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ABSTRACT OF THE DISSERTATION

Cluster Structures in Double Canonical Bases

by

Dane M. Lawhorne

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2020
Dr. Jacob Greenstein, Chairperson

We study connections between quantum cluster algebras and the double canonical
bases of subalgebras of the Heisenberg and Drinfeld double associated to a quantized Borel
subalgebra of sls. We show that the Heisenberg double has a finite type quantum cluster
algebra structure for which the set of quantum cluster monomials is equal to the double
canonical basis. Furthermore, we identify an affine quantum cluster algebra structure on
parabolic subalgebras of the Drinfeld double and prove that all quantum cluster variables
belong to the double canonical basis. Finally, we identify an infinite subset of quantum
clusters for which the quantum cluster monomials are contained in the double canonical

basis.
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Chapter 1

Introduction

The notion of a canonical basis originates with Kazhdan and Lusztig and the construction
in [KL79 of their eponymous basis in the Hecke algebra H(W) of a Coxeter group W. This
basis, known now as the Kazhdan-Lusztig basis, is characterized by the invariance of its
elements with respect to a bar-involution and by the unitriangularity (with respect to a
natural order on W called the Bruhat order) of the transition matrix from the natural basis
{Tw:we W}. When W is a Weyl group, the structure constants of this basis (the famous
Kazhdan-Lusztig polynomials) have nonnegative integer coefficients and contain important
geometric and representation theoretic information.

A basis of the positive part of the quantized enveloping algebra U,(ny) with similar
properties was discovered independently by Lusztig [Lus90] (there called the canonical
basis) and Kashiwara [Kas91] (there called the global basis). The canonical basis provides
combinatorial tools for studying U, (g)-modules (through crystal graphs) and has many other
incredible properties, including nonnegative structure constants when g is simply laced.
Although not how they were first discovered, the existence of both the Kazhdan-Lusztig
basis and the canonical basis is guaranteed by Lusztig’s lemma (a version of which is given
in Thm. .

The algebra U, (ny) possesses a well-known nondegenerate bilinear form (see Section

and thus contains a basis dual to the canonical basis, called the dual canonical basis (or in



Kashiwara’s terminology, upper global basis). The dual canonical basis is naturally viewed as
a basis of a deformation of the coordinate ring C[Ny]. To be precise, taking the ¢ — 1 limit
of Uy(ny) depends on a choice of integral form. If that form is the span of the canonical
basis, U,(n4) specializes to the enveloping algebra U(n,.). If the integral form is the span
of the dual canonical basis, the specialization is isomorphic to C[N4] (see [Kim12, Thm.
4.35, Prop. 4.36]). Since the dual canonical basis specializes to a commutative algebra, it is
reasonable to expect that it has an interesting multiplicative structure.

The multiplicative structure of the dual canonical basis was investigated by Berenstein
and Zelevinsky in [BZ93]. They conjectured ([BZ93, Conj. 1.7], known as the Berenstein-
Zelevinsky conjecture, that when two dual canonical basis elements quasi-commute (that is,
commute up to an integer power of ¢), their product belongs to the dual canonical basis
up to rescaling by a power of q%. They proved the conjecture for sl and sl, in [BZ93] (see
also the descriptions in [BG17bl Ex. 5.13], [BG17al, Ex. 5.2]). The conjecture also holds
for sp, (see, for example, [BG17a, Ex. 5.3]) and sl5, but counterexamples were found by
Leclerc [Lec03] for all other finite types. However, the Berenstein-Zelevinsky conjecture may
be weakened and restated using the language of quantum cluster algebras.

Cluster algebras were introduced by Fomin and Zelevinsky in [FZ02] in order to create
an “algebraic framework” for the studying (the ¢ — 1 specializations of) dual canonical
bases. Cluster algebras are Q-algebras generated by a possibly infinite set of cluster variables
organized into finite subsets called clusters. For any cluster X and cluster variable X € X,
there is a unique cluster X’ and cluster variable X’ such that X' = (X \ {X}) U {X'}.
The cluster variables X, X' satisfy an exchange relation XX' = N + M, where N, M are
monomials in X \ {X}. The cluster variables and exchange relations are determined by the
rules of quiver mutation.

In [BZ05], Berenstein and Zelevinsky introduced noncommutative deformations of cluster
algebras called quantum cluster algebras. These algebras are Z[q%,q_%]—algebras similar
in structure to commutative cluster algebras except that the cluster variables in any given

cluster quasi-commute instead of commute. Motivated by a series of results of Geiss, Leclerc,



and Schroer (beginning in [GLS05]) on connections between commutative cluster algebras
and Lusztig’s dual semicanonical basis, Kimura conjectured in [Kim12| (the quantization
conjecture) that U,(n;) has a quantum cluster algebra structure for which the quantum
cluster monomials are contained in the dual canonical basis (in fact, Kimura stated the
conjecture for all quantum Schubert cells U, (w) associated to a Weyl group element w). In
IGLS13], Geiss, Leclerc, and Schréer confirmed that Uy(ny ) is a quantum cluster algebra
for symmetric Kac-Moody g. The quantization conjecture was proven for types A, D, and
E by Qin [Qinl7], and in the symmetric Kac-Moody case by Kang, Kashiwara, Kim, and
Oh [KKKO1§]. The existence of quantum cluster structures on Uy (ny) for symmetrizable
Kac-Moody g follows from the work of Goodearl and Yakimov ([GY16], [GY20]). A proof
of the quantization conjecture in the symmetrizable case was recently announced by Qin
[Qin20].

In [BG17b], Berenstein and Greenstein introduced a canonical basis for the Drinfeld
double Uy(§) of Uy(by) (see Section [2.4)) called the double canonical basis. A key intermediate
step in the construction of the double canonical basis of is the construction of another
canonical basis in (a subalgebra of) the braided Heisenberg double, also called the double
canonical basis. Both of these bases contain the dual canonical bases of the positive and
negative parts of U,(g).

Since the double canonical basis is an extension of the dual canonical basis, it is natural
to ask in what cases the adaptions of the Berenstein-Zelevinksy and quantization conjectures
to the double canonical basis setting hold. Although the double canonical basis does not
have a quantum cluster structure in general (see Ex. , the conjectures may still hold in
certain cases. This dissertation is an investigation of these questions for g = sls. In Chapter
we show that a version of the Berenstein-Zelevinsky conjecture holds for the Heisenberg

double of sl3. The main result of this chapter is:

Theorem (Thm. [3.1)). The Heisenberg double H (sl3) has a finite type quantum cluster

algebra structure for which the quantum cluster monomials coincide with the double canonical



basis. In particular, if two elements of the double canonical basis quasi-commute, their

product belongs to the double canonical basis (up to rescaling by a power of q%)

In Chapter [4] we provide evidence that a version of the quantization conjecture holds for

parabolic subalgebras of Uq(;[;). The main result of this chapter is:

Theorem (Thm. . Parabolic subalgebras of the Drinfeld double Uq(g[vg) have an affine
type quantum cluster algebra structure for which the quantum cluster variables are contained

in the double canonical basis.

We also show (Prop. [4.27) that quantum cluster monomials from an infinite subset of

quantum clusters are contained in the double canonical basis.



Chapter 2

Preliminaries

All material in this chapter is well-known. Our main references are [BG17b], [BZ05] and

[Lus93].

2.1 Notation

Let v be an indeterminate, and for n € Z>q, set

Note that [n], =1+v+---+v""1 so0 [n],,[n],! € Z[v]. We define the Gaussian binomial

coefficients as

|
[n] = I, , 0<m<n
m|,  [ml!n—ml!
We use the convention that [:J =0if m < 0or m > n. The Gaussian binomial coefficients
14

are easily seen to lie in 1 + vZ>q[v] and satisfy the Pascal identities

e A



Let k be a field and let A and B be k-algebras. When defining an algebra structure on
A ® B such that that maps

a—~a®l, a€A,
b—1®b, beB

are algebra embeddings, we often omit the tensor product symbol and write
ab=(a®1)(1®VD),

ba=(1®b)(a®1).

The multiplicative structure is given by cross relations
ba = Z (ljbj,
jeJ

where J is a finite index set and a; € A,b; € B.

The symbol > denotes the action of an algebra on a vector space.

2.2 Nichols algebras and bosonization

Let H be a Hopf algebra with comultiplication A and invertible antipode S. Let V be a left

H-module which is also a left H-comodule. We call V' a Yetter-Drinfeld module if
5(h>v) = haw VS (he) @ (b >0,

where we use Sweedler’s notation A(h) = h(1) ® h(g) for the comultiplication and the similar
notation d(v) = v(=Y ® v° for the coaction § : V. — H ® V. Yetter-Drinfeld modules,
along with H-module H-comodule homomorphisms, form a category denoted gyD. Given

V € ByD, the formula c(v ® w) = (o™ > w) @ v(® defines an automorphism of V @ V'



which satisfies the braid relation

(coly)(ly®o(c@ly) = (lv®c)(c®ly)(ly ®c)

in V®V ®V. The inverse of the braiding is ¢~ '(v ® w) = v(¥ @ (Sz*(v7V) > w). If
V.W € gyD, then so is V @ W with the usual H-module structure and (v ® w) =
DD @ 90 @ w© . Furthermore, if A and B are algebras in gyD (meaning the
multiplication and unit are H-module and H-comodule homomorphisms), then so is A ® B

with the twisted multiplication
(a@b)(d @) =a®™V>d) @b,

We denote this algebra by A®B. If B is also a coalgebra in gyD and the comultiplication
A: B — B®B and counit € : B — k are algebra maps, then B is called a braided bialgebra.
For the comultiplication, we write A(b) = b(1) ® b in Sweedler-like notation. If B also has

a braided antipode, that is, a map of Yetter-Drinfeld modules S : B — B satisfying

b1)S(b(a)) = S(b1))bray = €(b),

B is called a braided Hopf algebra. The braided antipode satisfies the braided antimultiplica-
tive property

Sopu=poco(S®.S9),

where p : B B — B is the multiplication. it is easy to check that the tensor algebra T'(V') of
any V € YD is a braided Hopf algebra with A(v) = 1®@v+v®1, €(v) =0, and S(v) = —v
forall v e V.

Given V € gyD, there is a unique Z>(-graded braided Hopf algebra B(V') generated
by V, called the Nichols algebra of V', such that V is equal to both the degree 1 graded
component and the set of primitive elements of B(V'). Let J be the largest coideal of T'(V')

which is contained entirely in the degree > 2 components of T'(V'). Then J is also an ideal



and a Yetter-Drinfeld submodule of T'(V'), and T'(V')/J is the Nichols algebra of V' (JAS02,
Prop. 2.2]).

Any braided Hopf algebra B in gyD can be embedded, as an algebra, into an honest
Hopf algebra called its bosonization. As an algebra, the bosonization B x H of Bis B H

with the smash product algebra structure
hb = (h() > b)h(a).
The coalgebra structure and antipode are defined by
A(bR) = b1y (b)) Ry @ (b)) P ha),
e(bh) = e(b)eg (h),

S(bh) = Su(h)Su (™) ® S(b()

(the coalgebra sturcture is the smash coproduct structure [Majo5, p. 26]).

2.3 The quantized enveloping algebra U,(n;)

Let k = Q(q%) and let g be a semisimple Lie algebra with a fixed triangular decomposition
g=n_@bhdny. Let n=dimb be the rank of g and let I = {1,...,n}. Let Q = P,c; Zoy
denote the root latice and C' = {a;;}; jer the Cartan matrix of g. Let {d1,...,dy} be positive

integers satisfying d;a;; = d;aj; for all 4,5 € I and set ¢; = q%. Consider the vector space

V= @kEi

i€l

graded by the free abelian monoid Q>0 = ;" Z>o; (the Z>p-span of the simple roots).

Then VT is a Yetter-Drinfeld module over the group algebra kQ via

Kyi> Ej = q¢;"Ej,



0(E;) = K1 ® Ej,
where K ; denotes the generator of k@) corresponding to o; € Q. Then the braiding on V'
is given by c(F; ® E;) = ¢;7 (E; ® E;).
Definition 2.1. The Nichols algebra of V™ in ﬂigyp, denoted Uy (ny), is called the quantized

enveloping algebra of ny.

We often use the abbreviation U;". The braided antipode for U/ is determined by
S(E;) = —E; (extended to all of U, using the braided antimultiplicative property). As an

algebra, Uqu is isomorphic to the algebra generated by the E;, 7 € I and the quantum Serre

relations
S (CWEVEEY =0, i#jel
r,SEL>q
7"+s=1—_aij
where
20 _ B

b Mad g
The radical of the form in [Lus93, Prop. 1.2.3] is equal to the coideal J in the definition of a
Nichols algebra [AS02, Prop. 2.10], so Lustig’s algebra f is isomorphic to U;‘ . The quantum
Serre relations hold by [Lus93, Prop. 1.4.3] and are defining relations by [Lus93, Cor. 33.1.5].
The algebra U;’ is @>o-graded via degQZ , Bi = ai. For a homogeneous element, = € Uq+ we

denote its @>o-degree by |z|. The bosonization U; x k@ has Hopf algebra structure
KyiBj = q¢EjKy, i,jel

AE)=E;01+K @F;, AKy)=KyQKy
E(EZ) = 0, 6(K+Z‘) = 17
S(E)=—-K}Ei, S(Ky)=K}, i€l

+io

The Q>o-grading extends to Ul x kQ via |K 4| = ]K;il\ = 0.



2.4 Heisenberg and Drinfeld doubles

Let V™ be another Q)>¢-graded k-vector space with basis {F; : i € I}. We view V™ as a
Yetter-Drinfeld module over k@) via K_; > F; = q?”Fi, where K_; denotes the generator
of k@ corresponding to «; € @ (this notation allows us to distinguish between two copies
of k@ in the Drinfeld and Heisenberg doubles). We denote the Nichols algebra of V'~ by

U, (as algebras, U, and Uqu are isomorphic). The Drinfeld double D(U, x kQ, UqJr x k@)

(see [BGITH, Sections A.7-A.9], [Maj95, p. 26] for the general definition) contains U, x k@,

and (UqJr x kQ)°P as sub-Hopf algebras and has cross relations
FEj = EjF, + 6ij(qi — g7 ) (K1 — K_3),
K F; = q;aiijK+i,

EiK_j = q;ain_jEi.

Here (U(;F x k@)°P is isomorphic to U;’ x k@ as an algebra but has the opposite comultipli-

cation (and thus inverted antipode). The multiplication map is a vector space isomorphism
p:U; @kQ* @ U — D(U; xkQ, U, x kQ),

where we identify kQ @ kQ with kQ?. The braided Heisenberg double H(U,; xkQ, UqJr x kQ)
(see [BGITD), Section A.7], [BBOJ] for the general definition) contains U,” xkQ, and U x kQ

as subalgebras and has cross relations

FiE; = EjF; + 0ij(qi — q;

(2

pliew

K_H‘Fj = q;aiijK+i,

EiK_j = q;ain_jEi.

10



The Heisenberg double is not a Hopf algbra. Again, the multiplication map is an isomorphism
of vector spaces

p:U; 9kQ*@ Ut — H(U,; xkQ, Ul xkQ).

