increasingly used during structure elucidation of unknown 

compounds detected by GC-MS.10,29

In Silico Mass Spectrum Annotation.

Experimental mass spectra in the NIST17 database were used as the true positive examples 

to evaluate the accuracy of in silico spectra generated by the QCEIMS process. Cosine 

similarity scores and modified dot product scores were used for spectra comparison.11

Dot = ΣW IW E
2

ΣW I
2ΣW E

2

(1)

W = [Peak Intensity]0.5[Mass]3

(2)

where W  is the mass-weighted peak intensity, and subscript I denotes the in silico intensity 

and E the experimental intensity.

MassFrontier 7.030 was utilized to help annotate m/z peaks and neutral losses for all 70 eV 

mass spectra.

Accurate Mass GC-MS Analysis.

Accurate mass spectra were acquired on an Agilent 7890A GC system with an Agilent 

7200 accurate mass quadrupole time-of-flight (Q-TOF) mass spectrometer system (Agilent 

Technologies, Santa Clara, CA, U.S.A.). Chemicals were derivatized with 10 μL of 

methoxyamine hydrochloride in pyridine (20 mg/mL) to protect aldehyde or ketone groups 

and then trimethylsilylated to increase volatility by 90 μL N-methyl-N-(trimethylsilyl)-

trifluoroacetamide (MSTFA). Previously published gas chromatographic conditions were 

used.31 Mass spectra were obtained from m/z 50 to 800 at a 5 Hz scan rate in electron 

ionization mode with electron energy of 70 eV.

Wang et al. Page 4

Anal Chem. Author manuscript; available in PMC 2024 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS AND DISCUSSION

Trajectory Analysis of In Silico Predictions of Fragmentations in Electron Ionization 
Spectra.

One advantage of first-principles simulation is that we can follow molecular dynamics 

(MD) trajectories during the fragmentation reactions. In this way, we can annotate observed 

m/z fragment ions with fragmentation substructures that provide insights into reaction 

mechanisms.32,33 Selections of representative head-to-tail mass spectral comparisons 

including MD trajectories are given in the Supporting Information (Figures S1–S8). 

Experimental mass spectra represent the likelihood and frequency of many stochastic 

fragmentation events. Therefore, many trajectories are combined into simulated spectra 

when using QCEIMS. We first exemplify this principle on a few typical mass spectra from 

different compound classes. As an example of an aliphatic acid, the head-to-tail comparison 

of the QCEIMS-predicted fragmentation of O-trimethylsilylleucine to the experimental 

NIST17 library spectrum (Figure 2) shows that many experimental observed ions were 

indeed correctly predicted by simulation. However, the ion intensities were often found 

to be different between predicted and experimental spectra, yielding a low dot score MS 

similarity. For example, the [M-15]+ fragment ion m/z 188 was predicted at 70% of 

base peak abundance, compared to the experimentally found 26% abundance. Similarly, 

the [M-89]+ fragment ion at m/z 114 was predicted at 14% abundance compared to an 

experimental 2% abundance. Such disagreements in ion relative abundances heavily distort 

dot score similarity calculations. We therefore set out to better understand the QCEIMS 

trajectories that led to ion formation. Relative abundances are determined by the prevalence 

of trajectories leading to specific fragments. QCEIMS spectra account for all charged 

fragments from all trajectories. We used 25 trajectories per atom for each molecule, guided 

by the idea that large molecules may have more options of fragmentations than smaller 

ones.14 For example, the simulation of leucine-OTMS with 34 atoms accumulated a total of 

850 trajectories. Twenty-seven trajectories resulted in the formation of the [M-89]+ fragment 

ion (m/z 114, Figure 2) with an average trajectory length of 900 fs and a median trajectory 

length of 857 fs. The QCEIMS method predicted two fragmentation pathways: (1) In 24 

trajectories, a loss of •CH3 was followed by a loss of OSi(CH3)2 (Figure 2a, b) (2) In three 

trajectories, a loss of a TMSO• radical was found (Figure 2c). For calculating the relative 

abundance of ions in QCEIMS spectra, the stabilities of ions are estimated by comparing 

the statistical charges of fragments to their ionization potentials, which are weighted by 

the Boltzmann distribution. Because of this weighting method, the same [M-89]+ fragment 

ions in pathways (1) and (2) show extremely different statistical charges. The statistical 

charge for the 27 trajectories in pathway (1) is almost +1, while the three trajectories 

of pathway (2) have an average statistical charge of 0.04. In addition, we considered the 

impact excess energy (IEE), which denotes the residual energy introduced by the electron 

impact after ionizing the neutral molecule. For the 27 trajectories that generated the [M-89]+ 

fragment ion, an average IEE of 25 eV was found. In contrast, for the 48 trajectories that 

stopped after a loss of a methyl group, an average IEE of 16 eV was found. This lower 

