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ABSTRACT 
 

Associations of built and natural environment and bike infrastructure features with neighborhood-

level hypertension and obesity prevalence across the U.S. are not well explored. Identifying the 

environmental determinants of neighborhood-level disease prevalence can support community-

based nonpharmacologic interventions. Additionally, little is known about the extent of 

heterogeneity in built and natural environment impacts. Quantifying heterogeneity can help 

identify places where the greatest health gains can be obtained from infrastructural investments. 

Using a new neighborhood-level database, we assessed heterogeneous associations of 

neighborhood built and natural environment and bike infrastructure features with nationwide 

hypertension and obesity rates using a simultaneous quantile regression framework. A walkability 

index, access to green space, and bicycle infrastructure were negatively correlated with 

hypertension and obesity after controlling for social vulnerability. The associations of key 

environmental and bike infrastructure factors exhibited considerable heterogeneity. For a unit 

increase in the walkability index, the potential reduction in hypertension prevalence at the 10th 

percentile was 3.4 times the reduction at the 95th percentile. Likewise, the potential reduction in 

obesity prevalence at the 10th percentile was 1.8 times the reduction at the 95th percentile. Provision 

of on-street and off-street bike lanes was correlated with lower hypertension and obesity, although 

the impacts varied across the quantiles of health outcomes. Urban design policies promoting 

walkability, providing on-street and off-street bicycle facilities, and enhancing greenspace can be 

important strategies to combat hypertension and obesity. Our study underscores the importance of 

incorporating environmental features into future iterations of national disease prevalence data 

programs in the U.S. 

Keywords: Chronic Disease; Hypertension & Obesity; Built and Natural Environment; Bike 

Infrastructure; Quantile regression.  

 

1. INTRODUCTION  

 

Designing socially resilient and healthy transportation systems is a key to sustainable cities and 

societies (Megahed and Ghoneim 2020, Nieuwenhuijsen 2020, Reisi et al. 2020). The design of 

urban transport networks shapes individual activity patterns (Badland and Schofield 2005, Sallis 

et al. 2016) that impact health, including chronic and infectious disease outcomes (Sallis et al. 

2012, Frank et al. 2019, Wali 2023). Among chronic diseases, hypertension and obesity are major 

public health issues worldwide. Hypertension affects an estimated 1.28 billion adults aged 30-79 

years worldwide (WHO 2021). In the U.S., hypertension was diagnosed as a contributing cause in 

over half a million deaths – costing the nation $131 billion in annual health costs (CDC 2019). The 

most recent U.S. Surgeon General’s Call-to-Action identified hypertension control as a national 

priority (HHS 2020). The increasing prevalence of obesity worldwide – an epidemic defined as 

“globesity” by the World Health Organization (WHO 2020) – is also a major public health issue. 

The number of obese adults worldwide has more than doubled since 1990, with an estimated 890 

million people living with obesity in 2022 (WHO 2024). Further, hypertension and obesity often 
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precede the onset of other diseases and are major modifiable risk factors for non-communicable 

diseases including cardiovascular diseases (Anand and Yusuf 2011, Powell-Wiley et al. 2021), 

stroke (Kernan and Dearborn 2015, Wajngarten and Silva 2019), cancer (Wolin et al. 2010, 

Mouhayar and Salahudeen 2011), dementia (Nagai et al. 2010, Anjum et al. 2018), and 

Alzheimer’s disease (Nagai et al. 2010, Kiliaan et al. 2014). Evidence also suggests that chronic 

diseases including obesity and hypertension are key predictors of mortality from infectious 

diseases, including COVID-19 (Frank and Wali 2021, Mollalo et al. 2021). Collectively referred 

to as the “vicious twins” in the diseases of civilization (Leggio et al. 2017), preventive measures 

to control hypertension and obesity are a key public health priority (James 2017) and a key to 

achieving the sustainable development goal of reducing premature mortality from cardiovascular 

diseases (Global SDG Indicator Platform 2019). 

Built and natural environment features of cities, where people live, work, and play, are key 

focal points (Dadvand et al. 2014, McCunn 2021) and can be designed or retrofitted to reduce 

hypertension and obesity (Cerin et al. 2013). The relationship between the environment and 

chronic disease is primarily influenced by health behaviors (Frank et al. 2019, Su et al. 2019), such 

as increased physical activity and active travel, in more walkable and greener environments with 

dense infrastructure, connected street networks, and diverse land uses (Wali et al. 2022b). Current 

evidence, mostly from individual-level studies, suggest lower prevalence of hypertension and 

obesity in more walkable (Li et al. 2009, Feng et al. 2010, Sallis et al. 2012, Sarkar et al. 2018, 

Chandrabose et al. 2019, Adhikari et al. 2021, Prados et al. 2023) and greener neighborhoods 

(Dadvand et al. 2014, Bauwelinck et al. 2020, Zhao et al. 2022, Bu et al. 2023, Cerin et al. 2023, 

Liu et al. 2023b, Mayne et al. 2023, Sharifi et al. 2024, Zeng et al. 2024). In particular, walkability 

and greenspace benefits in relation to chronic disease mitigation are established in regional (Prados 

et al. 2023) as well as population-based health surveillance datasets (Adhikari et al. 2021). Besides 

macro-level walkability characteristics (e.g., density, design, and diversity) (Cervero and 

Kockelman 1997), the literature also points to the need for pedestrian-bicyclist infrastructure to 

maximize the health benefits walkability can produce by enhancing safer accessibility to diverse 

land uses and activity types (Litman 2015, Pan et al. 2021, Wali and Frank 2024).   

 

1.1. Research Gaps 
 

Compared to individual-level studies, the evaluation of population-level chronic disease 

prevalence at a finer geographic scale (e.g., census tract) has received less attention. 

Neighborhood-level disease prevalence is a key indicator for disease surveillance purposes 

(Klompas et al. 2017, Aerts et al. 2020, Kwan and Saragih 2020). Identifying its determinants 

across U.S. communities can further enable community-based nonpharmacologic interventions 

(Economos and Irish-Hauser 2007, Heath et al. 2012, Mensah et al. 2018, HHS 2020, Kong and 

Zhang 2020), including in areas where direct survey estimates are not valid due to multiple factors 

including low response rates, lack of resources, or limited sample sizes (Ghosh and Rao 1994, 

Zhang et al. 2014).  
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A handful of studies have examined the links between contextual variables and 

neighborhood-level chronic disease prevalence across the U.S. (Fitzpatrick et al. 2018, Liu et al. 

2018a, Liu et al. 2018b, Quick et al. 2020). These studies have provided useful insights into the 

impacts of unhealthy behaviors (e.g., binge drinking), preventive measures (e.g., health insurance), 

and sociodemographic factors on chronic disease prevalence. However, key gaps remain.  

First, no study to our knowledge has assessed built and natural environment features in 

relation to neighborhood-level hypertension and obesity prevalence across the nation. Thus far, 

most studies are individual-based and regionally focused as noted above. Besides macro-level 

walkability and greenspace, the associations of biking infrastructure with neighborhood chronic 

disease prevalence are not well explored. In the U.S., assessments of neighborhood-level chronic 

disease prevalence have mostly harnessed the US CDC’s PLACES (or its predecessor 500 Cities 

Project) database (Fitzpatrick et al. 2018, Liu et al. 2018a, Liu et al. 2018b, Quick et al. 2020). The 

PLACES database provides nationally comparable neighborhood disease prevalence estimates 

derived largely from demographic and socioeconomic factors using individual-level health survey 

data (discussed later in detail). Given the now well-documented impacts of the built and natural 

environment on chronic diseases (Sallis et al. 2012), it is important to assess how built and natural 

environment characteristics correlate with independently derived estimates of chronic disease 

prevalence which are intended for national use. Any correlation, if exists, would highlight the need 

to explore the inclusion of built and natural environment features in developing future versions of 

national disease prevalence data programs (e.g., PLACES project) in the U.S.  

Second, previous studies have not examined unobserved heterogeneity in the impacts of 

built and natural environment and bike infrastructure features within the context of neighborhood-

level chronic disease burden. This is important since behavioral pathway is among the key 

mechanisms documenting the impacts of place on individual behaviors and health (Wilkie et al. 

2018, Frank et al. 2019) and the interactions between individuals and their surrounding 

environments are often characterized by considerable heterogeneity (Chesson and Rosenzweig 

1991, Montiglio et al. 2013, Chen and Li 2021, Wali et al. 2022a). Besides, chronic diseases have 

a multitude of underlying causes, and data on many of these factors are often missing in even the 

most comprehensive health databases. The omission of such factors leads to variations in the 

impacts of observed exogenous factors. Unobserved heterogeneity in this context is defined as 

potential variations in the associations of key environmental factors due to systematic variations 

in unobserved factors (e.g., attitudes, perceptions, or accessibility to medical facilities, to name a 

few) (Wali et al. 2022a). Such heterogeneity is not only limited to ecological analyses, as 

individual-level studies have also shown considerable heterogeneity in the magnitude and direction 

of environmental impacts on health outcomes (Wali et al. 2022a). In this context, unobserved 

heterogeneity impacts originate at the individual level and can be manifested at the ecological 

level. With the implications of omitting such health-relevant unobserved factors now increasingly 

becoming known (Zarulli 2016, Wali 2023), it is important to harness methods that can capture 

potential heterogeneous associations. The quantification of heterogeneous associations can 
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provide policy-relevant insights into places where the greatest health gains from investments in 

the built and natural environment and bike infrastructure can be made. 

