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Background: Standard testing fails to identify a pathogen in most patients with febrile neutropenia (FN). We evaluated the ability of the 
Karius microbial cell-free DNA sequencing test (KT) to identify infectious etiologies of FN and its impact on antimicrobial management.

Methods: This prospective study (ClinicalTrials.gov; NCT02912117) enrolled and analyzed 55 patients with FN. Up to 5 blood 
samples were collected per subject within 24 hours of fever onset (T1) and every 2 to 3 days. KT results were compared with blood 
culture (BC) and standard microbiological testing (SMT) results.

Results: Positive agreement was defined as KT identification of ≥1 isolate also detected by BC. At T1, positive and negative 
agreement were 90% (9/10) and 31% (14/45), respectively; 61% of KT detections were polymicrobial. Clinical adjudication by 3 
independent infectious diseases specialists categorized Karius results as: unlikely to cause FN (N = 0); definite (N = 12): KT identi-
fied ≥1 organism also found by SMT within 7 days; probable (N = 19): KT result was compatible with a clinical diagnosis; possible 
(N = 10): KT result was consistent with infection but not considered a common cause of FN. Definite, probable, and possible cases 
were deemed true positives. Following adjudication, KT sensitivity and specificity were 85% (41/48) and 100% (14/14), respectively. 
Calculated time to diagnosis was generally shorter with KT (87%). Adjudicators determined real-time KT results could have allowed 
early optimization of antimicrobials in 47% of patients, by addition of antibacterials (20%) (mostly against anaerobes [12.7%]), 
antivirals (14.5%), and/or antifungals (3.6%); and antimicrobial narrowing in 27.3% of cases.

Conclusion: KT shows promise in the diagnosis and treatment optimization of FN.
clinical Trials Registration. NCT02912117.
Keywords.  Febrile neutropenia; infection; next-generation sequencing.

Fever frequently complicates chemotherapy-induced neutropenia 
in patients with hematologic malignancies [1, 2]. Although its eti-
ology is believed infectious in a majority of cases and potentially 
from a broad array of microorganisms, classical microbiology often 
fails to identify a pathogen. As a consequence, empiric antimicro-
bial therapy remains unfocused and may prove inappropriate [3]. 
Emerging nucleic acid amplification-based strategies can identify 

nonculturable organisms and are less affected by prior antimicro-
bial administration, but the use of selected primers limits the range 
of potential organisms detected [4, 5]. In contrast, next-generation 
sequencing (NGS) allows sensitive, broad, unbiased pathogen de-
tection and has shown promise as a diagnostic tool for infections 
in immunocompetent [6] and immunocompromised hosts [7–10], 
including patients with febrile neutropenia (FN) in a pilot study 
[11]. The Karius plasma microbial cell-free DNA (mcfDNA) NGS 
test (KT) has proved useful in promptly diagnosing culturable and 
unculturable organisms when standard workup failed to identify 
an infectious culprit [12, 13], also enabling the noninvasive diag-
nosis of deep-seeded infections with atypical organisms that other-
wise would require invasive diagnostic procedures [14–17].

We examined the performance of the KT in the etiologic 
diagnosis of FN in adults with acute leukemia and its clinical 
utility and potential impact on antimicrobial management.
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METHODS

Study Design

We conducted a prospective, observational study at Stanford 
University Hospital comparing the KT with the final micro-
biologic diagnosis in patients with FN (ClinicalTrials.gov: 
NCT02912117). The study was approved by the Stanford in-
stitutional review board (#32817) and eligible patients enrolled 
after signing an informed consent.

Adults with acute leukemia and neutropenia (<500 neu-
trophils/mm3) enrolled at the time of their first FN episode. 
Samples were collected within 24 hours of fever onset (en-
rollment sample, T1) and every 2 to 3 days until resolution of 
neutropenia, for a maximum of 5 samples. mcfDNA was pre-
pared and sequenced in a Clinical Laboratory Improvement 
Amendments/College of American Pathologists laboratory with 
human reads excluded; aligned to a curated pathogen database 
including bacteria, viruses, fungi, and parasites; and microbial 
concentrations compared with that of each respective taxon in 
negative control samples to determine whether the taxon was 
significantly above baseline, as previously described [18]. KT 
results were qualitative and not available to the care providers. 
All results were clinically adjudicated by an independent panel 
of 3 infectious disease (ID) specialists as described in the fol-
lowing section.

