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ABSTRACT OF THE DISSERTATION

Cluster Structures in Double Canonical Bases

by

Dane M. Lawhorne

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2020

Dr. Jacob Greenstein, Chairperson

We study connections between quantum cluster algebras and the double canonical

bases of subalgebras of the Heisenberg and Drinfeld double associated to a quantized Borel

subalgebra of sl3. We show that the Heisenberg double has a finite type quantum cluster

algebra structure for which the set of quantum cluster monomials is equal to the double

canonical basis. Furthermore, we identify an affine quantum cluster algebra structure on

parabolic subalgebras of the Drinfeld double and prove that all quantum cluster variables

belong to the double canonical basis. Finally, we identify an infinite subset of quantum

clusters for which the quantum cluster monomials are contained in the double canonical

basis.
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Chapter 1

Introduction

The notion of a canonical basis originates with Kazhdan and Lusztig and the construction

in [KL79] of their eponymous basis in the Hecke algebra H(W ) of a Coxeter group W . This

basis, known now as the Kazhdan-Lusztig basis, is characterized by the invariance of its

elements with respect to a bar-involution and by the unitriangularity (with respect to a

natural order on W called the Bruhat order) of the transition matrix from the natural basis

{Tw : w ∈W}. When W is a Weyl group, the structure constants of this basis (the famous

Kazhdan-Lusztig polynomials) have nonnegative integer coefficients and contain important

geometric and representation theoretic information.

A basis of the positive part of the quantized enveloping algebra Uq(n+) with similar

properties was discovered independently by Lusztig [Lus90] (there called the canonical

basis) and Kashiwara [Kas91] (there called the global basis). The canonical basis provides

combinatorial tools for studying Uq(g)-modules (through crystal graphs) and has many other

incredible properties, including nonnegative structure constants when g is simply laced.

Although not how they were first discovered, the existence of both the Kazhdan-Lusztig

basis and the canonical basis is guaranteed by Lusztig’s lemma (a version of which is given

in Thm. 2.10).

The algebra Uq(n+) possesses a well-known nondegenerate bilinear form (see Section 2.5)

and thus contains a basis dual to the canonical basis, called the dual canonical basis (or in
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Kashiwara’s terminology, upper global basis). The dual canonical basis is naturally viewed as

a basis of a deformation of the coordinate ring C[N+]. To be precise, taking the q → 1 limit

of Uq(n+) depends on a choice of integral form. If that form is the span of the canonical

basis, Uq(n+) specializes to the enveloping algebra U(n+). If the integral form is the span

of the dual canonical basis, the specialization is isomorphic to C[N+] (see [Kim12, Thm.

4.35, Prop. 4.36]). Since the dual canonical basis specializes to a commutative algebra, it is

reasonable to expect that it has an interesting multiplicative structure.

The multiplicative structure of the dual canonical basis was investigated by Berenstein

and Zelevinsky in [BZ93]. They conjectured ([BZ93, Conj. 1.7], known as the Berenstein-

Zelevinsky conjecture, that when two dual canonical basis elements quasi-commute (that is,

commute up to an integer power of q), their product belongs to the dual canonical basis

up to rescaling by a power of q
1
2 . They proved the conjecture for sl3 and sl4 in [BZ93] (see

also the descriptions in [BG17b, Ex. 5.13], [BG17a, Ex. 5.2]). The conjecture also holds

for sp4 (see, for example, [BG17a, Ex. 5.3]) and sl5, but counterexamples were found by

Leclerc [Lec03] for all other finite types. However, the Berenstein-Zelevinsky conjecture may

be weakened and restated using the language of quantum cluster algebras.

Cluster algebras were introduced by Fomin and Zelevinsky in [FZ02] in order to create

an “algebraic framework” for the studying (the q → 1 specializations of) dual canonical

bases. Cluster algebras are Q-algebras generated by a possibly infinite set of cluster variables

organized into finite subsets called clusters. For any cluster X and cluster variable X ∈ X,

there is a unique cluster X′ and cluster variable X ′ such that X′ = (X \ {X}) ∪ {X ′}.

The cluster variables X,X ′ satisfy an exchange relation XX ′ = N +M , where N,M are

monomials in X \ {X}. The cluster variables and exchange relations are determined by the

rules of quiver mutation.

In [BZ05], Berenstein and Zelevinsky introduced noncommutative deformations of cluster

algebras called quantum cluster algebras. These algebras are Z[q
1
2 , q−

1
2 ]-algebras similar

in structure to commutative cluster algebras except that the cluster variables in any given

cluster quasi-commute instead of commute. Motivated by a series of results of Geiss, Leclerc,

2



and Schröer (beginning in [GLS05]) on connections between commutative cluster algebras

and Lusztig’s dual semicanonical basis, Kimura conjectured in [Kim12] (the quantization

conjecture) that Uq(n+) has a quantum cluster algebra structure for which the quantum

cluster monomials are contained in the dual canonical basis (in fact, Kimura stated the

conjecture for all quantum Schubert cells Uq(w) associated to a Weyl group element w). In

[GLS13], Geiss, Leclerc, and Schröer confirmed that Uq(n+) is a quantum cluster algebra

for symmetric Kac-Moody g. The quantization conjecture was proven for types A,D, and

E by Qin [Qin17], and in the symmetric Kac-Moody case by Kang, Kashiwara, Kim, and

Oh [KKKO18]. The existence of quantum cluster structures on Uq(n+) for symmetrizable

Kac-Moody g follows from the work of Goodearl and Yakimov ([GY16], [GY20]). A proof

of the quantization conjecture in the symmetrizable case was recently announced by Qin

[Qin20].

In [BG17b], Berenstein and Greenstein introduced a canonical basis for the Drinfeld

double Uq(g̃) of Uq(b+) (see Section 2.4) called the double canonical basis. A key intermediate

step in the construction of the double canonical basis of is the construction of another

canonical basis in (a subalgebra of) the braided Heisenberg double, also called the double

canonical basis. Both of these bases contain the dual canonical bases of the positive and

negative parts of Uq(g).

Since the double canonical basis is an extension of the dual canonical basis, it is natural

to ask in what cases the adaptions of the Berenstein-Zelevinksy and quantization conjectures

to the double canonical basis setting hold. Although the double canonical basis does not

have a quantum cluster structure in general (see Ex. 2.15), the conjectures may still hold in

certain cases. This dissertation is an investigation of these questions for g = sl3. In Chapter

3, we show that a version of the Berenstein-Zelevinsky conjecture holds for the Heisenberg

double of sl3. The main result of this chapter is:

Theorem (Thm. 3.1). The Heisenberg double H+
q (sl3) has a finite type quantum cluster

algebra structure for which the quantum cluster monomials coincide with the double canonical
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basis. In particular, if two elements of the double canonical basis quasi-commute, their

product belongs to the double canonical basis (up to rescaling by a power of q
1
2 ).

In Chapter 4, we provide evidence that a version of the quantization conjecture holds for

parabolic subalgebras of Uq(s̃l3). The main result of this chapter is:

Theorem (Thm. 4.1). Parabolic subalgebras of the Drinfeld double Uq(s̃l3) have an affine

type quantum cluster algebra structure for which the quantum cluster variables are contained

in the double canonical basis.

We also show (Prop. 4.27) that quantum cluster monomials from an infinite subset of

quantum clusters are contained in the double canonical basis.

4



Chapter 2

Preliminaries

All material in this chapter is well-known. Our main references are [BG17b], [BZ05] and

[Lus93].

2.1 Notation

Let ν be an indeterminate, and for n ∈ Z≥0, set

[n]ν =
νn − 1

ν − 1
,

[n]ν ! =
n∏
j=1

[j]ν .

Note that [n]ν = 1 + ν + · · ·+ νn−1, so [n]ν , [n]ν ! ∈ Z[ν]. We define the Gaussian binomial

coefficients as [
n
m

]
ν

=
[n]ν !

[m]ν ![n−m]ν !
, 0 ≤ m ≤ n.

We use the convention that

[
n
m

]
ν

= 0 if m < 0 or m > n. The Gaussian binomial coefficients

are easily seen to lie in 1 + νZ≥0[ν] and satisfy the Pascal identities

[
n
m

]
ν

=

[
n− 1
m

]
ν

+ νn−m
[
n− 1
m− 1

]
ν

.
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Let k be a field and let A and B be k-algebras. When defining an algebra structure on

A⊗B such that that maps

a 7→ a⊗ 1, a ∈ A,

b 7→ 1⊗ b, b ∈ B

are algebra embeddings, we often omit the tensor product symbol and write

ab = (a⊗ 1)(1⊗ b),

ba = (1⊗ b)(a⊗ 1).

The multiplicative structure is given by cross relations

ba =
∑
j∈J

ajbj ,

where J is a finite index set and aj ∈ A, bj ∈ B.

The symbol � denotes the action of an algebra on a vector space.

2.2 Nichols algebras and bosonization

Let H be a Hopf algebra with comultiplication ∆ and invertible antipode S. Let V be a left

H-module which is also a left H-comodule. We call V a Yetter-Drinfeld module if

δ(h� v) = h(1)v
(−1)S(h(3))⊗ (h(2) � v(0)),

where we use Sweedler’s notation ∆(h) = h(1) ⊗ h(2) for the comultiplication and the similar

notation δ(v) = v(−1) ⊗ v0 for the coaction δ : V → H ⊗ V . Yetter-Drinfeld modules,

along with H-module H-comodule homomorphisms, form a category denoted H
HYD. Given

V ∈ H
HYD, the formula c(v ⊗ w) = (v(−1) � w) ⊗ v(0) defines an automorphism of V ⊗ V
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which satisfies the braid relation

(c⊗ 1V )(1V ⊗ c)(c⊗ 1V ) = (1V ⊗ c)(c⊗ 1V )(1V ⊗ c)

in V ⊗ V ⊗ V . The inverse of the braiding is c−1(v ⊗ w) = v(0) ⊗ (S−1
H (v(−1)) � w). If

V,W ∈ H
HYD, then so is V ⊗ W with the usual H-module structure and δ(v ⊗ w) =

v(−1)w(−1) ⊗ v(0) ⊗ w(0). Furthermore, if A and B are algebras in H
HYD (meaning the

multiplication and unit are H-module and H-comodule homomorphisms), then so is A⊗B

with the twisted multiplication

(a⊗ b)(a′ ⊗ b′) = a(b(−1) � a′)⊗ b(0)b′.

We denote this algebra by A⊗B. If B is also a coalgebra in H
HYD and the comultiplication

∆ : B → B⊗B and counit ε : B → k are algebra maps, then B is called a braided bialgebra.

For the comultiplication, we write ∆(b) = b(1) ⊗ b(2) in Sweedler-like notation. If B also has

a braided antipode, that is, a map of Yetter-Drinfeld modules S : B → B satisfying

b(1)S(b(2)) = S(b(1))b(2) = ε(b),

B is called a braided Hopf algebra. The braided antipode satisfies the braided antimultiplica-

tive property

S ◦ µ = µ ◦ c ◦ (S ⊗ S),

where µ : B⊗B → B is the multiplication. it is easy to check that the tensor algebra T (V ) of

any V ∈ H
HYD is a braided Hopf algebra with ∆(v) = 1⊗ v+ v⊗ 1, ε(v) = 0, and S(v) = −v

for all v ∈ V .

Given V ∈ H
HYD, there is a unique Z≥0-graded braided Hopf algebra B(V ) generated

by V , called the Nichols algebra of V , such that V is equal to both the degree 1 graded

component and the set of primitive elements of B(V ). Let J be the largest coideal of T (V )

which is contained entirely in the degree ≥ 2 components of T (V ). Then J is also an ideal
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and a Yetter-Drinfeld submodule of T (V ), and T (V )/J is the Nichols algebra of V ([AS02,

Prop. 2.2]).

Any braided Hopf algebra B in H
HYD can be embedded, as an algebra, into an honest

Hopf algebra called its bosonization. As an algebra, the bosonization B oH of B is B ⊗H

with the smash product algebra structure

hb = (h(1) � b)h(2).

The coalgebra structure and antipode are defined by

∆(bh) = b(1)(b(2))
(−1)h(1) ⊗ (b(2))

(0)h(2),

ε(bh) = ε(b)εH(h),

S(bh) = SH(h)SH(b(−1))⊗ S(b(0))

(the coalgebra sturcture is the smash coproduct structure [Maj95, p. 26]).

2.3 The quantized enveloping algebra Uq(n+)

Let k = Q(q
1
2 ) and let g be a semisimple Lie algebra with a fixed triangular decomposition

g = n− ⊕ h⊕ n+. Let n = dim h be the rank of g and let I = {1, . . . , n}. Let Q =
⊕

i∈I Zαi

denote the root latice and C = {aij}i,j∈I the Cartan matrix of g. Let {d1, . . . , dn} be positive

integers satisfying diaij = djaji for all i, j ∈ I and set qi = qdi . Consider the vector space

V + =
⊕
i∈I

kEi

graded by the free abelian monoid Q≥0 =
⊕n

i=0 Z≥0αi (the Z≥0-span of the simple roots).

Then V + is a Yetter-Drinfeld module over the group algebra kQ via

K+i � Ej = q
aij
i Ej ,

8



δ(Ei) = K+i ⊗ Ei,

where K+i denotes the generator of kQ corresponding to αi ∈ Q. Then the braiding on V +

is given by c(Ei ⊗ Ej) = q
aij
i (Ej ⊗ Ei).

Definition 2.1. The Nichols algebra of V + in kQ
kQYD, denoted Uq(n+), is called the quantized

enveloping algebra of n+.

We often use the abbreviation U+
q . The braided antipode for U+

q is determined by

S(Ei) = −Ei (extended to all of U+
q using the braided antimultiplicative property). As an

algebra, U+
q is isomorphic to the algebra generated by the Ei, i ∈ I and the quantum Serre

relations ∑
r,s∈Z≥0

r+s=1−aij

(−1)sE
〈r〉
i EjE

〈s〉
i = 0, i 6= j ∈ I

where

E
〈t〉
i =

Eti∏t
j=1 q

j
i − q

−j
i

.

The radical of the form in [Lus93, Prop. 1.2.3] is equal to the coideal J in the definition of a

Nichols algebra [AS02, Prop. 2.10], so Lustig’s algebra f is isomorphic to U+
q . The quantum

Serre relations hold by [Lus93, Prop. 1.4.3] and are defining relations by [Lus93, Cor. 33.1.5].

The algebra U+
q is Q≥0-graded via degQ≥0

Ei = αi. For a homogeneous element, x ∈ U+
q we

denote its Q≥0-degree by |x|. The bosonization U+
q o kQ has Hopf algebra structure

K+iEj = q
aij
i EjK+i, i, j ∈ I

∆(Ei) = Ei ⊗ 1 +K+i ⊗ Ei, ∆(K+i) = K+i ⊗K+i

ε(Ei) = 0, ε(K+i) = 1,

S(Ei) = −K−1
+i Ei, S(K+i) = K−1

+i , i ∈ I.

The Q≥0-grading extends to U+
q o kQ via |K+i| = |K−1

+i | = 0.

9



2.4 Heisenberg and Drinfeld doubles

Let V − be another Q≥0-graded k-vector space with basis {Fi : i ∈ I}. We view V − as a

Yetter-Drinfeld module over kQ via K−i � Fi = q
aij
i Fi, where K−i denotes the generator

of kQ corresponding to αi ∈ Q (this notation allows us to distinguish between two copies

of kQ in the Drinfeld and Heisenberg doubles). We denote the Nichols algebra of V − by

U−q (as algebras, U−q and U+
q are isomorphic). The Drinfeld double D(U−q o kQ,U+

q o kQ)

(see [BG17b, Sections A.7–A.9], [Maj95, p. 26] for the general definition) contains U−q okQ,

and (U+
q o kQ)cop as sub-Hopf algebras and has cross relations

FiEj = EjFi + δij(qi − q−1
i )(K+i −K−i),

K+iFj = q
−aij
i FjK+i,

EiK−j = q
−aij
i K−jEi.

Here (U+
q o kQ)cop is isomorphic to U+

q o kQ as an algebra but has the opposite comultipli-

cation (and thus inverted antipode). The multiplication map is a vector space isomorphism

µ : U−q ⊗ kQ2 ⊗ U+
q → D(U−q o kQ,U+

q o kQ),

where we identify kQ⊗ kQ with kQ2. The braided Heisenberg double H(U−q okQ,U+
q okQ)

(see [BG17b, Section A.7], [BB09] for the general definition) contains U−q okQ, and U+
q okQ

as subalgebras and has cross relations

FiEj = EjFi + δij(qi − q−1
i )K+i

K+iFj = q
−aij
i FjK+i,

EiK−j = q
−aij
i K−jEi.
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The Heisenberg double is not a Hopf algbra. Again, the multiplication map is an isomorphism

of vector spaces

µ : U−q ⊗ kQ2 ⊗ U+
q → H(U−q o kQ,U+

q o kQ).

We use the abbreviations Hq and Dq for H(U−q o kQ,U+
q o kQ) and D(U−q o kQ,U+

q o

kQ), respectively. Both Hq and Dq are Q-graded via degQEi = αi, degQ Fi = −αi, and

degQK
±1
+i = degK±1

−i = 0. We denote the Q-degree of a homogeneous element x by |x|.

There are many useful symmetries of Hq and Dq. First, there exists a Q-linear anti-

automorphism of Dq, called the bar involution, defined by

q
1
2 = q−

1
2 , K+i = K+i, K−i = K−i, Ei = Ei, Fi = Fi.

We also have k-linear involutive antiautomorphisms ∗ : Dq → Dq and τ : Dq → Dq determined

by

E∗i = Ei, F ∗i = Fi, (K+i)
∗ = K−i,

τ(Ei) = Fi, τ(Fi) = Ei, τ(K+i) = K+i, τ(K−i) = K−i.

The composite ∗ ◦ τ is an automorphism which restricts to isomorphisms between U+
q and

U−q . Furthermore, · : Hq → Hq and τ : Hq → Hq are defined using the same formulas (there

is no analogue of ∗ on Hq). We also remark that the composite σ = · ◦ ∗ : Dq → Dq is a

Q-linear involutive automorphism. (The involution σ is often denoted by · and called the

“bar involution,” but we reserve this notation and terminology for the anti -involution defined

above.)

It is convenient to work with smaller subalgebras of Hq and Dq.