We use the abbreviations H, and Dy for H(U,; x kQ, U x kQ) and D(U, x kQ, U,

k@), respectively. Both H, and D, are Q-graded via degg F; = a;,degg F; = —a;, and

degg Kfil =deg K fil = 0. We denote the @Q-degree of a homogeneous element = by |z|.
There are many useful symmetries of H, and D,. First, there exists a Q-linear anti-

automorphism of Dy, called the bar involution, defined by

2, Ky,=Ky, K,=K_,, E=E;, F=F,.

S
Nl
Il

Q
o=

We also have k-linear involutive antiautomorphisms * : D, — D, and 7 : Dy, — D, determined

by

The composite * o 7 is an automorphism which restricts to isomorphisms between U; and
U, . Furthermore, *: H, — H, and 7 : Hy — Hy are defined using the same formulas (there
is no analogue of * on H,). We also remark that the composite 0 =0 : Dy = D, is a
Q-linear involutive automorphism. (The involution o is often denoted by = and called the
“bar involution,” but we reserve this notation and terminology for the anti-involution defined
above.)

It is convenient to work with smaller subalgebras of H, and D,.

Definition 2.2. Let #H/ (g) be the subalgebra of H, generated by {E;, F;, K1 :4 € I'}. Let
U,(g) be the subalgebra of D, generated by {E;, F;, K1, K_; :i € I}.

We use the abbreviations H;r and ﬁq. We also denote by ﬁq the subalgebra of H,

generated by {E;, F;, Ky;, K_; : i € I}. One advantage of the subalgebras ’H(‘;, ﬁq, and ﬁq

11



is that they are Q%O—graded via
degQ2>0 Ei = (0, Oéi),

degQiO F; = («;,0),
degQQEO K= dengzo K ;i = (o, o).

Note that ’H;; is isomorphic to the quotient of ﬁq by the ideal generated by the K_;’s.
Furthermore, the vector space isomorphism ¢ : H, — Dy restricts to a vector space inclusion
L: ?{; — ﬁq. The symmetries ~ and 7 restrict to anti-automorphisms 7—[2‘ — 7—[2‘, ﬁq — ﬁq
and * restricts to an anti-automorphism ﬁq — ﬁq. Although ﬁq is a bialgebra and not
a Hopf algebra, the quotient (7q/<K_iK+i —1:14¢ € I)is a Hopf algebra via S(E;) =
—EiKi*l, S(F;) = —K;F;, and S(K;) = K;l, where we denote the images of K;, K_; by
K;, K~ L This quotient is called the quantized enveloping algebra of g and is denoted U,(9).
Note that the Q220 grading does not descend to Ug(g) since the relation K;;K_; =1 is not
homogeneous.

We remark that the presentation for U,(g) given here is slightly nonstandard. If
{ei, fi, ki k; 1} are the generators of U,(g) in the standard presentation, the cross rela-
tions are

-1
eifj = fiei + 51'3‘7]{:1: — kil :
i — 4

However, let ¢ : ﬁq — ﬁq be the automorphism determined by
Y(E) = (g7 —a) T B, (F) = (0 —q; )7 F 0(KG) = K.

Then {Y(E;), ¥(F;), ¥ (K;),¥(K_;)} satisfy the relations of the standard presentation (with
Ki,Ki_l replaced by K;, K_;).

12



2.5 Dual canonical bases

Identify the subalgebra of ﬁq (or of ﬁq) generated by {K;, K_; : i € I} with the monoidal
algebra ]kQQZO. Let o : 220 — Z,1 € I be the unique monoid homomorphism determined
by (0, ;) = aij and o (v, 0) = —ay;,j € I. There is an action ¢ of kQ;O on (,qu (or on

H,) defined by

1. v
+laY(degga @)
Kyioz=q ° ' 920 Kyx

for homogeneous = which satisfies K o x = K o7 for all K € kQQZO, x € ﬁq.

Let 9;,0;" : U — U] be the linear quasi-derivations defined by
[Fi,a] = (¢ — q; ") (K4 0 0i(x) — K_; 0 0;"(x))

(cf. [BG17DH] and [Kas91, Lemma 3.4.1]). Let (-,-) be the unique (nondegenerate) bilinear
form on U, such that (1,1) = 1 and

(2, B"y) = (07", )

(2

(cf. [BG1Ta, Lemma 2.10] and [Kas91l Prop. 3.4.4]). Recall the automorphism 1 : ﬁq — ﬁq
which rescales the generators. Let Bljﬁw denote the inverse image under ¢ of Lusztig’s
canonical basis of U} [Lus90] (which coincides with Kashiwara’s lower global basis [Kas91]).

Recall that Blfr’w is @>0-homogeneous. For g = sly, Blfr’w = {Eir> 11 € ZL>o}. For g = sls,
B — (BB ES b > a+ y ULBSY BV ES (b > a+ ¢}

Since (+,-) is nondegenerate and remains nondegenerate when restricted to @>o-graded
components (which are finite dimensional), for every b € Blfr’w, there exists a unique

homogeneous d, € U, of the same degree such that (0, ") = dp for all b’ € Blov.

Definition 2.3. The set B} = {4, : b € B"} is a Q>¢-homogencous basis of U called

the dual canonical basis.

13



An alternative description of BY” can be found in [BGI7al. The following example can
be found in [BG17b, Example 3.25], [BG17b, Example 5.13]. It is used extensively in the

following chapters.

Example 2.4. For g =sly, B’ = {F" : r € Z>¢}. For g = sl3,
B = {¢2*C BB, ES, s a,b,c € Zso} U{q 2O O BB, ES, < a,b,c € Tso},

where

1 1
Ei2=(¢—q ") (> BaEr — ¢ 2 E1Ey),
—1\—1, 1+ _1
Eyy=(q—q ) (q2E\Ey — q 2 ExEy).

Note that E1Ey = q_%Elg + q%Egl and that Fyo, F51 are bar-invariant.

2.6 Quantum cluster algebras

Let @ be a quiver (directed graph) with n vertices. We assume that ) has neither loops nor
2-cycles. We allow a subset of the vertices to be designated as frozen. Frozen vertices are

indicated with rectangular boxes. For example,

./
L/

are quivers with one frozen vertex. For any non-frozen vertex k, we define the involutive
operation of mutation of Q) at k as follows. First, for any subgraph i — k& — j, add an arrow
from 7 — j. Next, reverse all arrows with source or target k. Finally, remove any 2-cycles
produced in the previous two steps. For example, mutating the two quivers above at vertex

2 results in

DO —— =

14



Let I = {1,...,n} and let A = {\;;}; er be a skew-symmetric integer matrix. To
A we associate the quantum torus T (A), which is the Z[q%,q_%]—algebra generated by

{XT1, ... X'} subject to the relations
XiX; = ¢ X; X,
XXt =1

We say x,y € T(A) quasi-commute if zy = ¢“yx for some ¢ € Z. We say that an element

x € ACT(A)is quasi-central in A if it quasi-commutes with all elements of A. Observe

[

that 7 (A) posses a Z-linear anti-involution, called the bar involution, satisfying q% =q

and X; = X; for each i € I. For any a = (ai,...,an) € Z™, the element
My (a) = q% 2isj az‘aj/\ij)(ill ... X0n

is fixed by the bar involution. Observe that the set {My(a) : a € Z"} is a basis of T(A).
Since 7 (A) is an Ore domain (see [BZ05, Appendix A}), it has a skew-field of fractions which
we denote by F .

Let m be the number of frozen vertices of () and label the vertices such that the first
n —m are non-frozen. Let B be the n x (n —m) submatrix of the adjacency matrix of @

consisting of the first n — m columns. If for all 0 < i< n,j <n—m,

> brj i = bijd;
k=1

for some positive integers d;, then @ is said to be compatible with A. This is equivalent to
requiring that BT A consists of an (n —m) x (n —m) diagonal matrix with positive diagonal
entries followed by the (n —m) x m zero matrix. Let X = {X1,..., X, }. The elements of
X are called initial cluster variables and X is called the initial cluster. We call Q) the initial

quiver and (X, A, Q) the initial quantum seed. Let {e; : i € I} denote the standard basis

15



vectors of Z™. For any non-frozen vertex k of (), define

pe(Xi) = Ma(—ex + Y bires) + Ma(—ex — Y birey),
bir>0 bk <0

or equivalently,

_ 1 1
pe(Xp) = X, <q2T I xi+q¢° HX1> :

i—k k—1

where the first product is taken over all arrows in ) with target k£ and the second with source
k and S and T are the unique integers such that p;(Xy) is bar-invariant (note that these
integers depend on the order in which the product is taken). The compatibility condition on

A and @) guarantees that the elements of

e (X) = {X1, o (X)X}

quasi-commute with each other. Let ux(A) be this quasi-commutation matrix. Observe also
that pg(A) is compatible with pi(Q) (using the same integers d;), where py(Q) denotes
(@ mutated at the vertex k. Thus iterated mutations of the initial quantum seed are well-
defined. The quantum seeds consist of the initial seed and any seed (X', A’; Q") produced
through iterated mutation. The subset X’ of F is called a quantum cluster and its elements
quantum cluster variables. The m cluster variables corresponding to frozen vertices of @)
appear in every quantum cluster and are called coefficients. The remaining cluster variables
are exchangeable. The bar-invariant elements My/(a), a € 7%, are called quantum cluster

monomsials.

Definition 2.5. The quantum cluster algebra Aql/g(Q,A) associated to @ and A is the

Z[q%, qfé]—subalgebra of F generated by all quantum cluster variables.

This definition is slightly different from the original definition in [BZ05] in that the
coefficients are not invertible. We say that two quantum seeds are mutation equivalent if

one can be produced from the other through a sequence of mutations. Two quantum cluster
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algebras are isomorphic if and only their initial seeds are mutation equivalent. Furthermore,
A12(Q, A) is contained in T(A) (this is called the quantum Laurent phenomenon).

Let X = {Xi,...,X,} be the initial cluster of Aql/z(Q,A). For 0 < i <n—m, let
X/ denote the cluster variable obtained by mutating the initial quiver @ at the vertex i.
We denote the exchange relations by X; X! = P;(X). Let .,Zl\q1/2 (Q,A) denote A 1/2(Q, A)
localized at the multiplicative submonoid C generated by the coefficients (since the generators
of C quasi-commute with each other, C satisfies the Ore condition). We call the subgraph
of () obtained by deleting frozen vertices the principal part of Q). The following theorem is a
corollary of [BZ05, Thm. 7.3] (see also [BEZ05, Cor. 1.21]) and provides a presentation for

.qu (@, A) when the principal part @ is acyclic, that is, has no oriented cycles.
Theorem 2.6 (Berenstein, Fomin, Zelevinsky). If the principal part Q is acyclic, then
.qum (Q, A) is isomorphic to the algebra generated by

(X1, Xp_pm, X L XE XX

n—m+1?

subject to the relations X; X! = P;(X) and the quasi-commutation relations determined by A.
The following obvious lemma is used in the proofs of Thm. and Thm.

Lemma 2.7. Let A be an algebra and let S be a multiplicative submonoid of A whose
elements are quasi-central. Suppose that A[S™!] is isomorphic to .//4\(]1/2 (Q,A) and the image

of A is contained in A2 (Q,A). Then A is isomorphic to Ap2(Q,A)

If the principal part of ) is mutation equivalent to an orientation of a Dynkin diagram,
then Aq1 2(@, A) is said to be of finite type. A quantum cluster algebra has finitely many
cluster variables if and only if it is of finite type. The number of non-initial quantum cluster
variables is equal to the number of positive roots of the root system corresponding to the
Dynkin diagram.

There are several bases for quantum cluster algebras which contain the quantum cluster

monomials when the principal part @ is acyclic (e.g., [BZ14]).
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Theorem 2.8. If the principal part of Q is acyclic, the quantum cluster monomials are
linearly independent. If the principal part of Q is mutation equivalent to a Dynkin diagram,

the quantum cluster monomials span Aq1/2(Q, A).

Example 2.9. Let
1 ——
Q= | ,

]

and
0 -1 1
A=]1 0 0
-1 0 0

Mutating at vertex 1, we have

p1(X1) = Ma(—e1 + e2) + Ma(—eq + e3)

R S | pa—
=q 2X1 X2—|—q2X1 X3.

Let g = sl3. Recall the notation of Example Since F1FEy = q_%Elg + q%Egl, the
assignments X; — E1, X9 — FE91, and X3 — Fj9 determine a surjective homomorphism of

algebras

k@z[ql/Q’q—l/Q] Aq1/2(Q,A) — U;_

Since this map restricts to a bijection between the quantum cluster monomials (a basis for

A,2(Q,A)) and the dual canonical basis, it is an isomorphism.

2.7 Double canonical bases

Let - : Z[v,v™ '] — Z[v,v71] be the Z-linear ring homomorphism such that 7 = v~!. Let
(Z,=) be a partially ordered set such that for all ¢ € Z, the length of chains descending from
i is bounded from above. Let M be a free Z[v, v~!]-module with initial basis {z; : i € T}

indexed by Z. Suppose also that = : M — M is a Z-linear ring involution satisfying fm = fm,
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for all f € Z[v,v~!],m € M. The following theorem (see, for example, [BZ14, Thm. 1.1]) is

a version of Lusztig’s lemma.
Theorem 2.10. Suppose that for all i € T,
T; —x; € ZZ[V, v ;.
7=
Then for each x;, there exists a unique b; such that b; is bar-invariant and
b —x; € Z vZv)x;.
J#i
The set B = {b; : i € L} is a basis for M.

Let K. (respectively K_) denote the multiplicative submonoid of ﬁq or [7[1 generated
by the K;’s (respectively K_;’s). Let K = K_K. Let B" be the dual canonical basis of
U, , that is, the image of B}” under * o 7. The double canonical basis of U, is constructed
through two applications of Lusztig’s Lemma. First, applying Lusztig’s Lemma to the

Z[q,q ‘]-submodule M of H, spanned by the initial basis
{Kob_by: K €K, (b_,by) € B x B}
with partial order K ob_by < K'ob_V/, if deng20 b_b, < dengZO b Y, and
deng20 K+ deng20 b_by = deng20 K+ degQéo vy,

Berenstein and Greenstein constructed a basis for 7-[[; (note that Hj is a proper submodule
of M):

Theorem 2.11 ([BGI7D], Thm. 1.3). For any (b—,by) € B x BYP, there exists a unique
bar-invariant element b_ o by € ’H;r(g) such that

booby —b by €Y qZlglKy o (b V)
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where the sum is over all Ky € K.\ {1} and (b_,V/,) € B’ x BY such that dengZO bLb, +

dengzo K+ = dengzo bber.

Definition 2.12. The set Bj = {Ky o (b—oby): (b_,by) e B x B K, ¢ K} isa

bar-invariant basis of ’H(‘;(g) called the double canonical basis.