 

1.2. Research Objective 
 

Given these gaps, the present study evaluates how objective built and natural environment features 

and bike infrastructure facilities correlate with neighborhood-level hypertension and obesity 

prevalence across the U.S, adjusting for spatial variations across the U.S. urban-rural continuum 

(metropolitan, micropolitan, small towns, and rural areas) and U.S. census regions. We adjust for 

social vulnerability as an important confounder of the relationships between environmental factors 

and disease prevalence (Turrell et al. 2013, Roberts et al. 2015, Wali 2023). Methodologically, we 

assess heterogeneity in the protective role of built and natural environment measures and bike 

facilities by assessing the magnitude of environmental impacts across the distributions of 

hypertension and obesity rates. These objectives are achieved by integrating a national disease 

surveillance database by the U.S. Centers for Disease Control and Prevention (CDC) with high-

resolution objectively assessed built and natural environmental, pedestrian/bicyclist infrastructure, 

and social vulnerability measures. The resulting new information is critical to the development of 

place-based interventions for hypertension and obesity control with implications for infrastructure 

monitoring, investment prioritization, and funding1.  

 

2. METHODS 

 

2.1. Design & Sample 

 

We harnessed an ecological study design with neighborhood-level (census tract) data on health 

outcomes, social deprivation, and built/natural environment features for the entire U.S. A new 

neighborhood-level health dataset is created by pooling information from three unique datasets: 

(1) PLACES: Local Data for Better Health by the Centers for Disease Control and Prevention 

(CDC) and Robert Wood Johnson Foundation (RWJF) (CDC 2020b), (2) the National 

Environmental Database (NED) by the RWJF, and (3) the CDC’s Social Vulnerability Database. 

The census-tract served as a unit of analysis and is the smallest level of geography for which 

chronic disease outcome data are consistently available.  

 
1 We searched Web of Science, PubMed, Transportation Research International Documentation, and Google Scholar 

for articles published from inception till Feb 28, 2023, analyzing neighborhood-level hypertension and obesity 

prevalence in the United States in relation to built and natural environment features, and provision of bicycle facilities, 

using the key terms: (“obesity prevalence” OR “hypertension prevalence” OR “high blood pressure prevalence”) AND 

(“built environment”, “natural environment”, “walkability”, “green space”) AND (“heterogeneity”). Although we 

found few studies examining the relationships between neighborhood features and chronic disease (mainly, obesity) 

prevalence in the US (as discussed above), we did not find any studies examining neighborhood-level hypertension 

and obesity prevalence and its links with built and natural environment features. Moreover, we did not find studies 

examining heterogeneity in the impacts of neighborhood built/natural environment features on hypertension and 

obesity. 
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2.1.1. Outcomes: Neighborhood Chronic Disease Prevalence 

 

Data on hypertension and obesity prevalence were drawn from the recent PLACES database (2020 

data release). As an expansion of the original 500 Cities Project, the Population Level Analysis 

and Community Estimates (PLACES) database provides much-needed census-tract level, 

nationally comparable, small-area estimates for health outcomes in the U.S. (CDC 2020b). In 

addition to the expanded geographic coverage beyond the 500 most populous cities, PLACES 

expands upon the 500 Cities Project by incorporating innovations in producing valid small-area 

health estimates for both urban and rural areas, see (CDC 2020b) for details. These data are 

intended to advance health by informing the development and application of targeted public health 

interventions. The census tract-level PLACES estimates are based on individual-level health 

survey data from the CDC’s Behavioral Risk Factor Surveillance System survey2 (Zhang et al. 

2014). Table A1 shows the geographic resolution, time frame, and data sources of all study 

variables. 

 

2.1.2. Exposures: Built and Natural Environment Features 

 

Built environment data at the census tract level were derived from the most recent version of the 

NED nationwide repository of key environmental features covering the entire U.S. (Wali et al. 

2021). Built environment measures used in this study relate to (1) density, (2) street connectivity, 

(3) diversity, (4) access to transit, and (5) automobile use. Residential density (housing units/acre 

of developable land) represented built environment compactness (Cervero and Kockelman 1997). 

Diversity in jobs was captured through an eight-tier employment entropy (mix) characterizing 

access to different employment types: retail, office, industrial, service sector, entertainment, 

education, healthcare, and public administration (Cervero and Kockelman 1997). A weighted 

street intersection density (eliminating auto-oriented intersections) (count/square km.) measure 

was used as a proxy for pedestrian-oriented network connectivity (Frank et al. 2005). Access to 

transit was captured by the count of transit stops (all rail and bus modes) within a neighborhood. 

Finally, the annual average household vehicle miles traveled (VMT) was used as a measure of car 

dependence (Brownstone 2008) – picking up the effect of neighborhood-level environmental 

features supporting car dependence and hindering active travel. A composite national walkability 

index (NWI) was created combining the above measures to circumvent the multicollinearity issue 

arising from the use of individual built environment features (Wali et al. 2021). The data were 

standardized when calculating the NWI. A normalization process was used to make the underlying 

NWI variables with different units comparable and easily combine them on the same scale. 

Normalization determines the number of standard deviations each value is from the mean of that 

 
2 Standardized definitions of hypertension and obesity are adopted in PLACES (CDC 2020b). The two primary 

outcomes were defined as: (1) High Blood Pressure: “Respondents aged ≥18 years who report ever having been told 

by a doctor, nurse, or other health professional that they have high blood pressure. Women who were told high blood 

pressure only during pregnancy and those who were told they had borderline hypertension were not included.”, and 

(2) Obesity: “Respondents aged ≥18 years who have a body mass index (BMI) ≥30.0 kg/m² calculated from self-

reported weight and height.” (CDC 2020b). 
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set of variable values. Each of the five component variables (shown in Table 1) was normalized 

using z-score values and then combined to calculate the NWI using the formulation shown in Table 

1. Formulation and application of the NWI have been published elsewhere (Wali et al. 2021).  

To capture bicyclist-oriented infrastructure design elements, facility densities (per mi.) of 

off-street (separated multi-use pathways) and on-street (bike lanes) within 100 ft. crow-fly distance 

around tract boundaries were calculated. A bicycle facility density measure was calculated to 

quantify the ratio of total linear miles of bicycle facilities compared to total linear miles of walkable 

(road segments where pedestrians are permitted to traverse with limited access roads and entry 

ramps removed) roadways. Multiple data sources were used to compute these measures, as shown 

in Table A1. For the state of California, a bicycle facility data inventory was developed from data 

furnished by Caltrans (California Department of Transportation, 15 California Metropolitan 

Planning Organizations (MPOs), and 8 California Regional Transportation Planning Organizations 

(RTPOs) that had bicycle infrastructure data available). For the rest of the U.S., data was acquired 

from Open Street Map (OSM) sources for both types of bicycle facilities. Any gaps in bicycle 

facility coverage in California were filled by OSM data where available, while prioritizing state 

and regional government sources and excluding overlapping features to prevent duplication. Five-

year (2015-2019) pedestrian and bicyclist-involved fatal traffic crash density per 100,000 

residential population were also used, using source data from the National Highway Traffic Safety 

Administration (Table A1).  

Finally, natural environment variables were harnessed including tree canopy and access to 

developed parks represented by the number of parks of any type or size3. Tree canopy cover is 

defined as the percentage of land covered by the horizontal projection of tree crowns. The base 

data sources used for natural environment measures are shown in Table A1. To account for 

variations across spatial sub-groups, a four-tier urban-rural continuum code (metropolitan, 

micropolitan, small towns, and rural areas) was used to capture variations in urbanity and rurality 

across the country (Morrill et al. 1999, USDA 2010). The rural-urban community area (RUCA) 

codes by the USDA’s Economic Research Service classify U.S. census tracts using measures of 

urbanization, population density, and daily commuting patterns (Morrill et al. 1999). These codes 

are exogenous to the NWI as the variables used by USDA in the RUCA codes do not constitute 

NWI. Moreover, all the census tracts were classified into nine U.S. regions based on the Census 

Bureau Regions and Divisions classification system (US Census 2021). Table 1 shows the 

definitions and formula for each of the built environment metrics and walkability index.  

