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Abstract

The increasing number of active chassis systems leads to a higher need for control integration:

coordinating the vehicle actuators in a supervised way has the potential of enhancing the vehicle

performance in terms of handling and power efficiency while addressing the possible conflicts

between the different actuators, thus reducing implementation cost of active systems thanks to

better reusability, ease of configuration and calibration. This research presents the development of

a multi-layered control framework for vehicles equipped with an electric drivetrain, independent

braking, and active steering actuators. The control architecture is decomposed into two parts: an

abstract layer that defines controls at the wheel level and which does not require precise knowledge

of the actuators equipped on the vehicle, and an application layer that coordinates the actuators

to follow the wheel control requests. A simplified tire model is developed to model the coupling

behavior between the longitudinal and lateral tire forces; the abstract layer utilizes multivariable

control methods in conjunction with the simplified tire model to define optimal wheel controls.

Similarly, a control allocation is implemented in the application layer to coordinate the brake and

drivetrain actuators. The distribution of actuator commands is made invisible at the wheel torque

level by cleverly using the Smith-McMillan decomposition of a redundant system, simplifying the

controller design by dissociating the actuator allocation problem from the control problem while

ensuring internal stability and good robustness properties. Simulations with a high-fidelity vehicle

model validate the control framework. Several actuator configurations are considered to highlight

the reusability of the control architecture. Results show that the control architecture provides a

unified framework for the vehicle’s longitudinal, lateral, and yaw control.

xii
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Chapter 1

Introduction

1.1 Research Goal and Scope

Today’s vehicles are already over-actuated; different control modules can impact the same physical

variable. For instance, Electronic Stability Program (ESP), Torque Vectoring (TV), electric Power

Assisted Steering (ePAS), and Active Front Steering (AFS) affect the yaw behavior of the vehicle

either by creating a yaw moment from longitudinal tire forces or by modifying the wheel steering angle.

Without any coordination between the different control modules, conflicts may arise, compromise

the vehicle’s stability, and threaten the passenger’s safety. For instance, if a driver accelerates

during cornering on a slippery road, both slip controls and ESP could be triggered. Since control

modules have their local objectives and are usually designed to be mutually exclusive, a common

way to avoid using controls simultaneously is subsystem prioritization. In the previous example,

ESP would be given priority, and the vehicle would then use the friction brake to correct the vehicle

yaw, decelerating the vehicle contrary to the driver’s intention. Volvo classified chassis controls

and coupling between different actuators according to the dynamic motion of the vehicle [1]. This

classification is helpful to identify possible conflicts between control modules.

New features and actuators are being introduced to vehicles. For instance, Four Wheel Steering

(4WS) allows rear-wheel steering; new electric drivetrains and Electro-Hydraulic Brakes (EHB) enable

individual wheel torque distribution. Overall, vehicles are being increasingly more over-actuated.

These actuators create new degrees of freedom that the driver cannot directly control, hence an

increasing number of chassis modules. Increasing over-actuation promises to improve safety (due to

actuator redundancy) and enhance dynamic performance (in terms of handling, comfort, or energy
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efficiency); however, when the number of actuators and sensors increases, the number of possible

conflicts increases too. It becomes more difficult to foresee all the conflicts that could happen,

thus requiring more extensive testing. In addition to that, proper coordination between the vehicle

actuators is necessary to fully exploit the potential of each subsystem and the couplings between

the different domains they impact. The increased over-actuation leads to more complex control

architectures that are difficult to maintain and cannot be easily modified to implement new actuators.

Finally, the control functions and electronic architectures of most production vehicles are based

on the lowest bids of many supplier solutions [2]. Over many years, these solutions have resulted in

costly and less than ideal software and hardware legacies which are incredibly difficult to calibrate

and expensive to implement. On the other hand, most new vehicle attributes are increasingly

becoming software-based. Control functional and electronic architectures have reached saturation

levels, and without fundamental change to this area, the new vehicle features will become more and

more challenging to implement. To illustrate this, one can consider the evolution of the number of

Electronic Control Unit (ECU) in modern vehicles: modules have their own control logic, resulting

in a high number of ECU. Indeed, modern cars can have up to 80 ECU which results in complex and

costly electronic architecture [3]. Control integration promises to reduce vehicle costs by reducing

the number of sensors and hardware control units.

For all these reasons, proper functional control and electronic control architectures, including an

appropriate ‘plug and play’ optimization strategy for a fully centralized Integrated Vehicle Dynamics

and Control (IVDC), also called Global Chassis control (GCC), have tremendous benefits for any

vehicle and are magnified for electric cars. Kissai [2] describes attributes of an ideal architecture:

Adaptability: The vehicle is exposed to wide variation in operating conditions, either from the envi-

ronment, the driver behavior and expectation, or the vehicle properties themselves. Dynamic

reconfiguration is necessary to face these variations while maintaining suitable performance

and safety.

Fault tolerance: The vehicle must be able to operate in degraded modes, for instance, after a

component failure. The failure can be due to hardware (e.g., a fluid leakage, broken sensor) or

software.

Extensibility: The architecture should be ‘plug and play’ to allow adding new features or technologies
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1.2 Dissertation Outline

without redesigning the entire control strategy.

Modularity: It allows manufacturers and suppliers to independently develop components of the

architecture, thus reducing cost and implementation time and ensuring flexibility, extensibility,

and reusability.

The goal of this project is to investigate control functionalities, electronic architectures, and

various optimization approaches to design a pragmatic architecture and a centralized controller for

the next-generation IVDC applicable to electric vehicles. The following questions should be answered

to achieve this goal:

1. What is the optimal torque distribution to improve the vehicle dynamics without compromising

energy efficiency, and what is the best optimization strategy to coordinate the drivetrain

actuators?

2. How can active steering be used to improve vehicle handling in safety-critical situations?

3. What are the best low-level control strategies for propulsion, regenerative braking, torque

vectoring, and steering to follow the desired targets?

4. What vehicle states (e.g., vehicle velocity) and environmental parameters (e.g., tire-road friction

potential) are necessary to accomplish the desired control task. What are the most suitable

estimation methods to observe these signals if direct measurements are not available?

5. If full control integration cannot be achieved, how will partial integration affect vehicle

performance and safety?

The novelty of this research is to consider unique control approaches to design IVDC for electric

vehicles.