Applying Lusztig’s Lemma again to the Z[q, ¢!]-submodule of ﬁq spanned by the initial
basis

{Koub_oby): K eK,(b_,by) e B x B’}
and a similar partial order, they constructed a basis for ﬁq:

Theorem 2.13 ([BGI7D], Thm. 1.5). For any (b—,by) € B x BYP, there exists a unique

bar-invariant element b_ e by € Uy(g) such that
boeby —u(b_obi)e> q 'Zg K ou(l ob))

where the sum is over all K € K\ K4 and (b_,b/,) € B2 x B* such that deng20 VoY, +

deng20 K, = deng20 b_by.

Definition 2.14. The set By = {K o (b_ e by) : (b_,by) € B x B!, K € K} is a

bar-invariant basis of Uy(g) called the double canonical basis.

If an element of Uy(g) (resp. H, (g)) satisfies the unitriangularity condition of Thm. m
(resp. Thm. [2.11)), we say it has correct triangularity.
The following example can be found in [BGI7bl Section 4.1] and is used extensively

throughout the rest of this dissertation.

Example 2.15. Let g = slp. Let Cy = FE —qK € 7—[;1"(5[2). Since C is bar-invariant

and has correct triangularity, C,. = F o E. Furthermore,

Tk o
k=3 (-1Y¢ M 2KiFk ipk=i
] q
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and thus C¥ = F¥ o E*. Observe also that Cy is central in HJ (sl2), and so products of
powers of Cy with either powers of F' or E remain bar-invariant. It is straightforward to

check that such products belong to the double canonical basis. Thus
B;z ={K{oF"C{:a,rs €L} U{K{cCiE" :a,r,s € L>o}.

Since FE =C1 4+ qK4, "H; (sl2) is a quantum cluster algebra with type A; initial quiver

r——[ei]

and the double canonical basis coincides with the quantum cluster monomials.
Let C =4(Cy) —q 'K_ € Uq(;[;). Then C' is bar-invariant and central in Ugy(g). Since

it has correct triangularity, C' = F} e /1. But
C*=uC) = (¢ +q K (C) + (1+q K K,

and thus F e E? = C? - K_K,. So B, contains imaginary elements, that is, elements
whose powers do not belong to the double canonical basis. Let C(©) = 1,C() = €, and for

k > 1 define C++D) = ¢ — K_K,_ C* -1, Each C® is bar-invariant and central, and

o= 5 o [ [l wnteese
0<i<j g2 g2
i+j<k

Therefore C*) = % o E*. Tt is straightfoward to show

B = (K*K% o F'C¥ : a,b,r,5 € Zso} U{K K% o COE" : a,b,7,5 € L0}
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Although it has a “cluster-like” structure, the double basis of Uq(:”:i;) does not have a strict
quantum cluster structure since FE = C + ¢K4 + ¢ ' K_ does not have the proper form of

an exchange relation.
We conclude this section by observing that the braid group of g acts on the Drinfeld
double D, by algebra automorphisms via the modified Lusztig symmetries
Ti(Kyj) = KiK',

/

11 . |
4 K+. Ei 1=
T(E) =4 1 |
S+5a54 ] .
ZTJrS:*aij(_l)rqi ’ JEfr)EjEf) i J
1 =1 ' |
4 K—F Ei 1=
T(F) =< 1 |
St5ai; ] .
ZT”:*% (=D7g; JFzKT)FjF@KS) i J

Note that these symmetries commute with the bar-involution, that is, 7;(z) = T;(z) for all
x € D,;. We also remark that (T;(z))* = T, ' (2*), 7(Ti(2)) = T, }(7(x)), and Ty(K o x) =
T;(K) o Ty(X) for x € Dy, K € kQ? (here we have extended o to an action of kQ? on
Dy). The set ]§§ = K~ o B; is a bar-invariant basis of D, and it is conjectured [BGI7D,

Conjecture 1.15] (when g is semisimple, as assumed here) that f’rg is preserved by the braid

group action.

Example 2.16. For sly, we have T(C*) = K:kK;kC(k). For sl;, we have T;(E;) = Ej;

The double canonical basis of both ”H; and ﬁq is preserved by 7. In fact, 7(b_ oby) =
7(by)o7(b_) and 7(b_ eby) = 7(by) @ 7(b_) [BGL7b, Thm. 1.10]. It is conjectured that
the By is preserved by * [BGI7h, Conjecture 1.11].
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Chapter 3

The double canonical basis of

/H;_ (5[3)

In this chapter we investigate the structure of the double canonical basis of H(‘; (sl3). For
i,j € {1,2}, i # j, let A; = Fy 0 Eyj, H; = Fjjo0 E;, I'; = Fjj 0 E;j, Cy; = F; o E;, and

Z; = Fjj o Ej;. Our main result is the following theorem:

Theorem 3.1. The algebra H;—(ﬁ[g) has a type Dy quantum cluster structure. The ex-

changeable cluster variables are
{E17 E27E127 E217 F17 F27 F127 F217 C—|—17 C+27 A17A27H17 H27F17 FQ}

and the coefficients are { K11, K19, Z1, Z2}. Aninitial cluster is {Fi2,1'1, E1, A1} with initial

quiver

Fio Iy Ey

K+2 A1 e

The double canonical basis is equal to the set of quantum cluster monomials.
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In Section we determine the quasi-commutation relations between the quantum
cluster variables listed in Thm. In Section we show that monomials in a subset of
quasi-commuting variables belong to the double canonical basis (up to a power of q%) We

complete the proof of Thm. [3.1] in Section [3.3]

3.1 Quasi-commutation relations

We begin by computing the quasi-commutation relations between the sixteen cluster variables
listed in Thm. We also show that the cluster variables are real, that is, their powers
belong to the double canonical basis.

First, we have

Fi1 By = Eo1Fy = Fy o Eo.

Furthermore, E12Fy = F1FE12 + (¢~ — ¢) K1 ¢ E3 and thus
FyoFEy = FiFEyp—qK;q0 Es.

The following lemma is immediate:

Lemma 3.2. The assignments F — Fi, E — F9, K — q%KHEg extend to a homomor-
phism of algebras H;(slg) — 7—[;(5[3). In particular, Fy o E19 commutes with Fi and E19,

and
(FyoEp)t=> (~1)¢ H ] K7, o Ff g2 gl gy
=0
= FFo EE,.

Lemma 3.3. We have the following quasi-commutation relations:

(Fy 0 E12)E91 = Eg1(Fy o Eqg), (3.1)
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(Fy o E19)Fy = ¢ ' Ey(Fy 0 Eyy), (3.2)
(F10 E2)E1 = qE1(Fy o Eqg), (3.3)

and

(FloElg)(FloEl) :q(FloEl)(Fl OE12). (34)
Proof. Equations (3.1) and (3.2)) are immediate. For (3.3]), we have
1
(F10 Er)Ey1 = F1EoE) — qK 1192 B2 B,
= qF1E\Ei2 — qK11(qE12 + Eo1)
=q¢(B1Fy + (¢ — ¢ YK 1) E12 — *K1F12 — ¢K 1B
= qF\F1F1s — Ky1(¢" " Era + qE2n)

1
=qE1F1FEio — K192 E1 By

= qu(Fl (¢] Elg).

Equation (3.4) follows immediately from (3.3) and Lemma O

By symmetry of the defining relations, we have Fb o Fo; = FyFo1 — qK 90 E1. Applying
T, we obtain

FiooEy =7(Fy0 Eo) = FiaEy — qK 00 Fy,

as well as

k
(Fiz 0 Ep)F = Z(—l)]qj [] , K, 0q2? "I F B
q

Corollary 3.4. The element Fi5 o E5 commutes with Fio and FEs,

(Fi2 0 Eg)Fy1 = Fo1(Fi2 0 Es),
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(F12 o EQ)Fl = qFl(F12 ) EQ),
(Fig 0 E9)Fy = ¢ ' Fy(Fi2 0 E»),
(Fip 0 Ey)(Fy 0 Eo) = ¢ Y (Fy 0 Ey)(Fia 0 Es).
From the formulas for F5 and E12, we compute
E1oF15 = Fi1sF1p + (7 — ) K1 K 19,

and thus

Fiy0 Eyg = FioE19 — qK 11K 9.
The following lemma is immediate:

Lemma 3.5. The assignments F — Fio, E +— FEio, and K — K 1Ko determine an algebra
homomorphism H;(E[g) — 7—[(‘;(5[3). In particular, Fo o E19 commutes with Fio and E19

and

k
[k . ) L
(Fizo Ero)f = (~1)¢/ H K K, Py By
par il
= Flkz © Efz
Lemma 3.6. We have

(Fi2 0 E12)Ey = qE (Fi2 0 Er2), (3.5)
(Fig 0 E19)Fy = ¢ ' Fy(Fia 0 E2), (3.6)
(Fi2 0 Ex)E19 = qE12(F12 0 E»), (3.7)
(Fy 0 E12)Fiy = ¢ ' Fio(Fy 0 E). (3.8)
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Proof. Applying 7 to the equation Fy E9; = E91 F) gives FioFE, = E1Fia, from which (3.5))
follows. Similarly, (3.6)) holds since Fy commutes with Eqo. For (3.7), we have,

(Fi2 0 Eo)E19 = (FiaE2 — K420 F1)E12
1 N
=q(B12Fi2+ (¢ — ¢ YK 1K 49)Ey — 2 K 9(E1aFy + (¢ — ¢ 1) K11 ¢ B)
= qF19F19Fy — *E19K 00 Fy

= qE12(F12 0 E3).

Applying 7 to (Fpy o E1)E9; = qE91(Fs o Ey) gives (3.8]). O
From Lemma Cor. and Lemma we obtain:

Corollary 3.7. The following quasi-commutation relations hold:
(F12 0 Eo)(Fi2 0 E1g) = q(Fi2 0 E12)(Fi2 0 E3),

(Fy 0 Er9)(Fiz2 0 By) = ¢ 2(Fig 0 B2)(Fy o Exa),
(Fy 0 Br2)(Fiz2 0 Br2) = ¢~ H(Fi2 0 E12)(Fy o E1a).

Next, we have

EyFig = FioFo 4+ (¢ + Q) K o E1 — (14 ¢*)K 1K 49

= F12E + (¢ — ) K42(Fy 0 Ey),
and thus

Fig0 Ey = FioEo — qK19(Fy 0 Ey)

= F12F — ¢K 2P By + K1 K.
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Lemma 3.8. The assignments F' +— Fio, E — Eo1, Ky — K o(F) o Ey) determine another

algebra homomorphism H (sl) — H (sl3), and thus (Fiz o Fo1)F = Ff, o B,

Proof. We have

k
(Fig 0 E9p)f = E (—1)¢ L} zKig(FloEl)ijz JE;J
0 q

.
= |

J .
il gl K| I g LD (k—j) pi—l pok—j
Z(il)ﬁ @ [J} 2 [J 2K+1Ki2q2(j R v

.

_la . S B R
x g~ zU—Dk J)E{ By

_ 1k k
= F12 (o] E21

Lemma 3.9. The element Fio o Eo1 is quasi-central in ’H;}'(slg).

Proof. Tt is straightforward that (Fis o Eo91)E; = ¢~ E1(F} o Ea1) and we also have

1 1
(Fiz 0 E91)Ey = q(FEaF19 + (¢ — ¢ V) Ky90 F1)Ey — qK . o(q 2 (F 0 E19) + q2 F1E9)
1 1
= qEyF19E9 — K19q 2F1Ey — K19q2(F) o E9)
= qEyF19Ey — K 9FEy(Fy o Eq)

= qEs(Fi2 0 Eg).
Applying 7 to the previous two computations gives
(Fi2 0 E91)Fy = qF1(Fi2 0 E91),

(Fi2 0 B91)Fy = ¢ ' Fy(Fia 0 En).
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Using symmetry, we now have a complete set of quasi-commutation relations.

summarize these using the notation of Thm.

A; quasi-commutes with F;, F;, Ey, Eo, H;, I';, and Cy;,

H; quasi-commutes with Fy, b, E;, B, A;, T';, and Cyj,

e I'; quasi-commutes with Fj, Fy;, E;, E;;, A;, and H;,

CJri quasi—commutes with .FZ', Fi]’, EZ‘, Ej, AZ and Hj,
e 7, is quasi-central,

where {7,j} = {1, 2}.

3.2 Computation of the double canonical basis

From the computations in Section [3.1, we conclude that any maximal set of mutually

quasi-commuting elements from

X = {E\, Es, Erg, Eo1, F1, Fo, F19, Fo1,Cy1,Cyo, Ay, Ao, Hi, Hy, T'1, T2}

has size four. There are fifty such sets. In no particular order, they are:

{Ai, H;, Ty, By} { A, Hy Uy, By} { A, Hy By, B} {Ai, Hy By i} { A Hy, Fyy, Frb

{4, T, Eij, Ei}, {Ai, T, Fij, B}, {Ai, Eji, B, Fi }, {Ai, Eij, Ei, Eji}, {Ai, Eij, Eji, Ej}

{A27 ij C+i7 EZ}7 {AZ7 E]Z7 C+i7 E}a {A27 C+i7 E7 FZ]}a {Ah C+i7 E’L) Ej}v {Hla FZ? EZ]7 Fj}7

{H;,1;, Fy;, F}},{H;, E;, F;, F; }, {H;, Fij, Fi, Fji}, {H;, Fyj, Fy, Fji}, {H;, E;, Fji, Cy},

{H;, Fj, Fyi, Cy Y, {Hi, Fy, By, Cy i}, {Hy, By, By, Cy iy AT, By, Fy, By ATy, Fiy, Fy, By}

where {i,7} = {1,2}. Let S be any subset of X whose elements quasi-commute. In this

section, we prove that quantum cluster monomials in S U {K 1, K9, Z1, Z2} are double
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basis elements, and conversely, that every double basis element is such a monomial. Here we
use “quantum cluster monomial” informally to mean the unique bar-invariant multiple of
q% with a monomial in quasi-commuting elements. In Section we show these elements
are honest quantum cluster monomials for a quantum cluster structure on H;‘ (sl3).

Observe that the monoid K identifies with @)>9. For A\ = ra; + sas € Q>9, write
Ky = K| K{,. With this notation, Kyu = gDy K where (+,-) is the bilinear form on
Q? such that (o, ;) = 2 (the Killing form) and K, ou = qfé()"h")K)\u.

For a,b,c,d € Z>( such that ab =0, let
bi(a,b,c,d) = g2 @ VD EIELES BY € BY
and
b (CL, bv ¢, d) = q%(a_b)(c_d)FngFfQFgl S Blip

The following lemma and its corollaries provide sufficient conditions for when quantum
cluster monomials in quasi-commuting double canonical basis elements belong to the double

basis.

Lemma 3.10. Let B_ o By be a double basis element and write

B_oBy=B_Bi+Y pi(a)Ky ob jby;
jedJ

where J is a finite index set, p;j(q) € qZ[q], and
dengZO b_jby; + dengzo K)\j = dengz() B_B;.