Definition 2.2. Let H+
q (g) be the subalgebra of Hq generated by {Ei, Fi,K+i : i ∈ I}. Let

Uq(g̃) be the subalgebra of Dq generated by {Ei, Fi,K+i,K−i : i ∈ I}.

We use the abbreviations H+
q and Ũq. We also denote by H̃q the subalgebra of Hq

generated by {Ei, Fi,K+i,K−i : i ∈ I}. One advantage of the subalgebras H+
q , H̃q, and Ũq

11



is that they are Q2
≥0-graded via

degQ2
≥0
Ei = (0, αi),

degQ2
≥0
Fi = (αi, 0),

degQ2
≥0
K+i = degQ2

≥0
K−i = (αi, αi).

Note that H+
q is isomorphic to the quotient of Ũq by the ideal generated by the K−i’s.

Furthermore, the vector space isomorphism ι : Hq → Dq restricts to a vector space inclusion

ι : H+
q → Ũq. The symmetries · and τ restrict to anti-automorphisms H+

q → H+
q , Ũq → Ũq

and ∗ restricts to an anti-automorphism Ũq → Ũq. Although Ũq is a bialgebra and not

a Hopf algebra, the quotient Ũq/〈K−iK+i − 1 : i ∈ I〉 is a Hopf algebra via S(Ei) =

−EiK−1
i , S(Fi) = −KiFi, and S(Ki) = K−1

i , where we denote the images of K+i,K−i by

Ki,K
−1
i . This quotient is called the quantized enveloping algebra of g and is denoted Uq(g).

Note that the Q2
≥0 grading does not descend to Uq(g) since the relation K+iK−i = 1 is not

homogeneous.

We remark that the presentation for Uq(g) given here is slightly nonstandard. If

{ei, fi, ki, k−1
i } are the generators of Uq(g) in the standard presentation, the cross rela-

tions are

eifj = fjei + δij
ki − k−1

i

qi − q−1
i

.

However, let ψ : Ũq → Ũq be the automorphism determined by

ψ(Ei) = (q−1
i − qi)

−1Ei, ψ(Fi) = (qi − q−1
i )−1Fi, ψ(Ki) = Ki.

Then {ψ(Ei), ψ(Fi), ψ(Ki), ψ(K−i)} satisfy the relations of the standard presentation (with

Ki,K
−1
i replaced by K+i,K−i).
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2.5 Dual canonical bases

Identify the subalgebra of Ũq (or of H̃q) generated by {K+i,K−i : i ∈ I} with the monoidal

algebra kQ2
≥0. Let α∨i : Q2

≥0 → Z, i ∈ I be the unique monoid homomorphism determined

by α∨i (0, αj) = aij and α∨i (αj , 0) = −aij , j ∈ I. There is an action � of kQ2
≥0 on Ũq (or on

H̃q) defined by

K±i � x = q
∓ 1

2
α∨i (deg

Q2
≥0

x)
K±ix

for homogeneous x which satisfies K � x = K � x for all K ∈ kQ2
≥0, x ∈ Ũq.

Let ∂i, ∂
op
i : U+

q → U+
q be the linear quasi-derivations defined by

[Fi, x] = (qi − q−1
i )(K+i � ∂i(x)−K−i � ∂op

i (x))

(cf. [BG17b] and [Kas91, Lemma 3.4.1]). Let (·, ·) be the unique (nondegenerate) bilinear

form on U+
q such that (1, 1) = 1 and

(x,E
〈n〉
i y) = (∂

op(n)
i x, y)

(cf. [BG17a, Lemma 2.10] and [Kas91, Prop. 3.4.4]). Recall the automorphism ψ : Ũq → Ũq

which rescales the generators. Let Blow
+ denote the inverse image under ψ of Lusztig’s

canonical basis of U+
q [Lus90] (which coincides with Kashiwara’s lower global basis [Kas91]).

Recall that Blow
+ is Q≥0-homogeneous. For g = sl2, Blow

+ = {E〈r〉1 : r ∈ Z≥0}. For g = sl3,

Blow
+ = {E〈a〉1 E

〈b〉
2 E

〈c〉
1 : b ≥ a+ c} ∪ {E〈a〉2 E

〈b〉
1 E

〈c〉
2 : b ≥ a+ c}.

Since (·, ·) is nondegenerate and remains nondegenerate when restricted to Q≥0-graded

components (which are finite dimensional), for every b ∈ Blow
+ , there exists a unique

homogeneous δb ∈ U+
q of the same degree such that (δb, b

′) = δb,b′ for all b′ ∈ Blow
+ .

Definition 2.3. The set Bup
+ = {δb : b ∈ Blow

+ } is a Q≥0-homogeneous basis of U+
q called

the dual canonical basis.
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An alternative description of Bup
+ can be found in [BG17a]. The following example can

be found in [BG17b, Example 3.25], [BG17b, Example 5.13]. It is used extensively in the

following chapters.

Example 2.4. For g = sl2, Bup
+ = {Er : r ∈ Z≥0}. For g = sl3,

Bup
+ = {q

1
2
a(b−c)Ea1E

b
12E

c
21 : a, b, c ∈ Z≥0} ∪ {q−

1
2
a(b−c)Ea2E

b
12E

c
21 : a, b, c ∈ Z≥0},

where

E12 = (q − q−1)−1(q
1
2E2E1 − q−

1
2E1E2),

E21 = (q − q−1)−1(q
1
2E1E2 − q−

1
2E2E1).

Note that E1E2 = q−
1
2E12 + q

1
2E21 and that E12, E21 are bar-invariant.

2.6 Quantum cluster algebras

Let Q be a quiver (directed graph) with n vertices. We assume that Q has neither loops nor

2-cycles. We allow a subset of the vertices to be designated as frozen. Frozen vertices are

indicated with rectangular boxes. For example,

1

2 3

1

2 3

are quivers with one frozen vertex. For any non-frozen vertex k, we define the involutive

operation of mutation of Q at k as follows. First, for any subgraph i→ k → j, add an arrow

from i→ j. Next, reverse all arrows with source or target k. Finally, remove any 2-cycles

produced in the previous two steps. For example, mutating the two quivers above at vertex

2 results in
1

2 3

1

2 3

.
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Let I = {1, . . . , n} and let Λ = {λij}i,j∈I be a skew-symmetric integer matrix. To

Λ we associate the quantum torus T (Λ), which is the Z[q
1
2 , q−

1
2 ]-algebra generated by

{X±1
1 , . . . X±1

n } subject to the relations

XiXj = qλijXjXi,

XiX
−1
i = 1.

We say x, y ∈ T (Λ) quasi-commute if xy = qcyx for some c ∈ Z. We say that an element

x ∈ A ⊆ T (Λ) is quasi-central in A if it quasi-commutes with all elements of A. Observe

that T (Λ) posses a Z-linear anti-involution, called the bar involution, satisfying q
1
2 = q−

1
2

and Xi = Xi for each i ∈ I. For any a = (a1, . . . , an) ∈ Zn, the element

MΛ(a) = q
1
2

∑
i>j aiajλijXa1

1 · · ·X
an
n

is fixed by the bar involution. Observe that the set {MΛ(a) : a ∈ Zn} is a basis of T (Λ).

Since T (Λ) is an Ore domain (see [BZ05, Appendix A]), it has a skew-field of fractions which

we denote by F .

Let m be the number of frozen vertices of Q and label the vertices such that the first

n−m are non-frozen. Let B be the n× (n−m) submatrix of the adjacency matrix of Q

consisting of the first n−m columns. If for all 0 ≤ i ≤ n, j ≤ n−m,

n∑
k=1

bkjλki = δijdi

for some positive integers di, then Q is said to be compatible with Λ. This is equivalent to

requiring that BTΛ consists of an (n−m)× (n−m) diagonal matrix with positive diagonal

entries followed by the (n−m)×m zero matrix. Let X = {X1, . . . , Xn}. The elements of

X are called initial cluster variables and X is called the initial cluster. We call Q the initial

quiver and (X,Λ, Q) the initial quantum seed. Let {ei : i ∈ I} denote the standard basis
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vectors of Zn. For any non-frozen vertex k of Q, define

µk(Xk) = MΛ(−ek +
∑
bik>0

bikei) +MΛ(−ek −
∑
bik<0

bikei),

or equivalently,

µk(Xk) = X−1
k

(
q

1
2
T
∏
i→k

Xi + q
1
2
S
∏
k→i

Xi

)
,

where the first product is taken over all arrows in Q with target k and the second with source

k and S and T are the unique integers such that µk(Xk) is bar-invariant (note that these

integers depend on the order in which the product is taken). The compatibility condition on

Λ and Q guarantees that the elements of

µk(X) = {X1, . . . , µk(Xk), . . . , Xn}

quasi-commute with each other. Let µk(Λ) be this quasi-commutation matrix. Observe also

that µk(Λ) is compatible with µk(Q) (using the same integers di), where µk(Q) denotes

Q mutated at the vertex k. Thus iterated mutations of the initial quantum seed are well-

defined. The quantum seeds consist of the initial seed and any seed (X′,Λ′, Q′) produced

through iterated mutation. The subset X′ of F is called a quantum cluster and its elements

quantum cluster variables. The m cluster variables corresponding to frozen vertices of Q

appear in every quantum cluster and are called coefficients. The remaining cluster variables

are exchangeable. The bar-invariant elements MΛ′(a), a ∈ Zn≥0 are called quantum cluster

monomials.

Definition 2.5. The quantum cluster algebra Aq1/2(Q,Λ) associated to Q and Λ is the

Z[q
1
2 , q−

1
2 ]-subalgebra of F generated by all quantum cluster variables.

This definition is slightly different from the original definition in [BZ05] in that the

coefficients are not invertible. We say that two quantum seeds are mutation equivalent if

one can be produced from the other through a sequence of mutations. Two quantum cluster
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algebras are isomorphic if and only their initial seeds are mutation equivalent. Furthermore,

Aq1/2(Q,Λ) is contained in T (Λ) (this is called the quantum Laurent phenomenon).

Let X = {X1, . . . , Xn} be the initial cluster of Aq1/2(Q,Λ). For 0 ≤ i ≤ n − m, let

X ′i denote the cluster variable obtained by mutating the initial quiver Q at the vertex i.

We denote the exchange relations by XiX
′
i = Pi(X). Let Âq1/2(Q,Λ) denote Aq1/2(Q,Λ)

localized at the multiplicative submonoid C generated by the coefficients (since the generators

of C quasi-commute with each other, C satisfies the Ore condition). We call the subgraph

of Q obtained by deleting frozen vertices the principal part of Q. The following theorem is a

corollary of [BZ05, Thm. 7.3] (see also [BFZ05, Cor. 1.21]) and provides a presentation for

Âq1/2(Q,Λ) when the principal part Q is acyclic, that is, has no oriented cycles.

Theorem 2.6 (Berenstein, Fomin, Zelevinsky). If the principal part Q is acyclic, then

Âq1/2(Q,Λ) is isomorphic to the algebra generated by

{X1, . . . Xn−m, X
±1
n−m+1, . . . , X

±1
n , X ′1, . . . X

′
n−m}

subject to the relations XiX
′
i = Pi(X) and the quasi-commutation relations determined by Λ.

The following obvious lemma is used in the proofs of Thm. 3.1 and Thm. 4.1.

Lemma 2.7. Let A be an algebra and let S be a multiplicative submonoid of A whose

elements are quasi-central. Suppose that A[S−1] is isomorphic to Âq1/2(Q,Λ) and the image

of A is contained in Aq1/2(Q,Λ). Then A is isomorphic to Aq1/2(Q,Λ)

If the principal part of Q is mutation equivalent to an orientation of a Dynkin diagram,

then Aq1/2(Q,Λ) is said to be of finite type. A quantum cluster algebra has finitely many

cluster variables if and only if it is of finite type. The number of non-initial quantum cluster

variables is equal to the number of positive roots of the root system corresponding to the

Dynkin diagram.

There are several bases for quantum cluster algebras which contain the quantum cluster

monomials when the principal part Q is acyclic (e.g., [BZ14]).
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Theorem 2.8. If the principal part of Q is acyclic, the quantum cluster monomials are

linearly independent. If the principal part of Q is mutation equivalent to a Dynkin diagram,

the quantum cluster monomials span Aq1/2(Q,Λ).

Example 2.9. Let

Q =

1 2

3

,

and

Λ =

 0 −1 1
1 0 0
−1 0 0

 .
Mutating at vertex 1, we have

µ1(X1) = MΛ(−e1 + e2) +MΛ(−e1 + e3)

= q−
1
2X−1

1 X2 + q
1
2X−1

1 X3.

Let g = sl3. Recall the notation of Example 2.4. Since E1E2 = q−
1
2E12 + q

1
2E21, the

assignments X1 7→ E1, X2 7→ E21, and X3 7→ E12 determine a surjective homomorphism of

algebras

k⊗Z[q1/2,q−1/2] Aq1/2(Q,Λ)→ U+
q .

Since this map restricts to a bijection between the quantum cluster monomials (a basis for

Aq1/2(Q,Λ)) and the dual canonical basis, it is an isomorphism.

2.7 Double canonical bases

Let · : Z[ν, ν−1] → Z[ν, ν−1] be the Z-linear ring homomorphism such that ν = ν−1. Let

(I,�) be a partially ordered set such that for all i ∈ I, the length of chains descending from

i is bounded from above. Let M be a free Z[ν, ν−1]-module with initial basis {xi : i ∈ I}

indexed by I. Suppose also that · : M →M is a Z-linear ring involution satisfying fm = fm,
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for all f ∈ Z[ν, ν−1],m ∈M . The following theorem (see, for example, [BZ14, Thm. 1.1]) is

a version of Lusztig’s lemma.

Theorem 2.10. Suppose that for all i ∈ I,

xi − xi ∈
∑
j≺i

Z[ν, ν−1]xj .

Then for each xi, there exists a unique bi such that bi is bar-invariant and

bi − xi ∈
∑
j 6=i

νZ[ν]xj .

The set B = {bi : i ∈ I} is a basis for M .

Let K+ (respectively K−) denote the multiplicative submonoid of H̃q or Ũq generated

by the K+i’s (respectively K−i’s). Let K = K−K+. Let Bup
− be the dual canonical basis of

U−q , that is, the image of Bup
+ under ∗ ◦ τ . The double canonical basis of Ũq is constructed

through two applications of Lusztig’s Lemma. First, applying Lusztig’s Lemma to the

Z[q, q−1]-submodule M of Hq spanned by the initial basis

{K � b−b+ : K ∈ K, (b−, b+) ∈ Bup
− ×Bup

+ }

with partial order K � b−b+ � K ′ � b′−b′+ if degQ2
≥0
b−b+ ≤ degQ2

≥0
b′−b
′
+ and

degQ2
≥0
K + degQ2

≥0
b−b+ = degQ2

≥0
K ′ + degQ2

≥0
b′−b
′
+,

Berenstein and Greenstein constructed a basis for H+
q (note that H+

q is a proper submodule

of M):

Theorem 2.11 ([BG17b], Thm. 1.3). For any (b−, b+) ∈ Bup
− ×Bup

+ , there exists a unique

bar-invariant element b− ◦ b+ ∈ H+
q (g) such that

b− ◦ b+ − b−b+ ∈
∑

qZ[q]K+ � (b′−b
′
+)
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where the sum is over all K+ ∈ K+ \ {1} and (b′−, b
′
+) ∈ Bup

− ×Bup
+ such that degQ2

≥0
b′−b
′
+ +

degQ2
≥0
K+ = degQ2

≥0
b−b+.

Definition 2.12. The set B+
g = {K+ � (b− ◦ b+) : (b−, b+) ∈ Bup

− × Bup
+ ,K+ ∈ K+} is a

bar-invariant basis of H+
q (g) called the double canonical basis.

Applying Lusztig’s Lemma again to the Z[q, q−1]-submodule of Ũq spanned by the initial

basis

{K � ι(b− ◦ b+) : K ∈ K, (b−, b+) ∈ Bup
− ×Bup

+ }

and a similar partial order, they constructed a basis for Ũq:

Theorem 2.13 ([BG17b], Thm. 1.5). For any (b−, b+) ∈ Bup
− ×Bup

+ , there exists a unique

bar-invariant element b− • b+ ∈ Uq(g̃) such that

b− • b+ − ι(b− ◦ b+) ∈
∑

q−1Z[q−1]K � ι(b′− ◦ b′+)

where the sum is over all K ∈ K \K+ and (b′−, b
′
+) ∈ Bup

− ×Bup
+ such that degQ2

≥0
b′−b
′
+ +

degQ2
≥0
K+ = degQ2

≥0
b−b+.

Definition 2.14. The set Bg̃ = {K � (b− • b+) : (b−, b+) ∈ Bup
− × Bup

+ ,K ∈ K} is a

bar-invariant basis of Uq(g̃) called the double canonical basis.

If an element of Uq(g̃) (resp. H+
q (g)) satisfies the unitriangularity condition of Thm. 2.13

(resp. Thm. 2.11), we say it has correct triangularity.

The following example can be found in [BG17b, Section 4.1] and is used extensively

throughout the rest of this dissertation.

Example 2.15. Let g = sl2. Let C+ = FE − qK+ ∈ H+
q (sl2). Since C+ is bar-invariant

and has correct triangularity, C+ = F ◦ E. Furthermore,

Ck+ =
k∑
j=0

(−1)jqj
[
k
j

]
q2
Kj

+F
k−jEk−j
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and thus Ck+ = F k ◦ Ek. Observe also that C+ is central in H+
q (sl2), and so products of

powers of C+ with either powers of F or E remain bar-invariant. It is straightforward to

check that such products belong to the double canonical basis. Thus

B+
sl2

= {Ka
+ � F rCs+ : a, r, s ∈ Z≥0} ∪ {Ka

+ � Cs+Er : a, r, s ∈ Z≥0}.

Since FE = C+ + qK+, H+
q (sl2) is a quantum cluster algebra with type A1 initial quiver

E C+

K+

and the double canonical basis coincides with the quantum cluster monomials.

Let C = ι(C+)− q−1K− ∈ Uq(s̃l2). Then C is bar-invariant and central in Uq(g̃). Since

it has correct triangularity, C = F1 • E1. But

C2 = ι(C2
+)− (q−1 + q−3)K−ι(C+) + (1 + q−2)K−K+

and thus F 2
1 • E2

1 = C2 −K−K+. So B
s̃l2

contains imaginary elements, that is, elements

whose powers do not belong to the double canonical basis. Let C(0) = 1, C(1) = C, and for

k ≥ 1 define C(k+1) = C(k)C −K−K+C
(k−1). Each C(k) is bar-invariant and central, and

C(k) =
∑

0≤i≤j
i+j≤k

(−1)jq−j−i
2

[
k − i
j

]
q−2

[
j
i

]
q−2

Kj
−K

i
+ι(F

k−i−j ◦ Ek−i−j).