1.2 Dissertation Outline

Chapter 1 conducts a literature review of control architecture and methodologies used in global

chassis control.

3
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Chapter 2 describes the modeling techniques used in this thesis. A complete full vehicle model is

described. The model includes 6 Degree of Freedom (DoF) associated with the chassis, 4 DoF

associated with the vehicle suspension, and 4 DoF associated with the wheel spin. Different tire

models are described, and the tire coupling and saturation phenomena are discussed. Finally,

models for active chassis systems are provided and analyzed.

Chapter 3 introduces the multi-layered control architecture proposed in this dissertation. This

chapter also highlights different methodologies for combined optimization and control and

investigates the effect of adding a control allocation in a feedback loop in terms of robustness.

Chapter 4 discusses the normal tire force estimation framework. Simulations with a full vehicle

model show that the estimation strategy offers good and robust estimates. A review of the

maximum friction coefficient estimation method is conducted, and a simple observer is proposed

to estimate the maximum tire forces achievable.

Chapter 5 describes the high-level control strategy for the IVDC. It allocates controls at the wheel

level in an actuator-agnostic way such that it can be reused for vehicles equipped with different

sets of actuators. Several control implementations are proposed and investigated.

Chapter 6 proposes low-level controller to track the command of the high-level controller presented

in Chapter 5. Control strategies are developed to integrate the electric motors with the friction

brakes, including when the tire is saturating.

Chapter 7 presents simulation results of the entire control architecture combining the estimation

framework, high-level and low-level controllers presented in Chapters 3 to 6.

1.3 Literature Review of Active Systems and Control Integration

1.3.1 Active Chassis Systems

Active safety systems have been gradually introduced in commercial vehicles since the late 70s,

starting with Anti-lock Braking System (ABS). First introduced as an option, it is now a safety

standard in passenger vehicles. ABS relaxes the brakes to prevent them from locking and improve

braking distance, vehicle stability, and steerability. Similarly to ABS, Traction Control System
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Figure 1.1: Timeline of deployment of active chassis control systems

(TCS) prevents loss of traction during acceleration by reducing the motor torque. ePAS applies a

torque on the steering column to help the driver steer. Similarly, AFS altered the wheel steering

angle; BMW proposes active steering to increase the gear ratio from the steering wheel to the wheel

at low speed to help to park and improve maneuverability and decrease this ratio at high velocity

in hazardous situations to improve directional stability [4]. At first, control integration was not

necessary since each system mostly affected a single domain: systems based on longitudinal tire

forces like ABS and TCS were used for longitudinal control, and systems affecting the lateral tire

forces were used for lateral control. The introduction of ESP, also called Electronic Stability Control

or Dynamic Stability Control, breaks this assumption. ESP applies a torque difference between

the two wheels of the same axle by modulating the brake pressure independently on each side to

generate a yaw moment on the vehicle. The torque difference applied by ESP stabilizes the car when

it is losing directional stability, but it affects both the vehicle’s longitudinal and lateral motions.

TV can achieve the same effect but applies a torque difference using motors. Another system that

combines different domains is Active Rollover Protection, which detects potential rollover events

due to excessive speed during cornering and applies braking torque or reduces the engine torque

to prevent the rollover from happening. Figure 1.1 shows a timeline of the deployment of active

systems [5].

More and more features are being introduced to passenger vehicles to make them safer, more

comfortable, and more power-efficient: Electronic Brake Distribution optimizes front to rear braking
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Figure 1.2: Decentralized (or parallel) architecture

torque distribution by modulating the rear brakes pressure; Systems such as Cruise Control and

Hill Descent Control monitors the vehicle speed in specific situations; Active Roll Control modifies

the roll behavior of the vehicle; Semi-Active Suspensions modifies the ride properties of the car to

either improve passenger comfort or vehicle ride performance; Regenerative Braking uses electric

machines as a generator to decrease the vehicle speed while recovering energy and reducing the

vehicle carbon footprint. The introduction of Advanced Driver-Assistance Systems (ADAS) (e.g.,

Automatic Emergency Braking, Adaptive Cruise Control, Lane Keeping System), the use of new

actuators (e.g., extra electric motors in Hybrid Electric Vehicles (HEV)), and the development of

autonomous vehicles will only strengthen this trend.

1.3.2 Integrated Vehicle Control Architecture

Control architectures of GCC are classified in three categories: decentralized, centralized, and multi-

layered [6]. With the decentralized architecture, the controls of the different subsystems are designed

independently and have their ECU. Fig. 1.2 shows a representation of the decentralized architecture,

the architecture has a parallel structure, and control modules are working simultaneously. Each

module focuses on its local targets by using the vehicle actuators without supervision. Instead,

integration is made downstream by allowing communication between the control modules. This
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approach is easy to implement and has a reduced computational load compared to integrated

schemes [7], but it does not take advantage of sharing the information of different sensors and

actuators [6].

Control methodologies used to coordinate the actuators in decentralized architectures are based

on system prioritization. For instance, pure subsumption assigns priority to the different control

functional objectives. The actuators apply the control with the highest priority and subsume lower

authority controls. Other methods can also be used to rank the control authority, e.g., largest

activation applies the command with the highest modulus [8]. A single control functional dominates

and takes over the actuator with both of these methods. It allows to switch between different control

modes, and there is a danger of creating instabilities or undesirable transient responses. Other

control methods such as Artificial Neural Network (ANN) or fuzzy logic can be used instead to

ensure smooth transitions during conflicts.

The centralized architecture utilizes a unique controller for all the actuators of the vehicle (Fig. 1.3).

It gathers all signals from the sensors, state estimators, and operation information to generate control

signals, usually resulting from a multi-objective optimization. The centralized control architecture’s

implementation relies on predictive control and robust control methods such as H∞ and sliding

mode control. While this approach has all the benefits resulting from control integration, it suffers

from a lack of flexibility and fail-safe redundancy.

Researchers, both in academia and in the industry, focus mainly on the multi-layered architecture

as it offers a more modular, reusable, and extensible platform [9]. In the multi-layered architecture,

an upper controller generates generalized forces that should be applied to the vehicle to follow the

driver’s motion request. A mid-level controller allocates these generalized efforts among the available

actuators. Finally, low-level controllers execute their local control targets.