Let B" be a dual canonical basis element in U, satisfying (B— o By)B" = ¢°B’ (B_ o By)
for some ¢ € Z and, for all j € J, b_;B’ = q“ B’ b_; for some ¢; € Z. Then q%CBLB_ and

q%cj B’ b_; are dual canonical basis elements. If qécf B’ b_; is a quantum cluster monomial
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in {F1, Fi2, Fo1}, suppose also that
x—y; +n; —mj >0,

where B =b_(a,0,z,2'), b_; = b_(a;,0,y;,9;), and \j = njon + mjaz. If q%CjB’_b,j is a

quantum cluster monomial in {Fy, Fia, Fo1}, suppose that

y; — v +mj >0,
where B_ = b_(0,a,,2'), b_j = b_(0,a;,y;,v;), and \j = njo1 +mjaz. Then q%CB'_(B, o
By) is in the double canonical basis.

Observe that if a dual basis element commutes with each b_; and with B_, then for
each j, B_ and b_; are quantum cluster monomials from the same cluster. Therefore, if
there exist j,1 € .J such that q2% B’ b_; and q2% B b_; are quantum cluster monomials from

different clusters, then a = 0.

Proof. We know that q2°B’ (B_ o B.) is bar-invariant and

3B (B_oBy)=q3*B B_B, + Y q 3MIB N2 gV, 0 g3 B b_jby ;.
JjeJ

If |B_| = —raq — sap and \j = njaq + mjas, our Q%O—degree assumptions also imply that
‘b_j‘ = (—7“ + nj)al + (—8 + mj)ag.

Since B’ quasi-commutes with B_ and with each b_j, q%cB’,B_ and each qécﬂ' B b_jby;
are quantum cluster monomials (and therefore dual canonical basis elements).
Suppose first that q%CB'_B_, q%CfB’_b_jbﬂ- are cluster monomials in {Fy, Fia, Fb1}.

Then B_ =b_(r —s,0,z,s —x) and b_; = b_(r — n; — s +m;,0,y;,s —m; — y;) for some
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T,Y; Z 0. If BL = b—(OéuO?/B?’Y)? then

c=—a(s—x)+ax+ (y—B)(r—s),

¢ = —als —m; —y;) +ay; + (v = B)(r —nj — s+ my),

and so

¢ —¢j =2a(x —y;) — am; + (B —7)(m; — nj).
Furthermore,

(A, IBL]) = (=2a = B —y)nj + (a = B —v)m;
and thus

c—¢; = (N |BL]) = 20(x — y; + nj — my) + 2(Bm; + yn;) € 2Z.

If x —y; + nj —m; > 0, we have q*%()‘j’wlf‘)q%(c_cf) € Z[q.
Next, suppose that q2°B’ B_, q%CjB’,b_jbﬂ are cluster monomials in {Fy, Fia, Fb1}.
Then B_ =b_(0,s —r,z,r —x) and b_; = b_(0,5s — mj —r + nj,y;,r —nj —y;) for some

z,y; > 0. If B =b_(0,,,7), then
c=a(r—z)—az+(B—7)(s—r),

¢j = a(r —nj —yj) —ay; + (6 =) (s —mj —r +ny),

and so

c—cj= 2a(yj — iE) + an; + ('Y - 5)(”] - mj)'

Since

(Aj, |BL]) = (@ = B =y)nj + (=2a = B —v)my,
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we have

¢ —cj — (M, |BL]) = 2a(y; — x +my) + 2(Bm; + yny) € 2Z.

If yj — 2 +m;j >0, then q_%(’\j’|BL|)q%(c_cﬂ') € Z[q].
By the assumptions of the lemma, q%CB’_ (B_ o By) has correct triangularity and is

therefore a double basis element. O

In particular, the assumption of Lemma is true if B and each b_; is a monomial

in only Fy and Fia (so that z — y; = m;).

Corollary 3.11. Let B_ o By be as in Lemma . Suppose that B', is a dual canonical
basis element in U, which satisfies (B— o By)B', = q¢°B/ (B_ o By) for some ¢ € Z and, for
all j € J, byjB! = q“ B/ by for some c; € Z. Then qiécBJ'_B; and qfécjbijBﬁr belong
to dual canonical basis. If q_%Cfbﬂ-BfF is a quantum cluster monomial in {E1, E12, F2},
suppose also that

r—y;+n; —mj >0,
where By =by(a,0,2', ), by; = b+(aj,0,y;, yj), and A\j = njoq + mjaq. If qfécjbﬂB’+ 18
a quantum cluster monomial in {FEs, E12, Eo1}, suppose that
y; —x+m; >0,
where By = b4.(0,a,2',2), byj = b1(0,a;,y;,y;), and \j = nja1 +mjaz. Then q_%C(B_ o
B! )B!, is in the double canonical basis.

Proof. Under these assumptions, 7(B_ o B;) = 7(B_) o 7(By) satisfies the assumptions of
Lemma and thus qfécT(Bﬁr)(T(B,) o7(B4)) is a double basis element. Applying 7

once more completes the proof. O

Corollary 3.12. Let B_ o By and B! o B!, be double basis elements. Write

B_oBy=B_B;+ ij(q)K)\j <>b_jb+j
jeJ

33



and

B oB, =B.B\ +» pi(q)Ky ob_iby
leL

where J and L are finite index sets, pj(q),pi(q) € qZ[q], and the necessary szo-degree
assumptions are satisfied. Suppose that B_B' = ¢°~B’ B_, ByB! = ¢“*B! By, and
(B-oBy)(B_oB) = ¢t (B_ o B )(B_oBy) for some c_,c+ € Z. Suppose also
that for all I, B_b_; = ¢“ b_;B_ and Biby = qcl+b+lB+ some cf,c;r € 7Z. Finally,
assume that (B_ o B{)b_; = q% b_j(B_ o By) for all | and that each b_; quasi-commutes
with each b_;. If B_ o By satisfies the assumptions of Lemma C’or. then

q—%(C*JrCJr)(B, o B,)(B’ o B,) is in the double canonical basis if

q—%(AZ»IBfOBH)(Cf—Cf+0+—cl+) e Z[q]

for all

Proof. We have

g~ )(B_ o By)(BL o B})

_ q_%(c+_C’)Bl_(B_ OB+)BQ_ + Zpl(q)q—%()\lJB,oBH)(c,—cf+c+—cl+)
leL

x Ky, 0 g3 b (B_ o By )ba.

The proofs of Lemma and Cor. imply that q_%(“_cf)B’_(B_ o By)B! and

gzl 7Cl+)b_l(B_ o B4 )by have correct triangularity. O

We now apply Lemma and its corollaries to compute the double basis of a parabolic
subalgebra of H; (that is, all basis elements of the form F; o by, b, € BY?). We require
one additional computation (Lemma [3.15)). First, we must generalize the exchange relation
EyEq = q%Elg + q_%Em to rewrite products of the form E&Ef The following lemma is a

straightforward consequence of the g-binomial theorem:
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Lemma 3.13. If X and Y are commuting elements in a Q(q)-algebra, then

k-1

[T x+v) =

¢’ m XIyk—i
=0 I

.
o

fork > 1.

Corollary 3.14. For k > 1,

12 2 |k P k—i
N 3.9)
§=0 q
1 i k
_ 152 -2 y .
Bi(Ro B = 0" 8] (o mELY). (310)
j=0 q

Proof. Note that (q%E12+q_%E21)E1 = EI(Q%EIQ‘H]_%EQl)- Since FoFy = q%Em-l-q_%EQh

it follows that

k-1 k-1

EyEf = H(qur%Eu 4T Ey) = g H ¢ Erg + B,
j=0 Jj=0
since
k—1 -
H q_J_E = qszO 73 = q_%(k_l)k_%k = q_%kQ
§=0

So (3.9) follows from Lemma since E19 commutes with E;. The proof of (3.10) proceeds

by a similar argument since

1 1 3
Ey(FroEy) = Fi(q2E129+q 2FE21) —q2 K110 Ey

= q%(Fl o E2) + q_%F1E21

(and since Fj o E19 commutes with Fy Fo; = F) o E9). O

35



Lemma 3.15. For all a,b,c € Z>o,
g 20T (Fy 0 E19)(Fy o By)PES

1s in the double canonical basis.

Proof. Bar-invariance follows from Lemma [3.3] We have

q—%a(b—i—c) (Fl (e] Elg)a(Fl @) El)bEf

R0t S (gt ghalghegatitten (@ b
q? ! q?

0<j<a,0<I<b

G+ a+b—j—1 —1Lj(a—j) ;i pbt+c—1 pa—j
x K4 o Fy g 2/ @) gl phtelpY

_ g 3alb+o) 3 (1) H g HgaalgUtDeq(at)bre=d) ~Sia—j) |@ b
7’ l 7

0<j<a,0<I<b
J<b+c—I

Gl patb—— 1 gy gabbe—l—j ma—j
X K17 o Fy (EyEy)EY Eqy

+q—§a(b+c) Z (_1)j+lqj+lq%alq(j-l—l)cq(a—l-j)(b-l—c—l)q—%j(a,—j) a b
7 ! 7

0<j<a,0<I<b
j>b+c—l1

% K_']:l_l o Fla—l-b—j—lE%'—b—C-i-l (ES—FC_ZEi)—’_C—l)ETQ—j-
Using Cor. [3.13] we expand the first sum to get

qf%a(b+c) Z (_1)j+lqj+lq%alq(j+l)cq(a+j)(b+cfl)qf%j(afj)

0<j<a,0<I<b
j<btc—1

J+ a+b—j—l J g\ pmbte—l—j pa—j
X K1y o Fy x (EyEq)EY Eqy

_ q—%a(b—l—c) Z (_1)j+zqj+zq§azq(j+z)cq(a+j)(b+c—Z)q— Li(a—j)

0<j<a,0<I<b
J<btc—I

J .
j+l a+b—j—1 —142 r2 |J r j—r pbte—l—j
X Kip ol q 2 E T | , 125 £y
r=0

LB

- Z (—1)iH g+ i (e gr(be—j—1-+7) [a
J

0<r<j<a,0<I<b
j<b+c—I
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L . ) I .
% KJJ{I <>Fa+b j— lq2(b+c—l—])(a—23+2r)Ei>+C l JE1iL2 j+TE%1 T

Similarly, the second sum becomes

q—%a(b-&-c) Z (— 1)g+lq]+zq;az (j-H)c (a+37)(b+c— 1)q jla—j) |@ b
q? ’ q?

0<j<a,0<I<b
J>b4c—l1

G+l a+b—j—1 pj—b—c+l / mmb+c—1 prb+ce—1\ pa—j
X Ky o Fy Ey (B3 Eq )E1s

:q—%a(b—l—c) Z (— 1)]+lqj+lq2 Lglithe q(a+j)(b+c—l)q—§j(a—j) Q_ b
‘s ! 9

0<j<a,0<I<b J.
bl
b+c—1
]+l a+b—j—l j—b—c+l _—1(b+c—1)? b—l—C—l a—j+r pbt+c—l—r
x K7t o Y B g2 S g EYy " Ey
r=0 dq?

_ Z (1) H g HqUHDeqi(el) gr(G—b—ctitn) [a] H [b+0—l]
q2

] T
0<j<a,0<I<b
0<r<b+c—I<j

% K]J{loFaer j— lq—%(g b—c+l1)(a—j-+2r—b— c+l)E%'*b*CJrlEil;jJrTEg;rC*l*T.

Thus q_%“(b+c)(F1 o E12)%(F} o F1)PE§ has correct triangularity. O

Corollary 3.16. Let S be one of the following sets:

{F1,F) 0 Ej2,F) 0 FEy, Eo},
{F1 0 FE3,F,0FE, Ey, Ea},
{F1 0 Eg, By, Erg, B},
{Fi 0 E19, E9, E12, Ea1 },
{F1, Fy o B2, B, B},
{F1,F| 0 E13,F) 0 Eq, Fi2},

{Fi 0 Eyg, Fy 0 By, By, Fia}.

Bar-invariant products of monomials in S with a power of q% belong to the double canonical

basis.
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Proof. From Lemma we see that qféa(b“) (F1 0 E12)*(Fy o B1)PES satisfies the assump-
tions of Lemma Cor. O

The following lemmata establish that Z; and Zs play the role of coefficients (this

statement is made precise in Section [3.3)).

Lemma 3.17. For all a,b,x,y € Z>o, qfé(afb)(xfy)q%“bFQ"Ff’FfQFgl is in the Z[q]-span of

the dual canonical basis of U, .

Proof. If a > b, we have
12 b 2 |b
a1 ) . b
F2aF1bFf2F2y1:F2a bq 2? ZQJ []] 2l':i?czﬂlrﬁyfr ’
§=0 q

(@) =)~ Sab a0+ [b] g~ H D2y pa—b e b
q2

J

Il
<.
S Mw
(e}

q%(a—b)(ac—y)q—%abq(a—b)j—i—j2 B] b_(0,a—j,x+jy+b—j).
q2

=0

.

If a < b, we have

a

_ 1,2 2 la
FyFFhF) =q 3¢ Zq] [
j=0

] Fl,Fy 7V FI iy FY,
J 2

a
_ b-0)2i—a) ~ 3a? Z 7 [(71] Fo-apeti pyta=
=0 ¢

a
_ Z q%(a—b)(ac—y)q%abq(b—a)j-l-j2 [ﬂ q%(b—a)(ﬂf+2j_y_a)FlbfaFlwernglJraij
i=0 -

— Z q%(a—b)(:f—:t/)q%abq(b—a)j-i-j2 [ﬂ b_(b—a,0,2+j,y+a—j).
=0 ¢

In either case, these computations show that q_%(“_b)(x_y)q%“ngF{’FfQFé’l is a Z[q]-linear

combination of dual basis elements. O
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For the proof of Corollary [3.18] observe that

T(q—%(a—b)(x—y)q%abpélpfplﬂf2p21/1) — q_%(“_b)(m_y)q%“bEi/QEQxlEll’Eg

_ q%(afb)(zfy)q%“bEi’EgE%E%l

is also in the the Z[g|-span of the dual canonical basis.

Corollary 3.18. For all n,m € Z>q, (Fi2 0 E21)™(Fa1 0 E12)" is in the double canonical

basis.

Proof. We have

(Fi2 0 Eo1)"(Fo1 0 E12)™
o
=> pulg) K\ KL, P Ry BT RS
.l

X Z Prs(@) K Ko Fy 5 "By By

7,8

= 5 pit(@)pes(@)g~ ™) gRI D) gD 0=r) =) =) glr—8) =) e eI s

Jslsr,s
r—s =l pm—j pm—r pj—l pr—s pn—r pm—j
X Fy CF) Fyy Fy By By TEjy By

= > pil@prs()d® KK U R R B BT By B T By

Jlbyr,s

where 0 <1 <j<m,0<s<r<n,and
; ; n ] m r
pitlq) = (1) H g/t M m , prs(q) = (=) [T} L] € qZq).
q? ¢ q q?
By rewriting

AT ) D' DY DYl DUml Xl D) Dl Dl
= g3 (r=s=iHD(m—jmntn) (3 (r=)G=]) pr—s i~ prn—d

% q%(T_S_j-H)(m_j_n+r)q%(T_S)(j_l)E{_lEg_sE&_TEg}_j

9
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we conclude from Lemma that (Fig o Fa1)™(F1 o Ej2)™ is in the double canonical

basis. -

Lemma 3.19. For all m,n € Z>g, products of (Fiz 0 E1)™(F21 0 E12)" with dual canonical

basis elements are (up to a power of q%) in the double canonical basis.