 

 

 
3 Park data were acquired from the U.S. Geological Survey (USGS) Protected Areas Database (PAD) and OSM Park 

Inventory Source (Table A1). Only parks with developed infrastructure were included with natural or conservation 

areas excluded from the inventory. Comprehensive and consistent attribute information on the date of park 

construction was not available in either database. Both datasets likely have very few parks that were developed after 

2018 (collection time of health data), especially the USGS PAD. However, it was impossible to exclude newer parks 

since there are no construction attributes available for either database. 
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2.1.3. Social Deprivation and Vulnerability 

 

Neighborhood social deprivation and vulnerability can be an important confounder of the 

association between the built/natural environment (key exposure) and disease prevalence (Turrell 

et al. 2013, Roberts et al. 2015, Liao et al. 2023, Wali 2023). To adjust for social deprivation, we 

harnessed Social Vulnerability Index (SVI) data from the US CDC’s Agency for Toxic Substances 

and Disease Registry (ATSDR) (Flanagan et al. 2011, CDC 2020a). The purpose of the SVI is to 

assist decision-makers in identifying communities with a high risk of a disease outbreak (CDC 

2020a). The SVI ranked every census tract on 15 social factors grouped into four related themes: 

1) socioeconomic status, 2) household composition and disability, 3) minority status and language, 

and 4) housing type and transportation (see Table 2). Based on percentiles, each tract is ranked 

among all census tracts in the U.S. for each of the individual census variables, four themes, and an 

overall vulnerability theme (a composite measure of the four themes combined) (Table 2). Theme-

specific rankings are derived by summing the percentiles for each Census variable comprising 

each of the four themes and ordering the summed percentiles across all census tracts. The 

percentile rankings for the four themes are summed and the census tracts are re-ordered to calculate 

an overall percentile ranking (CDC 2020a). The overall SVI ranges between 0 and 1 with higher 

values indicating greater social vulnerability or more unfavorable conditions related to the specific 

themes (Table 2) (Flanagan et al. 2011, CDC 2020a). We multiplied the SVI by 100 for scaling 

purposes in the forthcoming models.  

The final data matrix contains data on 71,913 census tracts for all incorporated variables. 

Environmental data from the NED and chronic disease estimates from PLACES were available 

for 74,133 and 72,048 census tracts nationwide, respectively. Data on neighborhood-level 

deprivation from the CDC were available for 73,469 census tracts. A total of 72,048 census tracts 

were represented in the three data sources (NED, PLACES, and CDC’s social vulnerability 

database). Of these census tracts, 71,913 census tracts (99.8%) had complete data on the built 

environment, social deprivation, and chronic disease measures considered in this study.  
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TABLE 1. Description and Formulation of Built Environment Variables 
Variable 

name 

Description Formulation 

Residential 

density  

Gross residential 

density on unprotected 

land (D1A). 

This measure is calculated as number of housing units per acre of unprotected land.  

Gross residential density = number of housing units (both single family and multi-family) / area of 

developable land in acres (water bodies and conservation areas excluded) 

Street 

network 

intersection 

density  

Street intersection 

density (weighted, 

auto-oriented 

intersections 

eliminated) (D3B). 

 

This measure is calculated by developing a weighted sum of component intersection density metrics 

including three-leg and  4 legs multi-modal intersections (D3BMM3 and D3BMM4) and three-leg 

and  4 legs pedestrian-oriented (D3BPO3 and D3BPO4) intersections. To reflect support for 

pedestrian and bicyclist mobility, auto-oriented intersections were assigned zero weight. Three-way 

intersections were assigned relatively lower weights compared to four-way intersections since the 

latter promotes street connectivity more effectively.  

D3B =

(0.667 ∗ D3BMM3) + (0.667 ∗ D3BPO3) +
D3BMM4 + D3BPO4

𝑡𝑜𝑡𝑎𝑙 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑎𝑐𝑟𝑒𝑠
⁄  

Eq. (1) 

 

Employment 

mix  

Eight-tier employment 

entropy 

(D2B_E8MIXA). 

This measure is based on the 8-tier employment categories to calculate employment mix (entropy). 

All eight employment types are used in the employment entropy denominator. It is calculated as: 

D2B_E8MIXA = −
E

ln(8)
 

 

Eq. (2) 

Where: E represents a composite index combining eight different employment types as a ratio of 

total employment in a block group. Eight employment types include retail, office, industrial, service 

sector, entertainment, education, healthcare, and public administration. For formulation of E, see 

(Wali et al. 2021).  

Access to 

transit  

Number of transit 

stops in a block group 

(DAT).  

This measure captures the number of transit stops within a census block group. Those block groups 

with no transit stop but located in urbanized areas with access to the nearest transit stop within 0.64 

miles (or 15-minute walk) were assigned a value of one stop to distinguish them from block groups 

with no transit access.    

Vehicle 

Miles 

Travelled 

Annual household 

vehicle miles traveled 

(VMT).  

Modeled VMT for regional median family income by the US Department of Transportation.  

Walkability 

Index  

National walkability 

index 

This variable is calculated as a composite measure of the above built environment features related to 

connectivity, diversity, density, transit, and automobile use. Using normalized z-score value of each 

of the variables, the formulation is: 

𝑊𝑎𝑙𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐷1𝐴) + (𝐷3𝐵) + D2B_E8MIXA + 𝐷𝐴𝑇 + [(−1) ∗ 𝑉𝑀𝑇] Eq. (3) 
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TABLE 2. Underlying Themes and Variables of the Social Vulnerability Index.   

O
v

er
a

ll
 V

u
ln

er
a

b
il

it
y

 

Theme 1: 

Socioeconomic 

Status 

Below poverty Percent individuals below poverty 

Unemployed Percent civilians (age 16+) unemployed  

Income Per capita income (mean income in census tract) 

No high school 

diploma 

Percent individuals (age 25+) with no high school diploma 

Theme 2: 

Household 

Composition & 

Disability 

Aged 65 or older Percent individuals 65 years of age or older 

Aged 17 or younger Percent individuals 17 years of age or younger 

Civilian with a 

disability 

Percent of civil individuals of age 5 years or older with a disability 

Single-parent 

households 

Percent of single-parent households with children under 18 years old.  

Theme 3: 

Minority Status 

& Language  

Minority Percent minority (all individuals except white, non-Hispanic) 

Aged 5 or Older who 

speaks English “less 

than well” 

Percent individuals 5 years or older who speak English less than “well” 

Theme 4: 

Housing Type & 

Transportation 

Multi-unit structures Percent housing units with 10 or more units in a structure 

Mobile homes Percent housing units that are mobile homes 

Crowding Percent total occupied housing units with >1 person per room 

No vehicle Percent households with no vehicle available 

Group quarters Percent individuals who are in group quarters, both institutionalized 

(e.g., correctional institutions, nursing homes) and non-institutionalized 

(e.g., college dormitories, military quarters).  

 

2.2. Descriptive & Modeling Methods 

 

Descriptive analysis was initially performed to understand data distributions and assess measures 

of central tendency (mean and medians) and dispersion (standard deviations and interquartile 

ranges). Visualizations to assess distributional variations of response outcomes were developed. 

Spearman’s rank correlations were visualized to understand bivariate dependencies (Zar 2005).  

Given the continuous nature of the response outcomes, a traditional fixed parameter 

regression framework can be used to model the determinants of neighborhood disease prevalence. 

However, the linear regression framework is restrictive as it only models the conditional mean of 

the response outcomes as a function of exogenous factors. A conditional mean approximation can 

provide inaccurate insights when the data are characterized by unobserved heterogeneity. Robust 

to heteroskedasticity and non-normal distribution of error terms (Koenker 2010), a quantile 

regression framework allows an examination of how specific quantiles (instead of the conditional 

mean) of the response outcomes vary as a function of exogenous factors (Wali et al. 2022c, Yang 

et al. 2024). As opposed to minimizing the mean squared errors in a standard regression 

framework, quantile regression minimizes a weighted sum assigning asymmetric penalties for 

over-prediction and under-prediction (Koenker 2010, Wali et al. 2022c). For a specific quantile 𝑞, 

the asymmetric penalties are (1 − 𝑞)|ℵ𝑖| and 𝑞|ℵ𝑖| for over-and under-prediction, respectively 

(Koenker 2010). The quantile-specific error distribution is derived as (Koenker and Hallock 2001, 

Koenker 2010): 

ℵ𝑖
𝑞

= 𝑌𝑖 − �̂�0
𝑞

− ∑ �̂�𝑗
𝑞

𝑥𝑖𝑗

𝐾

𝑗=1 

 

(4) 
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Where: ℵ𝑖
𝑞
 is a vector containing model residuals for neighborhood 𝑖 at quantile 𝑞; �̂�0

𝑞
 is a 

vector of quantile-specific intercepts; �̂�𝑗
𝑞
 is a vector of quantile-specific estimable parameters 

associated with exogenous variable j (j = 1, 2, 3, …, K); and 𝑥𝑖𝑗 is the data matrix containing 

exogenous variables 𝑗 across 𝑖 neighborhoods. The estimable parameters can be estimated by 

minimizing the following objective function (Koenker and Hallock 2001, Koenker 2010): 
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𝑞

− ∑ �̂�𝑗
𝑞

𝑥𝑖𝑗|𝐾
𝑗=1 ) +𝑁

𝑖:𝑦𝑖≥�̂�𝑞𝑋𝑖
∑ ((1 − 𝑞)|𝑦𝑖 − �̂�0

𝑞
−𝑁

𝑖:𝑦𝑖≤�̂�𝑞𝑋𝑖

∑ �̂�𝑗
𝑞

𝑥𝑖𝑗|𝐾
𝑗=1 )               

(5) 

 

Where: �̂�𝑞 is a quantile-specific vector of all estimable parameters (including quantile-

specific intercept terms). By minimizing the objective function in Eq. (5) through linear 

programming techniques, the final model function form is given as: 

 

 𝑌𝑖
𝑞

=  Prevalence rates𝑞(0.10,0.25,0.50,0.75,0.95) = �̂�0
𝑞

+ ∑ (�̂�𝑗
𝑞

𝑥𝑖𝑗)𝐾
j=1 + ℵ𝑖

𝑞
 (6) 

 

Compared to independent quantile models (Koenker 2010), the quantile estimates were 

computed using simultaneous-quantile regressions to capture covariances among parameter 

estimates at different quantiles. Estimates of variance and covariances accounting for between-

quantile blocks were obtained by 250 bootstrapped samples generally sufficient for unbiased 

estimates (DeLisi et al. 2011). Further, quantile regression models at continuous quantiles ranging 

from 0 to 1 (in increments of 0.1) were developed to understand the impacts of built and natural 

environment features across the entire spectrum of the distributions of response outcomes4,5. To 

examine sensitivity to exposures, the results from these estimations were used to create 

visualizations of covariate effects at continuous quantiles of the response outcomes. 