IEE thus led trajectories to remain at [M-15]+ fragment ions without subsequent secondary 

fragmentations. We also found that [M-15]+ fragmentations were exclusively associated with 

methyl losses from the TMS group but not from the branched leucine carbon backbone. 
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For the predicted [M-15]+ fragment ion, an average trajectory length of 1625 fs and median 

trajectory of 1066 fs were found. In comparison, therefore, the [M-89]+ fragment will be 

formed faster but only under conditions that lead to higher impact excess energy.

Previous papers have shown that statistical models purely based on IEE values are 

insufficient to predict experimental mass spectra.34,35 Aside from the IEE, the distribution 

of energy within a molecule may also influence the likelihood of specific fragmentation 

pathways. We therefore analyzed fragmentation of leucine-OTMS from this perspective. To 

evaluate the effect of energy distributions, we performed an energy partition analysis36 on 

trajectories #494 and #499, which yielded fragment ions m/z 114 ([M-89]+ ion) and m/z 188 

([M-15]+ ion) (Figure 3). Energy distribution plots of substructures often show oscillations 

throughout the trajectories, but the timing of fragmentations indeed to coincide with the 

most drastic changes in energy distributions. For example, in the trajectory leading to the 

m/z 188 ion (Figure 3, lower panel), the methyl substructure showed significant vibrational 

energy at 80 fs that led to bond stretching, but the actual fragmentation and generation of the 

methyl radical only appeared at around 240 fs. In comparison, for the m/z 114 ([M-89]+ ion 

trajectory #494, the methyl radical departed at around 200 fs, and subsequently, a OSi(CH3)2 

fragment departed at around 400 fs. At 380 fs, an intermediate structure was observed 

with a four-membered ring (Figure 3, upper panel insert). We also separated and validated 

the transition state structure for the methyl group loss in Figure S12. For both trajectories 

#494 and #499, methyl substructures showed increases in vibrational energy of around 

240–280 fs that led to fragmentation reactions. However, in trajectory #499, the vibrational 

energy was distributed within the leucine-ODMS substructure, whereas in trajectory #494, 

the vibrational energy was rapidly distributed to the OSi(CH3)2 substructure. After a 

final energy redistribution to the dimethylsilanone substructure at around 420 fs, the 

loss of a neutral OSi(CH3)2 fragment occurred. In conclusion, analyses of QCEIMS 

trajectories, despite relying on the imperfect harmonic oscillator approximation, reveal how 

the distribution of vibrational energy can influence the directions of reactions and explain 

the prevalence of different reaction pathways.

Mass Spectral Fragmentation Rules.

Over decades of interpreting electron ionization mass spectra, characteristic product ions 

have been determined for specific molecular substructures,37 including for trimethlysilylated 

compounds used in metabolomics.29 We therefore investigated if our MD simulations 

correctly predicted such product ions. Here, we provide detailed information on 

fragmentation for two molecules, with additional examples given for other compound 

classes in Figures S2–S8. The aromatic acid trimethylsilyl-4-methoxybenzoate (Figure 4) 

was predicted to form the molecular radical ion in a higher abundance than experimentally 

observed. For aromatic acids and their derivatives, five product ions have been described 

as characteristic fragments.29 Among these, the [M-CH3]+ and [M-OTMS]+ neutral losses 

were accurately predicted with QCEIMS simulations (Figure 4b). The m/z 194 ion could 

be produced in two different ways, either as a secondary methyl loss from a m/z 209 ion 

leading to a m/z 194.039 radical cation that was also found when we analyzed this molecule 

using accurate mass GC-QTOF MS (Figure S9) but not the alternative m/z 194.076 ion that 

would have resulted from a neutral loss of O=CH2 from the 4-methoxy group. Similarly, the 
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m/z 135.045 ion was correctly predicted by QCEIMS to arise from a neutral loss of TMSO* 

and not as an alternative product with m/z 135.024 (C8H11Si) that would have been formed 

by a literature-described four-membered ring rearrangement (Figure 4b).38 These examples 

show that QCEIMS can produce mechanistic predictions that were experimentally verified 

by accurate mass GC-QTOF MS measurements.