The high-level controller is usually designed with the same advanced Multiple Input Multiple

Output (MIMO) control methods used by the centralized architecture. The mid-level control

allocation can be formulated as an optimization problem to minimize secondary objectives such

as power efficiency or tire wear while meeting high-level targets by using the additional degrees

of freedom provided by the vehicle over-actuation. Control allocation can be formulate as more

or less computational expensive problems: Linear Programming (LP), Quadratic Programming

(QP), Nonlinear Programming (NLP). Computational load is a major concern and needs to be
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considered for real-time implementation. Several control allocation methods are well described

theoretically, such as direct pseudo inverse based on the Moore-Penrose inversion, daisy-chain, and

optimization-based allocation [10], [11]. Other benefits of control allocation include

• Actuator saturation and bandwidth: Constrained allocation problem allows for enforcing

constraints on the actuator signals; this can be used to enforce magnitude and rate saturation.

Moreover, one can also penalize the rate of change or the use of an actuator.

• Dynamic reconfiguration: It allows for modifying the priority of the actuators, including in

case of an actuator failure, and the priority of the targets if all targets cannot be met at the

same time. For instance, if the vehicle is near the handling limit, the control allocation can be

modified to promote the tracking of lateral force and yaw moment target over the longitudinal

force.

For these reasons, the multi-layer architecture offers a more modular and reusable platform for

control integration than the centralized approach.

Soltani [11] propose a six-layer architecture (Figure 1.4). The first layer defines the motion

target for the six degrees of freedom of the vehicle (longitudinal, lateral, bounce, roll, pitch, and

yaw). Depending on the driving conditions, the goal of the integrated controls may change. The
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second layer decides the control mode of the architecture (safety, performance, or comfort) based on

estimates of the vehicle and environmental states (i.e., vehicle velocities, road friction potential).

The third layer generates forces and moments associated with each degree of freedom of the vehicle

to follow the vehicle’s motion targets. Then, the fourth layer allocates the forces and moments to

the actuator. Finally, low-level vehicle dynamic controls (layer 5) such as ABS, TCS, or Continuous

Damping Control (CDC) compute control to apply on the smart actuators which correspond to the

sixth layer.

Kissai [2], [9] proposes another classification for GCC architectures: upstream and downstream

architectures. Instead of defining the architecture from its control and electronic structure, the

definition distinguishes different control architectures by the position of the layer responsible for

coordinating the control signal with respect to the control flow. The downstream coordination

approach lets the different control modules work independently; the coordination between the

actuators is ad hoc and downstream. This approach corresponds to the decentralized architecture.

The upstream approach gathers the centralized and multi-layered architectures; it defines signals to

command the lower-level subsystems and actuators to achieve multiple objectives. The downstream

approach is usually less complex but limited to a single objective, whereas the upstream approach

uses more complex control methodologies to achieve multiple objectives.
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1.3.3 Control Methodologies for IVDC

Vivas-Lopez [12] implements a centralized architecture to integrate a large set of actuators: ABS-

based ESP, semi-active suspensions using CDC, and AFS. The author claims to use a hierarchical

control architecture; however, the architecture does not follow the structure of the multi-layered

architecture shown in Figure 1.4. Indeed, it lacks the control allocation layer, which outputs low-level

control signals from high-level generalized forces and considers couplings between the different

domains. Instead, it follows more closely the centralized architecture presented in Figure 1.3 where

a central controller directly defines command for lower-level systems and actuators. A decision layer,

which combines the ‘Identification of driving states’ and ‘Central vehicle dynamics controller’ blocks

of Figure 1.3, identifies the driving situation by using the k-Nearest Neighbors (k-NN) classification

algorithm. Once the driving situation has been identified, a set of heuristic rules defines whether the

driving situation is critical and whether the operating mode should be modified. The decision layer

outputs three signals which correspond to the trade-off between ride and comfort for suspension,

the use of active steering, and the generation of a brake-based yaw moment for ESP. The active

suspension uses a weighted sky-hook and ground-hook control law, and the ESP and active steering

are controlled by fuzzy-logic controllers, which define the brake-based yaw moment and the active

steering angle to be applied. A rule-based algorithm allocates the brake-based yaw moment to the

four wheels. Finally, low-level controllers are implemented by proportional linear Single Input Single

Output (SISO) controllers.

He et al. [13] investigate the integration of semi-active suspension using CDC with ESP to improve

the vehicle stability and handling in emergency situations. A rule-based centralized controller is

used to supervise both ESP controller and CDC actuators. Based on the vehicle sideslip angle and

yaw rate, the vehicle is considered to be in stable or unstable conditions. In unstable conditions,

the CDC actuator is controlled to follow a sky-hook model to improve the tire load and braking

performance; in stable conditions, the CDC controller aims to improve the ride performance.

Falcone et al. [14] proposed to use an Model Predictive Control (MPC) to combine braking and

steering in autonomous vehicles, thus implementing a centralized control architecture. The controller

sets the steering angle and the longitudinal slip at each wheel to follow a predefined trajectory while

minimizing the actuation effort and enforcing physical constraints on the wheel slip to maintain
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the vehicle stability. The internal model used by the MPC is linearized at each timestep to reduce

the complexity associated with solving the optimization problem. Low-level slip controllers convert

the slip request of the high-level controller to a braking torque independently at each wheel. In

reference [15], they compare the performance of the MPC whose model is linearized at each timestep

with a nonlinear MPC. The linear MPC can perform close to the nonlinear MPC while limiting the

computational burden by enforcing an additional constraint on the slip angle. Falcone’s work is

extended to comprise active differential and fit in the context of IVDC in [16]. The architecture

from the latter work yields a multi-layered IVDC architecture where the high-level MPC defines the

steering angle and slip ratios at the four wheels. Low-level slip controllers ensure good tracking of

the MPC slip targets and coordinate the active brake and active differential actuators; however, few

details are given on the design of the slip controllers and their dynamics are neglected.

Varhagen [17] proposed a GCC for vehicles equipped with In-Wheel Electric Motors (IWEM).