 
4 We note that quantile regression implies linearity and homoscedastic errors, but these assumptions are only 

conditional on specific quantiles of the response variable (Koenker 2017). This provides far greater flexibility 

compared to traditional fixed parameter models, as the assumptions of linearity and equal variance are far less 

restrictive when assessing specific fine-grained quantiles of the response variable (Koenker and Hallock 2001, 

Koenker 2017). In other words, the forthcoming results imply linear associations and homogenous errors only within, 

and not across, each of the fine-grained quantiles being modeled. Overall, the property of conditional quantile 

functions (as opposed to mean function) for Y|X makes quantile regression quite robust to outliers, long-tail 

distributions, and model misspecification (Koenker and Hallock 2001, Beyerlein 2014, John 2015, Huang et al. 2017), 

in addition to detecting heterogeneous impacts that are of interest in the present study (Wali et al. 2022c). 
5 The concept of heterogeneity more broadly entails variations in impact sizes due to different sources of variations, 

including unobserved, observed (systematic), and spatial heterogeneity. This study mainly focused on unobserved 

heterogeneity impacts. However, the framework used in this study indirectly captures systematic heterogeneity (non-

linearities) and spatial dependencies by examining variations across the entire spectrum of chronic disease prevalence. 

Assessing systematic heterogeneity impacts is of interest in other contexts, e.g., to develop thresholds for 

environmental factors (Tu et al. 2021, Wali et al. 2021, Liu et al. 2023a). This is outside the scope of the present study 

but should be explored in future research. Furthermore, to accurately establish such environmental thresholds, it is 

important to simultaneously consider different types of heterogeneity which necessitates more advanced structural 

models (Bhat 2022, Ahn 2023, Kim and Mokhtarian 2023, Wali et al. 2023). This serves as a distinct methodological 

contribution for future research endeavors to pursue. 
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Environmental variables were treated as continuous whereas regional and urban/rural factors as 

categorical. Both linear and quantile regression analyses were performed for comparative 

purposes. Finally, multicollinearity was assessed in the final model specifications by computing 

Variance Inflation Factors (VIFs) and tolerance statistics (Washington et al. 2010). A VIF of 

greater than 10 and tolerance statistic of less than 0.1 for any exogenous factor indicate the 

presence of problematic multicollinearity requiring attention (Chatterjee and Price 1991). The final 

models did not have any problematic multicollinearity, as indicated by the VIFs and tolerance 

statistics of all the included exogenous factors being less than 4.2 and greater than 0.24, 

respectively. 

 

3. RESULTS 

 

3.1. Descriptive Statistics 

 

With considerable heterogeneity, the average prevalence of hypertension and obesity is around 

32% (Table 3). Figure 1 shows the asymmetry in the distributions of hypertension and obesity 

rates. The data are not rectangularly distributed, with strong skewness in the left (lower quantiles) 

and right (higher quantiles) tails of the distribution (Figures 1A through 1D). The 10th and 95th 

percentiles of hypertension prevalence equal 24% and 45·4%, respectively. Figure 2 reveals 

geographic disparities in the spatial distributions of hypertension and obesity prevalence 

nationwide. Hypertension prevalence is generally lower in the Northeastern, Western Pacific, and 

Western Mountain states and higher in the Southern states. Similar geographic patterns can be seen 

for obesity (Figure 2). This implies that the average hypertension and obesity rates cannot 

appropriately represent the distributional shapes.   
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TABLE 3. Descriptive Statistics of Key Variables. 

Variable Mean SD Median IQR Range 

Chronic Disease Prevalence (%)      
High Blood Pressure / Hypertension 32.38 7.23 31.90 8.90 (5.4,67.2) 

Obesity 32.15 6.86 32.10 9.20 (10.7,59.1) 

Social Deprivation / Vulnerability (Social 

Vulnerability Index)      
SVI Theme 1: Socioeconomic status 50.01 28.86 50.02 49.96 (0,100) 

SVI Theme 2: Household composition & disability 50.15 28.80 50.19 49.88 (0.04,100) 

SVI Theme 3: Minority status & language 49.98 28.89 49.96 50.07 (0,100) 

SVI Theme 4: Housing type & transportation 50.08 28.83 50.09 49.93 (0,100) 

SVI overall theme 50.06 28.86 50.08 49.98 (0,100) 

Built Environment      
Walkability Index (on scale 0 to 100) 22.69 7.04 21.61 9.35 (8.83,96.1) 

Residential density (housing units / acre) 4.24 9.65 1.98 3.65 (0,300) 

Street network intersection density (count / sq. km.) 73.88 60.25 65.34 94.02 (0,251.01) 

Employment mix (on scale from 0 to 1) 0.55 0.15 0.56 0.20 (0,0.99) 

Access to transit (stops) 2.84 4.84 0.67 4.00 (0,100) 

Vehicle Miles Travelled 27961.13 5579.94 28736.51 7658.97 (20.75,39979) 

Bike Infrastructure & Safety      
Buffered off-street length density per mi. 0.53 1.70 0 0.16 (0,44.96) 

Buffered on-street (bike lane) length density per mi. 1.06 2.86 0 0.40 (0,58.04) 

Buffered 5-Year pedestrian fatal crash density per 100k 

population 22.36 77.62 0 28.41 (0,8343.7) 

Buffered 5-Year bicyclist fatal crash density per 100k 

population 25.65 85.41 0 32.84 (0,8343.7) 

Natural Environment      
Buffered total park (any type) count 1.01 2.15 0.25 1.17 (0,55) 

Unbuffered total park (any type) count 0.56 0.95 0.25 0.75 (0,44) 

Buffered tree canopy coverage (%) 0.15 0.15 0.10 0.18 (0,0.98) 

Urban-Rural Continuum (proportion)      
Metropolitan 0.82 0.38 1 0 (0,1) 

Micropolitan 0.09 0.29 0 0 (0,1) 

Small town 0.05 0.21 0 0 (0,1) 

Rural 0.04 0.20 0 0 (0,1) 

Regional Factors (proportion)      
North East: New England 0.05 0.21 0 0 (0,1) 

North East: Mid Atlantic 0.14 0.35 0 0 (0,1) 

Mid West: East North 0.16 0.37 0 0 (0,1) 

Mid West: West North 0.07 0.26 0 0 (0,1) 

South: South Atlantic 0.19 0.39 0 0 (0,1) 

South: East South 0.06 0.24 0 0 (0,1) 

South: West South 0.11 0.32 0 0 (0,1) 

West: Mountain 0.07 0.26 0 0 (0,1) 

West: Pacific 0.15 0.36 0 0 (0,1) 
Notes: SD is standard deviation; IQR is interquartile range; SVI is social vulnerability index; N = 71,913 census 

tracts for all variables. 
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FIGURE 1. Distribution of Hypertension and Obesity Prevalence Rates.  

Notes: A and C show the histograms for prevalence of hypertension and obesity, respectively (10th P, 25th 

P, 50th P, 75th P, and 95th P indicate the respective percentiles). B and D show the empirical cumulative 

distribution functions of hypertension and obesity prevalence, respectively. Red dotted line represents the 

reference line. If the data were rectangularly distributed, all the points would lie on the red dotted line. 

Departures from the reference line indicate asymmetry and skewness.  

 

Considerable variations in built and natural environment features are observed nationwide. A wide 

range of residential density, street network intersection density, employment mix, and access to 

transit are observed across the neighborhoods. In terms of walkability, the average walkability 

index is 22·69 with a range of 8·83 and 96·1 revealing significant nationwide variations. Similar 

patterns of large variations are found for bike infrastructure, traffic safety, and natural environment 

features (Table 3). The average social vulnerability index is 50.06 (on a scale 0 to 100; lower 

values indicate lower vulnerability) with an interquartile range of 49.98 revealing significant 

variations across neighborhoods. Figure 3 shows the unadjusted Spearman rank correlations of the 

chronic health outcomes with key environmental variables. Hypertension and obesity are 

negatively correlated with walkability index, access to parks, and bicycle infrastructure. 

Pedestrian-bicyclist fatal crash densities are positively correlated with hypertension and obesity 

prevalence. The two chronic diseases exhibit a moderate degree of correlation (Spearman rank 



15 

 

correlation  0.7; Figure 3). Analysis of the correlations between obesity and hypertension 

prevalence levels revealed similarity and discrepancy patterns (see crosstab and non-parametric 

agreement measures in Table A2). While at least over half of the neighborhoods had concurrent 

levels (low-low, medium-medium, high-high) of obesity and hypertension prevalence, significant 

contrasts were also observed. Of all the neighborhoods with low obesity prevalence, around 57% 

had low hypertension prevalence, whereas the remaining neighborhoods exhibited medium and 

high levels of hypertension (Table A2). These discrepancy patterns support the separate analyses 

of the two key chronic diseases considered in this study.  