Proof. From Lemma we have

q%a(n_m)Ff(Flz 0 Eo1)™(Fy1 0 E)"

= gzar=m) > Pirs(q)q?0 ) g 30D KT R o g9 py=ste =t i

Jslsr,s
J—l pr—s rm—r pm—j
x By "Ey "Eyy By
_ as_—xa(m—j—ntr) rl+r oi+s za(j=1) ,(r=s)(i=1) pr—s+a pi—l pm—j pn—r
= ijlrs(Q)q g 2em )K+1 K1y 0q2 U=glr==) )Fz Fy T Fy TFy
Jslsr,s
J—l pr—s rm—r pm—j
x By Ey "Eyy By

where 0 <[ <5< m,0<s<r<n,and

i j n ] m r
pans) = -y 5] [ L) ot
j q2 q2 r q2 S q2
But we know from (the proof of) Lemma that
q%a(j—l)q(r—s)(j—l)F27“75+aF1j*lFle21*jF2nfrE{'*lngsE{LerEgi*j
is in the q%“(m_j _”+’")Z[q]-span of products of dual canonical basis elements. So

q%a(n_m)Fga(Fm 0 Eg1)™(Fy 0 Eqa)"

is in the double canonical basis.

From the above computation and the proof of Cor. [3.18] we know that

q%a(n_m)Fga(Flz 0 Eo1)™(Fy 0 Eqa)"
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is in the Z[q]-span of elements which look like q“stHK fgsbj_lr Sb;rlr s Where

bips =b- (0,7 —s+a—j+1m—j+in—r—i

or

bj_m:b_(j—l—r+s—a,0,m—j+i,n—r—i)

where 0 <1 <j<m,0<s<r<n,and i <min(j —I,r — s+ a). Note that dual canonical

basis elements of the form b_(0,0, a,b) quasi-commute with each summand. Since

as+m—m—j+i)+l+r—(j+s)=as+l+r—s—i

=l+r—s+a—it+a(s—1)€Z>g
and
as+(m—j+i)—m+j+s=as+i+s € Lo,

we conclude from Lemma that (Fi2 0 Ea1)™(Fa1 0 E12)"b—(0,0,a,b) is (up to a power

of q%) a double basis element. The remaining cases are proved using symmetry and 7. [

Corollary 3.20. For all m,n € Zs>o, products of (Fiz o Ea1)™(F21 o E12)"™ with double

canonical basis elements are (up to a power of q%) in the double canonical basis.

Proof. Let B_ o B4 be a double basis element and write

B_oBi =B By+Y pi(g)Ky ob by,
jeJ

where J is a finite index set, p;(q) € ¢Z[q], and

degQQZO b_jby; + degQéo K)\j = degQéo B_B..
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Since Z"Z3 has Q-degree zero,

(B_oBL)Z'Z3 = BZ} Z5' By + 3 py(a) Ky, 0 by 21" Z5bs;.
jeJ

The result follows immediately from Lemma O

Proposition 3.21. Let S be any subset of
X ={E1, Es, Erg, Eo1, F1, Fy, Fia, Fo1,C 1,012, A1, Ao, Hy, Hy, T'1, T2}

whose elements quasi-commute. Quantum cluster monomials in S U{K 1, K9, 721, Z2} are
double basis elements (and conversely, every double basis element is such a monomial).
Proof. First, we apply Cor. to B_o B, = A} and B’ o B/, = H}. Since A; satisfies
the requirements of Lemma Cor. and

1 1
—i(Kij, |AT]) — 5(—7’3 +r(s=1)—rs+r(s—=1))=0

the proposition holds for S = {A;, H;}. Now we apply Cor. to B_o By =T and
B’ o B! = q"A]H;}. Since I'} satisfies the requirements of Lemma Cor. and

,%(KiiKij,|F?|)q—%(rn—(r—j+l)n—sn—(s—l+j)n) — ¢
)

q

the proposition holds for S = {A4;, H;,T';}. Observe also that quantum cluster monomials

in {A;, H;,I';} satisfy the requirement of Lemma [3.10/Cor. [3.11] (see the remark following

the proof of that lemma). We conclude that the proposition holds for any S consisting of

quasi-commuting elements from

{Ai, H;, Fl} uB" U Bl_:_p

The remaining cases follow from Cor. [3.16] using symmetry and 7. O
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3.3 Proof of Theorem [3.1]

Let _ -
O -1 0 O
1 0 1 1
0O -1 0 o0
0O -1 0 O
B= 0 0 0 -1
-1 1 0 0
-1 0 0 0
| 0 1 -1 0
and _ A
0O 0 0 1 0 1 1 0
0 O 1 1 0 0O 0 0
o -1 0 -1 -1 -2 1 1
A= -1 1 1 0 1 1 -2 -1
0 o0 1 -1 0 0O 0 0
-1 0 2 -1 0 0O 0 0
-1 0 -1 2 0 0O 0 0
O 0 -1 1 0 0O 0 0

Observe that B is the first four columns of the adjacency matrix of the quiver in Thm.
and A is the quasi-commutation matrix of {Fio,T', By, A1, Zo, K11, K2, 71} (ordered from
left to right). These matrices are compatible since BT A is a block matrix consisting of a
4 x 4 diagonal matrix with 2’s on the diagonal followed by the 4 x 4 zero matrix. Label the

quiver () as follows:

6]
[N

|
{— [

In the notation of Theorem the defining relations of .qu/z (Q,A) are

X1 X1 = X2+ qXe X7,

Xo X} = X6Xs + qX1X3X4,
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XX} =q 2 Xo + q2 X5,
Xy X = Q%Xz + Q%X5

since the principal part of @ is acyclic (it is an orientation of the Dynkin diagram Dy).
Observe that

FioE12 =11 +qK11 Ko,

[1Ch1 = (Fi2E12 — ¢K 11 Kp9)(F1 By — ¢K41)
= Fia(A1 + ¢ ' K110 Bo)Ey — qK (1 Ko F By — qK 41 FiaE1 + ¢* K31 Ko
= F1oA1 By + K41 Fia(qFErs + Fo1) — ¢K 1 KoL By — gK 41 FiaEi + P K31 Ko
= qF12F1 A1 + K1 (Fi2B2 — qK 2 F1 By + ¢ K1 K 19)

=qF Bl A+ K172y,

E\H, = Ey(Fi2E3; — qK 120 F)
1 1 3 1
=Fi2(q¢ 2E12+q2Ey) —q2 K o(F By + (¢ — q) K1)

1 1
=q 2T +q227,.
By symmetry, EsHy = q_%Fg + q%ZQ. Applying 7 gives
1 1
A Fy = q 2T+ q2 2.

Therefore the assignments X; — Fig, X9 — ', X3 — Ey, Xy — A1, X — FEi9, X}, —
Cy1, X5 — Hy, X} — F» determine a surjective algebra homomorphism (after extending

scalars)

¢+ Ap2(Q,A) = Hi (sl3),
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where 7/-2; (sl3) denotes H, localized at the multiplicative submonoid generated by Z; and
Zo. The isomorphism ¢ restricts to a bijection between the quantum cluster variables and
the subset X of double canonical basis elements listed in Thm. [3.1} For example, mutating
@ repeatedly at vertices 1, 3, 4, and 2 (in that order) produces the non-initial cluster
variables F1o, H1, Fy, C1o, Fo1, Aa, Eo,T's, Eo1, Fy, Ho, and C11. Furthermore, ¢ determines
a bijection between the quantum clusters and the maximal quasi-commuting subsets of X
listed at the beginning of Section So ¢ takes quantum cluster monomials (a basis for

Aq1/2 (Q,A)) to double canonical basis elements and is therefore an isomorphism.
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Chapter 4

The double canonical basis of U,(p)

Let Uy(p) be the subalgebra of Uq(EE) generated by F1, K_1, K1, K_o, K 9, and Uq+. Note
that the modified Lusztig symmetry 7 restricts to an automorphism 77 : Uy(p) — Uq(p).
Through symmetry and the use of 7, the computations in this chapter apply to any of the
four parabolic subalgebras of U, (;[;)

In this chapter, we investigate the structure of the double canonical basis of Uy(p). For
[ > —1, we define elements A; and B; of U,(p) called A-elements and B-elements, respectively.

The main result of this section is the following theorem:

Theorem 4.1. The A-elements and B-elements belong to the double canonical basis. To-
gether with Fy and E1, they are the exchangeable quantum cluster variables for a quantum

cluster algebra structure on Uy(p) with type A, initial quiver

Ey IOP) K

ST N

K Eo

where K_1, K1, K_2, K2, and D1 = F) @ E19Fs; are coefficients. The set of quantum

clusters is preserved by the automorphism Ty : Uy(p) — Uy(p). For m > 0, quantum cluster
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monomials from {Fi, Aom—1, Aom+1, D1, Ki1, Kio} and {F1, Aom—1, Aom+1, D1, K41, K2}

are contained in the double canonical basis.

The coefficients K_o and K9 never appear in exchange relations (that is, there are
no arrows in the initial quiver () whose source or target is a vertex corresponding to K_o
or K9). Therefore we omit these vertices from @ and ignore K_o and K9 in the proofs

that follow. Thm. is an immediate corollary of Prop.’s [£.21] [£:22] and [£.27] Although

C, = Fy e E; is not a quantum cluster variable, we also show (Cor. that modified
quantum cluster monomials in {Fy, D1,Cq, K11, K12} and {D1,C1, Eq1, K11, K12} belong

to the double canonical basis. Here we use “modified quantum cluster monomials” to mean

1/2

the unique bar-invariant multiple of a power of ¢*/* with a monomial but with powers C’f

replaced by the Chebyshev polynomials CEk) (see Ex. [2.15)).

4.1 The image of + and the element I} e Fy

We begin with some observations about the linear inclusion ¢ : H;r(;[;,) — Uy (;[;) Observe

that L(ElgFl) = F19FY, and thus
L(F] o Efy) = 1((F1 0 E12)") = (F1 ® E12)" = F] e EY,.

Note also that that Fy e 1o commutes with F; and E1s, and (Fye E12)Ey = ¢ 1 Ey(Fy e Eyo).

We can now describe ¢ applied to all elements F| o b, computed in the previous chapter:
Wq>*TVF] (Fy 0 Byo) B3 BS)) = q2* T FY (F) o Byo) B3 B,

(g (Fy o F1o) Bl B§ES) = g2 O(Fy o Bro) B, B3 B,

1

(g 2@ (Fy o o) B EES)) = q_%(aer_c)s(Fl o E12)" B B ES),

N

1 —
(g2 T (Fy 0 B1)"CY ESy) = ¢ 2P F] (Fy o Erp)u(CY) S,
(g2 @Iy 0 Brp) O B ES)) = g 2 “HOUH) (P 0 Biy)au(CY) B B,
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Observe also that F; and Es; do not commute in Uq(ﬁ;). Applying o to E1oF) = F1E1o +

(¢! — q) K41 ¢ Ea, we have
By Fy = FiEy + (q—q¢ K _10Ey

and thus

F1 [ E21 = F1E21 — q_lel OEQ = L(Fl o E21) — q_lK,1 <>E2.

Observe that F| @ Ey; = o(Fy e F13). Applying o to (Fy e E12)*, we have

k
[k ‘ L N g g
(Fre Bn)' =) (-1)q” H 2K11<>(12](k D E}Eyy”
§=0 q
= FFeEb.

It also follows that F; e E91 quasi-commutes with Fj, Fo, and Eo;.

4.2 The central element D,

In this section we show that the element D; = F} @ Ej3F9; is central in Uy(p) and that its
powers belong to the double canonical basis. We also show that dual basis elements from
Uq+ , as well as ka) , remain in the double canonical basis when multiplied by powers of D;.

Although Fj o E15 and E5; commute in 7—[;(5(3), Fy e E15 = 1(Fy o Eq2) and E9; do not

commute in Uq(;[g). Instead, we have
1
(Fy ® E12)Eo = Exi(Fi e E12) + (¢ — q)K_1q" 2 E2Exs

and thus

1
(Fy @ B12)Fo — ¢ 'K_1q" 2 B2 Exs
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is bar-invariant. Since ¢(F} o E19E91) = (F @ F12)FEs1, we have
1
Fy e B13Ey = (Fy @ E19) B — ¢ ' K_1q" 2 ExFys. (4.1)

Lemma 4.2. The element Fy © E19Es; is central in Uy(p).

Proof. Commutation with Fo, K11, and K1o is immediate. For F}, we have

1
(Fy @ E19F91)Fy = ((Fy @ B12)Ea1 — ¢ 'K_1q 2 E3F19) Fy
1
= (Fy @ Ey2)(F1Eo1 + (¢ — ¢ K- 10 F») —q ' K_1q 2By
X (FiEi2 + (7" = @) K110 B)
1
=\ (Fi @ E12)En + (1 — ¢ ?)K_1q 2 (F)  E12) By
1 1 2
—K_ g 2(FieEp)Ey —q K 1K 1B
1 _
= Fy(F) @ E19)Ey — q *K_1q"2(Fy ¢ E\2)Ey — ¢ 'K_1 K41 E3
1 _
= F\(Fy @ E19)Ey — ¢ K _1(Fiq 2EyE1s — * K1 F3) — ¢ 'K_1K1E3

= Fl(Fl [ ] E12E21).
For the E; computation, we first observe that

Ei(Fye Ep) = (FiE + (¢ = )K + (¢ — ¢ )K_1)E12 — ¢ ' K41 (Ei2 + qEa)
= F\E1E1y — qK1Fvo — KBy + (¢ — ¢ ) K_1E1s
=q 'FiE1E — qK (B +q 'En) + (q—q¢ ) K_1En»
=q 'R EE — qK+1q7%E2E1 +(q—q HK_1E12

=q H(FLeE)E1+ (¢ —q K 1B
and thus

-1 _1
E\(F1 e E12E>) = E1((Fr e E12)Ey —q "K_1q 2EyEq9)
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=q¢ '(Fi e Ein)E1Ex + (¢ — ¢ " )K_1E12Ey
— qK_1(¢ " E12 + E2)Ers
= (Fy @ Ey9)EnE1 + (¢ — ¢ )K_1E12E2 — q ' K_1 0 B}y — qK_1E19E
= (Fy ® E12)En By — ¢ 'K_1(qF12 + En)Er2
— (Fy @ B19)En By — ¢ 'K _1q2 By 1 By

— (F1 [ ] E12E21)E1.

Lemma 4.3. Forr >0,

T
(Fie EigEy) =Y (—1)/q 7 m . K7 u(F{ ™ o q 2 BB}, By ) = FY o EY,E},.
=0 a

Proof. We use induction on r. The base case holds by (4.1]). Suppose the claim holds for

r — 1. Since (Fy ® E12F12)" ! is central in Uy (p), we have

1
(Fy @ E19E9)" = ((Fy @ E12)E — ¢ ' K_1q 2 E3F19)(Fy @ E1aFp2)" !