The proposed architecture takes advantage of the properties of electric motors, namely, IWEM

allows generating a yaw moment on the vehicle by using both traction and braking torque contrary

to brake-based ESP. Electric motors also have higher bandwidth than EHB, and IWEM allow to

estimate both the torque and wheel slip with high accuracy. The last property motivates Varhagen

to build a multi-layered architecture centered around the individual wheel slip: high-level controllers

define the generalized forces to follow an acceleration and yaw rate request; a control allocation

formulated as a Quadratic Programming Problem (QPP) defines low-level longitudinal slip target to

meet the high-level target, the control allocation is designed based on a linearized tire model and

fuzzy logic is used to retrieve the tire saturation phenomenon; PI slip controllers with Controller

Output Observer (COO) disturbance rejection command the electric motor torque; observer and

state estimators compute the signal necessary for the controllers to operate. Velazquez [18], [19]

propose an analogous architecture for HEV which uses longitudinal wheel force as interfaces for the

low-level controllers instead of slip ratios in Varhagen’s architecture. The architecture implements

gain-scheduled H∞ high-level controllers, Youla parameterized low-level controllers to control the

actuators, and COO to estimate the longitudinal tire forces. Velazquez compares the slip-based

control architecture of Varhagen with his force-based control architecture and a benchmark MPC

centralized architecture with idealized assumptions such as access to perfect measurements and

information on the road surface friction coefficient. Velazquez concludes that all methods can
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successfully stabilize a Four Wheel Drive (4WD) electric vehicle during low-µ launch and high-speed

double lane change; the tire force and slip control architecture achieve relatively similar tracking

performance to the benchmark MPC architecture. However, the idealized MPC framework provides

better power consumption than the other architectures. The work of Varhagen and Velazquez

provides complete architectures, including observers and controllers, for an electric 4WD vehicle;

however, it is not clear how to modify the architecture to accommodate other actuators such as

active steering and suspension. Kissai et al. [20], [21] implement a multi-layer architecture with an

H∞ filter as a high-level controller, a least square control allocation to distribute the forces to the

different wheels, and low-level controllers to control the actuators. Nigicser et al. [22] proposes a

MPC scheme to apply a yaw moment on the vehicle body to reduce the risk of secondary collisions

after an impact; the yaw moment is allocated to the different wheels by a rule-based controller. They

plan to integrate active steering into the control architecture in the future.

Although robust control and optimization-based control have been widely used to implement

hierarchical GCC architectures, the literature is rich with other ideas. The following paragraphs list

a few manuscripts proposing more esoteric control schemes.

Mousavinejad [23] proposes to use nonlinear control methods to integrate AFS with brake-based

ESP. Independent sliding mode controllers are designed for AFS and ESP to follow yaw rate and

sideslip angle targets generated by a nonlinear vehicle model. The coordination between the different

systems is based on adaption gains that define each subsystem’s contribution toward achieving the

goal. A metric based on the sideslip angle allows for identifying stable and unstable conditions: in

the stable region, only AFS is used to follow the target since the brake-based yaw moment control

would reduce the vehicle speed; in the unstable region, both AFS and ESP are used to follow the

target and ensure vehicle stability. While the approach is simple, robust, and effective, the proposed

architecture is not flexible and extensive to new actuators; moreover, actuator saturation is not

considered in the metric distinguishing stable and unstable conditions. Yim [24] coordinates AFS

with 4WD and Active Roll Control (ARC) by using a sliding mode high-level controller designed

from a bicycle model; the sliding mode controller defines a yaw moment that is then allocated to the

vehicle actuators by a weighted least square optimization. Shyrokau [25] implements a multi-layer

control system to integrate a wide variety of actuators: frictions brakes, in-wheel electric motors,

steering and camber angle actuators, dynamic tire pressure system, and active suspension. The
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objective of the proposed integration strategy is mainly to improve the vehicle’s energy efficiency.

Shyrokau uses a second-order sliding mode controller as the upper controller. The control allocation

is formulated as QPP.

Zengin [26] aims to address uncertainties in operating condition and tire forces by using multiple

model adaptive control. Robust control guarantees stability and robustness against uncertainties

within a certain range; larger uncertainties (e.g., resulting from variation in operating conditions,

component aging, or failure) could result in degraded performance or instabilities. Multiple models

adaptive control aims to expand the range of uncertainties the system can face without losing

performance and stability. Zengin designs a MPC based multiple model adaptive controller to

integrate AFS and TV, he concludes that the proposed MPC outperforms other nonadaptive MPC

controller in terms of tracking and stability.

Andreasson [27] uses an inverse dynamic model with a Q-loop for high gain feedback to generate

the generalized forces to apply on the chassis, which are then allocated to each wheel as torque,

steering angle, and tire load by a constrained weighted-least square. The mapping from wheel

torque, steering angle, and normal force to generalized force and moment is nonlinear; the mapping

is linearized around the current operating point. The linearization simplifies the control allocation

and avoids using a nonlinear solver; instead, the allocation is formulated as a linear least-square

optimization problem.

Yin [28] notices that the Udwadia-Kabala method is more suitable than the Newtonian and

Lagrangian methods for systems with holonomic and nonholonomic equality constraints. Indeed,

dealing with rotating motion is difficult in Newtonian mechanics, and contrary to the Udwadia-Kabala

method, Lagrangian mechanics require introducing Lagrangian multipliers to address constraints.

For these reasons, the author claims that the Udwadia-Kabala method is more suitable for handling

systems involving holonomic and nonholonomic constraints with many degrees of freedom. Hence,

this procedure applies to a vehicle’s lateral and handling motion controller with independent front

and active rear steering. In addition, Yin uses a diffeomorphism to convert inequality constraints on

the tracking error to equality constraints, allowing the use of the Udwadia-Kabala method even in

the presence of inequality constraints. It is worth noting that the work demonstrated by the author

relies heavily on nonlinear mapping and does not take into account uncertainties.
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1.3.4 Summary of Control Architecture and Methodologies for IVDC

Table 1.1 summarizes the articles reviewed and lists the control methodologies used by the centralized

and multi-layered architectures for IVDC. From this literature review, we can conclude that IVDC has

enormous potential to improve the performance and safety of hybrid electric vehicles by integrating

different actuators and expanding their operating range (for instance, by using electric motors during

slip events to take advantage of their improved bandwidth and power efficiency) and taking into

account actuator coupling. It also promises to reduce implementation costs of active onboard systems

due to better reusability and ease of configuration and calibration. However, many questions stay

unanswered, research is still active, and a pragmatic GCC architecture is yet to be developed.