 

 
FIGURE 2. Nationwide Distribution of Hypertension and Obesity Prevalence Across Census-

Tracts.  
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Notes: The breaks are defined according to quantiles of hypertension and obesity with probability values 

in [0,1] in an increment of 0.1. Alaska and Hawaii not shown.  

 

 
FIGURE 3. Spearman Rank Correlations of Environmental Features with Hypertension and 

Obesity Prevalence.  
Notes: HBP: high blood pressure/hypertension; Walk Index: walkability index; SVI is social vulnerability index; 

Off_BikeInfra: buffered off-street length density per mi.; On_BikeInfra: buffered on-street (bike lane) length density 

per mi.; PedBike: 5-year pedestrian and bicyclist fatal crash density per 100,000 population; Park: buffered total park 

(any type) count; Metro & Micro: neighborhoods in metropolitan and micropolitan regions. Spearman’s rank 

correlations of individual variables in the walkability index are not shown but are in the expected direction. P-values 

of Spearman’s rank correlations are 0.0000 for all pairs of variables except PedBike and Off-BikeInfra (p-value of 

0.1448).   

 

3.2. Modeling Results 

 

Tables 4 and 5 present the estimation results of fixed parameter and simultaneous quantile 

regression models for the prevalence of hypertension and obesity. Results from simultaneous 

quantile regression models at the 10th, 25th, 50th, 75th, and 95th percentiles are provided for the two 

outcomes. All models account for social deprivation, regional and urban/rural indicators to account 

for potential variations and confounding. The  estimates in Tables 4 and 5 show the change in the 

mean (for fixed parameter regression) or quantile-specific conditional mean (for quantile 

regression) prevalence of hypertension and obesity with a unit increase in the continuous 

independent variable. For indicator variables, the  estimates show the resulting change in the 
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outcomes for a switch from 0 (absence of a condition) to 1 (presence of a condition). Due to space 

considerations, Tables 4 and 5 show the results across selected quantiles that cover the entire range 

of the distribution. However, Figures 4 and 5 illustrate the  estimates of key exogenous factors at 

continuous quantiles of the response outcomes providing a more complete picture.  

 

3.2.1. Neighborhood-level Correlates of Hypertension 

 

Representing built environment, the walkability index is negatively correlated with the prevalence 

of hypertension. The fixed parameter model implies that a one-unit increase in walkability is 

associated with a 0·23% reduction in the prevalence of hypertension (Table 4). Despite the 

statistically significant reduction, the homogeneous fixed parameter model ignores the potential 

variations in the associations of walkability index. Compared to the average reduction of 0·23%, 

the quantile regression models show important non-linearities. Moreover, the potential reductions 

in hypertension due to an increase in walkability index are greater at the 10th, 25th, and 50th 

percentile hypertension prevalence rates (Table 4 and Figure 4). In addition, the walkability 

associations vary significantly across the quantiles of hypertension. A unit increase in the 

walkability index was associated with a 0.31% reduction in hypertension prevalence at the 10th 

percentile of the prevalence of hypertension, which was 3.4 times the 0.09% decrease in 

hypertension prevalence seen at the 95th percentile.  Regarding bicycle facilities, the provision of 

both on-street and off-street bike lanes was correlated with lower hypertension and the magnitude 

of reductions varied significantly across the quantiles of hypertension (Table 4 and Figure 4). 

Compared to the average reduction of 0·25% implied by the fixed parameter model, the potential 

reductions in hypertension due to each additional mile of off-street bike lane density ranged 

between 0·21% and 0·33% across the different percentiles of hypertension (Table 4). 

Neighborhoods with greater pedestrian-bicyclist fatal crashes had an on-average greater 

prevalence of hypertension, with significant variations across different quantiles (Figure 4). 

Similar heterogeneous associations were observed regarding the links between the natural 

environment and neighborhood hypertension prevalence (Table 4). Depending on the quantile 

considered, each additional park was associated with a 0.17% to 0.25% reduction in hypertension 

prevalence. Social deprivation was positively correlated with prevalence of hypertension across 

all quantiles. The positive association of social deprivation was stronger in neighborhoods with 

high hypertension prevalence (> 95th percentile). Compared to rural areas, the prevalence of 

hypertension is expectedly lower in metropolitan and micropolitan areas (Table 4).  

 

3.2.2. Neighborhood-level Correlates of Obesity 

 

The results in Table 5 show that the built environment characteristics are statistically significantly 

associated with obesity. The fixed parameter model implied a 0.25% reduction in obesity 

prevalence associated with each unit increase in neighborhood walkability. Simultaneous quantile 

regression models revealed considerable heterogeneity in walkability impacts across obesity 

quantiles (Table 5). For a unit increase in walkability index, the potential reduction in obesity at 
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the 10th percentile is around 1.8 times the reduction at the 95th percentile of obesity distribution 

(0·32% at 10th vs. 0·17% at 95th percentile). Independent of the built/natural environment, bicyclist 

infrastructure was statistically significantly correlated with lower obesity prevalence, with 

relatively profound associations compared to natural environment impacts discussed below. 

Depending on obesity quantiles, a one-mile increase in buffered on-street bike facility per mile of 

roadway was correlated with a 0.07% to 0.16% reduction in obesity prevalence (Table 5 and Figure 

5). Poor pedestrian-bicyclist safety was on-average associated with a greater prevalence of 

neighborhood obesity. The associations varied and were statistically significant across all quantiles 

considered, except for the 10th percentile (Table 5). Neighborhood greenspace on average was 

negatively correlated with obesity – with significant variations across obesity quantiles (Figure 5). 

The number of total parks was positively correlated with obesity in the higher (95th) percentiles 

(Figure 5). This finding does not imply causality and in fact, could be tracking other neighborhood-

specific unobserved factors whose impacts could manifest through the (observed) built 

environment fabric (Ghimire et al. 2017, Wali et al. 2022a).  

Similar to hypertension outcome, social deprivation was positively correlated with 

prevalence of obesity across all quantiles. Compared to rural neighborhoods, those in metropolitan, 

micropolitan, and small-town areas on-average exhibited lower levels of obesity. However, the 

magnitude of associations and statistical significance varied considerably across the quantiles 

(Table 5). Among the regions, neighborhoods in the South (especially the East South) had the 

highest prevalence of obesity. Like the hypertension outcome, considerable heterogeneity (both in 

magnitude and direction of associations) was found in the impacts of urban-rural and regional 

factors across the quantiles of obesity distribution (Table 5 and Figure 5). Figure 6 shows the 

predicted obesity and hypertension prevalence across the US regions – revealing highest and 

lowest prevalence of obesity and hypertension in the East South and West, respectively. Within 

regions, the prevalence rates varied widely across the quantiles 6 (Figure 6). 

 

 
6 As noted earlier, the prevalence of obesity and hypertension are based on small-area estimates with potential 

measurement errors as they are derived from individual-level survey data. Small area estimates are generally more 

precise than direct survey estimates (Ghosh and Rao 1994, Jia et al. 2004, Zhang et al. 2014, Kong and Zhang 2020). 

We considered the impacts of potential measurement errors by assessing the confidence intervals and standard errors 

of the estimated obesity and hypertension prevalence rates. The mean standard errors for predicted obesity and diabetes 

prevalence are 0.59% and 0.53%, respectively, with standard deviations of 0.18% and 0.16%. Thus, the CDC estimates 

are considerably precise. Additionally, considerable measurement errors (if present) mainly impact (statistical) 

efficiency (Greene 2018), i.e., the standard errors associated with beta coefficients would be biased and 

underestimated, leading to a type 1 error. Most estimable parameters across all quantiles in this study exhibit high 

statistical significance. Thus, the chance of type 1 error rendering our results statistically insignificant is very low due 

to the minimal measurement errors in CDC’s predicted rates of obesity and hypertension. 
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TABLE 4. Heterogeneous Associations Between Hypertension and Environmental Features 

Variable 
LR 

Quantile Regression 

10th Percentile 25th Percentile 50th Percentile 75th Percentile 95th Percentile 

β β [95% CI] β [95% CI] β [95% CI] β [95% CI] β [95% CI] 

Outcome: Hypertension 

Prevalence (%)            

Built Environment            

Walkability Index -0.23 -0.31 [-0.33,-0.3] -0.27 [-0.28,-0.26] -0.24 [-0.24,-0.23] -0.18 [-0.19,-0.17] -0.09 [-0.11,-0.06] 

Bike Infrastructure & 

Safety            
Buffered off-street length 

density per mi. -0.25 -0.33 [-0.4,-0.27] -0.27 [-0.31,-0.23] -0.24 [-0.27,-0.21] -0.21 [-0.24,-0.18] -0.29 [-0.35,-0.23] 

Buffered on-street (bike lane) 

length density per mi. -0.05 -0.06 [-0.09,-0.02] -0.05 [-0.07,-0.03] -0.04 [-0.06,-0.02] -0.04 [-0.06,-0.02] -0.02a [-0.07,0.02] 

Buffered 5-Year pedestrian & 

bicyclist fatal crash density 

per 100k pop 0.003 0.002 [0.0003,0.002] 0.003 [0.0008,0.005] 0.006 [0.004,0.008] 0.01 [0.009,0.01] 0.02 [0.01,0.02] 

Natural Environment            
Buffered total park (any type) 

count -0.17 -0.21 [-0.26,-0.16] -0.2 [-0.23,-0.18] -0.18 [-0.21,-0.15] -0.18 [-0.21,-0.15] -0.25 [-0.31,-0.18] 

Social Deprivation / 

Vulnerability            

Social vulnerability index 0.11 0.084 [0.08,0.09] 0.085 [0.08,0.09] 0.09 [0.08,0.09] 0.1 [0.1,0.1] 0.14 [0.135,0.144] 

Urban-Rural Continuum            

Rural .. .. .. .. .. .. .. .. .. .. .. 