Primary Objective

Examine the diagnostic performance of KT at T1 compared 
with blood culture (BC) and with the final diagnosis deter-
mined by a composite reference standard of conventional 
microbiological diagnostics, radiological studies, and clinical 
adjudication.

Secondary Objectives

1. Examine the diagnostic performance of KT on subsequent 
testing.

2. Examine the time to diagnosis (TTD) for KT performed at 
T1 relative to standard microbiology testing (SMT).

3. Determine whether real-time availability of T1-KT results 
would have resulted in changes in antimicrobial management.

Definitions

Fever and neutropenia were defined according to guidelines 
[19] (Table 1).

SMT considered for comparison included cultures, single-
analyte, and multiplex polymerase chain reaction (PCR) tests, 
fungal and bacterial ribosomal sequencing from body fluids and 
tissue specimens, as well as pathogen-specific antigens and se-
rology assays. Results were blinded to the Karius analytic team.

Comparison of KT to BC

Definitions and result categorizations are summarized in Table 1.

Clinical Adjudication

Following a standardized algorithm (Supplement F1) involving 
review of laboratory data, radiology results, and discharge sum-
maries, each of 3 board-certified ID specialists independently 
classified results according to the likelihood that a pathogen 
identified by NGS caused the FN episode. The committee chair 
had final discretion to adjudicate discrepancies. The definitions 
of definite, probable, possible, unlikely, indeterminate cases, 
and false and true negatives are summarized in Table 1. Definite, 
probable, and possible cases were considered true positives.

The panel also evaluated the antimicrobial management 
of these patients, categorizing the likelihood of its effective-
ness against the organisms detected by KT based on clinical 
knowledge and published susceptibilities. Finally, it deter-
mined whether real-time availability of KT results could have 
changed management, specifying whether antibiotic, antiviral, 
antifungal, or antiparasitic agents would have been withdrawn 
or added.

Additional detail on the adjudication process is available in 
the Supplement materials.

Statistical Analysis

The full analysis data set included all subjects with data at any 
timepoint. The modified-intent-to-diagnose (mITD) data set 
included all subjects with the sample collected at enrollment 
passing quality control criteria, providing a valid KT result and 
a valid standard clinical diagnostic result for the same specimen 
collection time.

We calculated the positive percent agreement (PPA) and 
negative percent agreement (NPA) of the KT compared with 
BC results for samples collected at enrollment (T1) and later 
timepoints. Ninety percent confidence intervals were estimated 
by the exact binomial method. For the calculation of sensitivity 
and specificity, KT results were compared with final clinical di-
agnosis as determined by clinical adjudication and estimated 
along with the associated confidence intervals.

At the time of the study, turnaround time for KT was cal-
culated to be 52 hours after phlebotomy for samples with a 
result provided with first sampling and 100 hours for those re-
quiring a second aliquot; this includes time for shipment and 
analysis (28-76 hours) using metrics extrapolated from Clinical 
Laboratory Improvement Amendments laboratory perfor-
mance. TTD was calculated for the KT performed at T1. For 
BC, TTD was defined as the time elapsed from the T1-BC draw 
to result reporting by the Stanford Microbiology Laboratory. 
For other SMT drawn between enrollment and throughout 
hospitalization, TTD was defined as the time from initial BC 
draw (surrogate of time of initial FN event) to the time of result. 
Because some subjects did not have a final etiological diagnosis 
using all SMT, we used Kaplan-Meier curves and log-rank tests 
to compare TTD for KT vs all SMT, including BC.
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All statistical analyses were performed using SAS statistical 
software, version 9.3.

The KT

KT was performed following the methodology previously de-
scribed in validation studies [18] and in the supplemental 
material.

RESULTS

Patient Characteristics

The mITD group included 55 of 57 enrolled subjects (Figure 1, 
Table 2). Table 3 summarizes patient characteristics. The me-
dian age was 60 years (range, 20-82), and 60% of patients were 
male. The most common underlying diagnosis was acute my-
eloid leukemia in 43 (78%) subjects. Three patients with acute 
myeloid leukemia had undergone stem-cell transplantation; 2 
were excluded from the study because of poor sample quality. 
At enrollment, 71% of patients were receiving therapeutic or 
prophylactic antibiotics (35%), antivirals (20%), or antifungals 
(16%) (Supplement table ST1).