1
= (Fy @ E12)(F1 @ E12F19)" ' Eo1 — ¢ ' K_1(Fy @ E1aF19)" 1q 2 B2 Ero.

Using o(F! 27 o ¢ 2" BIE;VENTY) = ¢ 38 i U(Fy o By EIELENTY ) our
assumption gives

r—1

P P | S 3. IV
(Fl'E12E21)T:Z(—1)jq ig=% [ j } K? g 27 ¢/"(Fy e Evn) BB, By 7
i=0 a?
r—1 ” 1 5
— _ s e o
+Z(_1)J+1q j-1 [ ; } QK]_-il- q 2(j+1) q(j+1)r(F1.E12)r 1—j
j=0 a

G+1 jt+l r—1—j
x By By By

T
=> (-1)q”’ <q_2j [r ; 1] + B - ﬂ > K7 g2 7" (Fy @ Erp)" ™
=0 v "
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x B} E{zET J
r . L
o . e 1 L
=>oava [ KL oa BB,
§=0 a
which completes the proof. O

Using the formula in Lemma a straightforward computation shows:

Corollary 4.4. Quantum cluster monomials in {Ea, E12, F21, D1} and {E1, E12, Ea1, D1}

belong to the double canonical basis.
Lemma 4.5. For r,k € Z>o, D{ka) 15 in the double canonical basis.

Proof. We fix r and show by induction on s that D7.(C%,) has correct triangularity. We

claim that

1(C) = E21+ZKmJKn] “Hb;
jeJ

where J is a finite index set, c; (¢Y) € ¢7'Z[g7 1], and b; has one of the following four forms:
(1) b =q 29 EY AT B
where oj > 1,5; > 1 and —m; +n; + ; <0,
(2) b =g B AT B,
where a; > 0,8; > 1 and —m; +n; <0,
(3) by =q TP ATTY B BT Y
where o; > 1,8; > 1 and —m; +n; +a; + 5; <0, or

(1) by =g TIIAT O By B,
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where a; > 0,8; > 0 and —m; +n; + a; < 0. The claim for s = 0 is established in Lemma

For the inductive step, observe that
DRUCE) = FLDIUCE ) Er — aKaa D(CS).

We begin by computing the Fy K T_nf KijlbjEl for each b;. For notational simplicity, we write

a in computations instead of «;, etc. First, we have for type (1) terms

FlKTlelq_%a(w_a)EgAgfaE1ﬂ2E§f6E1

= q_2m+2nKT1Ki1q_%Q(QB_Q)Eg TTFLE — qK 410 BBy VB U E
g K g 3000 28 g Ar—e gl L L 03 By By

= g AR K g 200 e el Aot B B P (gh By + g2 B
+ q_2m+2nKT1K-ﬁrlq_%a(m_a)quélA?{_aEfz_lngﬂ(CIE12 + Eo1)

_ q—2m+2n+ﬂKT1Kf,flq‘%(a—l)(%‘o‘“)E§*1A§*““Ef2E§;5
+ q—2m+2n+ﬁ—aKT1Kilq—%(a—l)(QB—a—l)EnglA11“7a+1E1ﬁ271E12”1*/3+1
g2 e ety m 30200 po Ar-a g prf

+ q72m+2n+2B7aKin1Ki—1‘rlq7%a(ZB*a*Q)EgAq—aElﬁQ—lEgl—ﬁ-f—l.

If —m; +n; + B < 0, then each summand has the desired form. That is, either the terms
remain of type (1) (when oy, 8; > 1) and —mj1 + njy1 + Bj41 < 0, or they are of types
(2)-(4) and satisfy the corresponding assumptions there. If —m; +n; + 8 = 0, then every
summand has the desired form except the third. Such terms, however, also appear in

qK11D71(C7) and are therefore cancelled in D{L(C’_‘f{l). For types (2)-(4), we compute

FK™ K Feq2 Pt f) gl AP Ere gy
_ q—2m+2n—ﬂ—2aKTlK:L_nF1a+1q%B(Za—&—ﬂ)EzﬁflA?lﬂfafﬁ(q%EIQ + q—%Em)E;f»a

= q_2m+2n_ﬁ_2aKT1KﬁlFf‘q%ﬂ(erﬂ)EzﬁflA;faﬁBq%(F1E12 — qK 1 0 Ey)ES
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g R K gt B AT By
72m+2n7572aKm K" Fa—i—l %B(2a+5) 7%Eﬂ—lAr—a—ﬁEr+a+1
q 1841t g q 2 1 21
— q72m+2nfaK:n1KJ1lelaq%(Bfl)(2a+,871)EQﬁ—lAvl’—oz—ﬁ-‘rlEgi&—oa
q_2m+2n+1KT1K_TGHF{lq%ﬁ(2a+ﬁ)E§A§_a_ﬂngﬂ

q—2m+2n—ﬁ—o¢K7_n1K11F1a+1q%(B—1)(2a+ﬁ+1)E§—1A71“—a—5E£ii-a+l’

FIK™ K q et B ATt gl B B By
= ¢ 2K K g O AT (R By — qK 4y 0 Bo) By By PO BT
+ q—2m+2n+2a+2ﬁKT1KiJlrlq—a(a+B)A1l“+aE1ﬁ271E12“;Bfa(quz + E21)Ef‘
— q72m+2nK77n1Kilq—(a+1)(a+B)Avlﬂ+a+1ElﬁglEgl—ﬁ—aE?ﬂ
+ q72m+2n+2a+25+1 K™ Kijlq qfa(a+,8) A71~+a E% Egl—ﬁ—a B

+ q_2m+2n+a+2/BKT1Kz—flq_a(a+6_1)A;+aE152_1E;1_ﬂ_a+1Ef‘7

— (a2 _
PRI g0 Ao By e By
_ q—2m+2n—r+aK7_n1Kilq—(oﬁ—}—,@r)A;—&-aFlL(Cﬁl)ElEgl—aE?
_ _ (a2 _
= g TR K g O AT (P (C ) By — gK ae(CF)) By B

+ q72m+2n+2a+1K£n1Kz—li-qu(a2+ﬁr)A7l"+aL(C£1)Egl—anla'

In each case, as in type (1), any terms which do not have the desired form are cancelled in
’{L(Cﬁl) by terms in ¢K;1D7t(C%) (and thus all of ¢K 1 D7(C%,) is cancelled). The

remaining terms satisfy the requirements on m;i1,nj41, ajq1, and Bj41. O

Corollary 4.6. Modified quantum cluster monomials in {Fy,C1,D1} and {E1,Cy, D1}

belong to the double canonical basis.
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Proof. The proof for {Fy,C1, D1} proceeds as for Lemma The proof for {E1,Cy, D1} is

a routine computation using Lemma [3.13 O
Generalizing the proof of Lemma we also conclude:

Lemma 4.7. Quantum cluster monomials in {F1, Ea, A1, D1} are contained in the double

canonical basis. Furthermore, although not bar-invariant,
o —Ls(utv) luvAuEvDTC(S)
19 * qz 1270
and
Prq =t A DiCY

have correct triangularity.

4.3 A-elements and B-elements

In this section we introduce the A-elements and B-elements and prove that they are double
canonical basis elements.

Recall that Fle Fyo = F1F19o—qK10FEs and Fie Foy = F Fo1 —qK_1 ¢ Fy. Furthermore,
Ey(Fy e E1n) =q 1(FL e E12)Ey + (¢ — ¢ 1) K_1FE15 and thus

e Q%E1E12 = (f%(ﬂ e Ep)E) —q 'K 10 Fs.

Definition 4.8. Let A_ | = Ey, Ag = E15 and Ay = F} e E15. For m € Z~, define the
A-elements by

1
Agn = q 2 As 1B — ¢ 'K _1 0 Agpy_o

and let

Aoy = Fi1Aoym — qK 11 0 Aoyt
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Definition 4.9. Let B_{ = E5, By = E>1 and B; = I e E»;. For m € Z~, let
1
Boy, = q2Boy—1E1 — qK_1 0 Agpy—2
and let
Bom+y1 = F1Baoy —q 'K _1 0 Bop1.
We call these B-elements.

Note that for all I > 0, 0(4;) = B;. We show in Prop. that each A; and B;
belongs to the double canonical basis. First, we use the braid group action to establish

bar-invariance.
Lemma 4.10. For m € Z>,
Tl(AZm—l) - K:inKlinfbm
and
Ti(Agm) = KK ™ 6 Aoy 1.
In particular, each A-element is preserved by the bar-involution.
Proof. We use induction on m. First, we have
1 1
Ti(Ao) = (¢ — q ) ' Ti(q2 B2 By — ¢~ 2 E1E»)
1 _ 3.
=(q—q ") g 2EK {F —q K {FEp)
=(q—q 'K o (qE1F — ¢ "FiE)

=(g-¢ )T K {o((g— g HFRE+ (1 -¢*)Ki10E,)

-1
=n4 <>A1.
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Next, we have

Ti1(A1) =T (F1E12 — K41 0 Ey)
= ¢ 'K_{E\K | o(F e E1n) — qK i o By
1
= K:%K;%(QEEI(FI o E13) —qK_1 0 E)

= K7 KAy,

which completes the base case. Suppose the lemma holds for all | < m. Then A, is

bar-invariant since 7 (Ay(y,—1)) = K jm*l)K 11" © A2m—1. Therefore

T1(A2m—1) = Ti(F1A2m—2 — qK 110 Ao 3)
=q 'K {E\Ti(Agp—2) — thl o T1(A2pm—3)
— ¢ KT E(K VKT 0 Aoy 1) — gK T o KTV R M Ay,
— K"K "q By Aoyt — gK " VKT 0 Aoy o
= K:{nKﬂn(q%ElAzm—l —qK_1 0 Agm_2)
= KK Mg Aoy 1 By — ¢ K 1 0 Ao )

= KZ"K (" Aom

(in the second to last step we apply -, using the bar-invariance of T;(Asgy,—1) and the fact

that K_1Ky; is central). So the first half of the lemma holds and Asg,, is bar-invariant.

Therefore

1 _
Ti(A2m) = T1(q 2 Aom1Er — ¢ ' K_1 0 Agyyo)
1
=q 21T} (Agm_l)q_lKlllFl — q_lKjll <>T1(A2m_2)
_ i m—m ~lp—1p —1g-—1 —(m=1) z-—m
=q 2K_1 K—H Agmq K_HFl q K—l o (K—l K+l <>A2m_1)
1 _ R _
= q_iK:TK_i_{erl)AQmFl —q 1K_I”K+Inz42m_1

= K:{”K;{mﬂ) o (AomF1 — ¢ ' K41 0 Agpyq)

56



= K:{nKﬁmH) o (F1Aom — qK 410 A1)
= K:{”Kﬂmﬂ) o Aamt1,
which completes the proof. O
Applying 0 o T} =17 ! to Lemma immediately yields:

Corollary 4.11. For all m € Z>o,
Tl_l(BQm_l) = K"K {"Ban,
and
T (Bom) = K~ VK76 By 1.
In particular, each B-element is preserved by the bar anti-involution.

The following lemmata establish quasi-commutation relations between the A-elements.

The statements for B-elements follow by applying o or o o = .
Lemma 4.12. For all m € Zzo, Ao B = quAQm and F1A2m+1 = A2m+1F1.
Proof. We use induction on m. The base case holds since F19FE1 = ¢F1 F12 and Fy (FleFE3) =

(F} @ E19) Fy. Assuming the lemma holds for m — 1, we have

1
Ao By = (¢ 2 Aoy 1By — ¢ 'Ky 0 Agy 9)Ey
1
= (q2 E1Aom—1 — qK_1 0 Agyy0) B
3
=q2E} Ay 1 — B1K 10 Agpy o

= qFE1 Ao,

FiAomi1 = Fi(F1Am — qK 41 0 Aopy—1)

= Fi (Ao F1 — ¢ 'Ky 10 Agpy 1)
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= 1Ay Py — q(K4q 0 Aopp—1) 1

= Aom1F1,

completing the proof.

Corollary 4.13. For allm € Zzo, Bo,E1 = q_lElBgm and F1Bom+t1 = Bom+1F1.

Lemma 4.14. For m € Z>o, we have the following quasi-commutation relations:
A2mA2m+1 = A2m+1A2ma

Aomi1A2m+3 = qAom3A2m1,
Aomi1Aomi2 = qAomi2A2m1,
AomAsm42 = qAami2A2m.

PTOOf. Applying T1 to Elg(Fl [J Elg) = (Fl (] E12)E12 giVGS

(Kif o A)K 1K 1Ay = KT{ K { Ao (K[| o Ay)

1 1
q_EKzllKﬁAlAz =2 K { K7 A A

A1 = qA2A;.
Similarly, Fs Ay = qAgFE>, so

AOK:llK_i__llAQ = qK:llK_T_llAQAO

AOA2 = qAQAQ.
Applying T7 again, we have

(Kf o A (KZ{K 7o As) = q(K {1 K 7o As) (K { o Ay)

¢ PK K A A = ¢ ' KC{ K P A3 Ay
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A1A3 = quAl .

So the lemma holds for m = 1. The inductive step is performed similarly.

Corollary 4.15. For all m € Z>q, we have the following quasi-commutation relations:
BamBam+1 = Bam+1Bam,

Bom+1Bam+3 = ¢ Bam+3Bam1,
Bom+1Bam+2 = ¢ Bamt2Bom 1,
BomBom+2 = q ' Bam+2Bom.
To prove Prop. we need closed forms for the A-elements and B-elements.

Lemma 4.16. For all m € Z~q,
Ao = q2™(Fy ¢ B1)™ Eyy — ¢"K 1 0 ¢ 2" V(Fy o B)™ D By,

A2m+1 = q*%m(Fl ° E12)(F1 ° El)(m) _ qié(erl)K—lK-i-lEQ(Fl ° El)(mfl).

Proof. We have

1
Ay=q 2(FieF;2)E1 —q 'K _10E
1 1 1 1
=q 2F1E9E —qK11(q2E12+q 2E9) —q 2 K_1E»

1
= q§<F1 ® EI)EIQ — qK+1 <>E21.
For Ag, we have

Az =FAy —qKi10 4

1
=q2(Fy e E1)F1F12 — ¢* K41 0 F1Fo — qK 410 (Fy @ Fy3)
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1
q2(Fr e E\)F1E12 — qK 10 (Fy @ Ejg + qF1Ey)

1
(F1eE)F1Ei2 —qK 110 (q2(F1 e E1)Ey+ K_1 o Ey)

N

q

[NIES

q2(Fre Ey)(F1e Ei2) —qK_1K11Es,

where in the second to last step we use the “exchange relation”
1 1
(F1e Ey)Ey = q 2(F) @ E12) +q2(F1 @ Ea).