Metropolitan -3.21 -3.38 [-3.65,-3.12] -3.34 [-3.53,-3.14] -3.5 [-3.7,-3.3] -3.44 [-3.68,-3.2] -2.17 [-2.6,-1.75] 

Micropolitan -2.33 -1.79 [-2.07,-1.5] -1.71 [-1.92,-1.5] -2.09 [-2.31,-1.88] -2.47 [-2.75,-2.19] -2.46 [-2.95,-1.96] 

Small town -1.41 -0.76 [-1.1,-0.42] -0.75 [-0.99,-0.52] -1.2 [-1.44,-0.97] -1.64 [-1.94,-1.35] -2.49 [-2.96,-2.01] 

Regional Factors            

North East: New England .. .. .. .. .. .. .. .. .. .. .. 

North East: Mid Atlantic 1.51 0.99 [0.67,1.3] 1.06 [0.89,1.22] 1.15 [0.97,1.33] 1.5 [1.33,1.68] 1.94 [1.48,2.41] 

Notes: (··) is Not Applicable; LR is linear regression; All β estimates are statistically significant with p < 0.05 except those indicated by (a) with p > 0.10; N is 

sample size. 
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TABLE 4. (Continued). Heterogeneous Associations Between Hypertension and Environmental Features  

Variable 
LR 

Quantile Regression 

10th Percentile 25th Percentile 50th Percentile 75th Percentile 95th Percentile 

β β [95% CI] β [95% CI] β [95% CI] β [95% CI] β [95% CI] 

Regional Factors            

Mid West: East North 2.78 1.17 [0.88,1.47] 1.7 [1.51,1.89] 2.26 [2.06,2.46] 3.04 [2.85,3.23] 5.23 [4.74,5.71] 

Mid West: West North -0.2a -1.57 [-1.9,-1.24] -1.01 [-1.23,-0.79] -0.32 [-0.56,-0.09] 0.48 [0.27,0.69] 1.58 [1.07,2.09] 

South: South Atlantic 3.32 0.8 [0.5,1.1] 1.75 [1.57,1.93] 2.88 [2.67,3.09] 4.49 [4.24,4.73] 6.95 [6.5,7.41] 

South: East South 6.98 5.16 [4.79,5.54] 6.06 [5.82,6.3] 6.62 [6.39,6.84] 7.53 [7.27,7.79] 9.22 [8.61,9.83] 

South: West South 2.54 0.02a [-0.32,0.36] 1.27 [1.05,1.5] 2.56 [2.33,2.8] 3.72 [3.5,3.94] 5.75 [5.22,6.27] 

West: Mountain -2.64 -4.12 [-4.46,-3.78] -3.56 [-3.76,-3.36] -3.01 [-3.23,-2.79] -2.3 [-2.52,-2.08] -0.12 [-0.71,0.46] 

West: Pacific -2.74 -2.8 [-3.1,-2.5] -2.82 [-2.99,-2.65] -2.91 [-3.12,-2.71] -2.67 [-2.87,-2.47] -1.55a [-1.98,-1.12] 

Intercept 34.11 32.71 [32.36,33.07] 33.78 [33.52,34.04] 35.14 [34.85,35.43] 35.56 [35.26,35.86] 35.02 [34.42,35.63] 

Summary Statistics            

N 71,913 71,913 71,913 71,913 71,913 71,913 

Raw sum of deviations .. 85032.42 153764.8 200467.3 170309 61243.73 

Min sum of deviations .. 62643.9 110769.4 142004 120430.5 45097.84 

Pseudo R-squared 0.44 0.2633 0.2796 0.2916 0.2929 0.2636 

Total sum of squared errors 3756825.3 .. .. .. .. .. 

Model sum of squared errors 1667859.8 .. .. .. .. .. 

Notes: (··) is Not Applicable; LR is linear regression; All β estimates are statistically significant with p < 0.05 except those indicated by (a) with p > 0.10; N is 

sample size. 
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FIGURE 4. Heterogeneous Associations of Environmental Factors with Hypertension at 

Continuous Quantiles.  

Notes: Figure shows associations of built & natural environment, bicyclist infrastructure, pedestrian-

bicyclist safety, & regional factors with prevalence of hypertension. Red dashed line shows the estimate 

from linear model; Shaded region shows the quantile-specific 95% confidence intervals from simultaneous 

quantile regression.  
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TABLE 5. Heterogeneous Associations Between Obesity and Environmental Features  

Variable 

LR 
Quantile Regression 

10th Percentile 25th Percentile 50th Percentile 75th Percentile 95th Percentile 

β β [95% CI] β [95% CI] β [95% CI] β [95% CI] β [95% CI] 

Outcome: Obesity 

Prevalence (%)            

Built Environment            

Walkability Index -0.25 -0.32 [-0.33,-0.31] -0.30 [-0.31,-0.29] -0.26 [-0.27,-0.25] -0.22 [-0.23,-0.21] -0.17 [-0.19,-0.15] 

Bike Infrastructure & 

Safety            
Buffered off-street length 

density per mi. -0.21 -0.27 [-0.31,-0.22] -0.24 [-0.27,-0.2] -0.22 [-0.25,-0.2] -0.22 [-0.25,-0.2] -0.23 [-0.29,-0.18] 

Buffered on-street (bike lane) 

length density per mi. -0.11 -0.09 [-0.12,-0.06] -0.07 [-0.09,-0.05] -0.10 [-0.12,-0.08] -0.13 [-0.15,-0.11] -0.16 [-0.19,-0.13] 

Buffered 5-Year pedestrian & 

bicyclist fatal crash density 

per 100k pop 0.003 0.001a [-0.0004,0.0022] 0.003 [0.002,0.005] 0.005 [0.003,0.01] 0.007 [0.006,0.008] 0.007 [0.005,0.009] 

Natural Environment            
Buffered total park (any type) 

count -0.04 -0.03 [-0.07,-0.0021] -0.03 [-0.06,-0.01] -0.06 [-0.08,-0.03] -0.01a [-0.04,0.02] 0.05 [0.01,0.1] 

Social Deprivation / 

Vulnerability            

Social vulnerability index 0.15 0.125 [0.12,0.13] 0.132 [0.1305,0.1336] 0.142 [0.14,0.143] 0.152 [0.151,0.154] 0.175 [0.171,0.177] 

Urban-Rural Continuum            

Rural .. .. .. .. .. .. .. .. .. .. .. 

Metropolitan -0.36 -1.14 [-1.38,-0.89] -0.78 [-0.94,-0.62] -0.26 [-0.41,-0.1] 0.03a [-0.17,0.23] 0.1a [-0.2,0.39] 

Micropolitan -0.1a -0.35 [-0.63,-0.07] -0.15a [-0.33,0.04] 0.20 [0.02,0.38] 0.1a [-0.12,0.32] -0.23a [-0.59,0.14] 

Small town -0.47 -0.31 [-0.6,-0.02] -0.28 [-0.47,-0.08] -0.31 [-0.52,-0.1] -0.44 [-0.71,-0.17] -0.59 [-0.96,-0.21] 

Regional Factors            

North East: New England .. .. .. .. .. .. .. .. .. .. .. 