The vehicle must face a wide range of operating conditions and many uncertainties, especially

in the interaction between the road and the tire. Designing a control architecture for IVDC also

involves enforcing constraints on physical quantities, e.g., on actuators to satisfy the feasibility of

the command or on physical quantities such as sideslip to ensure stability. As Andreasson’s, Yin’s,

and Zengin’s work illustrates, systematic and efficient approaches to address these challenges (wide

range of operating conditions, uncertainties, physical constraints) are still being developed.

The multi-layered architecture seems to be the most promising and practical implementation as it

offers more flexibility and reusability while integrating the different controls in a centralized manner.

In terms of control implementation, it relies heavily on MIMO robust control methods and numerical

optimization methods for control allocation. However, the architecture could be made more flexible

and modular. For instance, for a vehicle platform used by several vehicles equipped with different

actuators, the entire control allocation of the multi-layered architecture must be redesigned for each

set of actuators. The goal of the control allocation is to allocate the actuator commands to minimize

secondary objectives (e.g., power efficiency); this in fine allocates the forces at the wheel level and

should be subject to physical constraints to enforce vehicle stability. Assuming precise knowledge

of the actuators is not necessary to allocate the forces at the tire level, the allocation could be

divided into two steps: first at the wheel level and then at the actuator level. This abstraction

would provide more flexibility and modularity: only the second step would be modified if the set of

actuator changes and stability were preserved since the first step would enforce it. Obviously, the

first step is not entirely actuator independent, but precise knowledge of the actuators is unnecessary;
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actuation saturation limits and bandwidth information should suffice.

Finally, modifying the vehicle control architecture to use a central controller implies modifying

the underlying electronic architecture. For instance, brake-based ESP can be implemented in the

same ECU as the brake control module. If that feature were implemented in a different control

module, the control strategy might suffer from communication delay. Technical specifications, such

as computational power or communication bandwidth, should be defined to ensure the feasibility of

the architecture.

Table 1.1: Summary of the reviewed control architectures and control methodologies

Author Actuators Control methods

Centralized architecture

Falcone [14], [15] EHB, steering MPC controlling steering angles and wheel slip ratios

of an autonomous vehicle. Low-level slip control to

convert slip request to a braking torque request.

He [13] ESP, CDC Rule-based central controller.

Mousavinejad [23] EHB, ESP, AFS Independent sliding mode controllers for ESP and AFS;

integration is done via adaption gains.

Vivas-Lopez [12] CDC, AFS, EHB k-NN classification with fuzzy logic controller.

Rule-based allocation between the four EHB.

Velazquez [19] 4WD MPC outputting longitudinal tire force from total

torque and yaw rate requests.

Yin [28] AFS, ARS Control law based on the Udwadia-Kubala approach

Zengin [26] AFS, TV MPC-based multiple model adaptive control.

Multi-layered architecture

Falcone [16] EHB, AFS, active

differential

MPC controlling steering angles and wheel slip ratios.

Slip control to convert slip request to a braking torque

request. Downstream coordination between the EHB

and active differential actuators.

Table continues on next page
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1 Introduction

Table 1.1 – continued from previous page

Author Actuators Control methods

Andreasson [27] CDC, EHB, AFS,

ARS

Inverse dynamic with Q-loop; constrained weighted

least square control allocation.

Kissai [20], [21] ARS, rear-axle

TV, EHB

Gain-scheduled H∞ high-level controller generating

generalized forces targets; weighted least-square

control allocation maps generalized high-level target to

long. tire force; low-level controller based on tire map.

Nigicser [22] 4WD MPC; rule-based control allocation.

Shyrokau [25] EHB, IWEM,

AFS, ARS, CDC

Second-order sliding mode as high-level controller,

QP-based control allocation.

Soltani [11] ePAS, AFS, ESP Youla parameterized high-level controllers; daisy-chain

control allocation.

Varhagen [17] 4WD PI high-level controllers define generalized forces;

constrained QP control allocation of slip ratios; PI

controller with COO disturbance rejection as low-level

slip controller.

Velazquez [18], [19] 4WD Gain-scheduled H∞ high-level controllers define

generalized forces; unconstrained QP control allocation

of wheel torques; low-level slip and torque controllers

designed with Youla parameterization.
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Chapter 2

System Modeling

The first step to design controls is to develop system models. These models can then be used to

analyze the systems and better grasp their dynamics, develop model-based controls, and represent

the systems in simulation. The model should accurately represent the plant dynamics, but it should

also remain simple enough to design control strategy. First, a full-chassis model is derived, which

includes the six DoF of the chassis. Second, a simplified planar vehicle model is derived and used to

derive vehicle controls. Finally, the vehicle system models are derived with the bond graph modeling

technique as it is a powerful modeling method for mechatronic systems which span over multiple

energy domains (e.g., mechanical, electrical, hydraulic) [29].

2.1 Chassis Model

The main assumptions used in this model are as follows. The sprung mass is modeled as a rigid

body with six DoF. The unsprung masses are attached at the corners of the sprung mass as shown in

Figure 2.1. Each unsprung mass can only move in the vertical direction relative to the sprung mass;

there are no DoF in the longitudinal and lateral direction between the sprung and unsprung masses.

The tire deflection is always normal to the ground. The suspension kinematics and its effect on the

suspension forces are ignored. The roll motion of the chassis is constrained to a preset roll axis which

represent the axis around which the chassis rolls. The roll axis is defined as the axis going through

the front and rear roll centers, these roll centers are assumed to be at a fixed distance below the

sprung mass center of mass, and they are the point of application of the forces transmitted to the

sprung mass through the suspension links. The chassis model does not include anti-roll bars; thus, it
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2 System Modeling

neglects the coupling between the left and right sides at each axle and the additional roll stiffness

introduced by the anti-roll bar. This model possesses eighteen DoF: six DoF are associated with

the longitudinal, lateral, heave, pitch, roll, and yaw dynamics of the sprung mass, four additional

DoF are associated with the suspension deflection or additional degree of freedom of the unsprung

masses, four DoF are associated to the tire deflection, and the last four DoF are associated to the

four-wheel spins.