KT and Microbiology

At time of fever onset (T1), 10 patients (18%) had positive BC and 
41 (75%) had positive KT; 25 of 41 (61%) being polymicrobial. 
The most frequent pathogens detected by KT at T1 were 
Escherichia coli (10.1%), Herpes simplex virus 1 (HSV-1) (5.9%), 
Streptococcus mitis (5%), and Enterococcus spp. (4.2%), followed 

by Pseudomonas aeruginosa, Bacteroides fragilis, Staphylococcus 
aureus, and Rothia mucilaginosa (3.4% each) (ST2).

Overall, 85% of all KT samples were positive. Enterococcus 
spp. (6.8%), streptococci (6.3%), staphylococci (6.3%), and E 
coli (6%) were the predominant bacteria. HSV-1 (7.4%) and 
Candida albicans (2%) were the most frequent nonbacterial 
organisms. For 1 patient, Pneumocystis jirovecii was identified 
at all timepoints. Invasive molds were detected in 3 subjects 
(5.5%): Aspergillus spp. in 2 subjects at T1 and Rhizopus spp. at 
2 consecutive timepoints for a single patient.

Positive and Negative Agreement

Concordant KT and BC results were observed in 9 of 10 pa-
tients at T1 (PPA = 90%) (Table 4), involving mostly gram-neg-
ative rods (GNR): E coli, Klebsiella pneumoniae, and P 
aeruginosa (n = 2 each); Morganella morganii, Proteus mirabilis, 
and Serratia marcescens (n = 1, each). S mitis and Enterococcus 
faecium were codetected in 1 case (ST3). One patient had dis-
crepant results: Streptococcus parasanguinis in BC but HSV-1 
and Prevotella oralis by KT. The estimated TTD of KT was faster 
in 4 of 9 BC-positive cases. At T1, KT was negative in 14 of 45 
BC-negative cases, resulting in an NPA of 31% (Table 5). In 31 
patients, KT yielded at least 1 organism not detected by BC. The 
composite PPA and NPA with BC at all timepoints were 71% 
and 28%, respectively (Table 4).

KT Performance and Clinical Adjudication

At T1, the adjudication panel agreed in all categorizations and 
concluded infection was the etiology of FN in 48 patients (87%). 

Table 1. Definitions, Case Classification in Clinical Adjudication

Febrile neutropenia Oral temperature >38.3°C or 2 consecutive readings of >38.0°C over 1 hour [6] and an absolute neutrophil count 
<500 neutrophils/mm3 or expected to fall within 48 hours below 500 neutrophils/mm3 for 7 days or longer.

BC and KT comparison  

True positive (positive agreement) KT was concordant with initial BC for at least 1 pathogen.

False positive  KT was positive and BC was negative.

False negative KT was  negative  and BC was positive (excluding contaminants), or both were positive for different microorgan-
isms (discordant positives).

True negative (negative agreement) Both KT and BC were negative.

Adjudication case classification  

Definite Karius pathogen result is concordant with at least 1 pathogen identified on BC or other microbiologic tests per-
formed within 7 days of Karius sample collection and is a likely cause of FN.

Probable Karius test and BC results are discordant. Karius pathogen result is a likely cause of FN based on clinical, radio-
logic, or laboratory findings.

Possible KT and BC results are discordant. Karius result is consistent with an infection but not a common cause, based on 
adjudicators clinical experience, and available literature, of FN. Diagnosis must be made using history, exami-
nation, and nonmicrobiologic testing and no other focal infection has been reported

Unlikely KT is positive and discordant with MT and/or not a plausible cause of infection; or there is a more likely explana-
tion for the febrile neutropenic event not meeting “possible” or “probable” classification criteria.

False negative KT is negative but (1) microbiologic tests are positive and adjudicated as the cause of infection or (2) results from 
other microbiological tests are negative but there is a localized infection diagnosed using history, examination, 
and nonmicrobiologic data.

True negative KT-negative result is concordant with other negative microbiologic tests and fever is attributed to a noninfectious 
etiology.

Indeterminate The committee did not have enough information to adequately adjudicate and classify the case.

Abbreviations: BC, blood culture; FN, febrile neutropenia; KT, Karius test; MT, microbiology testing.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab324#supplementary-data
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SMT was positive in 20 cases (42%) and KT in 41 (85%) (Figure 
2). At T1, KT identified a plausible cause of FN in all 41 cases: 
12 were definite, 19 probable, and 10 possible upon adjudica-
tion. In the probable and possible categories, the most common 
organisms by KT (37.8%) were common microbes of the oral 
and gastrointestinal (GI) flora (predominantly B fragilis, R 

mucilaginosa); followed by Enterobacteriaceae spp. (21.7%, pre-
dominantly E coli), gram-positive cocci (9.5%, predominantly S 
mitis), and herpesviruses (8%) (ST4).