Therefore C(k) = F k • Ek. It is straightfoward to show

B
s̃l2

= {Ka
−K

b
+ � F rC(s) : a, b, r, s ∈ Z≥0} ∪ {Ka

−K
b
+ � C(s)Er : a, b, r, s ∈ Z≥0}.
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Although it has a “cluster-like” structure, the double basis of Uq(s̃l2) does not have a strict

quantum cluster structure since FE = C + qK+ + q−1K− does not have the proper form of

an exchange relation.

We conclude this section by observing that the braid group of g acts on the Drinfeld

double Dq by algebra automorphisms via the modified Lusztig symmetries

Ti(K±j) = K±jK
−aij
±i ,

Ti(Ej) =


q−1
i K−1

+i Fi i = j∑
r+s=−aij (−1)rq

s+ 1
2
aij

i E
〈r〉
i EjE

〈s〉
i i 6= j

,

Ti(Fj) =


q−1
i K−1

+i Ei i = j∑
r+s=−aij (−1)rq

s+ 1
2
aij

i F
〈r〉
i FjF

〈s〉
i i 6= j

.

Note that these symmetries commute with the bar-involution, that is, Ti(x) = Ti(x) for all

x ∈ Dq. We also remark that (Ti(x))∗ = T−1
i (x∗), τ(Ti(x)) = T−1

i (τ(x)), and Ti(K � x) =

Ti(K) � Ti(X) for x ∈ Dq,K ∈ kQ2 (here we have extended � to an action of kQ2 on

Dq). The set B̂g̃ = K−1 �Bg̃ is a bar-invariant basis of Dq and it is conjectured [BG17b,

Conjecture 1.15] (when g is semisimple, as assumed here) that B̂g̃ is preserved by the braid

group action.

Example 2.16. For sl2, we have T (C(k)) = K−k− K−k+ C(k). For sl3, we have Ti(Ej) = Eji

and Ti(Eji) = Ej (i 6= j).

The double canonical basis of both H+
q and Ũq is preserved by τ . In fact, τ(b− ◦ b+) =

τ(b+) ◦ τ(b−) and τ(b− • b+) = τ(b+) • τ(b−) [BG17b, Thm. 1.10]. It is conjectured that

the Bg̃ is preserved by ∗ [BG17b, Conjecture 1.11].
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Chapter 3

The double canonical basis of

H+
q (sl3)

In this chapter we investigate the structure of the double canonical basis of H+
q (sl3). For

i, j ∈ {1, 2}, i 6= j, let Ai = Fi ◦ Eij , Hi = Fij ◦ Ej , Γi = Fij ◦ Eij , C+i = Fi ◦ Ei, and

Zi = Fij ◦ Eji. Our main result is the following theorem:

Theorem 3.1. The algebra H+
q (sl3) has a type D4 quantum cluster structure. The ex-

changeable cluster variables are

{E1, E2, E12, E21, F1, F2, F12, F21, C+1, C+2, A1, A2, H1, H2,Γ1,Γ2}

and the coefficients are {K+1,K+2, Z1, Z2}. An initial cluster is {F12,Γ1, E1, A1} with initial

quiver

K+1 Z1

F12 Γ1 E1

K+2 A1 Z2

.

The double canonical basis is equal to the set of quantum cluster monomials.
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In Section 3.1, we determine the quasi-commutation relations between the quantum

cluster variables listed in Thm. 3.1. In Section 3.2, we show that monomials in a subset of

quasi-commuting variables belong to the double canonical basis (up to a power of q
1
2 ). We

complete the proof of Thm. 3.1 in Section 3.3.

3.1 Quasi-commutation relations

We begin by computing the quasi-commutation relations between the sixteen cluster variables

listed in Thm. 3.1. We also show that the cluster variables are real, that is, their powers

belong to the double canonical basis.

First, we have

F1E21 = E21F1 = F1 ◦ E21.

Furthermore, E12F1 = F1E12 + (q−1 − q)K+1 � E2 and thus

F1 ◦ E12 = F1E12 − qK+1 � E2.

The following lemma is immediate:

Lemma 3.2. The assignments F 7→ F1, E 7→ E12,K 7→ q
1
2K+1E2 extend to a homomor-

phism of algebras H+
q (sl2)→ H+

q (sl3). In particular, F1 ◦ E12 commutes with F1 and E12,

and

(F1 ◦ E12)k =
k∑
j=0

(−1)jqj
[
k
j

]
q2
Kj

+1 � F
k−j
1 q−

1
2
j(k−j)Ej2E

k−j
12

= F k1 ◦ Ek12.

Lemma 3.3. We have the following quasi-commutation relations:

(F1 ◦ E12)E21 = E21(F1 ◦ E12), (3.1)
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(F1 ◦ E12)E2 = q−1E2(F1 ◦ E12), (3.2)

(F1 ◦ E12)E1 = qE1(F1 ◦ E12), (3.3)

and

(F1 ◦ E12)(F1 ◦ E1) = q(F1 ◦ E1)(F1 ◦ E12). (3.4)

Proof. Equations (3.1) and (3.2) are immediate. For (3.3), we have

(F1 ◦ E12)E1 = F1E12E1 − qK+1q
1
2E2E1

= qF1E1E12 − qK+1(qE12 + E21)

= q(E1F1 + (q − q−1)K+1)E12 − q2K+1E12 − qK+1E21

= qE1F1E12 −K+1(q−1E12 + qE21)

= qE1F1E12 −K+1q
1
2E1E2

= qE1(F1 ◦ E12).

Equation (3.4) follows immediately from (3.3) and Lemma 3.2.

By symmetry of the defining relations, we have F2 ◦E21 = F2E21− qK+2 �E1. Applying

τ , we obtain

F12 ◦ E2 = τ(F2 ◦ E21) = F12E2 − qK+2 � F1,

as well as

(F12 ◦ E2)k =
k∑
j=0

(−1)jqj
[
k
j

]
q2
Kj

+2 � q
1
2
j(k−j)F j1F

k−j
12 Ek−j2

= F k12 ◦ Ek2 .

Corollary 3.4. The element F12 ◦ E2 commutes with F12 and E2,

(F12 ◦ E2)F21 = F21(F12 ◦ E2),
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(F12 ◦ E2)F1 = qF1(F12 ◦ E2),

(F12 ◦ E2)F2 = q−1F2(F12 ◦ E2),

(F12 ◦ E2)(F2 ◦ E2) = q−1(F2 ◦ E2)(F12 ◦ E2).

From the formulas for F12 and E12, we compute

E12F12 = F12E12 + (q−1 − q)K+1K+2,

and thus

F12 ◦ E12 = F12E12 − qK+1K+2.

The following lemma is immediate:

Lemma 3.5. The assignments F 7→ F12, E 7→ E12, and K 7→ K+1K+2 determine an algebra

homomorphism H+
q (sl2) → H+

q (sl3). In particular, F12 ◦ E12 commutes with F12 and E12

and

(F12 ◦ E12)k =
k∑
j=0

(−1)jqj
[
k
j

]
q2
Kj

+1K
j
+2F

k−j
12 Ek−j12

= F k12 ◦ Ek12.

Lemma 3.6. We have

(F12 ◦ E12)E1 = qE1(F12 ◦ E12), (3.5)

(F12 ◦ E12)F1 = q−1F2(F12 ◦ E12), (3.6)

(F12 ◦ E2)E12 = qE12(F12 ◦ E2), (3.7)

(F1 ◦ E12)F12 = q−1F12(F1 ◦ E12). (3.8)
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Proof. Applying τ to the equation F1E21 = E21F1 gives F12E1 = E1F12, from which (3.5)

follows. Similarly, (3.6) holds since F2 commutes with E12. For (3.7), we have,

(F12 ◦ E2)E12 = (F12E2 − qK+2 � F1)E12

= q(E12F12 + (q − q−1)K+1K+2)E2 − q
1
2K+2(E12F1 + (q − q−1)K+1 � E2)

= qE12F12E2 − q2E12K+2 � F1

= qE12(F12 ◦ E2).

Applying τ to (F21 ◦ E1)E21 = qE21(F21 ◦ E1) gives (3.8).

From Lemma 3.3, Cor. 3.4 and Lemma 3.6, we obtain:

Corollary 3.7. The following quasi-commutation relations hold:

(F12 ◦ E2)(F12 ◦ E12) = q(F12 ◦ E12)(F12 ◦ E2),

(F1 ◦ E12)(F12 ◦ E2) = q−2(F12 ◦ E2)(F1 ◦ E12),

(F1 ◦ E12)(F12 ◦ E12) = q−1(F12 ◦ E12)(F1 ◦ E12).

Next, we have

E21F12 = F12E21 + (q−1 + q)K+2F1E1 − (1 + q2)K+1K+2

= F12E21 + (q−1 − q)K+2(F1 ◦ E1),

and thus

F12 ◦ E21 = F12E21 − qK+2(F1 ◦ E1)

= F12E21 − qK+2F1E1 + q2K+1K+2.
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Lemma 3.8. The assignments F 7→ F12, E 7→ E21,K+ 7→ K+2(F1 ◦E1) determine another

algebra homomorphism H+
q (sl2)→ H+

q (sl3), and thus (F12 ◦ E21)k = F k12 ◦ Ek21.

Proof. We have

(F12 ◦ E21)k =
k∑
j=0

(−1)jqj
[
k
j

]
q2
Kj

+2(F1 ◦ E1)jF k−j12 Ek−j21

=
k∑
j=0

j∑
l=0

(−1)j+lqj+l
[
k
j

]
q2

[
j
l

]
q2
K l

+1K
j
+2q

1
2

(j−l)(k−j)F j−l1 F k−j12

× q−
1
2

(j−l)(k−j)Ej−l1 Ek−j21

= F k12 ◦ Ek21.

Lemma 3.9. The element F12 ◦ E21 is quasi-central in H+
q (sl3).

Proof. It is straightforward that (F12 ◦ E21)E1 = q−1E1(F1 ◦ E21) and we also have

(F12 ◦ E21)E2 = q(E2F12 + (q − q−1)K+2 � F1)E21 − qK+2(q−
1
2 (F1 ◦ E12) + q

1
2F1E21)

= qE2F12E21 −K+2q
− 1

2F1E21 −K+2q
1
2 (F1 ◦ E12)

= qE2F12E21 −K+2E2(F1 ◦ E1)

= qE2(F12 ◦ E21).

Applying τ to the previous two computations gives

(F12 ◦ E21)F1 = qF1(F12 ◦ E21),

(F12 ◦ E21)F2 = q−1F2(F12 ◦ E21).
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Using symmetry, we now have a complete set of quasi-commutation relations. We

summarize these using the notation of Thm. 3.1:

� Ai quasi-commutes with Fi, Fij , E1, E2, Hi, Γi, and C+i,

� Hi quasi-commutes with F1, F2, Ej , Eij , Ai, Γi, and C+j ,

� Γi quasi-commutes with Fj , Fij , Ei, Eij , Ai, and Hi,

� C+i quasi-commutes with Fi, Fij , Ei, Ej , Ai and Hj ,

� Zi is quasi-central,

where {i, j} = {1, 2}.

3.2 Computation of the double canonical basis

From the computations in Section 3.1, we conclude that any maximal set of mutually

quasi-commuting elements from

X = {E1, E2, E12, E21, F1, F2, F12, F21, C+1, C+2, A1, A2, H1, H2,Γ1,Γ2}

has size four. There are fifty such sets. In no particular order, they are:

{Ai, Hi,Γi, Eij}, {Ai, Hi,Γi, Fij}, {Ai, Hi, Ej , Eij}, {Ai, Hi, Ej , Fi}, {Ai, Hi, Fij , Fi},

{Ai,Γi, Eij , Ei}, {Ai,Γi, Fij , Ei}, {Ai, Eji, Ej , Fi}, {Ai, Eij , Ei, Eji}, {Ai, Eij , Eji, Ej},

{Ai, Eji, C+i, Ei}, {Ai, Eji, C+i, Fi}, {Ai, C+i, Fi, Fij}, {Ai, C+i, Ei, Fij}, {Hi,Γi, Eij , Fj},

{Hi,Γi, Fij , Fj}, {Hi, Ej , Fi, Fji}, {Hi, Fij , Fi, Fji}, {Hi, Fij , Fj , Fji}, {Hi, Ej , Fji, C+j},

{Hi, Fj , Fji, C+j}, {Hi, Fj , Eij , C+j}, {Hi, Ej , Eij , C+j}, {Γi, Eij , Fj , Ei}, {Γi, Fij , Fj , Ei},

where {i, j} = {1, 2}. Let S be any subset of X whose elements quasi-commute. In this

section, we prove that quantum cluster monomials in S ∪ {K+1,K+2, Z1, Z2} are double
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basis elements, and conversely, that every double basis element is such a monomial. Here we

use “quantum cluster monomial” informally to mean the unique bar-invariant multiple of

q
1
2 with a monomial in quasi-commuting elements. In Section 3.3, we show these elements

are honest quantum cluster monomials for a quantum cluster structure on H+
q (sl3).

Observe that the monoid K+ identifies with Q≥0. For λ = rα1 + sα2 ∈ Q≥0, write

Kλ = Kr
+1K

s
+2. With this notation, Kλu = q(λ,|u|)uKλ where (·, ·) is the bilinear form on

Q2 such that (αi, αi) = 2 (the Killing form) and Kλ � u = q−
1
2

(λ,|u|)Kλu.

For a, b, c, d ∈ Z≥0 such that ab = 0, let

b+(a, b, c, d) = q
1
2

(a−b)(c−d)Ea1E
b
2E

c
12E

d
21 ∈ Bup

+

and

b−(a, b, c, d) = q
1
2

(a−b)(c−d)F a1 F
b
2F

c
12F

d
21 ∈ Bup

− .

The following lemma and its corollaries provide sufficient conditions for when quantum

cluster monomials in quasi-commuting double canonical basis elements belong to the double

basis.

Lemma 3.10. Let B− ◦B+ be a double basis element and write

B− ◦B+ = B−B+ +
∑
j∈J

pj(q)Kλj � b−jb+j

where J is a finite index set, pj(q) ∈ qZ[q], and

degQ2
≥0
b−jb+j + degQ2

≥0
Kλj = degQ2

≥0
B−B+.

Let B′− be a dual canonical basis element in U−q satisfying (B− ◦B+)B′− = qcB′−(B− ◦B+)

for some c ∈ Z and, for all j ∈ J , b−jB
′
− = qcjB′−b−j for some cj ∈ Z. Then q

1
2
cB′−B− and

q
1
2
cjB′−b−j are dual canonical basis elements. If q

1
2
cjB′−b−j is a quantum cluster monomial
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in {F1, F12, F21}, suppose also that

x− yj + nj −mj ≥ 0,

where B− = b−(a, 0, x, x′), b−j = b−(aj , 0, yj , y
′
j), and λj = njα1 +mjα2. If q

1
2
cjB′−b−j is a

quantum cluster monomial in {F2, F12, F21}, suppose that

yj − x+mj ≥ 0,

where B− = b−(0, a, x, x′), b−j = b−(0, aj , yj , y
′
j), and λj = njα1 +mjα2. Then q

1
2
cB′−(B− ◦

B+) is in the double canonical basis.

Observe that if a dual basis element commutes with each b−j and with B−, then for

each j, B− and b−j are quantum cluster monomials from the same cluster. Therefore, if

there exist j, l ∈ J such that q
1
2
cjB′−b−j and q

1
2
clB′−b−l are quantum cluster monomials from

different clusters, then a = 0.

Proof. We know that q
1
2
cB′−(B− ◦B+) is bar-invariant and

q
1
2
cB′−(B− ◦B+) = q

1
2
cB′−B−B+ +

∑
j∈J

q−
1
2

(λj ,|B′−|)q
1
2

(c−cj)pj(q)Kλj � q
1
2
cjB′−b−jb+j .

If |B−| = −rα1 − sα2 and λj = njα1 +mjα2, our Q2
≥0-degree assumptions also imply that

|b−j | = (−r + nj)α1 + (−s+mj)α2.

Since B′− quasi-commutes with B− and with each b−j , q
1
2
cB′−B− and each q

1
2
cjB′−b−jb+j

are quantum cluster monomials (and therefore dual canonical basis elements).

Suppose first that q
1
2
cB′−B−, q

1
2
cjB′−b−jb+j are cluster monomials in {F1, F12, F21}.

Then B− = b−(r − s, 0, x, s− x) and b−j = b−(r − nj − s+mj , 0, yj , s−mj − yj) for some
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x, yj ≥ 0. If B′− = b−(α, 0, β, γ), then

c = −α(s− x) + αx+ (γ − β)(r − s),

cj = −α(s−mj − yj) + αyj + (γ − β)(r − nj − s+mj),

and so

c− cj = 2α(x− yj)− αmj + (β − γ)(mj − nj).

Furthermore,

(λj , |B′−|) = (−2α− β − γ)nj + (α− β − γ)mj

and thus

c− cj − (λj , |B′−|) = 2α(x− yj + nj −mj) + 2(βmj + γnj) ∈ 2Z.

If x− yj + nj −mj ≥ 0, we have q−
1
2

(λj ,|B′−|)q
1
2

(c−cj) ∈ Z[q].

Next, suppose that q
1
2
cB′−B−, q

1
2
cjB′−b−jb+j are cluster monomials in {F2, F12, F21}.

Then B− = b−(0, s− r, x, r − x) and b−j = b−(0, s−mj − r + nj , yj , r − nj − yj) for some

x, yj ≥ 0. If B′− = b−(0, α, β, γ), then

c = α(r − x)− αx+ (β − γ)(s− r),

cj = α(r − nj − yj)− αyj + (β − γ)(s−mj − r + nj),

and so

c− cj = 2α(yj − x) + αnj + (γ − β)(nj −mj).

Since

(λj , |B′−|) = (α− β − γ)nj + (−2α− β − γ)mj ,
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we have

c− cj − (λj , |B′−|) = 2α(yj − x+mj) + 2(βmj + γnj) ∈ 2Z.

If yj − x+mj ≥ 0, then q−
1
2

(λj ,|B′−|)q
1
2

(c−cj) ∈ Z[q].