North East: Mid Atlantic 1.76 1.26 [0.98,1.53] 1.62 [1.41,1.83] 1.92 [1.75,2.09] 2.20 [2.01,2.38] 2.66 [2.37,2.95] 

Notes: (··) is Not Applicable; LR is linear regression; All β estimates are statistically significant with p < 0.05 except those indicated by (a) with p > 0.10; N is 

sample size. 
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TABLE 5. (Continued). Heterogeneous Associations Between Obesity and Environmental Features  

Variable 

Linear 

Regression 

Quantile Regression 

10th Percentile 25th Percentile 50th Percentile 75th Percentile 95th Percentile 

β β [95% CI] β [95% CI] β [95% CI] β [95% CI] β [95% CI] 

Regional Factors            

Mid West: East North 5.22 5.01 [4.79,5.22] 4.60 [4.41,4.79] 4.73 [4.56,4.9] 5.35 [5.14,5.55] 6.14 [5.85,6.43] 

Mid West: West North 5.05 4.71 [4.42,5.01] 4.60 [4.38,4.82] 4.81 [4.6,5.02] 5.37 [5.13,5.61] 6.26 [5.94,6.58] 

South: South Atlantic 2.58 2.47 [2.24,2.7] 2.17 [1.98,2.36] 2.12 [1.96,2.28] 2.62 [2.41,2.82] 3.71 [3.42,4] 

South: East South 5.60 5.61 [5.36,5.85] 5.03 [4.8,5.25] 4.93 [4.73,5.13] 5.63 [5.4,5.86] 6.45 [6.04,6.86] 

South: West South 5.00 5.52 [5.29,5.74] 5.00 [4.79,5.2] 4.55 [4.37,4.74] 4.52 [4.31,4.72] 4.80 [4.48,5.11] 

West: Mountain -0.25 -0.08a [-0.37,0.22] -0.23 [-0.46,-0.002] -0.28 [-0.48,-0.09] -0.33 [-0.54,-0.11] -0.52 [-0.82,-0.22] 

West: Pacific -2.13 -1.88 [-2.14,-1.62] -2.26 [-2.47,-2.05] -2.30 [-2.48,-2.12] -1.92 [-2.12,-1.73] -1.52 [-1.81,-1.22] 

Intercept 28.32 26.64 [26.26,27.02] 28.08 [27.8,28.35] 28.94 [28.7,29.17] 29.75 [29.48,30.02] 31.00 [30.54,31.46] 

Summary Statistics            

N 71,913 71,913 71,913 71,913 71,913 71,913 

Raw sum of deviations .. 83049.09 154815 196992.7 158250.2 53973.3 

Min sum of deviations .. 50706.31 92642.5 118241.4 95792.4 32154.2 

Pseudo R-squared 0.66 0.3894 0.4016 0.3998 0.3947 0.4043 

Total sum of squared errors 3380060.5 .. .. .. .. .. 

Model sum of squared errors 2099237.5 .. .. .. .. .. 

Notes: (··) is Not Applicable; LR is linear regression; All β estimates are statistically significant with p < 0.05 except those indicated by (a) with p > 0.10; N is 

sample size. 
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FIGURE 5. Heterogeneous Associations of Environmental Factors with Obesity at Continuous 

Quantiles.  

Notes: Figure shows associations of built & natural environment, bicyclist infrastructure, pedestrian-

bicyclist safety, & regional factors with prevalence of obesity. Red dashed line shows the estimate from 

linear model; Shaded region shows the quantile-specific 95% confidence intervals from quantile 

regression.  
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FIGURE 6. Predicted Hypertension and Obesity Prevalence Rates Across US Regions.   

Notes: Quantile-specific point estimates and 95% confidence intervals are shown. 25th P, 50th P, 75th P, and 

95th P indicate the respective percentiles. The estimates are based on the models presented in Table 4 and 

Table 5 and control for built and natural environment features, pedestrian-bicyclist infrastructure, and 

urban-rural indicators. The predicted values are calculated by setting regional indicators at specific values 

(corresponding to each of 9 US census regions) and integrating over sample/census-tract values of the 

remaining covariates.  
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4. DISCUSSION  

 

This study quantified the associations of objectively-assessed built/natural environment and 

bicyclist infrastructure design features with neighborhood-level hypertension and obesity 

prevalence – an issue of major public health concern (WHO 2021, WHO 2024). As discussed in 

the earlier section, the heterogeneous linkages are estimated to be strong and statistically 

significant7. Our findings on the associations of environmental factors with hypertension and 

obesity agree with individual-level studies documenting the positive health impacts of walkable 

and greener environments8 (Lopez-Zetina et al. 2006, Chandrabose et al. 2019, Adhikari et al. 

2021, Avila-Palencia et al. 2022). More walkable neighborhoods with greenspace support physical 

activity and active travel (Adhikari et al. 2020), which are associated with lowered risks of 

hypertension and obesity (Fox and Hillsdon 2007, Diaz et al. 2017). Unlike previous studies, our 

results unveil significant heterogeneity in the impacts of built and natural environment features on 

hypertension and obesity prevalence that could be an outgrowth of systematic variations in 

neighborhood-level observed and a range of unobserved factors.  

Independent of the effects of walkability and social deprivation, our findings also highlight 

the potential of bicyclist-supportive infrastructure in reducing neighborhood hypertension and 

obesity prevalence. Poor levels of pedestrian-bicyclist safety were correlated with a greater 

prevalence of obesity and hypertension. Neighborhoods with more pedestrian-bicyclist crashes 

(lower safety) may lack infrastructure for safer walking and biking (Saha et al. 2020, Wali and 

Frank 2024) which can hinder active transportation (Sallis et al. 2012). Lower active 

transportation-related physical activity is generally associated with higher obesity and 

hypertension levels (Sallis et al. 2012, Diaz and Shimbo 2013). However, the relationship between 

walkability and pedestrian-bicyclist safety is complicated as noted elsewhere (Wali and Frank 

2024). Previous studies have reported a positive correlation between social vulnerability and 

chronic disease prevalence (Aubé-Maurice et al. 2012, Vinikoor‐Imler et al. 2012, Angier et al. 

2020). Our findings extend the literature by demonstrating heterogeneous associations of social 

 
7 Overall, the heterogeneous associations are quantified quite precisely, as all the β estimates are highly significant. 

While the R-squared statistics shown are helpful to understand predictive power, our focus is on evaluating individual 

β estimates as R-squared statistics do not have a substantive meaning in an explanatory (as opposed to predictive) 

context (Figueiredo Filho et al. 2011, Ozili 2023). Having said this, the R-squared statistics in our study are sizeable 

considering the nationwide scale of the present study, ranging from 0.26 to 0.44 for hypertension and 0.38 to 0.66 for 

obesity. It is not uncommon to observe R-squared values below 0.2 in the travel behavior and social science literatures 

(Hensher and Sullivan 2003, Buehler 2012, Salon 2015, Domenech-Abella et al. 2020, Li et al. 2020).  
8 The results of our study should not be interpreted at the individual level because of the ecological study design. 

However, numerous individual-level studies have found that the physical characteristics of the environment impact 

health outcomes (Renalds et al. 2010, Malambo et al. 2016), with walkability generally associated with lower chronic 

disease risk (Koohsari et al. 2020). Therefore, a broader comparison of ecological findings to individual-level studies 

can help assess the behavioral validity of ecological findings. Doing so does not diminish the importance of ecological 

analyses in understanding the determinants of neighborhood-level disease prevalence, which as noted earlier, is 

important for developing community-based nonpharmacologic interventions (Economos and Irish-Hauser 2007, 

Heath et al. 2012, Mensah et al. 2018, HHS 2020).  
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vulnerability with obesity and hypertension prevalence. Importantly, the impacts of social 

deprivation were more pronounced in neighborhoods with greater hypertension and obesity 

prevalence. Regarding spatial factors, the considerable heterogeneity associated with urban-rural 

and regional factors is likely capturing the role of macroscopic space-time factors that often vary 

significantly across large geographies, and which are unobserved in the data at hand. Compared to 

samples restricted to specific localities (e.g., cities) (Donovan et al. 2021), the utilization of a 

nationwide sample with significant variability in health outcomes and environmental exposures 

enhances the external validity of the results.  

 

4.1. Study Implications 

The study presents a substantive and methodological contribution to scholarship in the field 

with practical implications. From a substantive viewpoint, a key gap in the literature has been the 

lack of nationwide evidence concerning the links between the built/natural environment and 

neighborhood-level chronic disease prevalence. Previous studies harnessing data from the CDC’s 

500 Cities (predecessor of PLACES) have focused on social disparities in chronic disease 

(Fitzpatrick et al. 2018, Liu et al. 2018a, Liu et al. 2018b, Quick et al. 2020). The present study 

demonstrated the value of built and natural environment features in quantifying the variability in 

neighborhood-level hypertension and obesity prevalence after controlling for social deprivation. 

Contrary to the approach of a few published studies using 500 Cities data discussed earlier, we 

intentionally excluded neighborhood-level socio-demographic factors as additional correlates 

since PLACES estimates are already derived from individual-level models with sociodemographic 

factors as independent variables (CDC 2020b, Kong and Zhang 2020). The redundant inclusion of 

demographic factors was omitted from the models to avoid endogeneity issues. Our results 

demonstrate that the built and natural environment features are independently predicting PLACES 

outcomes beyond demographic and socioeconomic factors. Being physically active is among the 

key strategies identified in The Surgeon General’s Call to Action to Control Hypertension (HHS 

2020). More walkable and greener environments provide greater opportunities to engage in active 

travel and physical activity (Mytton et al. 2012, Rundle et al. 2016). Our results support the need 

to explore the inclusion of built and natural environment features in the development of future 

versions of PLACES. As municipalities increasingly focus on developing large-scale programs 

and interventions to combat hypertension and obesity (TFAH 2018), it seems justified and rational 

that the hypertension and obesity estimates in PLACES be adjusted for the environmental factors 

increasingly known to significantly impact health (Renalds et al. 2010, Bird et al. 2018, Wali et al. 

2022b). Deductively, among other factors, chronic diseases result from complex interactions 

between lifestyle factors (e.g., diet), travel behaviors (e.g., physical activity), and the environment. 