KT identified polymicrobial infections associated with 
intra-abdominal syndromes (eg, mucositis, typhlitis, enteroco-
litis, biliary infection) in 12 cases (5 definite, 7 probable) and 

Figure 1. Patient enrollment and overall results at T1. Exclusion reasons: enrollment blood sample for Karius test did not pass quality acceptance criteria (n = 1), blood 
culture at enrollment was contaminated (n = 1). *1 case with positive tooth abscess culture (Prevotella spp.); 1 case with positive bronchoalveolar lavage culture (A niger). 
Abbreviations: BC, blood culture; CA, clinical adjudication; KT, Karius test; mITD, modified intent to diagnose; MT, standard microbiological test. 
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detected HSV-1 or HSV-2 in 8 patients, 4 of which were con-
firmed by PCR from mucocutaneous lesions. A fumigatus was 
detected in 2 patients; 1 had imaging findings compatible with 
fungal pneumonia.

Seven of 14 negative KT at T1 were adjudicated as true nega-
tives (Table 5) with fever attributed to relapsed or progressive 
disease (n = 3), unclear etiology (n = 2), or infection with an 
RNA virus (n = 2; Norovirus, Influenza B).

KT sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV) at T1 were 85%, 100%, 100%, 
and 50%, respectively (Table 6). PPV and NPV reached 92% 
and 100%, respectively, at timepoint 3. With clinical adjudica-
tion, the cumulative sensitivity, specificity, PPV and NPV were 
of 92%, 70%, 93%, and 63%, respectively.

KT False Negatives

At T1, infection was clinically suspected in 7 KT-negative cases 
(14.5%) summarized in Table 7, 5 of which also had negative 
SMT. Two patients diagnosed with odontogenic infections un-
derwent tooth extraction; 1 grew Prevotella spp. from a tooth 
abscess. Two subjects were clinically diagnosed with cellulitis 
improved with antibiotics. Another patient developed shock, 
thought to be septic but had a negative microbiological workup. 
Two other patients were diagnosed with fungal pneumonia. The 
first was treated empirically with voriconazole based on com-
puted tomography (CT) findings. The second had a consolida-
tion with surrounding ground-glass opacities (GGO) on initial 
chest CT, and voriconazole was started. On day 10, 6 colonies 
of A niger grew from bronchoalveolar lavage (BAL). Repeat 
CT showed progressive cavitating pneumonia and antifungals 
were changed to amphotericin-B on day 12. Imaging showed a 
brain abscess on day 28. Fungal hyphae were identified on tissue 
from a brain needle biopsy, morphologically compatible with 
Mucorales, but fungal cultures and sequencing were negative. In 
this case, despite a negative result at T1, KT yielded Rhizomucor 
miehei at timepoints 2 and 3 (10  days before amphotericin 

Table 2. Patient Enrollment and Disposition

Total (N = 57)

All subjects enrolled, n 57

All subjects who discontinued from study, n (%) 8 (14)

Reason for discontinuation, n (%)  

 Stem cell transplant recipients 2 (25)

 Karius test collected >24 hours following onset of 
fever

1 (13)

 Discharge before complete sample collection 2 (25)

 Neutropenia not chemotherapy-induced 1 (12.5)

 Subject withdrew voluntarily, n (%) 2 (25)

All subjects included in full analysis data Set, n (%) 57 (100)

All subjects included in modified intent-to-diagnose anal-
ysis data set, n (%)a

55 (96.5)

aExclusion reasons: enrollment blood sample for Karius test did not pass quality accept-
ance criteria (n = 1); blood culture at enrollment was contaminated (n = 1).

Table 3. Patient Demographics and Characteristics in the Modified 
Intent-to-Diagnose Group 

Total (N = 55)

Gender, n (%) Male 31 (56.4)

 Female 24 (43.6)

Age, y N 55

 Mean ± SD 55.1 ± 16

 Median 60

 Range 20, 82

Race, n (%) American Indian/Alaska Native 0 (0)

 Asian 8 (14.5)

 Black or African American 0 (0)

 White 32 (58.2)

 More than 1 race 0 (0)

 Native Hawaiian or Other 
Pacific Islands

2 (3.6)

 Unknown/not reported 1 (1.8)

 Hispanic/Latino 12 (21.8)