By the assumptions of the lemma, q
1
2
cB′−(B− ◦ B+) has correct triangularity and is

therefore a double basis element.

In particular, the assumption of Lemma 3.10 is true if B′− and each b−j is a monomial

in only F1 and F12 (so that x− yj = mj).

Corollary 3.11. Let B− ◦B+ be as in Lemma 3.10. Suppose that B′+ is a dual canonical

basis element in U+
q which satisfies (B− ◦B+)B′+ = qcB′+(B− ◦B+) for some c ∈ Z and, for

all j ∈ J , b+jB
′
+ = qcjB′+b+j for some cj ∈ Z. Then q−

1
2
cB+B

′
+ and q−

1
2
cjb+jB

′
+ belong

to dual canonical basis. If q−
1
2
cjb+jB

′
+ is a quantum cluster monomial in {E1, E12, E21},

suppose also that

x− yj + nj −mj ≥ 0,

where B+ = b+(a, 0, x′, x), b+j = b+(aj , 0, y
′
j , yj), and λj = njα1 +mjα2. If q−

1
2
cjb+jB

′
+ is

a quantum cluster monomial in {E2, E12, E21}, suppose that

yj − x+mj ≥ 0,

where B+ = b+(0, a, x′, x), b+j = b+(0, aj , y
′
j , yj), and λj = njα1 +mjα2. Then q−

1
2
c(B− ◦

B′+)B′+ is in the double canonical basis.

Proof. Under these assumptions, τ(B− ◦B+) = τ(B−) ◦ τ(B+) satisfies the assumptions of

Lemma 3.10 and thus q−
1
2
cτ(B′+)(τ(B−) ◦ τ(B+)) is a double basis element. Applying τ

once more completes the proof.

Corollary 3.12. Let B− ◦B+ and B′− ◦B′+ be double basis elements. Write

B− ◦B+ = B−B+ +
∑
j∈J

pj(q)Kλj � b−jb+j
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and

B′− ◦B′+ = B′−B
′
+ +

∑
l∈L

pl(q)Kλl � b−lb+l

where J and L are finite index sets, pj(q), pl(q) ∈ qZ[q], and the necessary Q2
≥0-degree

assumptions are satisfied. Suppose that B−B
′
− = qc−B′−B−, B+B

′
+ = qc+B′+B+, and

(B− ◦ B+)(B′− ◦ B′+) = qc−+c+(B′− ◦ B′+)(B− ◦ B+) for some c−, c+ ∈ Z. Suppose also

that for all l, B−b−l = qc
−
l b−lB− and B+b+l = qc

+
l b+lB+ some c−l , c

+
l ∈ Z. Finally,

assume that (B− ◦ B+)b−l = qc
−
l b−l(B− ◦ B+) for all l and that each b−l quasi-commutes

with each b−j. If B− ◦ B+ satisfies the assumptions of Lemma 3.10/Cor. 3.11, then

q−
1
2

(c−+c+)(B− ◦B+)(B′− ◦B′+) is in the double canonical basis if

q−
1
2

(λl,|B−◦B+|)(c−−c−l +c+−c+l ) ∈ Z[q]

for all l

Proof. We have

q−
1
2

(c−+c+)(B− ◦B+)(B′− ◦B′+)

= q−
1
2

(c+−c−)B′−(B− ◦B+)B′+ +
∑
l∈L

pl(q)q
− 1

2
(λl,|B−◦B+|)(c−−c−l +c+−c+l )

×Kλl � q
1
2

(c−l −c
+
l )b−l(B− ◦B+)b+l.

The proofs of Lemma 3.10 and Cor. 3.11 imply that q−
1
2

(c+−c−)B′−(B− ◦ B+)B′+ and

q
1
2

(c−l −c
+
l )b−l(B− ◦B+)b+l have correct triangularity.

We now apply Lemma 3.10 and its corollaries to compute the double basis of a parabolic

subalgebra of H+
q (that is, all basis elements of the form Fi ◦ b+, b+ ∈ Bup

+ ). We require

one additional computation (Lemma 3.15). First, we must generalize the exchange relation

E2E1 = q
1
2E12 + q−

1
2E21 to rewrite products of the form Ek2E

k
1 . The following lemma is a

straightforward consequence of the q-binomial theorem:
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Lemma 3.13. If X and Y are commuting elements in a Q(q)-algebra, then

k−1∏
j=0

(q2j+1X + Y ) =
k∑
j=0

qj
2

[
k
j

]
q2
XjY k−j

for k ≥ 1.

Corollary 3.14. For k ≥ 1,

Ek2E
k
1 = q−

1
2
k2

k∑
j=0

qj
2

[
k
j

]
q2
Ej12E

k−j
21 , (3.9)

Ek2 (F1 ◦ E1)k = q−
1
2
k2

k∑
j=0

qj
2

[
k
j

]
q2

(F k1 ◦ E
j
12E

k−j
21 ). (3.10)

Proof. Note that (q
1
2E12+q−

1
2E21)E1 = E1(q

3
2E12+q−

3
2E21). Since E2E1 = q

1
2E12+q−

1
2E21,

it follows that

Ek2E
k
1 =

k−1∏
j=0

(qj+
1
2E12 + q−j−

1
2E21) = q−

1
2
k2

k−1∏
j=0

q2j+1E12 + E21,

since
k−1∏
j=0

q−j−
1
2 = q

∑k−1
j=0 −j−

1
2 = q−

1
2

(k−1)k− 1
2
k = q−

1
2
k2 .

So (3.9) follows from Lemma 3.13 since E12 commutes with E21. The proof of (3.10) proceeds

by a similar argument since

E2(F1 ◦ E1) = F1(q
1
2E12 + q−

1
2E21)− q

3
2K+1 � E2

= q
1
2 (F1 ◦ E12) + q−

1
2F1E21

(and since F1 ◦ E12 commutes with F1E21 = F1 ◦ E21).
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Lemma 3.15. For all a, b, c ∈ Z≥0,

q−
1
2
a(b+c)(F1 ◦ E12)a(F1 ◦ E1)bEc1

is in the double canonical basis.

Proof. Bar-invariance follows from Lemma 3.3. We have

q−
1
2
a(b+c)(F1 ◦ E12)a(F1 ◦ E1)bEc1

= q−
1
2
a(b+c)

∑
0≤j≤a,0≤l≤b

(−1)j+lqj+lq
1
2
alq(j+l)cq(a+j)(b+c−l)

[
a
j

]
q2

[
b
l

]
q2

×Kj+l
+1 � F

a+b−j−l
1 q−

1
2
j(a−j)Ej2E

b+c−l
1 Ea−j12

= q−
1
2
a(b+c)

∑
0≤j≤a,0≤l≤b
j≤b+c−l

(−1)j+lqj+lq
1
2
alq(j+l)cq(a+j)(b+c−l)q−

1
2
j(a−j)

[
a
j

]
q2

[
b
l

]
q2

×Kj+l
+1 � F

a+b−j−l
1 (Ej2E

j
1)Eb+c−l−j1 Ea−j12

+ q−
1
2
a(b+c)

∑
0≤j≤a,0≤l≤b
j>b+c−l

(−1)j+lqj+lq
1
2
alq(j+l)cq(a+j)(b+c−l)q−

1
2
j(a−j)

[
a
j

]
q2

[
b
l

]
q2

×Kj+l
+1 � F

a+b−j−l
1 Ej−b−c+l2 (Eb+c−l2 Eb+c−l1 )Ea−j12 .

Using Cor. 3.13, we expand the first sum to get

q−
1
2
a(b+c)

∑
0≤j≤a,0≤l≤b
j≤b+c−l

(−1)j+lqj+lq
1
2
alq(j+l)cq(a+j)(b+c−l)q−

1
2
j(a−j)

[
a
j

]
q2

[
b
l

]
q2

×Kj+l
+1 � F

a+b−j−l
1 × (Ej2E

j
1)Eb+c−l−j1 Ea−j12

= q−
1
2
a(b+c)

∑
0≤j≤a,0≤l≤b
j≤b+c−l

(−1)j+lqj+lq
1
2
alq(j+l)cq(a+j)(b+c−l)q−

1
2
j(a−j)

[
a
j

]
q2

[
b
l

]
q2

×Kj+l
+1 � F

a+b−j−l
1 q−

1
2
j2

j∑
r=0

qr
2

[
j
r

]
q2
Er12E

j−r
21 Eb+c−l−j1 Ea−j12

=
∑

0≤r≤j≤a,0≤l≤b
j≤b+c−l

(−1)j+lqj+lqj(b+c−l)qr(b+c−j−l+r)
[
a
j

]
q2

[
b
l

]
q2

[
j
r

]
q2
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×Kj+l
+1 � F

a+b−j−l
1 q

1
2

(b+c−l−j)(a−2j+2r)Eb+c−l−j1 Ea−j+r12 Ej−r21 .

Similarly, the second sum becomes

q−
1
2
a(b+c)

∑
0≤j≤a,0≤l≤b
j>b+c−l

(−1)j+lqj+lq
1
2
alq(j+l)cq(a+j)(b+c−l)q−

1
2
j(a−j)

[
a
j

]
q2

[
b
l

]
q2

×Kj+l
+1 � F

a+b−j−l
1 Ej−b−c+l2 (Eb+c−l2 Eb+c−l1 )Ea−j12

= q−
1
2
a(b+c)

∑
0≤j≤a,0≤l≤b
j>b+c−l

(−1)j+lqj+lq
1
2
alq(j+l)cq(a+j)(b+c−l)q−

1
2
j(a−j)

[
a
j

]
q2

[
b
l

]
q2

×Kj+l
+1 � F

a+b−j−l
1 Ej−b−c+l2 q−

1
2

(b+c−l)2
b+c−l∑
r=0

qr
2

[
b+ c− l

r

]
q2
Ea−j+r12 Eb+c−l−r21

=
∑

0≤j≤a,0≤l≤b
0≤r≤b+c−l<j

(−1)j+lqj+lq(j+l)cqj(b+c−l)qr(j−b−c+l+r)
[
a
j

]
q2

[
b
l

]
q2

[
b+ c− l

r

]
q2

×Kj+l
+1 � F

a+b−j−l
1 q−

1
2

(j−b−c+l)(a−j+2r−b−c+l)Ej−b−c+l2 Ea−j+r12 Eb+c−l−r21 .

Thus q−
1
2
a(b+c)(F1 ◦ E12)a(F1 ◦ E1)bEc1 has correct triangularity.

Corollary 3.16. Let S be one of the following sets:

{F1, F1 ◦ E12, F1 ◦ E1, E21},

{F1 ◦ E12, F1 ◦ E1, E1, E21},

{F1 ◦ E12, E1, E12, E21},

{F1 ◦ E12, E2, E12, E21},

{F1, F1 ◦ E12, E2, E21},

{F1, F1 ◦ E12, F1 ◦ E1, F12},

{F1 ◦ E12, F1 ◦ E1, E1, F12}.

Bar-invariant products of monomials in S with a power of q
1
2 belong to the double canonical

basis.
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Proof. From Lemma 3.15, we see that q−
1
2
a(b+c)(F1 ◦E12)a(F1 ◦E1)bEc1 satisfies the assump-

tions of Lemma 3.10/Cor. 3.11.

The following lemmata establish that Z1 and Z2 play the role of coefficients (this

statement is made precise in Section 3.3).

Lemma 3.17. For all a, b, x, y ∈ Z≥0, q−
1
2

(a−b)(x−y)q
1
2
abF a2 F

b
1F

x
12F

y
21 is in the Z[q]-span of

the dual canonical basis of U−q .

Proof. If a ≥ b, we have

F a2 F
b
1F

x
12F

y
21 = F a−b2 q−

1
2
b2

b∑
j=0

qj
2

[
b
j

]
q2
F x+j

12 F y+b−j
21

=
b∑

j=0

q
1
2

(a−b)(x−y)q−
1
2
abq(a−b)j+j2

[
b
j

]
q2
q−

1
2

(a−b)(x+2j−y−b)F a−b2 F x+j
12 F y+b−j

21

=
b∑

j=0

q
1
2

(a−b)(x−y)q−
1
2
abq(a−b)j+j2

[
b
j

]
q2
b−(0, a− j, x+ j, y + b− j).

If a < b, we have

F a2 F
b
1F

x
12F

y
21 = q−

1
2
a2

a∑
j=0

qj
2

[
a
j

]
q2
F j12F

a−j
21 F b−a1 F x12F

y
21

= q(b−a)(2j−a)q−
1
2
a2

a∑
j=0

qj
2

[
a
j

]
q2
F b−a1 F x+j

12 F y+a−j
21

=

a∑
j=0

q
1
2

(a−b)(x−y)q
1
2
abq(b−a)j+j2

[
a
j

]
q2
q

1
2

(b−a)(x+2j−y−a)F b−a1 F x+j
12 F y+a−j

21

=

a∑
j=0

q
1
2

(a−b)(x−y)q
1
2
abq(b−a)j+j2

[
a
j

]
q2
b−(b− a, 0, x+ j, y + a− j).

In either case, these computations show that q−
1
2

(a−b)(x−y)q
1
2
abF a2 F

b
1F

x
12F

y
21 is a Z[q]-linear

combination of dual basis elements.
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For the proof of Corollary 3.18, observe that

τ(q−
1
2

(a−b)(x−y)q
1
2
abF a2 F

b
1F

x
12F

y
21) = q−

1
2

(a−b)(x−y)q
1
2
abEy12E

x
21E

b
1E

a
2

= q
1
2

(a−b)(x−y)q
1
2
abEb1E

a
2E

y
12E

x
21

is also in the the Z[q]-span of the dual canonical basis.

Corollary 3.18. For all n,m ∈ Z≥0, (F12 ◦ E21)m(F21 ◦ E12)n is in the double canonical

basis.

Proof. We have

(F12 ◦ E21)n(F21 ◦ E12)m

=
∑
j,l

pjl(q)K
l
+1K

j
+2F

j−l
1 Fm−j12 Ej−l1 Em−j21

×
∑
r,s

prs(q)K
r
+1K

s
+2F

r−s
2 Fn−r21 Er−s2 En−r12

=
∑
j,l,r,s

pjl(q)prs(q)q
−m(r−s)q(2j−l)(r−s)q(l+j)(n−r)q(l−j)(n−r)q(r−s)(m−j)K l+r

+1 K
j+s
+2

× F r−s2 F j−l1 Fm−j12 Fn−r21 Ej−l1 Er−s2 En−r12 Em−j21

=
∑
j,l,r,s

pjl(q)prs(q)q
2l(n−r)K l+r

+1 K
j+s
+2 q

(r−s)(j−l)F r−s2 F j−l1 Fm−j12 Fn−r21 Ej−l1 Er−s2 En−r12 Em−j21

where 0 ≤ l ≤ j ≤ m, 0 ≤ s ≤ r ≤ n, and

pjl(q) = (−1)j+lqj+l
[
n
j

]
q2

[
j
l

]
q2
, prs(q) = (−1)r+sqr+s

[
m
r

]
q2

[
r
s

]
q2
∈ qZ[q].

By rewriting

q(r−s)(j−l)F r−s2 F j−l1 Fm−j12 Fn−r21 Ej−l1 Er−s2 En−r12 Em−j21

= q−
1
2

(r−s−j+l)(m−j−n+r)q
1
2

(r−s)(j−l)F r−s2 F j−l1 Fm−j12 Fn−r21

× q
1
2

(r−s−j+l)(m−j−n+r)q
1
2

(r−s)(j−l)Ej−l1 Er−s2 En−r12 Em−j21 ,
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we conclude from Lemma 3.17 that (F12 ◦ E21)m(F21 ◦ E12)n is in the double canonical

basis.

Lemma 3.19. For all m,n ∈ Z≥0, products of (F12 ◦E21)m(F21 ◦E12)n with dual canonical

basis elements are (up to a power of q
1
2 ) in the double canonical basis.

Proof. From Lemma 3.18, we have

q
1
2
a(n−m)F a2 (F12 ◦ E21)m(F21 ◦ E12)n

= q
1
2
a(n−m)

∑
j,l,r,s

pjlrs(q)q
a(j+s)q−

1
2
a(l+r)K l+r

+1 K
j+s
+2 � q

(r−s)(j−l)F r−s+a2 F j−l1 Fm−j12 Fn−r21

× Ej−l1 Er−s2 En−r12 Em−j21

=
∑
j,l,r,s

pjlrs(q)q
asq−

1
2
a(m−j−n+r)K l+r

+1 K
j+s
+2 � q

1
2
a(j−l)q(r−s)(j−l)F r−s+a2 F j−l1 Fm−j12 Fn−r21

× Ej−l1 Er−s2 En−r12 Em−j21

where 0 ≤ l ≤ j ≤ m, 0 ≤ s ≤ r ≤ n, and

pjlrs(q) = (−1)j+l+r+sqj+l+r+s
[
n
j

]
q2

[
j
l

]
q2

[
m
r

]
q2

[
r
s

]
q2
∈ qZ[q].

But we know from (the proof of) Lemma 3.17 that

q
1
2
a(j−l)q(r−s)(j−l)F r−s+a2 F j−l1 Fm−j12 Fn−r21 Ej−l1 Er−s2 En−r12 Em−j21

is in the q
1
2
a(m−j−n+r)Z[q]-span of products of dual canonical basis elements. So

q
1
2
a(n−m)F a2 (F12 ◦ E21)m(F21 ◦ E12)n

is in the double canonical basis.

From the above computation and the proof of Cor. 3.18, we know that

q
1
2
a(n−m)F a2 (F12 ◦ E21)m(F21 ◦ E12)n
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is in the Z[q]-span of elements which look like qasK l+r
+1 K

j+s
+2 b

−
jlrsb

+
jlrs where

b−jlrs = b−(0, r − s+ a− j + l,m− j + i, n− r − i)

or

b−jlrs = b−(j − l − r + s− a, 0,m− j + i, n− r − i)

where 0 ≤ l ≤ j ≤ m, 0 ≤ s ≤ r ≤ n, and i ≤ min(j − l, r− s+ a). Note that dual canonical

basis elements of the form b−(0, 0, a, b) quasi-commute with each summand. Since

as+m− (m− j + i) + l + r − (j + s) = as+ l + r − s− i

= l + r − s+ a− i+ a(s− 1) ∈ Z≥0

and

as+ (m− j + i)−m+ j + s = as+ i+ s ∈ Z≥0,

we conclude from Lemma 3.10 that (F12 ◦ E21)m(F21 ◦ E12)nb−(0, 0, a, b) is (up to a power

of q
1
2 ) a double basis element. The remaining cases are proved using symmetry and τ .