However, the neutral loss of CO2 from a m/z 209 species to form a m/z 165.073 

fragment (Figure 4c) via a four-membered ring arrangement was not correctly predicted 

by QCEIMS. Using the rule-based MassFrontier software,31 this ion likely originates from 

a rearrangement reaction in which the silicon is transferred to the benzene ring through a 

four-membered transition structure with CO2 as the leaving group.38 Two arguments may 

explain this observation. First, the high energy transition structure itself can only be accessed 

if a specific initial conformation is formed, similar to conformer-defined reactions simulated 

previously.39 This example demonstrates that QCEIMS predictions could be improved by 

more comprehensive conformer sampling to correctly accommodate the probabilities of 

alternative reaction pathways. Second, our simulation time was limited to a few picoseconds 

(10−12 s). Rearrangement reactions in mass spectrometry may reach a time scale from 10−11 

to 10−6 s40 which is too long to be simulated by molecular dynamics methods.

QCEIMS predictions also correctly matched the experimental accurate mass m/z 107.050 

for [C7H7O]+ leading to a distributed positive charge along the aromatic ring (Figure 4d). 

However, several trajectories were also detected that led to other energetically unstable 

structures through ring-opening reactions (Figure 4e). Such trajectories may contribute to 

incorrect predictions of relative ion intensities. We also found that the m/z 77 for the 

benzyl cation and m/z 92 for C6H4O+• were underestimated by the simulation. These two 

fragments were generated by two continuous fragmentations, highlighting the importance of 

considering multiple step fragmentations and the length of simulation times.

In QCEIMS predictions for primary alcohols, many fragment ions correctly matched 

experimentally observed ions (Figure 5a): m/z 209 for [M-15] +, m/z 103 for TMS-OCH2
+, 

m/z 73 for TMS+ ions, and m/z 59 for (CH3)2SiH+.29 The characteristic m/z 73 TMS+ 

ions are generated by Si–O bond dissociations. Errors in predicting ion abundances are 

likely due to inaccurate estimations of the dissociation energies of oxygen–silicon bonds. 

QCEIMS-predicted different trajectories that led to two distinct fragment structures for the 

m/z 194 peak (Figure 5b): C11H18OSi+• (m/z 194.112) and C10H14O2Si+• (m/z 194.076) in 

an intensity ratio of 1:25. Nine trajectories showed a seven-membered ring rearrangement 

reaction en route to the m/z C10H14O2Si+• peak (Figure 5c). Both fragment ions were 

confirmed experimentally by high resolution GC-QTOF MS (Figure S10), albeit with a 

different relative intensity ratio of 2:9. Nevertheless, this observation shows that QCEIMS 

can correctly predict rearrangement reactions.

Average Accuracy of QCEIMS Predictions for Different Compound Classes.

To obtain an overview how accurate the QCEIMS approach is for predicting TMS-

derivatized mass spectra for different classes of typical metabolites, we calculated spectra 

for a total of 816 molecules. All QCEIMS-predicted spectra have been uploaded to 

MassBank (https://massbank.us/). Molecules were selected by following the frequency 
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distribution of chemical classes in the NIST database. A discussion of simulation time 

can be found in Figure S11. We summarized all structures into five major compound 

classes (Table 1) and subdivided these into aromatic and aliphatic structures by the location 

of the TMS-derivatized heteroatom (Figure S1). We had previously shown for QCEIMS 

predictions of underivatized molecules that mass-weighted dot score similarities were 

better suited than cosine scores for matching predicted to experimental spectra.11 We 

found the same trend for TMS-derivatized compounds here and therefore only present 

the mass-weighted dot score match factors (Table 1). Detailed comparisons for cosine and 

dot score similarities are given for all 816 compounds in Table S1. Across all compound 

subclasses, dot score similarities ranged from 532 to 847 when compared to standard 70 

eV spectra in the NIST17 database (Table 1). In addition, for 18 example molecules, 

we showed that the QCEIMS approach can be extended to 2TMS and 3TMS derivatives 

(Table S2). The nine tested 2TMS derivatives yielded an average dot product score of 

615, whereas the nine tested 3TMS derivatives only gave an average dot product score of 

449. Short QCEIMS simulation times may become even more detrimental for predicting 

intramolecular rearrangements for molecules with multiple TMS groups, for example, for 

predicting fragments such as m/z 147 for TMS-diols.38

Two important differences were noted when comparing mass spectral similarity scores 

between experimental and QCEIMS-predicted spectra across all compound classes. (1) 

Most aromatic compounds yielded a significantly higher similarity score than corresponding 

aliphatic compounds of the same class, with the exception of aromatic and aliphatic 

acids, which yielded comparable scores. (2) Average mass-weighted dot scores of oxygen-

containing compounds (acids, alcohols) were significantly lower than other compound 

classes (amides, amines, thiols).