Weight, kg N 55

 Mean ± SD 77.4 ± 24

 Median 69

 Range 47.3-170.7

Is patient HIV positive, n (%) No 53 (96.4)

 Missing 2 (3.6)

AML, n (%) Yes 39 (70.9)

 No 16 (29.1)

Secondary AML from MDS, 
n (%)

Yes 4 (7.3)

 No 51 (92.7)

ALL, n (%) Yes 9 (16.4)

 No 46 (83.6)

AUL, n (%) Yes 2 (3.6)

 No 53 (96.4)

MDS, n (%) Yes 1 (1.8)

 No 54 (98.2)

 Total (N = 55)  

Transplant history, n (%) Yes 3 (5.5)

 No 52 (94.5)

Transplant type, n (%) Allogeneic stem-cell transplant 3 (5.5)

Indication for transplant, n (%) Acute myelogenous leukemia 3 (5.5)

Allogeneic stem cell source, 
n (%)

Peripheral blood 3 (5.5)

 Total (N = 55)  

Donor type, n (%) HLA-matched related donor 1 (1.8)

 HLA-matched unrelated 
donor

1 (1.8)

 Haploidentical 1 (1.8)

Number of stem cell trans-
plants, n (%)

First HSCT 3 (5.5)

Chronic medical conditions, 
n (%)

Yes 33 (60)

 No 22 (40)

Chronic condition type, n (%) Asthma 3 (5.5)

 COPD 1 (1.8)

 Congestive heart disease 1 (1.8)

 Diabetes 6 (10.9)

 Hypertension 8 (14.5)

 Other 14 (25.5)

Abbreviations: ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia, AUL: acute 
undifferentiated leukemia; COPD, chronic obstructive pulmonary disease; HIV, human im-
munodeficiency virus; HLA, human leukocyte antigen; HSCT, hematopoietic stem cell 
transplant; MDS, myelodysplastic syndrome; SD, standard deviation.
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initiation and 34 before the brain biopsy) and detected low 
levels of the organism at T1.

Time to Diagnosis

As described, KT TTD was 52 hours [18] for most samples, and 
100 hours for those requiring repeat testing (<5%).

A comparison of KT TTD to that of all SMT is shown in 
Figure 3. Performed in real time, KT would have provided an 
earlier result in 87.3% overall and would have facilitated an 
earlier diagnosis in 50% of the definite cases with positive BC 
(n = 9) or SMT (n = 3).

In 1 particular case, KT detected P jirovecii at all timepoints 
and 5 days before SMT. CT of the chest on day 3 showed bi-
lateral GGO (Supplement F2). On day 5, the patient was 
transferred to the intensive care unit for worsening hypoxia, 
diagnosed with P jirovecii pneumonia on BAL, and started on 
appropriate treatment.

Antimicrobial Adequacy and Management

The committee evaluated the efficacy of the empirical anti-
microbial regimens against the organisms KT detected (Table 
8, Supplemental Table ST5a-b). At T1, empirical antimicrobials 
were at least likely effective in 38% of cases, and likely ineffective 
or not effective in 36.3%. At the time that KT would have been 
available (52-100 hours), the antimicrobials were at least likely 
to be effective in 42% of cases and likely ineffective or not effec-
tive in 32.7%. Real-time availability of KT results could have re-
sulted in antimicrobial changes in 26 patients (47.3%). Addition 
of antibacterials—mainly of anaerobic coverage (12.7%, 
n  =  7)—was indicated in 20%. Addition of antivirals (mostly 
anti-HSV-1 coverage) and antifungals followed in 14.5% (n = 8) 
and 3.6 % (n = 2), respectively. De-escalation or withdrawal of 
antibacterials would have been indicated in 25.5% (n = 14) of 
cases, including discontinuation of methicillin-resistant S au-
reus coverage in 9% (n = 5).

DISCUSSION

Compared with SMT, KT was twice as likely to provide a mi-
crobiological diagnosis, often without resorting to invasive di-
agnostic procedures.

BC was positive in 18% of patients, a rate concordant with 
the 10% to 25% previously reported in FN [20]. GNRs were the 
most frequent pathogens detected by BC and KT at FN onset. 
Worth noting, most patients were enrolled during their first FN 
episode; 34.5% (n = 19) were receiving antibiotics (4 on fluoro-
quinolone prophylaxis) at enrollment.