Corollary 3.20. For all m,n ∈ Z≥0, products of (F12 ◦ E21)m(F21 ◦ E12)n with double

canonical basis elements are (up to a power of q
1
2 ) in the double canonical basis.

Proof. Let B− ◦B+ be a double basis element and write

B− ◦B+ = B−B+ +
∑
j∈J

pj(q)Kλj � b−jb+j

where J is a finite index set, pj(q) ∈ qZ[q], and

degQ2
≥0
b−jb+j + degQ2

≥0
Kλj = degQ2

≥0
B−B+.
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Since Zm1 Z
n
2 has Q-degree zero,

(B− ◦B+)Zm1 Z
n
2 = B−Z

n
1Z

m
2 B+ +

∑
j∈J

pj(q)Kλj � b−jZ
m
1 Z

n
2 b+j .

The result follows immediately from Lemma 3.19.

Proposition 3.21. Let S be any subset of

X = {E1, E2, E12, E21, F1, F2, F12, F21, C+1, C+2, A1, A2, H1, H2,Γ1,Γ2}

whose elements quasi-commute. Quantum cluster monomials in S ∪ {K+1,K+2, Z1, Z2} are

double basis elements (and conversely, every double basis element is such a monomial).

Proof. First, we apply Cor. 3.12 to B− ◦ B+ = Ari and B′− ◦ B′+ = Hs
i . Since Ai satisfies

the requirements of Lemma 3.10/Cor. 3.11 and

−1

2
(K l

+j , |Ari |)−
1

2
(−rs+ r(s− l)− rs+ r(s− l)) = 0

the proposition holds for S = {Ai, Hi}. Now we apply Cor. 3.12 to B− ◦ B+ = Γi and

B′− ◦B′+ = qrsAriH
s
i . Since Γni satisfies the requirements of Lemma 3.10/Cor. 3.11 and

q−
1
2

(Kj
+iK

l
+j ,|Γn

i |)q−
1
2

(rn−(r−j+l)n−sn−(s−l+j)n) = qsn,

the proposition holds for S = {Ai, Hi,Γi}. Observe also that quantum cluster monomials

in {Ai, Hi,Γi} satisfy the requirement of Lemma 3.10/Cor. 3.11 (see the remark following

the proof of that lemma). We conclude that the proposition holds for any S consisting of

quasi-commuting elements from

{Ai, Hi,Γi} ∪Bup
− ∪Bup

+ .

The remaining cases follow from Cor. 3.16 using symmetry and τ .
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3.3 Proof of Theorem 3.1

Let

B =



0 −1 0 0
1 0 1 1
0 −1 0 0
0 −1 0 0
0 0 0 −1
−1 1 0 0
−1 0 0 0
0 1 −1 0


and

Λ =



0 0 0 1 0 1 1 0
0 0 1 1 0 0 0 0
0 −1 0 −1 −1 −2 1 1
−1 1 1 0 1 1 −2 −1
0 0 1 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
−1 0 −1 2 0 0 0 0
0 0 −1 1 0 0 0 0


.

Observe that B is the first four columns of the adjacency matrix of the quiver in Thm. 3.1

and Λ is the quasi-commutation matrix of {F12,Γ, E1, A1, Z2,K+1,K+2, Z1} (ordered from

left to right). These matrices are compatible since BTΛ is a block matrix consisting of a

4× 4 diagonal matrix with 2’s on the diagonal followed by the 4× 4 zero matrix. Label the

quiver Q as follows:

6 8

1 2 3

7 4 5

.

In the notation of Theorem 2.6, the defining relations of Âq1/2(Q,Λ) are

X1X
′
1 = X2 + qX6X7,

X2X
′
2 = X6X8 + qX1X3X4,
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X3X
′
3 = q−

1
2X2 + q

1
2X8,

X4X
′
4 = q−

1
2X2 + q

1
2X5

since the principal part of Q is acyclic (it is an orientation of the Dynkin diagram D4).

Observe that

F12E12 = Γ1 + qK+1K+2,

Γ1C+1 = (F12E12 − qK+1K+2)(F1E1 − qK+1)

= F12(A1 + q−1K+1 � E2)E1 − qK+1K+2F1E1 − qK+1F12E12 + q2K2
+1K+2

= F12A1E1 +K+1F12(qE12 + E21)− qK+1K+2F1E1 − qK+1F12E12 + q2K2
+1K+2

= qF12E1A1 +K+1(F12E21 − qK+2F1E1 + q2K+1K+2)

= qF12E1A1 +K+1Z1,

E1H1 = E1(F12E2 − qK+2 � F1)

= F12(q−
1
2E12 + q

1
2E21)− q

3
2K+2(F1E1 + (q−1 − q)K+1)

= q−
1
2 Γ1 + q

1
2Z1.

By symmetry, E2H2 = q−
1
2 Γ2 + q

1
2Z2. Applying τ gives

A1F2 = q−
1
2 Γ + q

1
2Z2.

Therefore the assignments X1 7→ F12, X2 7→ Γ, X3 7→ E1, X4 7→ A1, X
′
1 7→ E12, X

′
2 7→

C+1, X
′
3 7→ H1, X

′
4 7→ F2 determine a surjective algebra homomorphism (after extending

scalars)

φ : Âq1/2(Q,Λ)→ Ĥ+
q (sl3),
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where Ĥ+
q (sl3) denotes H+

q localized at the multiplicative submonoid generated by Z1 and

Z2. The isomorphism φ restricts to a bijection between the quantum cluster variables and

the subset X of double canonical basis elements listed in Thm. 3.1. For example, mutating

Q repeatedly at vertices 1, 3, 4, and 2 (in that order) produces the non-initial cluster

variables E12, H1, F2, C+2, F21, A2, E2,Γ2, E21, F1, H2, and C+1. Furthermore, φ determines

a bijection between the quantum clusters and the maximal quasi-commuting subsets of X

listed at the beginning of Section 3.2. So φ takes quantum cluster monomials (a basis for

Aq1/2(Q,Λ)) to double canonical basis elements and is therefore an isomorphism.
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Chapter 4

The double canonical basis of Uq(p̃)

Let Uq(p̃) be the subalgebra of Uq(s̃l3) generated by F1,K−1,K+1,K−2,K+2, and U+
q . Note

that the modified Lusztig symmetry T1 restricts to an automorphism T1 : Uq(p̃)→ Uq(p̃).

Through symmetry and the use of τ , the computations in this chapter apply to any of the

four parabolic subalgebras of Uq(s̃l3).

In this chapter, we investigate the structure of the double canonical basis of Uq(p̃). For

l ≥ −1, we define elements Al and Bl of Uq(p̃) called A-elements and B-elements, respectively.

The main result of this section is the following theorem:

Theorem 4.1. The A-elements and B-elements belong to the double canonical basis. To-

gether with F1 and E1, they are the exchangeable quantum cluster variables for a quantum

cluster algebra structure on Uq(p̃) with type Ã2 initial quiver

Q =

E2 E12 K+1

K−1 E21 D1

,

where K−1,K+1,K−2,K+2, and D1 = F1 • E12E21 are coefficients. The set of quantum

clusters is preserved by the automorphism T1 : Uq(p̃)→ Uq(p̃). For m ≥ 0, quantum cluster
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monomials from {F1, A2m−1, A2m+1, D1,K±1,K±2} and {F1, A2m−1, A2m+1, D1,K±1,K±2}

are contained in the double canonical basis.

The coefficients K−2 and K+2 never appear in exchange relations (that is, there are

no arrows in the initial quiver Q whose source or target is a vertex corresponding to K−2

or K+2). Therefore we omit these vertices from Q and ignore K−2 and K+2 in the proofs

that follow. Thm. 4.1 is an immediate corollary of Prop.’s 4.21, 4.22, and 4.27. Although

C1 = F1 • E1 is not a quantum cluster variable, we also show (Cor. 4.6) that modified

quantum cluster monomials in {F1, D1, C1,K±1,K±2} and {D1, C1, E1,K±1,K±2} belong

to the double canonical basis. Here we use “modified quantum cluster monomials” to mean

the unique bar-invariant multiple of a power of q1/2 with a monomial but with powers Ck1

replaced by the Chebyshev polynomials C
(k)
1 (see Ex. 2.15).

4.1 The image of ι and the element F1 • E21

We begin with some observations about the linear inclusion ι : H+
q (s̃l3)→ Uq(s̃l3). Observe

that ι(E12F1) = E12F1, and thus

ι(F r1 ◦ Er12) = ι((F1 ◦ E12)r) = (F1 • E12)r = F r1 • Er12.

Note also that that F1 •E12 commutes with F1 and E12, and (F1 •E12)E2 = q−1E2(F1 •E12).

We can now describe ι applied to all elements F r1 ◦ b+ computed in the previous chapter:

ι(q
1
2
s(a+c)F r1 (F1 ◦ E12)aEs2E

c
21) = q

1
2
s(a+c)F r1 (F1 • E12)aEs2E

c
21,

ι(q
1
2
s(a+b+c)(F1 ◦ E12)aEb12E

s
2E

c
21) = q

1
2
s(a+b+c)(F1 • E12)aEb12E

s
2E

c
21,

ι(q−
1
2

(a+b−c)s(F1 ◦ E12)aEb12E
s
1E

c
21) = q−

1
2

(a+b−c)s(F1 • E12)aEb12E
s
1E

c
21,

ι(q−
1
2

(a+c)bF r1 (F1 ◦ E12)aCb+1E
c
21) = q−

1
2

(a+c)bF r1 (F1 • E12)aι(Cb+1)Ec21,

ι(q−
1
2

(a+c)(b+s)(F1 ◦ E12)aCb+1E
s
1E

c
21) = q−

1
2

(a+c)(b+s)(F1 • E12)aι(Cb+1)Es1E
c
21.

47



Observe also that F1 and E21 do not commute in Uq(s̃l3). Applying σ to E12F1 = F1E12 +

(q−1 − q)K+1 � E2, we have

E21F1 = F1E21 + (q − q−1)K−1 � E2

and thus

F1 • E21 = F1E21 − q−1K−1 � E2 = ι(F1 ◦ E21)− q−1K−1 � E2.

Observe that F1 • E21 = σ(F1 • E12). Applying σ to (F1 • E12)k, we have

(F1 • E21)k =
k∑
j=0

(−1)jq−j
[
k
j

]
q−2

Kj
−1 � q

1
2
j(k−j)Ej2E

k−j
21

= F k1 • Ek21.

It also follows that F1 • E21 quasi-commutes with F1, E2, and E21.

4.2 The central element D1

In this section we show that the element D1 = F1 •E12E21 is central in Uq(p̃) and that its

powers belong to the double canonical basis. We also show that dual basis elements from

U+
q , as well as C

(k)
1 , remain in the double canonical basis when multiplied by powers of D1.

Although F1 ◦ E12 and E21 commute in H+
q (sl3), F1 • E12 = ι(F1 ◦ E12) and E21 do not

commute in Uq(s̃l3). Instead, we have

(F1 • E12)E21 = E21(F1 • E12) + (q−1 − q)K−1q
− 1

2E2E12

and thus

(F1 • E12)E21 − q−1K−1q
− 1

2E2E12
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is bar-invariant. Since ι(F1 ◦ E12E21) = (F1 • E12)E21, we have

F1 • E12E21 = (F1 • E12)E21 − q−1K−1q
− 1

2E2E12. (4.1)

Lemma 4.2. The element F1 • E12E21 is central in Uq(p̃).

Proof. Commutation with E2,K±1, and K±2 is immediate. For F1, we have

(F1 • E12E21)F1 = ((F1 • E12)E21 − q−1K−1q
− 1

2E2E12)F1

= (F1 • E12)(F1E21 + (q − q−1)K−1 � E2)− q−1K−1q
− 1

2E2

× (F1E12 + (q−1 − q)K+1 � E2)

= F1(F1 • E12)E21 + (1− q−2)K−1q
− 1

2 (F1 • E12)E2

−K−1q
− 1

2 (F1 • E12)E2 − q−1K−1K+1E
2
2

= F1(F1 • E12)E21 − q−2K−1q
− 1

2 (F1 • E12)E2 − q−1K−1K+1E
2
2

= F1(F1 • E12)E21 − q−3K−1(F1q
− 1

2E2E12 − q2K+1E
2
2)− q−1K−1K+1E

2
2

= F1(F1 • E12E21).

For the E1 computation, we first observe that

E1(F1 • E12) = (F1E1 + (q−1 − q)K+1 + (q − q−1)K−1)E12 − q−1K+1(E12 + qE21)

= F1E1E12 − qK+1E12 −K+1E21 + (q − q−1)K−1E12

= q−1F1E12E1 − qK+1(E12 + q−1E21) + (q − q−1)K−1E12

= q−1F1E12E1 − qK+1q
− 1

2E2E1 + (q − q−1)K−1E12

= q−1(F1 • E12)E1 + (q − q−1)K−1E12

and thus

E1(F1 • E12E21) = E1((F1 • E12)E21 − q−1K−1q
− 1

2E2E12)
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= q−1(F1 • E12)E1E21 + (q − q−1)K−1E12E21

− qK−1(q−1E12 + E21)E12

= (F1 • E12)E21E1 + (q − q−1)K−1E12E21 − q−1K−1 � E2
12 − qK−1E12E21

= (F1 • E12)E21E1 − q−1K−1(qE12 + E21)E12

= (F1 • E12)E21E1 − q−1K−1q
1
2E2E1E12

= (F1 • E12E21)E1.

Lemma 4.3. For r ≥ 0,

(F1 • E12E21)r =
r∑
j=0

(−1)jq−j
[
r
j

]
q−2

Kj
−1ι(F

r−j
1 ◦ q−

1
2
j2Ej2E

r
12E

r−j
21 ) = F r1 • Er12E

r
21.

Proof. We use induction on r. The base case holds by (4.1). Suppose the claim holds for

r − 1. Since (F1 • E12E12)r−1 is central in Uq(p̃), we have

(F1 • E12E21)r = ((F1 • E12)E21 − q−1K−1q
− 1

2E2E12)(F1 • E12E12)r−1

= (F1 • E12)(F1 • E12E12)r−1E21 − q−1K−1(F1 • E12E12)r−1q−
1
2E2E12.

Using ι(F r−1−j
1 ◦ q−

1
2
j2Ej2E

r−1
12 Er−1−j

21 ) = q−
3
2
j2qj(r−1)(F1 • E12)r−j−1Ej2E

j
12E

r−1−j
21 , our

assumption gives

(F1 • E12E21)r =

r−1∑
j=0

(−1)jq−jq−2j

[
r − 1
j

]
q−2

Kj
−1q
− 3

2
j2qjr(F1 • E12)r−jEj2E

j
12E

r−j
21

+
r−1∑
j=0

(−1)j+1q−j−1

[
r − 1
j

]
q−2

Kj+1
−1 q

− 3
2

(j+1)2q(j+1)r(F1 • E12)r−1−j

× Ej+1
2 Ej+1

12 Er−1−j
21

=

r∑
j=0

(−1)jq−j

(
q−2j

[
r − 1
j

]
q−2

+

[
r − 1
j − 1

]
q−2

)
Kj
−1q
− 3

2
j2qjr(F1 • E12)r−j
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× Ej2E
j
12E

r−j
21

=

r∑
j=0

(−1)jq−j
[
r
j

]
q−2

Kj
−1ι(F

r−j
1 ◦ q−

1
2
j2Ej2E

r
12E

r−j
21 ),

which completes the proof.

Using the formula in Lemma 4.3, a straightforward computation shows:

Corollary 4.4. Quantum cluster monomials in {E2, E12, E21, D1} and {E1, E12, E21, D1}

belong to the double canonical basis.

Lemma 4.5. For r, k ∈ Z≥0, Dr
1C

(k)
1 is in the double canonical basis.

Proof. We fix r and show by induction on s that Dr
1ι(C

s
+1) has correct triangularity. We

claim that

Dr
1ι(C

s
+1) = Ar1ι(C

s
+1)Er21 +

∑
j∈J

K
mj

−1K
nj

+1cj(q
−1)bj

where J is a finite index set, cj(q
−1) ∈ q−1Z[q−1], and bj has one of the following four forms:

(1) bj = q−
1
2
αj(2βj−αj)E

αj

2 A
r−αj

1 E
βj
12E

s−βj
21 ,

where αj ≥ 1, βj ≥ 1 and −mj + nj + βj ≤ 0,

(2) bj = q
1
2
β2
jF

αj

1 E
βj
2 A

r−αj−βj
1 E

r+αj

21 ,

where αj ≥ 0, βj ≥ 1 and −mj + nj ≤ 0,

(3) bj = q−αj(αj+βj)A
r+αj

1 E
βj
12E

r−βj−αj

21 E
αj

1 ,

where αj ≥ 1, βj ≥ 1 and −mj + nj + αj + βj ≤ 0, or

(4) bj = q−(α2
j+βjr)A

r+αj

1 ι(C
βj
+1)E

r−αj

21 E
αj

1 ,

51



where αj ≥ 0, βj ≥ 0 and −mj + nj + αj ≤ 0. The claim for s = 0 is established in Lemma

4.3. For the inductive step, observe that

Dr
1ι(C

s+1
+1 ) = F1D

r
1ι(C

s
+1)E1 − qK+1D

r
1ι(C

s
+1).