In order to easily describe the motion and dynamics of the vehicle, several reference frames are

introduced. A body-fixed coordinate Rc is attached to the sprung mass at the center of gravity;

its axes correspond to the principal directions of the chassis. In addition to this frame, another

frame Rg is defined for each tire. It is attached to the center of the tire contact patch. This frame is

obtained by rotating the inertial frame R∗ by the vehicle yaw angle around its z-axis. For steered

wheels, it is useful to define the tire frame Rt which is obtained by rotating Rg by the wheel steering

angle around its z-axis. Finally, R∗ denotes a fixed inertial frame.

The matrix RR∗→Rc
= RϕRθRψ represents the transformation from the chassis frame to the

inertial frame. The roll, pitch, and yaw rotation matrices Rϕ, Rθ, and Rψ are defined as

Rϕ =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

 , Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 , Rψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (2.1)

Similarly, the rotation matrix used to convert from the ground frame Rg to the tire frame Rt is

Rδij =


cos δij sin δij 0

− sin δij cos δij 0

0 0 1

 (2.2)

Notations The following notations are used to define position, velocity, acceleration, force and

moment vectors. The position vector lA→B,R indicates the vector from point A to point B expressed

in the frame R. The velocity vector vA,R corresponds to the velocity of point A in the frame R,

similarly aA,R corresponds to its acceleration. The angular velocity of a frame is denoted as ωR.

Forces and moments exerted by a body B1 on B2 and expressed in the frame R are noted respectively
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Figure 2.1: Full vehicle model

as FB1→B2,R and MB1→B2,R.

The point CG denotes the center of gravity of the sprung mass, sij denotes the four corners of the

sprung mass where (i, j) ∈ {F,R} × {R,L}, uij denotes the four unsprung masses, and gij denotes

the center of contact patch for the ij wheel. Moreover, the vehicle model consists of the following

rigid bodies: the sprung mass S, the unsprung masses Uij , and the ground G.

Given a vector A defined in a body-fixed frame R, the notation Ȧ|R is used to denote the vector

obtained by differentiating the individual components of the vector A. Moreover, Ax correspond

to the component of the vector A along the x-axis of the frame in which the vector is expressed.

Vectors xR, yR, and zR correspond to the x, y, and z axes of the frame R.

Using these notations, the states of the vehicle model are the center of gravity velocity vCG,Rc ,

the sprung mass rotational velocity ωRc , the unsprung mass velocities vzuij ,Rc
, the suspension length

lzsij→uij ,Rc
, the laden wheel radius lzuij→gij ,Rg

. Additionally, the roll, pitch, and yaw chassis angles

are denoted as ϕ, θ, and ψ respectively.

Velocities The velocities at the corners of the chassis are defined from the vehicle geometry, and

the sprung mass states vCG,Rc , and ωRc .

vsij ,Rc = vCG,Rc + ωRc × lCG→sij ,Rc (2.3)
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2 System Modeling

The lateral and longitudinal compliances between the sprung mass and unsprung masses are

neglected, thus, there is no relative velocity between the center of mass of the chassis and the

unsprung masses on the xRc and yRc directions. The vertical component of the velocity of the

unsprung masses vzuij ,Rc
is dictated by the vertical velocity of the point sij and by the suspension

relative velocity. The velocities of the unsprung masses in the chassis frame along is

vuij ,Rc =


vxuij ,Rc

vyuij ,Rc

vzuij ,Rc

 = vsij ,Rc + ωRc × lsij→uij ,Rc +


0

0

l̇zsij→uij ,Rc

 (2.4)

The velocities of the unsprung masses must first be converted to the ground frame Rg as follows

vsij ,Rg = RT
θR

T
ϕvsij ,Rc to compute the velocities of the contact patch. Finally, the velocities of the

contact patch gij is defined by the velocity of the sprung mass sij and by the tire deflection relative

velocity as follows,

vgij ,Rg = vuij ,Rg + ωRg × luij→gij ,Rg +


0

0

l̇zuij→gij ,Rg

 (2.5)

Tire Forces The lateral and longitudinal velocities of the contact patch can be used to compute the

wheel’s longitudinal and lateral slips. From this values, an empirical model like the Magic Formula

described in Section 2.2.1 can be used to compute the longitudinal and lateral tire forces F xG→Uij ,Rt

and F yG→Uij ,Rt
. The tire model allows computing the tire forces in the tire frame Rt. Thus, for

steered wheels, it is necessary to convert the forces from the tire frame Rt to the frame Rg.

The tire normal forces is defined by the tire deflection in the zRt = zRg direction. In the case

of wheel lift-off, the tire deflection must be saturated so that the wheel radius does not exceed the

unladen wheel radius. A linear relation is assumed between the tire normal deflection and the tire

normal force,

F zG→Uij ,Rg
= F zG→Uij ,Rt

= kt(rijw − runladen) (2.6)

rijw = min(runladen, l
z
gij→uij ,Rg

) (2.7)
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2.1 Chassis Model

Suspension Forces Neglecting the lateral and longitudinal compliance between the sprung and

unsprung masses would require computing the derivative of the longitudinal and lateral acceleration

of the unsprung masses in the vehicle frame Rc. Differentiating the velocities is possible but is not

desirable in simulation. Instead, Shim [30] proposes to neglect the inertia forces of the unsprung mass

in the longitudinal and lateral directions. Shim shows that this simplification does not significantly

impact the roll response in a step steer scenario, even during vehicle roll-over and wheel lift-off.

Using this simplification, the lateral and longitudinal forces transmitted to the sprung mass by the

suspension become:

F xUij→S,Rg
= −F xS→Uij ,Rg

= F xG→Uij ,Rg
+ F xgrav→Uij ,Rg

(2.8)

F yUij→S,Rg
= −F yS→Uij ,Rg

= F yG→Uij ,Rg
+ F ygrav→Uij ,Rg

(2.9)

Each suspension is modeled by a spring and damper mounted in parallel. The suspension stiffness

and the damper are nonlinear and represented by the functions k(·) and b(·) respectively. The total

force applied by the strut to the sprung mass in the zRc is

F zUij→S,Rc
= k(lzsij→uij ,Rc

) + b(l̇zsij→uij ,Rc
) (2.10)

Finally, the force applied by the unsprung mass on the chassis in the chassis frame can be obtained

using rotation matrices FUij→S,Rc = RϕRθFUij→S,Rg .