At T1, KT detected nearly all organisms isolated by BC (PPA 
90%), failing to identify S parasanguinis yielded in 1 BC drawn 
before the patient became febrile (as defined by study criteria), 
>48 hours before KT draw. Possible explanations for this “miss” 
include BC contamination or bloodstream organism clearance 
from antibiotics received during this interval. KT NPA was only 

31%, a predictably low proportion because of the relative lack of 
sensitivity of BC. The performance of KT in this regard is better 
apprehended when compared with a composite of clinical, 
radiological, and laboratory data, including all available mi-
crobiology tests. At T1, KT yielded a positive result twice as fre-
quently as all other SMT (85% vs 42%, respectively), detecting 
a pathogen adjudicated as a plausible cause of FN in every case.

In addition, KT identified viral and fungal infections as 
well as clinically significant polymicrobial infections not 
detected by SMT, the latter mostly associated with GI syn-
dromes. Previous evidence suggests GI microbiota in neu-
tropenic patients can help predict bacterial translocation 
[21, 22]. In a recent study, KT performed 2 days before fever 
onset was able to predict and diagnose bacteremia in 7 of 9 
patients with malignancy [23]. However, control KT samples 
preceding the onset of FN were not obtained in our study. 
This, with quantitative measurements of organism predomi-
nance and their correlation with the presence and severity of 
mucositis, could have provided a better understanding of the 
significance of polymicrobial detections and/or the degree of 
sterility of blood samples [24, 25]. In a validation study, KT 

Table 5. Diagnosis of Infection With Karius Test, Blood Culture, and 
Clinical Diagnosis at T1

Total 
(N = 55)

Blood Cul-
ture Positive 

Blood Cul-
ture Negative 

Clinical Diag-
nosis Positivea

Clinical Diag-
nosis Negativeb

Karius test 
positive

9 31 41 0

Karius test 
negative

1c 14 7 7

Categories at T1 where adjudicated with 100% agreement among all 3 adjudicators.
aDefinite (n = 12), probable (n = 19), possible (n = 10), and false negatives (n = 7) adjudi-
cated cases. False negatives included: 2 cases of cellulitis, 2 tooth infections, 2 cases of 
pulmonary nodules, and 1 case of persistent neutropenic fever with intensive care unit 
transfer.
bUnlikely (n = 0) and true negative (n = 7) adjudicated cases.
cDiscordant positive. Blood culture detected Streptococcus parasanguinis. Karius test de-
tected human herpesvirus 1 and Prevotella oralis.

Table 4. Comparison of Karius Test and Blood Culture Results

Timepoint (Days 
Since Fever Onset)

PPA % 
(Frequency)

NPA % (Fre-
quency)

90% Confi-
dence Interval

 1 90 (9/10)  60.6–99.5

  31.1 (14/45) 19.9–44.3

 2 (days 3–4) 0 (0/2)  0–77.6

  16.7 (4/24) 5.9– 34.2

 3 (days 5–7) 0 (0/0)  …

  7.7 (1/13) 0.4–31.6

 4 (days 7–10) 100 (1/1)  …

  30.8 (4/13) 11.3–57.3

 5 (days 9–13) 0 (0/1)  …

  75 (6/8) 40–95.4

Composite PPA, 
NPA

71.4 (10/14) 28.2 (29/103)  

Abbreviations: NPA, negative percent agreement; PPA, positive percent agreement. 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab324#supplementary-data
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detected mcfDNA in 22.8% of 167 asymptomatic patients, 
mostly low levels of human commensals [18], whereas high 
mcfDNA levels were associated with true infection.

The sensitivity of KT relative to adjudication was 85% (41 of 
48) at T1, similar to results reported in adults with sepsis [6, 18] 
and immunocompromised children [23]. Among the 7 “misses” 
(15%), the likelihood of infection based on clinical findings alone 
is worth questioning in some. Of the 2 patients diagnosed with 
odontogenic infections, only 1 had evident abscess and positive 
tooth cultures. One of the 2 patients clinically diagnosed with 
leg cellulitis had ipsilateral deep vein thrombosis. One subject 
had possible fungal pneumonia per European Organization for 
Research and Treatment of Cancer/National Institute of Allergy 
and Infectious Diseases Mycoses Study Group criteria [26], al-
though there were minimal findings on chest CT. Finally, the 
patient with fungal pneumonia and brain abscess in whom the 
KT identified Rhizomucor miehei deserves special attention. A 
niger grew in small quantities on BAL. Cultures and fungal ribo-
somal sequencing of the brain abscess were negative but fungal 
organisms on histopathology were suspicious for Rhizopus spp. 
Although A niger may have caused necrotizing pneumonia, this 