We begin by computing the F1K
mj

−1K
nj

+1bjE1 for each bj . For notational simplicity, we write

α in computations instead of αj , etc. First, we have for type (1) terms

F1K
m
−1K

n
+1q
− 1

2
α(2β−α)Eα2A

r−α
1 Eβ12E

r−β
21 E1

= q−2m+2nKm
−1K

n
+1q
− 1

2
α(2β−α)Eα2A

r−α
1 (F1E12 − qK+1 � E2)Eβ−1

12 Er−β21 E1

+ q−2m+2nKm
−1K

n+1
+1 q−

1
2
α(2β−α)q2βEα2A

r−α
1 Eβ−1

12 Er−β21 q
1
2E2E1

= q−2m+2nKm
−1K

n
+1q
− 1

2
α(2β−α)q2β−αEα−1

2 Ar−α+1
1 Eβ−1

12 Er−β21 (q
1
2E12 + q−

1
2E21)

+ q−2m+2nKm
−1K

n+1
+1 q−

1
2
α(2β−α)q2βEα2A

r−α
1 Eβ−1

12 Er−β21 (qE12 + E21)

= q−2m+2n+βKm
−1K

n
+1q
− 1

2
(α−1)(2β−α+1)Eα−1

2 Ar−α+1
1 Eβ12E

r−β
21

+ q−2m+2n+β−αKm
−1K

n
+1q
− 1

2
(α−1)(2β−α−1)Eα−1

2 Ar−α+1
1 Eβ−1

12 Er−β+1
21

+ q−2m+2n+2β+1Km
−1K

n+1
+1 q−

1
2
α(2β−α)Eα2A

r−α
1 Eβ12E

r−β
21

+ q−2m+2n+2β−αKm
−1K

n+1
+1 q−

1
2
α(2β−α−2)Eα2A

r−α
1 Eβ−1

12 Er−β+1
21 .

If −mj + nj + β < 0, then each summand has the desired form. That is, either the terms

remain of type (1) (when αj , βj > 1) and −mj+1 + nj+1 + βj+1 ≤ 0, or they are of types

(2)-(4) and satisfy the corresponding assumptions there. If −mj + nj + β = 0, then every

summand has the desired form except the third. Such terms, however, also appear in

qK+1D
r
1ι(C

s
+1) and are therefore cancelled in Dr

1ι(C
s+1
+1 ). For types (2)-(4), we compute

F1K
m
−1K

n
+1F

α
1 q

1
2
β(2α+β)Eβ2A

r−α−β
1 Er+α21 E1

= q−2m+2n−β−2αKm
−1K

n
+nF

α+1
1 q

1
2
β(2α+β)Eβ−1

2 Ar−α−β1 (q
1
2E12 + q−

1
2E21)Er+α21

= q−2m+2n−β−2αKm
−1K

n
+1F

α
1 q

1
2
β(2α+β)Eβ−1

2 Ar−α−β1 q
1
2 (F1E12 − qK+1 � E2)Er+α21
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q−2m+2n+1Km
−1K

n+1
+1 Fα1 q

1
2
β(2α+β)Eβ2A

r−α−β
1 Er+α21

q−2m+2n−β−2αKm
−1K

n
+1F

α+1
1 q

1
2
β(2α+β)q−

1
2Eβ−1

2 Ar−α−β1 Er+α+1
21

= q−2m+2n−αKm
−1K

n
+1F

α
1 q

1
2

(β−1)(2α+β−1)Eβ−1
2 Ar−α−β+1

1 Er+α21

q−2m+2n+1Km
−1K

n+1
+1 Fα1 q

1
2
β(2α+β)Eβ2A

r−α−β
1 Er+α21

q−2m+2n−β−αKm
−1K

n
+1F

α+1
1 q

1
2

(β−1)(2α+β+1)Eβ−1
2 Ar−α−β1 Er+α+1

21 ,

F1K
m
−1K

n
+1q
−α(α+β)Ar+α1 Eβ12E

r−β−α
21 Eα1E1

= q−2m+2nKm
−1K

n
+1q
−α(α+β)Ar+α1 (F1E12 − qK+1 � E2)Eβ−1

12 Er−β−α21 Eα+1
1

+ q−2m+2n+2α+2βKm
−1K

n+1
+1 q−α(α+β)Ar+α1 Eβ−1

12 Er−β−α21 (qE12 + E21)Eα1

= q−2m+2nKm
−1K

n
+1q
−(α+1)(α+β)Ar+α+1

1 Eβ−1
12 Er−β−α21 Eα+1

1

+ q−2m+2n+2α+2β+1Km
−1K

n+1
+1 q−α(α+β)Ar+α1 Eβ12E

r−β−α
21 Eα1

+ q−2m+2n+α+2βKm
−1K

n+1
+1 q−α(α+β−1)Ar+α1 Eβ−1

12 Er−β−α+1
21 Eα1 ,

F1K
m
−1K

n
+1q
−(α2+βr)Ar+α1 ι(Cβ+1)Er−α21 Eα+1

1

= q−2m+2n−r+αKm
−1K

n
+1q
−(α2+βr)Ar+α1 F1ι(C

β
+1)E1E

r−α
21 Eα1

= q−2m+2n−r+αKm
−1K

n
+1q
−(α2+βr)Ar+α1 (F1ι(C

β
+1)E1 − qK+1ι(C

β
+1))Er−α21 Eα1

+ q−2m+2n+2α+1Km
−1K

n+1
+1 q−(α2+βr)Ar+α1 ι(Cβ+1)Er−α21 Eα1 .

In each case, as in type (1), any terms which do not have the desired form are cancelled in

Dr
1ι(C

s+1
+1 ) by terms in qK+1D

r
1ι(C

s
+1) (and thus all of qK+1D

r
1ι(C

s
+1) is cancelled). The

remaining terms satisfy the requirements on mj+1, nj+1, αj+1, and βj+1.

Corollary 4.6. Modified quantum cluster monomials in {F1, C1, D1} and {E1, C1, D1}

belong to the double canonical basis.
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Proof. The proof for {F1, C1, D1} proceeds as for Lemma 4.5. The proof for {E1, C1, D1} is

a routine computation using Lemma 3.13.

Generalizing the proof of Lemma 4.5, we also conclude:

Lemma 4.7. Quantum cluster monomials in {F1, E2, A1, D1} are contained in the double

canonical basis. Furthermore, although not bar-invariant,

F a1 q
− 1

2
s(u+v)q

1
2
uvAu1E

v
2D

r
1C

(s)
1

and

F a1 q
− 1

2
skAk1D

r
1C

(s)
1

have correct triangularity.

4.3 A-elements and B-elements

In this section we introduce the A-elements and B-elements and prove that they are double

canonical basis elements.

Recall that F1•E12 = F1E12−qK+1�E2 and F1•E21 = F1E21−qK−1�E2. Furthermore,

E1(F1 • E12) = q−1(F1 • E12)E1 + (q − q−1)K−1E12 and thus

F1 • q
1
2E1E12 = q−

1
2 (F1 • E12)E1 − q−1K−1 � E2.

Definition 4.8. Let A−1 = E2, A0 = E12 and A1 = F1 • E12. For m ∈ Z>0, define the

A-elements by

A2m = q−
1
2A2m−1E1 − q−1K−1 �A2m−2

and let

A2m+1 = F1A2m − qK+1 �A2m−1.
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Definition 4.9. Let B−1 = E2, B0 = E21 and B1 = F1 • E21. For m ∈ Z>0, let

B2m = q
1
2B2m−1E1 − qK−1 �A2m−2

and let

B2m+1 = F1B2m − q−1K−1 �B2m−1.

We call these B-elements.

Note that for all l ≥ 0, σ(Al) = Bl. We show in Prop. 4.19/4.20 that each Al and Bl

belongs to the double canonical basis. First, we use the braid group action to establish

bar-invariance.

Lemma 4.10. For m ∈ Z≥0,

T1(A2m−1) = K−m−1 K
−m
+1 A2m

and

T1(A2m) = K−m−1 K
−(m+1)
+1 �A2m+1.

In particular, each A-element is preserved by the bar-involution.

Proof. We use induction on m. First, we have

T1(A0) = (q − q−1)−1T1(q
1
2E2E1 − q−

1
2E1E2)

= (q − q−1)−1(q−
1
2E12K

−1
+1F1 − q−

3
2K−1

+1F1E12)

= (q − q−1)−1K−1
+1 � (qE12F1 − q−1F1E12)

= (q − q−1)−1K−1
+1 � ((q − q−1)F1E12 + (1− q2)K+1 � E2)

= K−1
+1 �A1.
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Next, we have

T1(A1) = T1(F1E12 − qK+1 � E2)

= q−1K−1
−1E1K

−1
+1 � (F1 • E12)− qK−1

+1 � E12

= K−1
−1K

−1
+1 (q

1
2E1(F1 • E12)− qK−1 � E12)

= K−1
−1K

−1
+1A2,

which completes the base case. Suppose the lemma holds for all l < m. Then A2m−1 is

bar-invariant since T1(A2(m−1)) = K
−(m−1)
−1 K−m+1 �A2m−1. Therefore

T1(A2m−1) = T1(F1A2m−2 − qK+1 �A2m−3)

= q−1K−1
−1E1T1(A2m−2)− qK−1

+1 � T1(A2m−3)

= q−1K−1
−1E1(K

−(m−1)
−1 K−m+1 �A2m−1)− qK−1

+1 �K
−(m−1)
−1 K

−(m−1)
+1 A2m−2

= K−m−1 K
−m
+1 q

1
2E1A2m−1 − qK−(m−1)

−1 K−m+1 �A2m−2

= K−m−1 K
−m
+1 (q

1
2E1A2m−1 − qK−1 �A2m−2)

= K−m−1 K
−m
+1 (q−

1
2A2m−1E1 − q−1K−1 �A2m−2)

= K−m−1 K
−m
+1 A2m

(in the second to last step we apply ·, using the bar-invariance of T1(A2m−1) and the fact

that K−1K+1 is central). So the first half of the lemma holds and A2m is bar-invariant.

Therefore

T1(A2m) = T1(q−
1
2A2m−1E1 − q−1K−1 �A2m−2)

= q−
1
2T1(A2m−1)q−1K−1

+1F1 − q−1K−1
−1 � T1(A2m−2)

= q−
1
2K−m−1 K

−m
+1 A2mq

−1K−1
+1F1 − q−1K−1

−1 � (K
−(m−1)
−1 K−m+1 �A2m−1)

= q−
1
2K−m−1 K

−(m+1)
+1 A2mF1 − q−1K−m−1 K

−m
+1 A2m−1

= K−m−1 K
−(m+1)
+1 � (A2mF1 − q−1K+1 �A2m−1)
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= K−m−1 K
−(m+1)
+1 � (F1A2m − qK+1 �A2m−1)

= K−m−1 K
−(m+1)
+1 �A2m+1,

which completes the proof.

Applying σ ◦ T1 = T−1
1 to Lemma 4.10 immediately yields:

Corollary 4.11. For all m ∈ Z≥0,

T−1
1 (B2m−1) = K−m−1 K

−m
+1 B2m

and

T−1
1 (B2m) = K

−(m+1)
−1 K−m+1 �B2m+1.

In particular, each B-element is preserved by the bar anti-involution.

The following lemmata establish quasi-commutation relations between the A-elements.

The statements for B-elements follow by applying σ or · ◦ σ = ∗.

Lemma 4.12. For all m ∈ Z≥0, A2mE1 = qE1A2m and F1A2m+1 = A2m+1F1.

Proof. We use induction on m. The base case holds since E12E1 = qE1E12 and F1(F1•E12) =

(F1 • E12)F1. Assuming the lemma holds for m− 1, we have

A2mE1 = (q−
1
2A2m−1E1 − q−1K−1 �A2m−2)E1

= (q
1
2E1A2m−1 − qK−1 �A2m−2)E1

= q
3
2E2

1A2m−1 − E1K−1 �A2m−2

= qE1A2m,

F1A2m+1 = F1(F1A2m − qK+1 �A2m−1)

= F1(A2mF1 − q−1K+1 �A2m−1)
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= F1A2mF1 − q(K+1 �A2m−1)F1

= A2m+1F1,

completing the proof.

Corollary 4.13. For all m ∈ Z≥0, B2mE1 = q−1E1B2m and F1B2m+1 = B2m+1F1.

Lemma 4.14. For m ∈ Z≥0, we have the following quasi-commutation relations:

A2mA2m+1 = A2m+1A2m,

A2m+1A2m+3 = qA2m+3A2m+1,

A2m+1A2m+2 = qA2m+2A2m+1,

A2mA2m+2 = qA2m+2A2m.

Proof. Applying T1 to E12(F1 • E12) = (F1 • E12)E12 gives

(K−1
+1 �A1)K−1

−1K
−1
+1A2 = K−1

−1K
−1
+1A2(K−1

+1 �A1)

q−
1
2K−1
−1K

−2
+1A1A2 = q

1
2K−1
−1K

−2
+1A2A1

A1A2 = qA2A1.

Similarly, E2A0 = qA0E2, so

A0K
−1
−1K

−1
+1A2 = qK−1

−1K
−1
+1A2A0

A0A2 = qA2A0.

Applying T1 again, we have

(K−1
+1 �A1)(K−1

−1K
−2
+1 �A3) = q(K−1

+1K
−2
+1 �A3)(K−1

+1 �A1)

q−2K−1
−1K

−3
+1A1A3 = q−1K−1

−1K
−3
+1A3A1
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A1A3 = qA3A1.

So the lemma holds for m = 1. The inductive step is performed similarly.

Corollary 4.15. For all m ∈ Z≥0, we have the following quasi-commutation relations:

B2mB2m+1 = B2m+1B2m,

B2m+1B2m+3 = q−1B2m+3B2m+1,

B2m+1B2m+2 = q−1B2m+2B2m+1,

B2mB2m+2 = q−1B2m+2B2m.

To prove Prop. 4.19/4.20, we need closed forms for the A-elements and B-elements.

Lemma 4.16. For all m ∈ Z>0,

A2m = q
1
2
m(F1 • E1)(m)E12 − qmK+1 � q−

1
2

(m−1)(F1 • E1)(m−1)E21,

A2m+1 = q−
1
2
m(F1 • E12)(F1 • E1)(m) − q−

1
2

(m+1)K−1K+1E2(F1 • E1)(m−1).

Proof. We have

A2 = q−
1
2 (F1 • E12)E1 − q−1K−1 � E12

= q−
1
2F1E12E1 − qK+1(q

1
2E12 + q−

1
2E21)− q−

1
2K−1E12

= q
1
2 (F1 • E1)E12 − qK+1 � E21.

For A3, we have

A3 = F1A2 − qK+1 �A1

= q
1
2 (F1 • E1)F1E12 − q2K+1 � F1E21 − qK+1 � (F1 • E12)

59



= q
1
2 (F1 • E1)F1E12 − qK+1 � (F1 • E12 + qF1E21)

= q
1
2 (F1 • E1)F1E12 − qK+1 � (q

1
2 (F1 • E1)E2 +K−1 � E2)

= q
1
2 (F1 • E1)(F1 • E12)− qK−1K+1E2,

where in the second to last step we use the “exchange relation”

(F1 • E1)E2 = q−
1
2 (F1 • E12) + q

1
2 (F1 • E21).

(This is not a true exchange relation since neither F1 •E12 nor F1 •E21 quasi-commute with

F1 • E1.) Applying the bar involution completes the base case. Assuming the lemma holds

for m, we have

T1(A2m) = T1(q
1
2
m(F1 • E1)(m)E12 − qmK+1 � q−

1
2

(m−1)(F1 • E1)(m−1)E21)

= q
1
2
mK−m+1 K

−m
−1 (F1 • E1)(m)K−1

+1 � (F1 • E12)

− qmK−1
+1 � q

− 1
2

(m−1)K−m+1
−1 K−m+1

+1 (F1 • E1)(m−1)E2

= K−m−1 K
−m−1
+1 � (q

1
2
m(F1 • E1)(m)(F1 • E12)− q

1
2

(m+1)K−1K+1(F1 • E1)(m−1)E2),

T1(A2m+1) = T1(q
1
2
m(F1 • E1)(m)(F1 • E12)− q

1
2

(m+1)K−1K+1(F1 • E1)(m−1)E2)

= q
1
2
mK−m−1 K

−m
+1 (F1 • E1)(m)K−1

−1K
−1
+1 (q

1
2 (F1 • E1)E12 − qK+1 � E21)

− q
1
2

(m+1)K−1
−1K

−1
+1K

−m+1
−1 K−m+1

+1 (F1 • E1)(m−1)E12

= K−m−1
−1 K−m−1

+1 (q
1
2

(m+1)(F1 • E1)(m)(F1 • E1)E12 − q
1
2
m+1K+1 � (F1 • E1)E21

− q
1
2

(m+1)K−1K+1(F1 • E1)(m−1)E12

= K−m−1
−1 K−m−1

+1 (q
1
2

(m+1)(F1 • E1)(m+1)E12 − q
1
2
m+1K+1 � (F1 • E1)E21),

which completes the proof.
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Corollary 4.17. For all m ∈ Z>0,

B2m = q−
1
2
m(F1 • E1)(m)E21 − q−mK−1 � q

1
2

(m−1)(F1 • E1)(m−1)E12,

B2m+1 = q−
1
2
m(F1 • E1)(m)(F1 • E21)− q−

1
2

(m+1)K−1K+1(F1 • E1)(m−1)E2.

Lemma 4.18. For r ∈ Z>0,

q
1
2
rι(F r1 ◦ Er1)E12 = ι(F r1 ◦ q

1
2
rEr1E12) + qrK+1 � ι(F r−1

1 ◦ q−
1
2

(r−1)Er−1
1 E21),

q−
1
2
rE2ι(F

r
1 ◦ Er1) = ι(F r1 ◦ q

1
2

(r−1)Er−1
1 E12) + q−rι(F r1 ◦ q−

1
2

(r−1)Er−1
1 E21).

Proof. For the first equation, we compute

ι(F r1 ◦ q
1
2
rEr1E12)

= q−
1
2
r(F1 • E12)ι(F r−1

1 ◦ Er−1
1 )E1

= q−
1
2
r
r−1∑
j=0

(−1)jq2j

[
r − 1
j

]
q2
Kj

+1F
r−1−j
1 (F1E12 − qK+1 � E2)Er−j1

= q−
1
2
r
r−1∑
j=0

(
(−1)jqr+j

[
r − 1
j

]
q2
Kj

+1F
r−j
1 Er−j1 E12

+(−1)j+1q2j+1q2(r−1−j)
[
r − 1
j

]
q2
Kj+1

+1 F
r−1−j
1 (qE12 + E21)Er−j−1

1

)

= q
1
2
r
r−1∑
j=0

(
(−1)jqj

[
r − 1
j

]
q2
Kj

+1F
r−j
1 Er−j1 E12

+(−1)j+1q2(r−j−1)

[
r − 1
j

]
q2
Kj+1

+1 F
r−1−j
1 Er−1−j

1 E12

)

− q−
1
2
r
r−1∑
j=0

(−1)jqr+j
[
r − 1
j

]
q2
Kj+1

+1 F
r−1−j
1 Er−1−j

1 E21

= q
1
2
r
r−1∑
j=0

(−1)jqj

([
r − 1
j

]
q2

+ q2(r−j)
[
r − 1
j − 1

]
q2

)
Kj

+1F
r−j
1 Er−j1 E12

− qrK+1 � q−
1
2

(r−1)
r−1∑
j=0

(−1)jqj
[
r − 1
j

]
q2
Kj

+1F
r−1−j
1 Er−1−j

1 E21
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= q
1
2
r
r−1∑
j=0

(−1)jqj
[
r
j

]
q2
Kj

+1F
r−j
1 Er−j1 E12

− qrK+1 � ι(F r−1
1 ◦ q−

1
2

(r−1)Er−1
1 E21)

= q
1
2
rι(F r1 ◦ Er1)E12 − qrK+1 � ι(F r−1

1 ◦ q−
1
2

(r−1)Er−1
1 E21).