When inspecting head-to-tail comparisons of mass spectra (Figures 2, 4, and 5 and 

Figures S1–S8), we found that spectra with low dot score similarities usually exhibited 

disagreements in the high m/z peak region, especially with respect to the presence and 

abundance of the molecular ion peak (M+•). The high m/z region is given especially large 

weight in the weighted dot score calculation that is used in GC-MS analyses,41 and hence, 

differences in M+• abundances heavily contribute to lower scores. The radical ion produced 

for aromatic compounds can be stabilized through π-delocalization which leads to high ion 

intensities for both predicted and experimental spectra and ultimately a high weighted dot 

similarity score. When comparing the prediction errors across the different functional groups 

(superclasses), it was clearly noted that both alcohols and acids showed a large difference in 

M+• abundances between predicted and experimental spectra. In comparison, intensities for 

M+• molecular ions were more predictable for thiols and amides and, to some extent, also 

for amines. This finding confirms our previous results for nonsilylated compounds that also 

had shown worse matching scores for oxygen-containing molecules compared to molecules 

without oxygen atoms.11

Relationship of MS-Similarity Score to QCEIMS Spectral Predictions.

Overall dot score similarities are heavily influenced by predicted ion intensities. However, 

the current accuracy of QCEIMS predictions can also be evaluated based on the number 
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of ions that were correctly simulated by QCEIMS trajectories, in relation to ions that were 

predicted but not experimentally validated, and ions that were experimentally found but not 

predicted. This evaluation can be mathematically expressed by the Jaccard index

J(A, B) = A ∩ B
A ∪ B

where A are predicted ions, and B experimental ions. A ∩ B  is the intersection of ions found 

in both predicted and experimental spectra, and A ∪ B  is the complement of both predicted 

and experimental ions. Therefore, the Jaccard index ranges from 0 (if no ion is correctly 

predicted) to 1 (if all ions are correctly predicted). Because the generation of ions is an 

inherently stochastic process and as the QCEIMS model used here limited the number of 

tested trajectories to 25 times the number of atoms per molecule, we limited the calculation 

of Jaccard indices to ions that were found at more than 1% intensity of the base peak ions.

Overall, an average of 53% of all experimental ions were correctly predicted by the 

QCEIMS method for the 816 trimethylsilylated molecules examined (Figure 6, Table 

1), showing that quantum chemistry for electron ionization spectra is both scalable for 

hundreds of molecules and can produce useful true positive rates. Interestingly, the Jaccard 

index shows that we have on average a higher proportion of fragment ions that were 

experimentally found but not QCEIMS-predicted than incorrect predictions by QCEIMS 

that were not experimentally validated (Figure 6). This observation shows that a range of 

fragmentation reactions were not located using QCEIMS, for example, the rearrangement 

via a four-membered ring transition structure in Figure 5 (missing ion m/z 165). Other 

reactions that heavily depend on conformational or electronic states are likely undersampled, 

for example, hydrogen migration reactions. When we investigated the degree of Jaccard 

index accuracy with respect to different substructures, no statistical difference was found 

(Table 1), unlike for overall dot product similarities. Similarly, when we investigated the 

dependency of dot score similarities of QCEIMS-predicted spectra versus the Jaccard index 

errors, no significant impact was evident for the relative contribution of overpredicted ions 

or underpredicted ions.

CONCLUSIONS

We presented the first large-scale application of the QCEIMS algorithm on 

trimethylsilylated compounds. We completed calculations for almost twice as many 

compounds than in a previous report on nonderivatized molecules.11 Together, these two 

studies show that quantum chemistry prediction of mass spectra is now on the verge of being 

applicable to thousands of compounds, with the prospect of being useful for compounds 

that are not commercially available and not present in current MS libraries. On a single 

CPU thread, calculations took approximately 2.3 h per atom or approximately 7.2 h on a 

16 CPU cluster for a molecule with 50 atoms. Calculation times increase quadratically if 

larger molecules are calculated. Assuming these calculations were run on 5000 nodes with 

molecules that do not exceed 50 atoms, we might be able to calculate spectra for 100,000 

molecules within 100 days, as long as the size and complexity of molecules is similar as 

presented here.
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To assess the accuracy of such predictions, we analyzed the fragmentation reactions for 

specific molecules and the MS/MS matching scores of QCEIMS-predicted spectra across 

aliphatic and aromatic trimethylsilylated compounds. Overall, we found that QCEIMS 

predictions were most accurate for aromatic compounds with nitrogen heteroatoms than 

for oxygen-containing aliphatic compounds. We also uncovered some challenges for 

this method. For example, internal vibrational energy redistribution appears to impact 

the selectivity between competitive reactions. While many complex rearrangements were 

correctly predicted, we found that some reactions with four-membered transition states were 

missed by QCEIMS trajectory analyses. When calculating the Jaccard index of QCEIMS-

predicted spectra versus experimental reference spectra, we concluded that such missed 

reactions had more impact on poor MS-similarity scores than overpredicted fragment ions. 