organism is known to have low pathogenicity [27], and progres-
sion of the lung and brain lesions through voriconazole would 
be more consistent with a Rhizopus spp. infection. This case il-
lustrates the complexity of clinical presentations in immuno-
compromised hosts, often co-infected with multiple organisms, 
and the challenges in obtaining an accurate diagnosis [4]. It also 
underscores the value of KT in detecting unusual, unexpected 
organisms when both conventional and advanced SMT have 
failed, and without resorting to invasive procedures. In a recent 
study, KT had a higher diagnostic yield compared with inva-
sively obtained specimens (n = 39) (87% vs 67%, respectively); 
potentially avoiding 34 invasive procedures and noninvasively 
enabling the diagnosis of 17 fungal, 10 bacterial, and 7 viral in-
fections [28]. Finally, KT detected R miehei at TP2, suggesting 
potential diagnostic benefit in serial KT in difficult cases.

To further assess the potential clinical utility of KT, we com-
pared the TTD of KT with that of SMT and evaluated the im-
pact KT results would have had in antimicrobial management. 
Performed in real time, KT could have provided earlier results 
in 87.3% of all cases, and would have allowed earlier targeted 
treatment in 1 patient with P jirovecii pneumonia. However, 
this was true only in one-half of the patients who had positive 
BC (3 identified by matrix-assisted laser desorption/ionization) 
or SMT.

Adjudicators would have changed antimicrobial manage-
ment in nearly one-half of the patients on the basis of KT re-
sults, de-escalating or discontinuing antimicrobials in 27.3%, 
mostly narrowing GNR coverage and ceasing methicillin-
resistant S aureus-targeted therapy. This suggests that KT could 
have an impact on antibiotic stewardship and the minimization 
of unnecessary antimicrobial exposure in these patients.

Our study had modest sample size and was performed at a 
single center. Additional limitations include the absence of con-
trol samples, organism quantification, or assessment of mucositis 
in patients with FN. Another caveat was the lack of adjudication 
of each organism identified in polymicrobial detections. For in-
stance, if KT detected S mitis, HSV-1, and A fumigatus and BC 

Figure 2. Positive results with standard microbiological tests and Karius test in 
subjects with clinical diagnosis of infection. Abbreviation: Micro tests, microbio-
logical tests.

Table 6. Karius Test Performance Following Clinical Adjudication at All Timepoints

Timepoint (Days 
Since Fever Onset)

Sensitivity % 
(Frequency)

Specificity % 
(Frequency)

90% Confi-
dence Interval

Positive Predic-
tive Value (%)

Negative Predic-
tive Value (%)

1 85.4 (41/48)  74.4–93 100  

  100 (7/7) 65.2–100  50

2 (days 3–4) 94.1 (32/34)  82.6–98.9 97  

  80 (4/5) 34.3–99  66.7

3 (days 5–7) 100 (22/22)  87.3–100  91.7  

  33.3 (1/3) 1.7–86.5  100

4 (days 7–10) 94.4 (17/18)  76.2–99.7 89.5  

  33. (1/3) 1.7–86.5   50

5 (days 9–13) 88.9 (8/9)  57.1–99.4 88.9  

  50 (1/2) 2.5–97.5  50

Cumulative 91.6 (120/131) 70 (14/20)  93.4 63.3
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Table 7. Karius Test False Negatives at T1

Patient KT Result Other SMT Result
Clinical Diag-
nosis

Antibiotics 
Received 
(all) Case Details

1 Negative Negative, no tooth cultures Dental infec-
tion

PIP-TAZ; 
AMOX-
CLAV; 
ERT

Underwent tooth extraction; periodontal 
disease and “lucencies” on imaging

2 Negative Tooth abscess culture: Prevotella 
spp

Dental ab-
scess

PIP-TAZ; 
VORI

Underwent tooth extraction

3 Negative Negative Facial cellu-
litis

PIP-TAZ; 
VANC

Jaw pain, swelling, tenderness of left 
mandibular region—swelling on CT, im-
proved with antimicrobials

4 Negative Negative RLE cellulitis CEF; VANC Purpura and DVT on the same leg

5 Negative Negative Sepsis of 
unclear 
etiology

CEF; 
VANC; 
VORI; 
PIP-TAZ; 
ACV

Persistent fever on day 3 developed shock. 
Noted hemoglobin drop (7 to 4.8 g/dL); no 
identified source of bleeding; improve-
ment within 24 hours following steroids, 
PRBC, and broad antimicrobials

6 Negative Negative, no fungal cultures,  
Asp GM and 1,3 BDG negative

Fungal pneu-
monia

PIP-TAZ; 
MERO; 
VORI

CT chest with 7-mm nodule and small 
areas of GGO

7 Rhizopus 
spp at 
T2, T3

BAL: 6 colonies of Aspergillus niger  
Brain abscess: fungal cultures, 

fungal sequencing negative  
Brain histopathology: fungal forms 

consistent with Rhizopus spp.