For the second equation, it follows from Lemma 3.13 that in H+
q (sl3),

q−
1
2
rE2(F r1 ◦ Er1) = q−

1
2
rE2(F1 ◦ E1)(F r−1

1 ◦ Er−1
1 )

= q−
1
2
r(q

1
2 (F1 ◦ E12) + q−

1
2F1E21)(F r−1

1 ◦ Er−1
1 )

= q−
1
2

(r−1)(F1 ◦ E12)(F r−1
1 ◦ Er−1

1 ) + q−rq−
1
2

(r−1)F1(F r−1
1 ◦ Er−1

1 )E21

= (F r1 ◦ q
1
2

(r−1)Er−1
1 E12) + q−r(F r1 ◦ q−

1
2

(r−1)Er−1
1 E21).

The result follows since ι(E2(F r1 ◦ Er1)) = E2ι(F
r
1 ◦ Er1).

Proposition 4.19. The A-elements belong to the double canonical basis. Specifically,

A2m = Fm1 • b+(m, 0, 1, 0)

and

A2m+1 = Fm+1
1 • b+(m, 0, 1, 0).

Proof. We have already established that the A-elements are bar-invariant. It remains to

show that they have correct triangularity. Using Lemma 4.18, we compute

q
1
2
m(F1 • E1)(m)E12

= q
1
2
m
∑

0≤i≤j
i+j≤m

(−1)jq−j−i
2

[
m− i
j

]
q−2

[
j
i

]
q−2

(
Kj
−1K

i
+1 � ι(F

m−i−j
1 ◦ Em−i−j1 )

)
E12

=
∑

0≤i≤j
i+j≤m

(−1)jq−j−i
2+i

[
m− i
j

]
q−2

[
j
i

]
q−2

Kj
−1K

i
+1 � q

1
2

(m−i−j)ι(Fm−i−j1 ◦ Em−i−j1 )E12
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=
∑

0≤i≤j
i+j≤m

(−1)jq−j−i
2+i

[
m− i
j

]
q−2

[
j
i

]
q−2

Kj
−1K

i
+1 � ι(F

m−i−j
1 ◦ q

1
2

(m−i−j)Em−i−j1 E12)

+
∑

0≤i≤j
i+j≤m−1

(−1)jqm−2j−i2
[
m− i
j

]
q−2

[
j
i

]
q−2

×Kj
−1K

i+1
+1 � ι(F

m−i−j−1
1 ◦ q−

1
2

(m−i−j−1)Em−i−j−1
1 E21).

We also have

qmK+1 � q−
1
2

(m−1)(F1 • E1)(m−1)E21

=
∑

0≤i≤j
i+j≤m−1

(−1)jqm−2j−i2
[
m− 1− i

j

]
q−2

[
j
i

]
q−2

×Kj
−1K

i+1
+1 � ι(F

m−1−i−j
1 ◦ q−

1
2

(m−1−i−j)Em−1−i−j
1 E21).

Combining these expressions using Lemma 4.16, we have

A2m = q
1
2
m(F1 • E1)(m)E12 − qmK+1 � q−

1
2

(m−1)(F1 • E1)(m−1)E21

=
∑

0≤i≤j
i+j≤m

(−1)jq−j−i
2+i

[
m− i
j

]
q−2

[
j
i

]
q−2

Kj
−1K

i
+1 � ι(F

m−i−j
1 ◦ q

1
2

(m−i−j)Em−i−j1 E12)

+
∑

0≤i≤j
i+j≤m−1

(−1)jqm−2j−i2
[
j
i

]
q−2

([
m− i
j

]
q−2

−
[
m− 1− i

j

]
q−2

)

×Kj
−1K

i+1
+1 � ι(F

m−1−i−j
1 ◦ q−

1
2

(m−1−i−j)Em−1−i−j
1 E21)

=
∑

0≤i≤j
i+j≤m

(−1)jq−j−i
2+i

[
m− i
j

]
q−2

[
j
i

]
q−2

Kj
−1K

i
+1 � ι(F

m−i−j
1 ◦ q

1
2

(m−i−j)Em−i−j1 E12)

+
∑

0≤i≤j
i+j≤m−1

(−1)jq−m−i
2+2i

[
j
i

]
q−2

[
m− 1− i
j − 1

]
q−2

×Kj
−1K

i+1
+1 � ι(F

m−1−i−j
1 ◦ q−

1
2

(m−1−i−j)Em−1−i−j
1 E21),
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and thus A2m has correct triangularity. Here we used the Gaussian binomial coefficient

identity [
r
s

]
ν

−
[
r − 1
s

]
ν

= νr−s
[
r − 1
s− 1

]
ν

.

For the A2m+1 computation, we have

q−
1
2
m(F1 • E12)(F1 • E1)(m)

= q−
1
2
m
∑

0≤i≤j
i+j≤m

(−1)jq−j−i
2

[
m− i
j

]
q−2

[
j
i

]
q−2

(F1 • E12)Ki
−1K

j
+1ι(F

m−i−j
1 ◦ Em−i−j1 )

=
∑

0≤i≤j
i+j≤m

(−1)jq−2j−i2
[
m− i
j

]
q−2

[
j
i

]
q−2

Ki
−1K

j
+1 � q

− 1
2

(m−i−j)(F1 • E12)ι(Fm−i−j1 ◦ Em−i−j1 )

=
∑

0≤i≤j
i+j≤m

(−1)jq−2j−i2
[
m− i
j

]
q−2

[
j
i

]
q−2

Ki
−1K

j
+1 � ι(F

m+1−i−j
1 ◦ q

1
2

(m−i−j)Em−i−j1 E12)

and using Lemma 4.18,

q−
1
2

(m+1)K−1K+1E2(F1 • E1)m−1

=
∑

0≤i≤j
i+j≤m−1

(−1)jq−2j−i2−1

[
m− 1− i

j

]
q−2

[
j
i

]
q−2

Kj+1
−1 K

i+1
+1 � q

− 1
2

(m−1−i−j)E2

× ι(Fm−1−i−j
1 ◦ Em−1−i−j

1 )

=
∑

0≤i≤j
i+j≤m−1

(−1)jq−2j−i2−1

[
m− 1− i

j

]
q−2

[
j
i

]
q−2

Kj+1
−1 K

i+1
+1

�
(
ι(Fm−1−i−j

1 ◦ q
1
2

(m−2−i−j)Em−2−i−j
1 E12)

+q−(m−1−i−j)ι(Fm−1−i−j
1 ◦ q−

1
2

(m−2−i−j)Em−2−i−j
1 E21)

)
.

Combining these expressions using Lemma 4.16 shows that A2m+1 has correct triangularity.
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Proposition 4.20. The B-elements belong to the double canonical basis. Specifically,

B2m = Fm1 • b+(m, 0, 0, 1)

and

B2m+1 = Fm+1
1 • b+(m, 0, 0, 1).

Proof. As for A2m, the claim for B2m follows from Lemma 4.18. For B2m+1, we first note

that

B2m+1 = q−
1
2
mF1(F1 • E1)(m)E21 − q−1K−1 � q−

1
2
m(F1 • E1)(m)E2

− q−
1
2

(m+1)K−1K+1(F1 • E1)(m−1)E2.

An argument similar to the second part of the proof of Lemma 4.18 shows

q−
1
2
rι(F r1 ◦ Er1)E2 = q−

1
2

(r−1)−r(F1 • E12)ι(F r−1
1 ◦ Er−1

1 ) + q−
1
2

(r−1)F1(F r−1
1 ◦ Er−1

1 )E21,

from which the claim for B2m+1 follows.

4.4 The quantum cluster structure

From the quasi-commutation results of the previous section, we conclude that the A and

B-elements may grouped into sets Xi, X̂i, i ∈ Z consisting of mutually quasi-commuting

elements as follows:

Xi =


{E12, E2, E21} i = 0

{Ai, Ai−1, Ai−2} i ∈ Z>0

{Bi, Bi+1, Bi+2} i ∈ Z<0

,
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X̂i =



{E12, E21, E1} i = 0

{Ai, Ai−2, E1} i ∈ 2Z>0

{Ai, Ai−2, F1} i ∈ 2Z>0 + 1

{Bi, Bi+2, E1} i ∈ 2Z<0

{Bi, Bi+2, F1} i ∈ 2Z<0 + 1

.

In this section, we prove that Uq(p̃) is isomorphic to the quantum cluster algebra described

in Thm. 4.1 and that the sets Xi, X̂i, i ∈ Z are the quantum clusters.

Proposition 4.21. The algebra Uq(p̃) is isomorphic to the quantum cluster algebra with

initial quiver

Q =

1 2 5

4 3 6

.

and quasi-commutation matrix

Λ =


0 1 −1 −1 1 0
−1 0 0 1 −1 0
1 0 0 1 −1 0
1 −1 −1 0 0 0
−1 1 1 0 0 0
0 0 0 0 0 0

 .

Proof. We have

B =


0 1 −1
−1 0 −1
1 1 0
0 0 −1
0 −1 0
0 1 −1


and thus BTΛ =

[
2I3 03,3

]
, so the compatibility condition is satisfied. In the notation of

Thm. 2.6, Âq1/2(Q,Λ) is generated as an algebra by

{X1, X2, X3, X
±1
4 , X±1

5 , X±6 , X
′
1, X

′
2, X

′
3}
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subject to the exchange relations

X1X
′
1 = q

1
2X2 + q−

1
2X3,

X2X
′
2 = X6 + q−

1
2X1X3X5,

X3X
′
3 = X6 + q

1
2X1X2X4.

Recall that

D1 = A1E21 − q−1K−1q
− 1

2E2E12 = E21A1 − q
1
2E2E12K−.

Applying σ gives D1 = E12B1 − q−
1
2E2E21K+1. Therefore the assignments

X1 7→ E2, X2 7→ E12, X3 7→ E21,

X ′1 7→ E1, X ′2 7→ B1, X ′3 7→ A1,

X4 7→ K−1, X5 7→ K+1, X6 7→ D1

determine an algebra homomorphism (after extending scalars)

φ : Âq1/2(Q,Λ)→ Ûq(p̃),

where Ûq(p̃) denotes Uq(p̃) localized at the multiplicative submonoid generated by K−1,K+1,

and D1. Let X2,3 represent the quantum cluster variable obtained by mutating Q at vertex

2 and then again at vertex 3. Mutation at vertex 2 produces

1 2 5

4 3 6
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and thus

X2,3 = X−1
3 (X ′2 + q

1
2X4X1)

= X−1
3 X−1

2 (X6 + q−
1
2X1X3X5) +X−1

3 q
1
2X4X1.

We immediately have X1X
2,3 = X2,3X1. Furthermore,

X ′1X
2,3 = X ′1X

−1
3 X−1

2 X6 + q−1X−1
3 X−1

2 (X2 + qX3)X3X5 + qX−1
3 X4(X2 + qX3),

X2,3X ′1 = X ′1X
−1
3 X−1

2 X6 +X−1
3 X−1

2 (qX2 +X3)X3X5 +X−1
3 X4(qX2 +X3),

and thus

X ′1X
2,3 −X2,3X ′1 = (q−1 − q)X5 + (q − q−1)X4.

Therefore the assignments

E1 7→ X ′1, E2 7→ X1, K−1 7→ X4, K+1 7→ X5, F1 7→ X2,3

determine an algebra homomorphism φ′ : Ûq(p̃)→ Âq1/2(Q,Λ). Since

X3X
2,3 = X ′2 + q

1
2X4X1,

we have

E21φ(X2,3) = B1 + q
1
2K−1E2 = E21F1,

so φ(X2,3) = F1 (since Aq1/2(Q,Λ) is a domain). Therefore φ = φ−1 and φ is an isomorphism

which restricts to an isomorphism Aq1/2(Q,Λ)→ Uq(p̃).

Proposition 4.22. The A-elements and B-elements are quantum cluster variables.

Proof. Idenify Aq1/2(Q,Λ) ' Uq(p̃) via the isomorphism in the proof of Prop. 4.21. Let

µ1, µ2, and µ3 denote the operation of mutation at vertices 1, 2, and 3, respectively, thought
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of as functions on the set of quantum seeds. Consider the mutations

S = {µ3, µ1µ3, µ2µ1µ3, µ3µ2µ1µ3, µ1µ3µ2µ1µ3, (µ2µ1µ3)2, . . . }

and let Yl denote the l-th quantum cluster variable produced from the initial quantum seed

in Prop. 4.21 by the l-th element of S.

The mutations µ3 and µ1µ3 produce the quivers/quasi-commutation matrices

2

1 5

4 3 6

,


0 1 1 −1 1 0
−1 0 0 1 −1 0
−1 0 0 −1 1 0
1 −1 1 0 0 0
−1 1 −1 0 0 0
0 0 0 0 0 0

 ,

2

1 5

4 3 6

,


0 −1 −1 1 −1 0
1 0 0 1 −1 0
1 0 0 −1 1 0
−1 −1 1 0 0 0
1 1 −1 0 0 0
0 0 0 0 0 0

 ,

respectively, and produce the variables Y1, Y2. We know from the proof of 4.21 that Y1 = A1.

From these quivers/quasi-commutation matrices, we determine the exchange relations

E2Y2 = D1 + qE12A1,

E12Y3 = q
1
2K+1D1 + qY2A1

Recall that A1E21 = D1 + q−
3
2K−1E2E12. Applying T1 and using Lemma 4.10, we have

T1(A1E21) = T1(D1 + q−
3
2K−1E2E12)

K−1
−1K

−1
+1A2E2 = K−1

−1K
−1
+1D1 + q−

3
2K−1
−1E12(K−1

+1 �A1)
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K−1
−1K

−1
+1A2E2 = K−1

− K−1
+1 (D1 + q−1E12A1),

and thus A2E2 = D1 + q−1E12A1. Applying the bar involution, we see that this is the first

exchange relation above. Hence Y2 = A2. Through another application of T1, we have

T1(A2E2) = T1(D1 + q−1E12A1)

(K−1
−1K

−2
+2 �A3)E12 = K−1

−1K
−1
+1D1 + q−1(K−1

+1 �A1)K−1
−1K

−1
+1 (A2)

K−1
−1K

−2
+2A3E12 = K−1

−1K
−2
+1 (q

1
2K+1D1 + q−1A1A2),

and thus A3E12 = q
1
2K+1D1 + q−1A1A2. Applying bar, this is equivalent to the second

exchange relation above. Hence Y3 = A3.

Through induction, we conclude that for k ∈ Z≥0, applying the mutations (µ2µ1µ3)2k+1,

µ3(µ2µ1µ3)2k+1, and µ1µ3(µ2µ1µ3)2k+1 to the initial quiver produces the quivers and quasi-

commutation matrices

2

1 5

4 3 6

,


0 0 −1 1 −1 0
0 0 −1 −1 1 0
1 1 0 −1 1 0
−1 1 1 0 0 0
1 −1 −1 0 0 0
0 0 0 0 0 0

 ,

2

1 5

4 3 6

,


0 0 1 1 −1 0
0 0 1 −1 1 0
−1 −1 0 1 −1 0
−1 1 −1 0 0 0
1 −1 1 0 0 0
0 0 0 0 0 0

 ,
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2

1 5

4 3 6

,


0 −1 0 −1 1 0
1 0 1 −1 1 0
0 −1 0 1 −1 0
1 1 −1 0 0 0
−1 −1 1 0 0 0
0 0 0 0 0 0

 ,

respectively, where a red arrow has multiplicity 3k, a blue arrow has multiplicity 3k + 1,

and a green arrow has multiplicity 3k + 2. The cluster variables produced are Y6k+3, Y6k+4,

and Y6k+5, respectively. The corresponding exchange relations are

Y6k+1Y6k+4 = Kk+1
−1 Kk+1

+1 D1 + qY6k+2Y6k+3,

Y6k+2Y6k+5 = q−
1
2Kk+1
−1 Kk+2

+1 D1 + Y6k+3Y6k+4,

Y6k+3Y6(k+1) = Kk+2
−1 Kk+2

+1 D1 + qY6k+5Y6k+4.

Similarly, for k ∈ Z>0, applying the mutations (µ2µ1µ3)2k, µ3(µ2µ1µ3)2k, and µ1µ3(µ2µ1µ3)2k

to the initial quiver in Prop. 4.21 produces the quivers/quasi-commutation matrices

2

1 5

4 3 6

,


0 1 0 −1 1 0
−1 0 −1 1 −1 0
0 1 0 1 −1 0
1 −1 −1 0 0 0
−1 1 1 0 0 0
0 0 0 0 0 0

 ,

2

1 5

4 3 6

,


0 1 1 −1 1 0
−1 0 0 1 −1 0
−1 0 0 −1 1 0
1 −1 1 0 0 0
−1 1 −1 0 0 0
0 0 0 0 0 0

 ,
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2

1 5

4 3 6

,


0 −1 −1 1 −1 0
1 0 0 1 −1 0
1 0 0 −1 1 0
−1 −1 1 0 0 0
1 1 −1 0 0 0
0 0 0 0 0 0

 ,

respectively, where a red arrow has multiplicity 3k − 1, a blue arrow has multiplicity 3k,

and a green arrow has multiplicity 3k + 1. The cluster variables produced are Y6k, Y6k+1,

and Y6k+2, respectively. The corresponding exchange relations are

Y6k−2Y6k+1 = q−
1
2K3k−1
−1 K3k

+1D1 + Y6k−1Y6k,

Y6k−1Y6k+2 = K3k
−1K

3k
+1D1 + qY6kY6k+1,

Y6kY6k+3 = q−
1
2K3k
−1K

3k+1
+1 D1 + qY6k+2Y6k+1.