Despite the necessary approximations used in the QCEIMS tool, overall matching scores 

showed that predicted spectra have high enough quality to be useful in mass spectrometry 

research, including identification of unknown compounds in untargeted screens. Future 

advancements in QCEIMS may explore additional conformer sampling and different atom 

velocities. In addition, we will test excited-state MD simulations to investigate if the 

inclusion of higher energy states may improve predictions in electron ionization mass 

spectrometry.39,42
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Figure 1. 
QCEIMS workflow of TMS derivatives: (1) substituting the active hydrogen of test 

molecules with trimethylsilyl groups, (2) generating 3D structures and initial conditions 

for QCEIMS, and (3) parallel simulation to get fragments and in silico spectra.
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Figure 2. 
Fragmentation of leucine-OTMS modeled by QCEIMS compared to the experimental 

mass spectrum from the NIST17 mass spectral library. (Bottom) Alternative fragmentation 

mechanisms (a–c) as detailed by QCEIMS trajectories. https://mona.fiehnlab.ucdavis.edu/

spectra/display/MoNA040855.
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Figure 3. 
Temporal change of vibrational energy of substructures during the fragmentation of 

leucine-OTMS as modeled by QCEIMS for two individual trajectories. (Top) Trajectory 

#494 leading to substructure m/z 114 (blue), substructure dimethylsilanone (orange), and 

substructure methyl-group (gray). Inset: reaction intermediate observed at 380 fs. (Bottom) 

Trajectory #499 leading to substructure m/z 188 leucine-ODMS (light blue) and substructure 

methyl group (yellow).
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Figure 4. 
Fragmentation analysis of trimethylsilyl-4-methoxybenzoate as an example of aromatic 

carboxylates. (a) Head-to-tail comparison of QCEIMS prediction against the experimental 

NIST17 library spectrum. (b) Proposed structures predicted by QCEIMS simulation and 

validated by accurate mass GC-QTOF MS measurements. (c) Proposed structure of 

experimentally found rearrangement product m/z 165. (d) Proposed aromatic structure 

for fragment ion m/z 107 along with a high energy structure predicted by QCEIMS 

trajectories. (e) Energetically unstable structures observed. In silico spectrum available at 

https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040747.
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Figure 5. 
Fragmentation analysis of trimethylsilylated 2-methoxyphenylethanol as an example 

of primary alcohols. (a) Head-to-tail comparison of QCEIMS prediction against 

the experimental NIST17 library spectrum. (b) Examples of correctly QCEIMS-

predicted fragment ions. (c) Seven-membered ring structure of m/z 194.076. https://

mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040546.
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Figure 6. 
Comparison of 816 compound spectra for QCEIMS prediction versus experimental mass 

spectra. For each spectrum, the Jaccard similarity index was calculated giving three 

fractions: the intersection of correctly predicted ions (green dots), versus ions only found 

in experimental spectra (underpredicted, orange), or ions only found in QCEIMS-predicted 

spectra (overpredicted, blue).
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Table 1.

Matching 816 QCEIMS Theoretical Spectra Against NIST17 Experimental Spectra Using Weighted Dot 

Product and Jaccard Similarity Indicesa

Superclass Subclass Count Dot score Jaccard

  acids total 211 605 ± 183 0.51 ± 0.10

aromatic 50 710 ± 123 0.49 ± 0.10

aliphatic 161 572 ± 187 0.51 ± 0.10

  alcohols total 443 611 ± 224 0.53 ± 0.13

aromatic 117 832 ± 79 0.52 ± 0.15

aliphatic 326 532 ± 206 0.53 ± 0.13

  amides total 30 727 ± 152 0.56 ± 0.12

aromatic 14 806 ± 34 0.59 ± 0.11

aliphatic 16 658 ± 181 0.52 ± 0.13

  amines total 106 744 ± 186 0.58 ± 0.13

aromatic 50 838 ± 95 0.56 ± 0.12

aliphatic 56 661 ± 208 0.60 ± 0.13

  thiols total 26 743 ± 186 0.49 ± 0.11

aromatic 15 847 ± 31 0.55 ± 0.04

aliphatic 11 601 ± 217 0.41 ± 0.11

a
Averages of ± standard deviations are given.
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