The built environment represents a broad spectrum of social and physical elements that formulate 

community structure (French et al. 2014) and could influence chronic disease outcomes. To this 

end, future versions of PLACES could benefit from the inclusion of built and natural environment 

variables in estimating hypertension and obesity outcomes. Including these factors can also 

improve the perceived validity of PLACES models by accounting for additional factors that are 
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becoming well supported by numerous peer-reviewed studies designed to predict chronic disease 

outcomes. The fact that these additional environmental factors are modifiable and subject to policy 

priorities makes them far more important (TFAH 2018, HHS 2020). This type of evidence further 

creates accountability within transportation investment prioritization and land use decision-

making processes.  

Methodologically, the study unveiled heterogeneous associations of built/natural 

environment and bicycle facilities with hypertension and obesity quantiles. Findings show that the 

average trends quantified by homogenous fixed parameter models (reflected by statistically 

significant coefficients in the expected direction) could be incomplete and biased, and under the 

often-untested homogeneity assumption, can hinder quantification of policy-relevant 

heterogeneous impacts of built and natural environments. For example, the potential reductions in 

hypertension due to improvements in walkability and/or bicycle facilities are greater at the lower 

quantiles, with the magnitude of reductions decreasing at higher quantiles of hypertension. This 

implies that improvement in walkability may lead to greatest gains in neighborhoods that have 

lower (than average) hypertension rates. Neighborhoods with substantially higher rates are 

typically places with extremely high concentrations of underserved disadvantaged residents 

(Wilper et al. 2008). These communities usually exhibit other major structural issues (e.g., spatial 

segregation, socioeconomic disparities) which are social environment barriers that need to be 

addressed for effects of the built and natural environment features to even matter (Wali 2023). To 

this end, the heterogeneous associations identified in this study provide a basis for targeted place-

based interventions that can support the environmental justice and healthy community goals of the 

Justice40 initiative (White House 2022b).  

 

4.2. Limitations & Future Research 

Our study has some limitations. Causal inferences should be avoided given the 

correlational nature of the current study. As with all ecological study designs, the insights 

presented may not necessarily transfer to the individual level. However, the results were in the 

expected direction and agree with individual-level studies which increase our confidence in the 

ecological findings. We did not explicitly quantify the impacts of several factors (e.g., medical 

resources, attitudes, etc.) due to data unavailability. However, the study framework takes into 

consideration the latent impacts of such unobserved factors, which are tracked as unobserved 

heterogeneity and separated from factors we are able to observe. This study provides evidence that 

supports consideration for the inclusion of built and natural environment features in future 

iterations of the PLACES database. Compared to the ecological framework used here, future 

studies can compare the two analytical approaches (demographics alone vs. demographics and 

built/natural environmental factors) by harnessing consistent individual-level health outcome data 

and comparing small area estimate results obtained from the two sets of individual-level models. 

Finally, future studies may extend the framework presented in this study to assess environmental 

impacts on the neighborhood prevalence of other chronic diseases available in the PLACES 

database, including cancer, coronary heart disease, and stroke.  
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5. CONCLUSION 

To our knowledge, this is the first study to harness data from PLACES with a focus on examining 

the heterogeneous associations of built/natural environment and bike infrastructure factors with 

neighborhood hypertension and obesity prevalence after controlling for social deprivation and 

other spatial unobserved factors. Findings from the study add to the existing body of literature 

documenting how the built and natural environment impacts neighborhood-level 

hypertension/obesity outcomes.  Results from this study document significant hypertension and 

obesity relationships with environmental features not currently accounted for in the PLACES 

small-area chronic disease estimates. Independent of social deprivation, walkability, provision of 

green space, and bicycle facilities were correlated with lower neighborhood prevalence of 

hypertension and obesity. The study results may be used to inform how environmental factors are 

incorporated into future iterations of national disease prevalence data programs (e.g., PLACES) 

and can also be used by decision-makers to aid in improving effective planning policy to better 

target infrastructure investments to promote public health. This is particularly timely given the 

potential for major infrastructure spending from the federal level to be undertaken in the near future 

(White House 2022b, White House 2022a). Characterized by significant heterogeneity, the 

potential reductions in chronic disease varied significantly across the quantiles of neighborhood-

level hypertension and obesity rates. Such high-resolution insights can help identify locations 

where the greatest gains can be made - enabling the development and targeting of place-based built 

and natural environment interventions for hypertension and obesity control.  

 

6. DATA SHARING 

 

The authors welcome correspondence from anyone interested in learning more about the datasets 

used in this study. Health outcome data are extracted from the publicly available PLACES database 

from the US Centers for Disease Control and Prevention. The environmental data are extracted 

from the RWJF-supported National Environmental Database. After publication of this study, study 

protocols, data dictionary, and census-tract level integrated health and environmental data may be 

made available after signing a data sharing and use agreement.  
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7. APPENDIX A 

TABLE A1. Geographic Resolution, Time Frame, and Data Sources of Study Variables.  
Variable Geographic 

Resolution 

Data Year Data Source 

Chronic Disease Prevalence (%) 
   

High Blood Pressure / Hypertension Census Tract 2017a US CDC PLACES Database (2020 Release) 

Obesity Census Tract 2018 US CDC PLACES Database (2020 Release) 

Social Vulnerability / Deprivation    

Social Vulnerability Index (SVI) Census Tract 2014-2018 US CDC SVI (2019 Release); Agency for Toxic Substances and 

Disease Registry, U.S. Center for Disease Control & Prevention 

(CDC) 

Built Environment 
   

Walkability Index (on scale 0 to 100) CBG; 

Aggregated to 

census tract 

2017-2020 National Environmental Database (NED) (2020 Release); Urban 

Design 4 Health and Robert Wood Johnson Foundation. 

Residential density (housing units / 

acre) 

2018 NED (2020 Release); American Community Survey 5-Year 

Estimates, U.S. Census Bureau 

Street network intersection density 

(count / sq. km.) 

2018 NED (2020 Release); HERE Maps NAVSTREETS   

Employment mix (on scale from 0 to 

1)  

2017 NED (2020 Release); Longitudinal Employer-Household 

Dynamics (LEHD) Origin-Destination Employment Statistics 

(LODES), U.S. Census Bureau 

Access to transit (# of stops) 2020 NED (2020 Release); General Transit Feed Specification (GTFS), 

Transit Authorities 

Vehicle Miles Travelled Census Tract 2019 NED (2020 Release); Location Affordability Index, U.S. 

Department of Transportation (DOT); U.S. Department of 

Housing & Urban Development (HUD) 

Bike Infrastructure & Safety 
   

Buffered off-street length density per 

mi· 

CBG; 

Aggregated to 

census tract 

2021 CalTrans; Open Street Map (OSM) 

Buffered on-street (bike lane) length 

density per mi· 

2021 

Buffered 5-Year pedestrian fatal crash 

density per 100k population 

2015-2019 Fatality Analysis Reporting System (FARS), U.S. National 

Highway Traffic Safety Administration (NHTSA) 

Buffered 5-Year bicyclist fatal crash 

density per 100k population 

2015-2019 

Natural Environment 
   

Buffered total park (any size) count CBG; 

Aggregated to 

census tract 

2020  Protected Areas Database (PAD-US), U.S. Geological Survey 

(USGS); OSM Park Inventory Source.  Buffered total park area (any size)  

Buffered tree canopy coverage (%) 2016 National Land Cover Database (NLCD), U.S. Geological Survey 

(USGS) 

Urban-Rural Continuum  Same 2010 Rural-Urban Commuting Area (RUCA) Codes by US Department 

of Agriculture 

Regional Factors  Same 2010 Census Regions and Divisions of the United States by US Census  

Notes: CBG is census block group; (a) The high blood pressure estimates in the 2020 PLACES Release are based on 

the 2017 Behavioral Risk Factor Surveillance Survey (BRFSS) since the question on high blood pressure is only 

asked every other year in the survey; US CDC is US Centers for Disease Control and Prevention. 
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TABLE A2. Cross-tabulation of High Blood Pressure and Obesity Prevalence 

Prevalence of high blood pressure 

Prevalence of Obesity 

Total 

Low Medium High 

Low 

10,523 7,205 392 18,120 

58.07 39.76 2.16 100 

57.63 20.11 2.2 25.2 

Medium  

6,792 22,538 6,498 35,828 

18.96 62.91 18.14 100 

37.19 62.91 36.45 49.82 

High 

946 6,084 10,935 17,965 

5.27 33.87 60.87 100 

5.18 16.98 61.35 24.98 

Total 

18,261 35,827 17,825 71,913 

25.39 49.82 24.79 100 

100 100 100 100 

Goodness of Fit Measures 

Pearson Chi2 (4) = 2700; Pr = 0.000 

Gamma = 0.7530; ASE = 0.003 

Kendall's Tau-b = 0.5161; ASE = 0.003 

Notes: Categories are defined as follows: (1) Low – prevalence  25th percentile; (2) Medium – prevalence > 25th 

percentile &  75th percentile; and (3) High – prevalence > 75th percentile. For each combination of obesity and 

hypertension prevalence, three statistics are provided. The first statistic is the frequency count; the second statistic 

(light grey cell) is the row percentage summing up to 100% going across the table; the third statistic (dark grey cell) 

is the column percentage summing to 100% going down the table.   
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