Sprung Mass Equations of Motion The vehicle is assumed to have a roll axis on which the lateral

force F zUij→S,Rc
applied by the unsprung masses acts. The inclusion of this roll axis reduces the

total roll moment transferred to the sprung mass by the suspension since it reduces the level arm of

the lateral forces acting on the sprung mass. Instead of higher roll moments, the roll axis introduces

a load transfer between the wheels through the suspension links [30]. The load transfer is described

by jacking forces Fjack,i which transfers the load on the axle i from the left wheel to the right wheel.

The moment applied by the jacking forces around the roll axis is ti · Fjack,i where ti is the track

width of the axle i and this moment must compensate for the reduction of the roll moment due to t
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2 System Modeling

the presence of a roll axis. Thus, the jacking forces are

ti · Fjack,i =Mno roll,i −Mroll,i (2.11)

Mno roll,i =
∑
i

F yG→Uij ,Rg
· lzgij→uij ,Rg

+ F yUij→S,Rc
· lzuij→sij ,Rg

(2.12)

Mroll,i =
∑
i

hri · F yUij→S,Rg
(2.13)

where hri is the distance of the roll center of the axis i from the sprung mass. Mno roll,i would be

the roll moment applied by the lateral force of the axle i on the sprung mass in the absence of a roll,

and Mroll,i is the roll moment applied by the axle when considering the roll axis. Finally, we define

the vector F∆ij,Rc as follows to describe the load transfer.

F∆ij,Rc =


[
0 0 +Fjack,i

]T
, if j = R[

0 0 −Fjack,i

]T
, if j = L

(2.14)

Let FS→S,Rc
and MS→S,Rc

be the sum of the external forces and moments, respectively, acting

on the sprung mass. The equations of motion of the chassis are given by

dvCG,Rc

dt

∣∣∣
Rc

=
1

ms
FS→S,Rc

− ωRc × vCG,Rc (2.15)

dωRc

dt

∣∣∣
Rc

= I−1MS→S,Rc
(2.16)

The external forces acting on the chassis are the force of gravity Fgrav→S,Rc , the force exerted

by the suspension (in the vertical direction), and unsprung masses (in the lateral and longitudinal

direction) FUij→s,Rc , and the jacking force due to the presence of the roll axis F∆ij,Rc . Hence,

FS→S,Rc
= Fgrav→S,Rc +

∑
ij

FUij→S,Rc + F∆ij,Rc (2.17)

As explained previously, the presence of a roll axis decreases the roll moment applied to the chassis

by the lateral forces. The roll moment is generated by the imbalance of lateral and vertical forces

around the roll axis. The pitch and yaw moment applied on the chassis are defined from the y and z

components of the cross-product lCG→sij ,Rc × FUij→S,Rc .
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2.1 Chassis Model

Thus, the roll, pitch, and yaw moments applied on the chassis are given by

Mx
S→S,Rc

=
∑
ij

hri · F yUij→S,Rg
+
∑
i

ti · (F zUiL→S,Rg
− F zUiR→S,Rg

)

2
(2.18)

My

S→S,Rc
=

∑
ij

lzgij→CG,Rc
· F xG→Uij ,Rc

+
∑
ij

lzuij→sij ,Rc
· F xUij→S,Rc

(2.19)

−
∑
ij

lxuij→sij ,Rc
· F zUij→S,Rc

(2.20)

M z
S→S,Rc

=
∑
ij

lxuij→sij ,Rc
· F yUij→S,Rc

−
∑
ij

lyuij→sij ,Rc
· F xUij→S,Rc

(2.21)

The first term of the roll moment corresponds to the roll moment produced by the lateral forces

around the roll axis; the second term corresponds to the roll moment produced by vertical forces.

The first term of the pitch moment corresponds to the moment produced around the axis yRg by

the longitudinal tire forces, which are transmitted to the sprung mass through the suspension. The

second and third terms correspond to the cross product of the longitudinal and vertical forces acting

on the sprung mass, respectively. Finally, the yaw moment is defined from the cross product of the

longitudinal and lateral forces acting on the sprung mass.

The angular velocities of the sprung mass are given as follows,

ωx = ϕ̇− ψ̇ sin θ (2.22)

ωy = θ̇ cosϕ+ ψ̇ cos θ sinϕ (2.23)

ωz = −θ̇ sinϕ+ ψ̇ cos θ cosϕ (2.24)

Thus, the Cardan angle should be integrated as follows,

ϕ̇ = ωx + sinϕ tan θ ωy + cosϕ tan θ ωz (2.25)

θ̇ = cosϕ ωy − sinϕ ωz (2.26)

ψ̇ =
sinϕ

cos θ
ωy +

cosϕ

cos θ
ωz (2.27)

Unsprung Mass Equations of Motion Only the state associated with the vertical movement of

the unsprung mass is updated since we assume that there is no lateral and longitudinal deflection
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2 System Modeling

between the chassis and the unsprung masses. The update equation is given as follows,

v̇zuij ,Rc
=

1

mus

(
Fgrav→Uij ,Rc + FG→Uij ,Rc − FUij→S,Rc − F∆ij,Rc

)
− ωxRc

vyuij ,Rc
+ ωyRc

vxuij ,Rc
(2.28)

Suspension and Tire Deflection Equations of Motion The equation of motion of the DoF

associated to the suspension deflection is defined as follows

l̇sij→uij = vzuij ,Rc
− vzsij ,Rc

(2.29)

The tire normal deflection is assumed to be normal to the ground, thus, its equation of motion is

l̇uij→gij = vzgij,Rg
− vzuij,Rg

(2.30)

= vzgij,Rg
− (RT

θR
T
ϕvuij,Rc).zRg (2.31)

where the normal velocity vzgij,Rg
is an input of the system defined from the road profile. Road

models are usually formulated as functions that define the height and the normal to the ground at

any point. Road models can be divided into two categories: deterministic and stochastic models.

Deterministic profiles can be defined as simple mathematical expressions or, more generally, as a

heightmap that stores the measurement of a road profile. OpenCRG defines an open file format to

store the profile of road surfaces. Stochastic profiles are defined from the statistical properties of the

road, namely from its Power Spectral Density (PSD). Several expressions exist for the PSD of the

road and usually rely on a few parameters such as the road roughness coefficient and its waviness

exponent [31].