(This is not a true exchange relation since neither F} @ F15 nor Fj e Fo quasi-commute with
Fy e E1.) Applying the bar involution completes the base case. Assuming the lemma holds

for m, we have

Ty (Asy) = T1(q%m(F1 . E1)(m)E12 —q"Ki0 q_%(m_l)(Fl 4 El)(m_l)Eﬂ)
= KK (P e By) K o (Fy e Eo)
— MK oq 2TV K (Fy e By) MY By

= K"K "o (q2™(Fy o EN)™(Fy o Erg) — 2™ VK K (Fy o Ey) ™V Ey),

T (Agmsr) = T1(q2™(Fy @ B) ™ (Fy o E1p) — g2 ™MD K_ K1 (Fy o E1)™ D Ey)
— 2K 'K (Fy e BY) ™K LK g2 (Fy @ Er)Erg — qK 41 0 Eay)
— DRI K IR K N (e By) Y B
= K:?FlKlrfl(q%(mH)(Fl o )™ (Fy 0 Ey)Eya — q%mHKﬂ o (FyeEy)Ey
- q%(m_‘—l)KflKJrl(Fl o £)m VR,

1 1
= K:in_lKﬁn_l(qﬂmH)(ﬂ o )™V E, — 2K Ly o (Fy e Ey)Eay),

which completes the proof. O
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Corollary 4.17. For all m € Z~y,
Boy, = q_%m(ﬂ o) ™Ey —qg K _j 0 q%(m_l)(Fl o £)m VR,

L 1
Bomi1=q 2" (F1 ¢ E1)™(Fy e Ey) — q 2K K1 (Fy e By)™ VE;.

Lemma 4.18. Forr € Z~g,
q2"U(FT 0 BY)Eyg = o(FT 0 q2" B Eps) + ¢ K4y 0 o(FT Lo g 2V ET 1 By,

q 2 Esu(F] o EY) = o(F} 0 q2" " VEI " Eyo) + ¢ "u(F] o g 2"V E[ 1 Eyy).

Proof. For the first equation, we compute

U(FT 0 q2"ET Eyy)

= qfér(Fl ) Elg)L(F{_l o EI_l)El

= q—%r (—l)jqzj |:7" ; 1:| KilF{_l_j(FlEm — qK+1 QEQ)EI_j
pe:
_1 ; lr—1 i i
=q 2" ((_UJQT-H[ i :| 2KilFl7‘ JE71" JE12
q

. . L -1 . L L
+(_1)]+1q2]+1q2(r 1—5) |:T j :| KitlF{ 1 ](quz —G—Egl)EI j 1)
q?

r—1
1 o lr=1 . . s
=4’ ((—1)%1][ ; ] K, F 7 E{ 7 Eyy
Jj=0 q?
j i r—1 ; I
(=1 1)[ j ] KRR JE12>
q
L r—1 . T ‘ ' .
_q_QTZ(—l)JQTﬂ[ i ] K R g gy
Jj=0 q>
ZQ§TZ(—1)JQJ ([ ; } 4 29 [,_1] )K?HF{JEIJEH
7=0 q> J e
3 - P ir—1 ; : ,
Jj=0 q
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J gpr—j pr—j
K F/ 7B By
2
q

— Ko (B o g 20T BT By

= q%TL(Flr o E{)Elz — qu_H <o L(Flr_l o qié(T*l)E{_lEzl).
For the second equation, it follows from Lemma that in Hf (sl3),

¢ 2 Ea(F] 0 EY) = q 3" Ey(Fy 0 By)(F] 1o B} 1)

g2 (g% (Fy o Era) + ¢ 2F1Eg))(FI ' o B]7Y)

=q 2 V(Fo Bu)(F] Lo BT ) + ¢ ¢ 20UV R (F] 7 o By By
= (Flr o q%(ril)E{_lElg) -+ qiT(F{ o qié(ril)EI_lEm).
The result follows since «(E2(F] o EY)) = Eau(F] o EY). O

Proposition 4.19. The A-elements belong to the double canonical basis. Specifically,
Aoy, = F{" 0 by (m,0,1,0)

and

Ay = F" e by (m,0,1,0).

Proof. We have already established that the A-elements are bar-invariant. It remains to

show that they have correct triangularity. Using Lemma |4.18, we compute

q%m(Fl o )™ Ey,

=™ Y (-~ [m - Z] H <KZ K o f(F o E{"*"*j)) E1
g2 g2

0<i<j J !
i+5<m
= (—1)Ig 7 {m . Z] M K7 K 0 a0 (B o BT By
0<i<j I dg2 Vg2
i+j<m
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0<i<j J !
i+j<m
SRR
0<iej J q-2 Lt g—2
i+j<m—1

X KL K o (B o g s et gy,
We also have

q"Ki10 q_%(m_l)(Fl o £1)m Yy,

= Y (g [m _jl : Z} . M S

0<i<j
i+j<m—1

o A
x K7 K o y(FP 170 o gma(molmimi) prmi=imi gy,
Combining these expressions using Lemma [£.16], we have

Age = q2"(Fy 0 B1) ™ Erp — ¢" Ky 0 q 2D (Fy o By) TV By

= > (W [m_] H KV Ky o o ) o qa M g )
q—2 q=2

0<i<;j J !

itj<m

s e ] ()
OSZS] 1 q—2 ] q—2 ] q—2
i+j<m—1

X KleiJil ou(F" o qié(m*lfifj)EIn_l_i_jEm)

- Z (_l)jq_j_i2+i [m ] Z] []] KilK—iH © L(aniiij © q%(m_i_j)EInfiijm)
g2 g2

—~ J ?
0<i<y
+j<m
Cm—i249i | m—1—1
+ Z (_1)]q m—i°+2i |::| |: ‘ :|
0<i<j ezl I=1 S
i+j<m—1

. , P DA L
XKj_lKj_ﬁloL(Flm 1—i Tog Lim—1—i J)EI” 1—i JE21),
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and thus As,, has correct triangularity. Here we used the Gaussian binomial coefficient

I P e 1 B

For the Ag,,+1 computation, we have

identity

g 2™ (F) o E15)(Fy o Ey)™

=g Y (~1)g [m N Z] H (Fy o Ey)K' K2 o (FI" 77 0 BIV0)
q-2 q-2

0<i<j J !
+j<m
= % e P W R o I « B o )
0<:<yg q- q-
i
0<2<yg q- q-
2—1—_]Z§_'f771

and using Lemma [1.18]

g 2" DK K Ey(Fy e By)™ !

- Z (—1)ig 21 [m _jl - Z] M KV RS o g 3m=1-i=i) g
q-2? q-2

xu(F o B
Il e I =
J q-2 q-2
o (L(Fim_l_i_j o q%(m_Q_i_j)Eylﬂ_2_i_jE12)

g L) (pmtid q—%(m—Q—"—j)E’f—Z_i_jEm)) :

Combining these expressions using Lemma shows that Ag,,4+1 has correct triangularity.

O
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Proposition 4.20. The B-elements belong to the double canonical basis. Specifically,
By, = F{" b (m,0,0,1)

and

Bomy1 = F" e b, (m,0,0,1).

Proof. As for As,,, the claim for Bs,, follows from Lemma For Bg,,+1, we first note

that

1 _ 1
Boms1=q 2"F(FLe E))™Ey — ¢ 'K 1 0q 2™ (Fy e Ey)™E,

—q 2K K, (Fy e By) ™R,

An argument similar to the second part of the proof of Lemma [4.18] shows

1

G2 U(FT 0 EY) By = q 2D (Fy @ Ey)o(FT Y o BT + ¢ 2" DR (FT Y o BT 1) By,

from which the claim for Bog,41 follows. O

4.4 The quantum cluster structure

From the quasi-commutation results of the previous section, we conclude that the A and
B-elements may grouped into sets X, )A(Z-,z' € Z consisting of mutually quasi-commuting
elements as follows:

{E12, Ea, E91} 1=20

Xi= {4, Ais1, A2} i€ Z0>

{Bi, Biy1,Biy2} i€ Z<o
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{Ei2,E01,E1} i=0
{Ai,Ai—2, E1} i €229
Xi={Ai, Aia, 1} i €2Z=0+1-

{Bi, BZ‘+27 El} 1 € QZ<0

{Bi; Biya, 1} i€2Z0+1

In this section, we prove that Uy(p) is isomorphic to the quantum cluster algebra described

in Thm. and that the sets X, )/ii,i € Z are the quantum clusters.

Proposition 4.21. The algebra Uy(p) is isomorphic to the quantum cluster algebra with

iatial quiver

and quasi-commutation matriz

0o 1 -1 -1 1 o0
-1 0 0 1 —-10
1 0 0 1 =10
A= 1 -1 -1 0 0 O
-1 1 1 0 0 0
|00 0 0 0 O0f
Proof. We have
[0 1 -1}
-1 0 -1
11 0
B= 0o 0 -1
0 -1 0
|01 -1

and thus BTA = [2[3 03,3], so the compatibility condition is satisfied. In the notation of
Thm. ./Zl\q1/2 (Q,A) is generated as an algebra by

(X1, Xo, X3, X, X XF, X1, X5, X4}
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subject to the exchange relations
X1 X =q3 Xy +q 3 X;,
/ 1
Xo Xy =Xe +q 2 X1X3X5,

X3 X, = Xg + q2 X1 X2 X,

Recall that
Dy = A1Ey — qflK—quéEQEu = Fy A — Q%E2E12K—-

Applying o gives D1 = E19B1 — q_%EgEglK +1. Therefore the assignments
X1 = Ey, Xo— Ea, X3+ Eo,
Xi— E;, X, By, X} Ay,
Xy—K_ 1, Xs— Ky, Xg— D
determine an algebra homomorphism (after extending scalars)

¢ : A\ql/Q (@A) — Uq(ﬁ)a

where Uq(ﬁ) denotes Uy (p) localized at the multiplicative submonoid generated by K_1, K1,
and D;. Let X?3 represent the quantum cluster variable obtained by mutating @ at vertex

2 and then again at vertex 3. Mutation at vertex 2 produces

1%2%

%3%@
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and thus

X23 = X;1(XY + q2 X4 X))

= X7 X, (Xe + ¢ 2 X1 X3 X5) + X; 'q2 X4 X1
We immediately have X; X232 = X23X,. Furthermore,
X1X2 = X1 X5 X5 X+ ¢ X X (X + qX3) X3 X5 + g X5 ' Xa( X2 + ¢ X3),

X23X] = X1 X X5 X + X5 X5 (g Xe + X3) X3 X5 + X5 ' Xy (qX2 + X3),

and thus

X X% - XX = (¢ — ) X5 + (¢ — ¢ 1) Xu.

Therefore the assignments
Bi—X|, Ey—X,, Ki—X;, K.—Xs5 F—X?3
determine an algebra homomorphism ¢’ : ﬁq(ﬁ) — A\ql/Q (Q,A). Since
2,3 / L
X3 X7 = X9+ q2 X4 X,

we have

En¢(X*?) =By + Q%KAEQ = E9, I,

so ¢(X?3) = I (since A12(Q, A) is a domain). Therefore ¢ = ¢~ ! and ¢ is an isomorphism

which restricts to an isomorphism A1/2(Q, A) — Ug(p).

Proposition 4.22. The A-elements and B-elements are quantum cluster variables.

Proof. Idenify A 1/2(Q,A) =~ Uy(p) via the isomorphism in the proof of Prop. |4.21} Let

11, 2, and pug denote the operation of mutation at vertices 1, 2, and 3, respectively, thought
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of as functions on the set of quantum seeds. Consider the mutations

S = {13, 1113, P2t f13, B3 P21 f13, B0 U3 2 f13, (fap ps)?, . ..}

and let Y; denote the [-th quantum cluster variable produced from the initial quantum seed
in Prop. by the [-th element of S.

The mutations pz and p;pug produce the quivers/quasi-commutation matrices

2 0 1 1 -1 1 0
/ \ 1 0 0 1 -10
1 0 0 -1 1 0

1 5] 1 -1 1 0 o0 o
\ -1 1 -1 0 0 O
0O 0 0 0 0 0
—_— 3 — @ -
2 [0 -1 -1 1 —1 0]
/ \ 1 0 0 1 —-10
1 0 0 -1 1 0

1 ) 1 -1 1 0 0 ol
\ 1 1 -1 0 0 0
0 0 0 0 0

0
—3 [6] ) -
respectively, and produce the variables Y7, Y2. We know from the proof of that Y7 = Ay.

From these quivers/quasi-commutation matrices, we determine the exchange relations
EyYs; = D1 + qE1244,

1
E19Y3 = q2 K 1Dy + qYo Ay

Recall that A1 E9 = Dy + q_%K,lEQElg. Applying T} and using Lemma we have

3
T1(A1E2) =Ti(D1 4+ q 2 K_1EyEq»)

_ _ _ _ _3 _
K 1K 1 AsBy = K_{K Dy +q K {Eip(K{ o Ay)
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K 1K 1 AsEy = KZ'K [1(D1 + ¢ ' E124y),

and thus Ay Ey = Dy 4+ q ' E13A,. Applying the bar involution, we see that this is the first

exchange relation above. Hence Y5 = A,. Through another application of T3, we have

Ti(A2Es) = Ty (D1 + ¢ ' E1241)
12 [ 11 11
(KK 50 A3)E1e=K_ (K Di1+q (K oA)K_{ K (A2)

1
K:%K;§A3E12 = K:%KI%(Q5K+1D1 +q 1A Ay),

and thus AgFi9 = q%KHDl + ¢ 1A Ay, Applying bar, this is equivalent to the second

exchange relation above. Hence Y3 = As.

Through induction, we conclude that for k € Z>(, applying the mutations (u2p1 ps) 2t

)2k+1

w3 (paf s , and g1 3 (pap 3)? ! to the initial quiver produces the quivers and quasi-

commutation matrices

2 [0 0 -1 1 -1 0]
/ \ 0 0 -1 -1 1 0
1 1 0 -1 1 0

1 (5] 11 1 0 o0 ol
1 -1 -1 0 0 0
O 0 0 0 0 0
[4] — 3 «— [6] - -
2 0 0 1 1 -1 0]
/ 0 0 1 -1 1 0
1 -1 0 1 -10

1 5] 11 -1 0 o0 o
T 1 -1 1 0 0 0
O 0 0 0 0 0
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1

|

3 Tle] ¢ ]

respectively, where a red arrow has multiplicity 3k, a blue arrow has multiplicity 3k + 1,

:

OO OO oo

//\
|
| =
—_

and a green arrow has multiplicity 3k + 2. The cluster variables produced are Ygg13, Yoi44,

and Ygg45, respectively. The corresponding exchange relations are
Yort1Yorra = KM TP KR Dy + qYopioYorts,

— L0 k41 k42
YortaYohts = ¢ 2 K" KT Dy + Yori3Yoha,

YorrsYowen) = KM PP KT Dy + qYoris Yorta.