Necrotizing 
fungal 
pneumonia 
and brain 
abscess

CEF; 
PIP-TAZ; 
VORI; 
L-AMB

CT chest: right lower lobe consolidation 
with surrounding GGO, VORI initiated  

On day 10, growth of A niger  
CT chest day 12: progressive cavitating 

pneumonia, changed to L-AMB.  
- Day 28; MRI brain: abscess  
- Day 30: Fungal hyphae identified on tissue 

Abbreviations: 1,3 BDG, 1,3 beta-D-glucan; ACV, acyclovir; AMOX-CLAV, amoxicillin-clavulanic; Asp GM, aspergillus galactomannan; CEF, cefepime; CT, computed tomography; ERT, 
ertapenem; GGO, ground-glass opacities; KT, Karius test; L-AMB, liposomal amphotericin; MERO, meropenem; MRI, magnetic resonance imaging; PIP-TAZ, piperacillin-tazobactam; PRBC, 
packed red blood cell; RLE, right lower extremity; SMT, standard microbiological testing; VANC, vancomycin; Vori, voriconazole. 

Figure 3. Time to diagnosis.
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isolated S mitis, the case was classified as definite. As a result, the 
likelihood of the other organisms of causing infection would not 
be strictly categorized. Finally, although a comprehensive patient 
chart review was used to determine whether infection was the 
etiology of FN, the results of KT were not blinded to the adjudi-
cators, adding a potential for bias.

Other limitations are intrinsic to KT performance and NGS, 
like the potential for sample contamination or detection of back-
ground noise [29, 30]. KT detects >1000 DNA-based pathogens 
including bacteria, viruses, fungi, and parasites. During valida-
tion, its analytical specificity was of 99.99% after assessment of 
environmental DNA contamination, quantitative interference 
in coinfection, pathogen cross-reactivity, and diversity robust-
ness [18]. Clinically, KT performance was assessed in 348 adults 
with suspected sepsis. Compared with BC, the PPA and NPA 
were 84.8% and 40%, respectively. After clinical adjudication, KT 
sensitivity was 92.9% with a specificity of 62.7%. Indeed, the en-
hanced sensitivity of KT and breadth of microorganisms detected 
compromises the ability to achieve high diagnostic specificity. In 
our study, the classification of the adjudicated possible cases as 
true positives could have overestimated both the sensitivity and 
specificity of KT, an inherent problem of analyzing tests with 
potentially greater sensitivity than the “gold standard.” And, al-
though KT could diagnose opportunistic pathogens otherwise 
missed by SMT, it also yielded polymicrobial detections and or-
ganisms of uncertain clinical significance and actionability (eg, 
Mycobacterium abscessus, Enterocytozoon bieneusi, HHV7) [30]. 
In these instances, interpreting mcfDNA results can be partic-
ularly challenging. In a retrospective evaluation of the clinical 
impact of KT results, Hogan et al found 86.6% of 82 detections, 
half polymicrobial, had no clinical relevance [31]. Therefore, KT 
results should be examined with caution, by physicians with ID 
expertise and familiarity with the technology and result inter-
pretation. On the other hand, the false-negative rate of KT was 
still 14.5% despite clinical adjudication, granted that 5 of 7 false-
negative cases did not have an etiology determined by SMT and 
the adjudication results could be incorrect. Finally, KT current 
inability to provide susceptibility/resistance profiling or detect 
RNA virus, together with its cost, limit its routine use in clinical 
practice as a substitute of standard testing or a tool to target anti-
microbial therapy.

In conclusion, KT can enhance the ability to diagnose infec-
tions in febrile neutropenic patients, especially when standard 
testing fails to detect an infectious culprit; it may also enable 
early optimization of antimicrobial therapy. Nevertheless, com-
plete understanding of its utility in clinical practice and inte-
gration in diagnostic algorithms requires further investigation.
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