We claim that for all l ∈ Z>1, Yl = Al. Applying T1 to A3E12 = q
1
2K+1D1 + q−1A1A2,,

we have

T1(A3E12) = T1(q
1
2K+1D1 + q−1A1A2)

K−2
−1K

−2
+1A4(K−1

+1 �A1) = K−1
+1D1 + q−1K−1

−1K
−1
+1A2(K−1

−1K
−2
+1 �A3)

K−2
−1K

−3
+1A4A1 = K−2

−1K
−3
+1 (K−1K+1D1 + q−1A2A3),

and thus

A4A1 = K−1K+1D1 + q−1A2A3.

Using the same technique, an inductive argument shows that for all m ≥ 0,

A2m+3A2m = q
1
2Km
−1K

m+1
+1 D1 + q−1A2m+1A2m+2

A2m+4A2m+1 = Km
−1K

m
+1D1 + q−1A2m+2A2m+3.
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Applying the bar involution, we see that these are the exchange relations of the Yl elements

above. Hence Yl = Al for all l ∈ Z>0. A similar argument using the mutations

S′ = {µ2, µ1µ2, µ3µ1µ2, µ2µ3µ1µ2, µ1µ2µ3µ1µ2, (µ3µ1µ2)2, . . . }

shows that each Bl is a quantum cluster variable.

We now describe all quantum clusters. For i ∈ Z>0, let Xi denote the i-th cluster

produced from the initial quantum seed by the i-th element of S and let X−i denote the

i-th cluster produced by the i-th element of S′. From the quivers listed in the proof of

Prop. 4.22, we can verify that when applied to the initial quantum seed, the mutations

µ1(µ2µ1µ3)r, µ2µ3(µ2µ1µ3)r, µ3µ1µ3(µ2µ1µ3)r, r ∈ Z≥0 respectively produce the cluster

variables E1, F1, E1 or F1, E1, F1, depending on the parity of r (one verifies that exchange

relations for these variables are the recurrence relations from Def. 4.8). Similarly for the

mutations µ1(µ3µ1µ2)r, µ3µ2(µ3µ1µ2)r, µ2µ1µ2(µ3µ1µ2)r, r ∈ Z≥0. So for each Xi, there is

a unique cluster X̂i produced from Xi by a single mutation and which contains either F1

or E1. Mutation of any quantum seed correspond to X̂i produces Xi, X̂i−2, or X̂i+2. (A

portion of) the exchange graph is

X̂−3 X̂−2 X̂−1 X̂0 X̂1 X̂2 X̂3

X−3 X−2 X−1 X0 X1 X2 X3

4.5 Quantum cluster monomials

In this section we conclude the proof of Thm. 4.1 by showing (Prop. 4.27) that quantum

cluster monomials from {F1, A2m−1, A2m+1, D1} are contained in the double canonical basis

for all m ∈ Z>0. We begin with the m = 1 case. First, we need formulas for powers of A3.
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Lemma 4.23. For k ∈ Z≥0,

Ak3 = q−
1
2
k2Ak1C

(k)
1 +

∑
j∈J

cj(q
−1)(K−1K+1)αjF

βj
1 bj

where J is a finite index set, c(q−1) ∈ q−1Z[q−1], and

bj = q−
1
2

(k−2αj)(k−2βj)A
k−2βj
1 D

βj
1 C

(k−2αj)
1 , 0 ≤ 2βj ≤ 2αj ≤ k

or

bj = q(2αj−k)(k−αj−βj)A
2(k−αj−βj)
1 D

βj
1 E

2αj−k
2 , 0 ≤ αj + βj ≤ k < 2αj .

Proof. We use induction on k. From Lemma 4.16 we have A3 = q−
1
2A1C1 − q−1K−1K+1E2,

so the base case holds. Suppose the lemma holds for all l ≤ k. We have A3E2 = F1D1+q−1A2
1,

and thus

Ak+1
3 = Ak3(q−

1
2A1C1 − q−1K−1K+1E2)

= q−kq−
1
2A1A

k
3C1 − q−1K−1K+1A

k−1
3 (F1D1 + q−1A2

1)

= q−kq−
1
2A1A

k
3C1 − q−1K−1K+1F1D1A

k−1
3 − q−2k−1K−1K+1A

2
1A

k−1
3 .

Since the lemma holds for k, we can write q−kq−
1
2A1A

k
3C1 as

q−
1
2

(k+1)2Ak+1
1 (C

(k+1)
1 −K−1K+1C

(k−1)
1 ) +

∑
j∈J

q−kq−
1
2 cj(q

−1)(K−1K+1)αjF
βj
1 A1bjC1

where J is a finite index set, c(q−1) ∈ q−1Z[q−1], and bj = q−
1
2

(k−2αj)(k−2βj)A
k−2βj
1 D

βj
1 C

(k−2αj)
1

or bj = q(2αj−k)(k−αj−βj)A
2(k−αj−βj)
1 D

βj
1 E

2αj−k
2 . For the first case, we have

q−kq−
1
2A1bjC1

= q−kq−
1
2 q−

1
2

(k−2α)(k−2β)Ak−2β+1
1 Dβ

1 (C
(k−2α+1)
1 −K−1K+1C

(k−2α−1)
1 )

= q−α−βq−
1
2

(k+1−2β)(k+1−2α)Ak−2β+1
1 Dβ

1C
(k+1−2α)
1
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− q−k+β−αK−1K+1q
− 1

2
(k+1−2(α+1))(k+1−2β)Ak−2β+1

1 Dβ
1C

(k+1−2(α+1))
1 .

For the second case, using AB = F1D1 + q−1K−1K+1E
2
2 , we have

q−kq−
1
2A1bjC1

= q−kA1q
(2α−k)(k−α−β)A

2(k−α−β)
1 Dβ

1E
2α−k−1
2 (A1 + q−1B1)

= q−kq(2α−k)(k−α−β)q2α−k−1A
2(k−α−β+1)
1 Dβ

1E
2α−k−1
2

+ q−(2α−k−1)q−k−1q(2α−k)(k−α−β)A
2(k−α−β)
1 (F1D1 + q−1K−1K+1E

2
2)Dβ

1E
2α−k−1
2

= q−α−βq(2α−k−1)(k+1−α−β)A
2(k−α−β+1)
1 Dβ

1E
2α−k−1
2

+ q−kF1q
(2α−k−1)(k−α−β−1)A

2(k−α−β)
1 Dβ+1

1 E2α−k−1
2

+ q−2k+2β−1K−1K+1q
(2(α+1)−k−1)(k−α−1−β)A

2(k−α−β)
1 Dβ

1E
2(α+1)−k−1
2 .

Thus q−kq−
1
2A1A

k
3C1 has the desired form. Using the fact that the lemma holds for k − 1,

it is straightforward that q−1K−1K+1F1D1A
k−1
3 and q−2k−1K−1K+1A

2
1A

k−1
3 also have the

desired form.

Corollary 4.24. Quantum cluster monomials in {F1, A1, A3, D1} are contained in the

double canonical basis.

Proof. Using Lemma 4.23, we write q−
1
2
uvF a1A

u
1A

v
3D

r
1 as

q−
1
2

(u+v)vAu+v
1 C

(v)
1 +

∑
j∈J

cj(q
−1)(K−1K+1)αjF

βj+a
1 bj

where

bj = q−
1
2

(v−2αj+u)(v−2βj)A
v−2βj+u
1 D

βj+r
1 C

(v−2αj)
1

or

bj = q−
1
2

(2αj−v)(2(v−αj−βj)+u)A
2(v−αj−βj)
1 D

βj+r
1 E

2αj−v
2 .
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If bj has the second form, then F
βj+a
1 bj is a double basis element by Lemma 4.7. If bj has

the first form, then F
βj+a
1 bj has correct triangularity by Lemma 4.7.

To generalize Lemma 4.23, we use the fact that T 2
1 (D1) = D1, which is an immediate

consequence of the following lemma:

Lemma 4.25. The element T1(D1) belongs to B̂
s̃l3

. In particular, T1(D1) = K−1
−1K

−1
+1D1.

Proof. We have

T1(D1) = T1((F1 • E12)E21 − q−1K−1 � q−
1
2E2E12

= (K−1
−1K

−1
+1 (q−

1
2 (F1 • E12)E1 − q−1K−1 � E12)E2

− q−1K−1
−1 � q

− 1
2E12(K−1

+1 � (F1 • E12))

= K−1
−1K

−1
+1 ((F1 • E12)(q−1E12 + E21)− q−1K−1 � q−

1
2E2E12)

− q−1K−1
−1K

−1
+1E12(F1 • E12)

= K−1
−1K

−1
+1D1.

Lemma 4.26. For all m ∈ Z>0,

Ak2m+1 = q−
1
2
k2Ak2m−1C

(k)
1 +

∑
j∈J

cj(q
−1)(K−1K+1)αj+(m−1)βjF

βj
1 bj

where J is a finite index set, cj(q
−1) ∈ q−1Z[q−1], and

bj = q−
1
2

(k−2αj)(k−2βj)A
k−2βj
2m−1D

βj
1 C

(k−2αj)
1 , 0 ≤ 2βj ≤ 2αj ≤ k

or

bj = q(2αj−k)(k−αj−βj)A
2(k−αj−βj)
2m−1 A

2αj−k
2m−3 D

βj
1 , 0 ≤ αj + βj ≤ k < 2αj .

Proof. We use induction on m. The m = 1 case is established in Lemma 4.23. Suppose

the lemma holds for m − 1. Since T 2
1 fixes D1 and C1, T 2

1 (Ar2m−1) = K−r+1 � Ar2m+1, and
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T 2
1 (F r1 ) = Kr

−1K
−r
+1 � F r1 . Applying T 2

1 , we have

K−k+1 �A
k
2m+1

= q−
1
2
k2K−k+1 �A

k
2m−1C

(k)
1 +

∑
j∈J

cj(q
−1)(K−1K+1)αj+(m−1)βj (K

βj
−1K

−βj
+1 � F

βj
1 )T 2

1 (bj)

and thus

Ak2m+1 = q−
1
2
k2Ak2m−1C

(k)
1 +

∑
j∈J

cj(q
−1)K

αj+(m−1)βj
−1 K

α+(m−2)βj+k
+1 q

1
2
k2−2β2

jF
βj
1 T 2

1 (bj)

where bj has one of the two forms described above. For the first case, we have

q
1
2
k2−2β2

F β1 T
2
1 (bj)

= q
1
2
k2−2β2

F β1 q
− 1

2
(k−2α)(k−2β)(K

−(k−2β)
+1 �Ak−2β

2m−1)Dβ
1C

(k−2α)
1

= K
−(k−2β)
+1 q

1
2
k2−2β2

j q−
1
2

(k−2β)2q−2(k−2β)βF β1 q
− 1

2
(k−2α)(k−2β)Ak−2β

2m−1D
β
1C

(k−2α)
1

= K
−(k−2β)
+1 F β1 q

− 1
2

(k−2α)(k−2β)Ak−2β
2m−1D

β
1C

(k−2α)
1 .

In the second case,

q
1
2
k2−2β2

F β1 T
2
1 (bj)

= q
1
2
k2−2β2

F β1 q
(2α−k)(k−α−β)(K

−2(k−α−β)
+1 �A2(k−α−β)

2m−1 )Dβ
1 (K

−(2α−k)
+1 �A2α−k

2m−3)

= q
1
2
k2−2β2

q−2(k−α−β)2q−
1
2

(2α−k)2q−2(k−α−β)(2α−k)q−2(k−2β)βK−k+2β
+1 F β1

× q(2α−k)(k−α−β)A
2(k−α−β)
2m−1 Dβ

1A
2α−k
2m−3

= K−k+2β
+1 F β1 q

(2α−k)(k−α−β)A
2(k−α−β)
2m−1 Dβ

1A
2α−k
2m−3.

Proposition 4.27. Quantum cluster monomials in {F1, A2m−1, A2m+1, D1} are contained

in the double canonical basis.
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Proof. Let Sm denote the statement given in the proposition, let Tm denote the statement

that F a1 q
− 1

2
skAk2m−1D

r
1C

(s)
1 has correct triangularity for all a, k, r, s ∈ Z≥0, and let Rm

denote the statement that F a1 q
− 1

2
s(u+v)q

1
2
uvAu2m−1A

v
2m−3D

r
1C

(s)
1 has correct triangularity for

all a, u, v, r, s ∈ Z≥0. All three statements hold for m = 0 by Lemmata 4.7 and 4.24. We

claim that

Rm ∧ Tm =⇒ Rm+1 ∧ Tm+1, (∗)

Tm+1 ∧ Sm =⇒ Sm+1. (∗∗)

Suppose that Rm and Tm hold. For Tm+1, we know that

F a1 q
− 1

2
skAk2m+1D

r
1C

(s)
1 = F a1 q

− 1
2
k2q−

1
2
skAk2m−1D

r
1C

(k)
1 C

(s)
1

+
∑
j∈J

cj(q
−1)(K−1K+1)αj+(m−1)βjF

βj+a
1 q−

1
2
skbjD

r
1C

(s)
1 ,

where bj has one of the two forms listed in Lemma 4.26. We have (see [BG17b, Eq. (4.7)])

F a1 q
− 1

2
k2q−

1
2
skAk2m−1D

r
1C

(k)
1 C

(s)
1 =

min(k,s)∑
j=0

q−kj(K−1K+1)jF a1 q
− 1

2
k(s+k−2j)Ak2m−1D

r
1C

(k+s−2j)
1

and for bj of the first type,

F
βj+a
1 q−

1
2
skbjD

r
1C

(s)
1

= F
βj+a
1 q−

1
2
skq−

1
2

(k−2αj)(k−2βj)A
k−2βj
2m−1D

βj+r
1 C

(k−2αj)
1 C

(s)
1

=

min(k−2αj ,s)∑
l=0

q−l(k−2βj)−sβj (K−1K+1)lF
βj+a
1 q−

1
2

(k−2αj+s−2l)(k−2βj)A
k−2βj
2m−1D

βj+r
1 C

(k−2αj+s−2l)
1 ,

which has correct triangularity since Tm holds. For bj of the second type,

F
βj+a
1 q−

1
2
skbjD

r
1C

(s)
1 = F

βj+a
1 q−

1
2
skq(2αj−k)(k−αj−βj)A

2(k−αj−βj)
2m−1 A

2αj−k
2m−3 D

βj+r
1 C

(s)
1 ,
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which has correct triangularity since Rm holds. Thus Rm ∧ Tm =⇒ Tm+1. Next, to show

that Rm+1 holds, we have

F a1 q
− 1

2
s(u+v)q−

1
2
uvAv2m−1A

u
2m+1D

r
1C

(s)
1

= F a1 q
− 1

2
s(u+v)q−

1
2
uvAv2m−1(q−

1
2
u2Au2m−1C

(u)
1 +

∑
j∈J

cj(q
−1)(K−1K+1)αj+(m−1)βjF

βj
1 bj)D

r
1C

(s)
1

= F a1 q
− 1

2
s(u+v)q−

1
2
uvq−

1
2
u2Au+v

2m−1C
(u)
1

+
∑
j∈J

cj(q
−1)(K−1K+1)αj+(m−1)βjq−

1
2
s(u+v)q−

1
2
uvF

a+βj
1 Av2m−1bjD

r
1C

(s)
1 ,

where bj has one of the two forms listed in Lemma 4.26. In the first case,

q−
1
2
s(u+v)q−

1
2
uvF a+β

1 Av2m−1bjD
r
1C

(s)
1

= q−
1
2
s(u+v)q−

1
2
uvF a+β

1 q(2α−u)(u−α−β)A
2(u−α−β)+v
2m−1 A2α−u

2m−3D
β+r
1 C

(s)
1

= q−αv−sβq−
1
2
s(u+v−2β)F a+β

1 q
1
2

(2(u−α−β)+v)(2α−u)A
2(u−α−β)+v
2m−1 A2α−u

2m−3D
β+r
1 C

(s)
1

which has correct triangularity since Rm holds. In the second case,

q−
1
2
s(u+v)q−

1
2
uvF a+β

1 Av2m−1bjD
r
1C

(s)
1

= q−
1
2
s(u+v)q−

1
2
uvF a+β

1 q−
1
2

(u−2α)(u−2β)Au−2β+v
2m−1 Dβ+r

1 C
(u−2α)
1 C

(s)
1

=

min(u−2α,s)∑
l=0

(K−1K+1)lq−
1
2
s(u+v)q−

1
2
uvF a+β

1 q−
1
2

(u−2α)(u−2β)Au−2β+v
2m−1 Dβ+r

1 C
(u−2α+s−2l)
1

=

min(u−2α,s)∑
l=0

(K−1K+1)lq−l(u−β)−βs−αv−lvF a+β
1

× q−
1
2

(u−2α+s−2l)(u−2β+v)Au−2β+v
2m−1 Dβ+r

1 C
(u−2α+s−2l)
1 ,

which has correct triangularity since Tm holds. Thus Rm ∧ Tm =⇒ Rm+1 and (∗) is proven.

Now suppose that Sm and Tm+1 hold. Then

q−
1
2
uvF a1A

u
2m+1A

v
2m+3D

r
1

79



= q−
1
2

(uv+v2)Au+v
2m+1C

(v)
1 Dr

1 +
∑
j∈J

cj(q
−1)(K−1K+1)αj+mβjF

a+βj
1 q−

1
2
uvAu2m+1bjD

r
1

where bj has one of the two forms listed in Lemma 4.26. If bj has the first form, then

F
a+βj
1 q−

1
2
uvAu2m+1bjD

r
1 = F

a+βj
1 q−

1
2
uvq−

1
2

(v−2αj)(v−2βj)A
u+v−2βj
2m+1 D

βj+r
1 C

(v−2αj)
1

= F
a+βj
1 q−uαjq−

1
2

(v−2αj)(u+v−2βj)A
u+v−2βj
2m+1 D

βj+r
1 C

(v−2αj)
1 ,

which has correct triangularity since Tm+1 holds. If bj has the second form, then

F
a+βj
1 q−

1
2
uvAu2m+1bjD

r
1 = F

a+βj
1 q−

1
2
uvq(2αj−v)(v−αj−βj)A

2(v−αj−βj)+u
2m+1 A

2αj−v
2m−1 D

βj+r
1

= F
a+βj
1 q−uαjq

1
2

(2αj−v)(2(v−αj−βj)+u)A
2(v−αj−βj)+u
2m+1 A

2αj−v
2m−1 D

βj+r
1 ,

which has correct triangularity since Sm holds. Therefore Sm+1 holds and (∗∗) is proven.
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