Similarly, for k € Z~g, applying the mutations (uag13)?*, ps(popips)?*, and py ps(puap pz)?*

to the initial quiver in Prop. m produces the quivers/quasi-commutation matrices

2 [0 1 0 -1 1 0
/ \ -1 0 -1 1 =10
0O 1 0 1 =10
1 ’ 1 -1 -1 0 0 0|’
T -1 1 1 0 0 0
0O 0 0 0 0 0
*>3<—@ - -
2 [0 1 1 -1 1 0
/ \ -1 0 0 1 —=-10
-1 0 0 -1 1 0
1 5] 1 -1 1 0 o0 ol
T\ -1 1 =1 0 0 O
0O 0 0 0 0 O
%3% - -
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2 [0 -1 -1 1 -1 0]
/ 1 0 0 1 -1
1 0 0 -1 1

! 5], -1 -1 1 0
l 1 1 -1 0
0

(4] —3 T[] - ]

respectively, where a red arrow has multiplicity 3k — 1, a blue arrow has multiplicity 3k,

OO O O oo

and a green arrow has multiplicity 3k + 1. The cluster variables produced are Ygi, Yogt1,

and Ygg49, respectively. The corresponding exchange relations are
_1 _
Yor—2Yors1 = ¢ 2 KT K3% Dy + Yor_1 Yor,

Yor—1Yorra = K25 K3: Dy + qYer Yor1,
_1
YorYorts = ¢ 2 K3 K3 Dy + qVegq0Yors1.-

We claim that for all | € Z-1,Y; = A;. Applying T1 to A3Ers = q2 K41D1 + ¢~ A1 As,,

we have
1
Ti(A3E12) = Ti(q? K41 D1 + ¢ A1 Ag)
K IK 7A((K {0 A1) = K | D +q 'K K Ay (K| K] o A3)
KZ%K;fAMh = K:fK;f(K—1K+1D1 +q 1Az 43),
and thus

AgA1 = K_1K41 Dy + q 1 As As.

Using the same technique, an inductive argument shows that for all m > 0,
1 —
AgmizAom = 2 K"\ KT Dy + g7 A1 Ao

AomiaAomir = K™ KT Dy + ¢ ' Aopio Aoy s.
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Applying the bar involution, we see that these are the exchange relations of the Y; elements

above. Hence Y; = A; for all | € Z~g. A similar argument using the mutations

S" = {2, i1 fia, P31 2, Hala i 2, 1 Hapa i 2, (a1 fi2)?, - }

shows that each Bj is a quantum cluster variable.

O

We now describe all quantum clusters. For i € Z~g, let X; denote the ¢-th cluster
produced from the initial quantum seed by the ¢-th element of S and let X_; denote the
i-th cluster produced by the i-th element of S’. From the quivers listed in the proof of
Prop. [4.22] we can verify that when applied to the initial quantum seed, the mutations
pa(papapes)”s peps(pepaps)”s pepaps(pepips)”,m € Zxo respectively produce the cluster
variables E1, F1, E1 or F1, Eq, F1, depending on the parity of r (one verifies that exchange
relations for these variables are the recurrence relations from Def. . Similarly for the
mutations g1 (usprpa)”, pape(papipe)”, paprpa(papipe)’, r € Z>o. So for each X;, there is
a unique cluster Xz produced from X; by a single mutation and which contains either Fj
or F;. Mutation of any quantum seed correspond to )A(Z produces X;, )A(i_g, or XZ'+2. (A

portion of) the exchange graph is

W

X 3 X o X, X X, X, X;
X_3 X_o X_1+—— Xp +—— X1 +—— Xy +—— X3

4.5 Quantum cluster monomials

In this section we conclude the proof of Thm. by showing (Prop. 4.27) that quantum
cluster monomials from {F}, Agy—1, A2m1, D1} are contained in the double canonical basis

for all m € Z~qg. We begin with the m = 1 case. First, we need formulas for powers of As.
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Lemma 4.23. For k € Z>,
. B 'y
AL = g AROT 4 Y (07 (KoK
jeJ

where J is a finite index set, c(q”1) € ¢ Z[gY], and

bj = g~ 3b—20)(=28) 472 pli o2 0 < 98, < 20, <k

i

or

bj — q(2a]-—k)(k—a]-—Bj)A?(k_aj_ﬁj)D/fjEgaj_k, 0< o + Bj < k< 20[],.

Proof. We use induction on k. From Lemma we have Az = qféAlC]l —q¢ 'K 1K 1By,
so the base case holds. Suppose the lemma holds for all | < k. We have A3FEy = F1Dq +q*1A%,

and thus

A]:;Jrl = A’g(q_%AlCl — q_lK_lK_HEg)
1
=q *q 2 A A0 — ¢ T K K A (RDy + gAY
1
= q_kq_§A1AI§01 — q_lK_1K+1F1D1AI§_1 — q_Qk_lK_lK_HA%A]g_l.
Since the lemma holds for k£, we can write q_kqf%AlA’gC’l as
1 - k1 _ By
q_z(kH)QAIfH(kaH) - K71K+1C£Ic )+ Zq "q2¢4(q 1)(K,1K+1)”‘JF153A163-01
jeJ
k—QCMj)

where J is a finite index set, c(¢™1) € ¢71Z[¢g™Y], and b; = qfé(kfzaﬂ')(kfwﬂ')Alf_wj ij C’f

or bj = q(QO‘j_k)(k_“J_Bj)A?(k_aj_Bj)Dl’Bj E;aj_k. For the first case, we have

1
g Fq 2 A1b;Cy
_ q—kq—%q—g(k—Qa)(k—zﬂ)AI;qmlDf(C§k—2a+1) B K71K+1C§k—2a—1))
%(k+1—2ﬁ)(k+1—2a)Alf72ﬂ+1D,{g’C£k+172a)

=q " Fq"
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_ q—k+6—aK71K+lq—%(k+1—2(a+1))(k+1—2,B)A11€*2ﬁ+1chyﬁ'l—?(a"'l)).

For the second case, using AB = F1 D + qilK_lKHE%, we have

q_kq_%AlbjCI
_ q—kAlq(2a—k)(kz—a—ﬁ)A?(k—a—5)DfESa—k—l(Al + q_lB1)
_ q—ksq(2a—k)(k—a—,@)q2a—k—1A?(k—a—5+1)DfEQZafkfl
+ q—(2a—k—1)q—k—lq(2a—k)(k—a—6)A?(k*aﬂg)(FlDl + q—lK_1K+1E22)D,fE22afkfl
_ qfafﬁq(2a7k71)(k+lfafﬁ)A%(k—oé—ﬂ-ﬁ-l)D,{J’Ega—k—l
+ q—kqu(2a—k—l)(k—a—,8—l)A?(k—a—ﬁ)Df—l—lEga—k—l

+ q—2k+25—1K_1K+1q(2(a+1)—lc—1)(k:—oz—l—ﬁ)A%(k—a—ﬁ)Dng(a*‘l)—k—1'

Thus q*kq_%AlAlgCl has the desired form. Using the fact that the lemma holds for k — 1,
it is straightforward that q_lK_lKHFlDlAg_l and q_%_lK_lKHA%Ag_l also have the

desired form. O

Corollary 4.24. Quantum cluster monomials in {Fy, A1, A3, D1} are contained in the

double canonical basis.

Proof. Using Lemma we write ¢~ 2" FSAYAYDT as
g 2OTATCT 43 e(g ) (KoK
Jje€J

where

bi — q—%(U—2o¢j+u)(v—2,3j)ATIJ*QfBjJF“ijJFTCy*QQj)

.

or

2a;—v

bj = q*%@%‘*v)@(v*%*ﬁj)JrU)Af(”—aj—ﬂj)DlﬁjJrTEQ
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If b; has the second form, then Flﬁ I +abj is a double basis element by Lemma H If b; has

the first form, then Flﬁ I +ab]- has correct triangularity by Lemma O

To generalize Lemma we use the fact that T2(D;) = Dj, which is an immediate

consequence of the following lemma:
Lemma 4.25. The element Ty (D7) belongs to ﬁ% In particular, Ty(D1) = K:IIKIIIDL

Proof. We have

Ty(D1) = T1((Fi @ Er2)Esy —q 'K_1 0 q 2 ExEg
= (K:%Klll(q_%(ﬂ e E19)Ey — q ' K_1 0 E1)Es
— qilKjl1 o q*%Elg(KJ:ll o (Fy e Ey9))
= K:%K;%((Fl ©F12)(¢ ' Eia 4+ Ey) —q 'K 10 q_%E2E12)
- q_lellKlllElz(Fl o F9)

= K {K.|Dx.

Lemma 4.26. For all m € Z~y,
Ay = a2 A5, O 137 ¢ ) K )RR
Jj€J
where J is a finite index set, ¢;j(q™') € g7 Z[q7Y], and

(k—2a)

by = B35 45 T e

0§2,3j§20¢j§]{?

or

by = qPes Mg =8 S0P g200 kDl 0 < oy + B < k < 2a.

Proof. We use induction on m. The m = 1 case is established in Lemma [£.23] Suppose

the lemma holds for m — 1. Since 1% fixes Dy and Cy, T# (A5, 1) = K ] ¢ Ab,,., and
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TE(F) = K" K| o F{. Applying T, we have

—k . gk
Ko A2m+1

= ¢ KT oA, (O + 3 (g7 ) (K 1K) IR (K K o BT (b))
jeJ
and thus
Ak =q3 lc(k +Z aﬁm 1)B; Ka+(m D FﬂJTQ(b)
jeJ

where b; has one of the two forms described above. For the first case, we have

g2 =2 T2 (b))

%k27252F1,3qf%(k72a)(k726) (Kf(k*w) o Ag;ﬁﬁl)Dfo’cﬂa)

:K (k 25) 1k2 252

i q —1(k—28)? 2(1972,8),31:15(]7%(kua)(k72,B)Al;;lZ_,é’lDfC£k—2a)

=K, (k 2B)F6 — 3 (k—2a)(k— zﬁ)AgmwlDﬁC(k 2a)

In the second case,

1
¢z PRI by)
_ q;kz 252Fﬁq(2afk)(kfafﬁ)(K;f(k—a—ﬁ) o A (k 01 ’B))D’B(K (20—k) OAg;xn l%)

%k2—2,82q—2(k—a—ﬂ)2q—%(2a—k)2q—2(k—a—ﬁ)(2a—k)q—2(k—2,B)BK;{c+25Flﬂ

=4q
e g

K+f+2ﬁ FB (2a—k)(k—a—p3) A,(n B pps A%ﬁb kg

O]

Proposition 4.27. Quantum cluster monomials in {F1, Aam—1, Aom+1, D1} are contained

i the double canonical basis.
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Proof. Let Sy, denote the statement given in the proposition, let T}, denote the statement
that qu_%SkAgm_lD{Cf) has correct triangularity for all a,k,r,s € Z>p, and let Ry,
denote the statement that Fl“q_%S(“‘H’)q%“”Agm_lAgm_;),D{Cfs) has correct triangularity for
all a,u,v,r,s € Z>p. All three statements hold for m = 0 by Lemmata [4.7) and [£.24, We
claim that

Ry ATy = Rpt1 A Tint1, (*)
Tos1 NSy = Sm+1- (%)

Suppose that R, and T,, hold. For T,,11, we know that

Fff%SkAgmHD?{Cls) = Fqufékzqf%SkAgmleqcfk)Cgs)
+ 3 ejla YKo K)om0 ek D,
jed

where b; has one of the two forms listed in Lemma We have (see [BG17b, Eq. (4.7)])

min(k,s)
Fpg g 4hag,  DieiPel) = 3 g (K K B e AL Dol
j=0

and for b; of the first type,

Fy sk, Dyot)
_ Flﬂj—i-aq—%skq—%(k—Zaj)(k—Qﬁj)Ag;aﬂlj ij+7’0£k—2aj)c£s)

min(k—20;,s)

— Z q—l(k—%)—sﬂj(KAKH)lpfﬁ“q—%(k—2aj+s—2l)(k—2ﬂj) A’;;{ﬁfoﬁrdk—?aﬁs—%)
=0

)

which has correct triangularity since 7T}, holds. For b; of the second type,

FlﬁjJraq—%SkbjD’{Cf) — Flﬁﬁaq—%Skq(?aj—k)(k‘—aj—Bj)A;(k:i‘éj—Bj)AMj—kDfﬁTC{S)7

m 2m—3
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which has correct triangularity since R, holds. Thus R, AT;, = T4+1. Next, to show

that R,,+1 holds, we have

Fa ——s(u+v)q—§uv v 1A2m+1D1{C§S)

a —lSU/ v —luU v —lu2 u u — o m— . : r S
= Ppq s tgmaw Ay (g7 AQm—IC{ )—I-ch(q DK 1K) I)B]Figjbj)D1C£)
jeJ

= Fpq g rig et gyt oY)

+ch D (K1 K)om0~ %s(uH)qf%wF{HﬁjAgmflbjD{CF)v
jeJ

where b; has one of the two forms listed in Lemma In the first case,

q*%S(U“’)q*%"”F{l—kﬁf‘lgmflbjD{C{S)

1 1 a a—u)(u—a— U—o— v a—1Uu T S
_ qfis(quv)ququl +5q(2 )( B)A27(n ¢ B)+ A%m 3D,f+ C£ )
_ q_av sB _7s(u+y 25)Fa+ﬂ (2(u a—pB)+v)(2a— u)AQ(u ix /B)—H)A%% %Dﬂ—FTC(S)

which has correct triangularity since R,, holds. In the second case,

b g Dol

s(u+v) qutH-ﬁ 71(u 2a) (u— Q,B)Au 25+UDB+7"C(U 204)0£5)

:q2 1

min(u—2aq,s)

= Z (K 1K+1) q 25(u+v) qua-i-B —5(u—2a)(u—2,3)A12L77—12_61+1}Df+r0£u—2a+5—2l)

q

_ (K_1K+1)qul(ufﬁ)fﬁsfavflvFla-‘rﬁ

% q—%(u—2a+s—2l)(u—Qﬂ-‘,-'U)A;L;%%+UD?+TC§U—2O£+S—QZ)

9

which has correct triangularity since 7}, holds. Thus R,, AT,, = R,,+1 and is proven.

Now suppose that Sy, and T,+1 hold. Then

—17J/U

v T
q 2 2m+1A2m+3D1
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_1 2 - j j VRt
—y L (uvtv )Ag:gilo{v) ,{ + Z Cj(q 1)(K,1K+1)aj+m’8]F{l+ﬁjq QuUAgm+lbjD{
jeJ

where b; has one of the two forms listed in Lemma [£.26] If b; has the first form, then

(v—205)

Pyt qmem Ay, b DY = Y a (e 2 AR 2 p e

_ F{l‘i‘ﬂjq—uajq—%(v—2aj)(u+'u—2ﬂj)A72‘L:r;'i_l2ﬁj Dl/Bj‘FTC{U_Zaj)’

which has correct triangularity since T}, ;1 holds. If b; has the second form, then

FlaJrﬁjq_%uquZLm—i—lbjD?lq _ FlaJFqu—%uvq(Qoaj—v)(v—oaj—,Bj)Ag(’U;‘fj*/3j)+uA2aj*’vD,13j+T‘

m 2m—1

= Fla"'ﬁjq—uaj q%(204,7'—U)(2(v—aj_ﬁj)+u)A§(m”;‘f‘j _5j)+uAgjénj__lvD/fj+7"

which has correct triangularity since S, holds. Therefore S,,+1 holds and is proven. [
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