Wheel Spin Equation of Motion Each wheel has a degree of freedom corresponding to its wheel

spin. The equation of motion for that degree of freedom is

Jwω̇ij = τ − rijwfijx (2.32)

where ωij is the wheel angular velocity, Jw is its inertia around its rotation axis, τ is the cumulative

torque applied by the friction brakes and the drivetrain, rijw is the wheel radius defined in (2.7),
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2.2 Tire Modeling

and fijxt = F xG→Uij ,Rt
is the longitudinal tire force in the tire frame.

2.2 Tire Modeling

The force generated by the tire results from the visco-elasticity of the tire material [32]: when

subjected to wheel slip, the tire deforms itself and generates a force. The longitudinal slip ratio and

the velocity in the tire frame Rt are defined by:

vgij,Rt = Rδijvgij,Rg , sijx =
rijωij − vxgij,Rt

|vxgij,Rt
|

(2.33)

The slip angle can be obtained from the velocity at the contact patch in the chassis frame Rc.

sijy = δij − tan−1
(vygij,Rc

vxgij,Rc

)
(2.34)

The tire normal force results from the compression of the tire normal stiffness. In the model of

the vehicle, the tire compliance is assumed to be normal to the ground; therefore, the tire normal

force is given by the following equation

F zground→uij,Rg
= max(0, ktqtij) (2.35)

where kt is the tire stiffness and qtij is the tire deflection.

The longitudinal and lateral tire forces F xground→uij,Rg
and F yground→uij,Rg

are defined by a tire

model which maps the slip ratio and slip angle1 to the longitudinal and lateral tire forces. Writing

the longitudinal, lateral, and normal force in a vector form yield the vector Fground→uij,Rt . The

forces are then expressed in the chassis frame.

Fground→uij,Rc = RϕRθFground→uij,Rg (2.36)

= RϕRθR
T
δij
Fground→uij,Rt (2.37)

1Depending on the tire model used and its complexity, other quantities can be needed to compute the tire force, e.g.,
the camber angle, the normal tire force.
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2 System Modeling

2.2.1 Magic Formula Tire Model

The Magic Formula [33] is one of the most well-known semi-empirical tire models used in vehicle

dynamics. Several versions of the Pacejka tire model exist; a simplified Magic Formula is presented

in this section; it considers combined longitudinal slip and cornering, neglects the nonlinear relation

between the wheel load and the tire force, and assumes a linear relation instead. The model defines

a combined slip quantity s =
√
s2x + s2y which is converted to a combined friction coefficient:

µ(s) = MF (s) = D sin
(
C tan−1

(
Bs− E(Bs− tan−1Bs)

))
(2.38)

The longitudinal and lateral tire friction coefficients are then calculated as follows by assuming a

friction circle. Finally, since the model neglects the load sensitivity, the longitudinal and lateral tire

forces are proportional to the normal force.

µi =
si
s
µ(s) i ∈ {x, y} (2.39)

fi = µifz i ∈ {x, y} (2.40)

2.2.2 LuGre Tire Model

Pacejka’s tire model gives a simple representation of the tire. However, it only captures the steady-

state operation of the tire and cannot be used to study the transient properties of the tire, e.g., for

abrupt transient or µ-jump. Finally, it does not provide a physical interpretation of the tire force

generation mechanism. Distributed tire friction models are a family of tire models that addresses

these shortcomings. It models the tire as a rigid carcass on which flexible microscopic bristles are

attached. The friction forces are generated through the interaction of the bristles with the road

surface at the tire contact patch (Figure 2.2). This family includes tire models such as the brush tire

model [33], Dahl [34], and LuGre [35] tire models.

The bristle deflection along the longitudinal and lateral axes is denoted as zx(ζ, t) and zy(ζ, t)

where ζ defines the position of the bristle at the contact patch. The bristle deflection is determined

by the relative velocity between the road and the tire defined in the longitudinal direction as

vrx = rω − v cosα and in the lateral direction as vry = −v sinα. The bristle deflection dynamics is
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Figure 2.2: Brush representation of the tire

described by the following partial differential equation

dzi(ζ, t)

dt
=
∂zi(ζ, t)

∂t
+ r|ω|∂zi(ζ, t)

∂ζ
= Φi(vr, z) (2.41)

The friction generated by a single bristle at position ζ is

µi(ζ, t) = σ0iz(ζ, t) + σ1i
∂z(ζ, t)

∂t
+ σ2ivri (2.42)

where σ0i is the bristle longitudinal stiffness, σ1i is the bristle damping coefficient, and σ2i is the

viscous friction.

The friction forces and moments are computed by summing the contribution of all the tire bristle

over the contact patch. Hence the longitudinal, lateral tire forces and self aligning moment

fi(t) =

L∫
0

µi(ζ, t)fz(ζ) dζ, mz(t) =

L∫
0

µy(ζ, t)fz(ζ)
(L
2
− ζ

)
dζ (2.43)

The LuGre tire model assumes that the friction is proportional to the bristle deflection. When the

friction reaches the friction potential, the bristle tip starts to slip over the road surface, the bristle

deflection becomes constant and the friction force is saturating. Assuming a Stribeck friction for the
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2 System Modeling

Figure 2.3: Steady-state tire forces and moments with different coefficient of friction. Assuming a
friction circle (i.e. µmax,x = µmax,y) and a fixed constant static to kinetic friction ratio
(i.e. µsx = 1.2µkx and µsx = 1.2µkx).

friction potential, we have

g(vr) = µk(vr) +
(
µs(vr)− µk(vr)

)
e−

(
∥vr∥
vs

)δ
(2.44)

where µk(vr) is the kinetic friction and µs is the static friction. Assuming a tire friction circle, the

stiction dynamics function Φ of a LuGre tire model is given by

Φi(vr, z) = vri −
σ0i ∥vr∥
g(vr)

z (2.45)

Steady-state longitudinal and lateral tire forces, and self-aligning moment for different road friction

potentials are shown in Figure 2.3. A trapezoidal normal force distribution is used when computing

the tire forces and moments. According to the LuGre tire model, the road friction potential does not

impact the tire forces at low slip. It only has an impact when the tire is saturating.

The distributed LuGre tire model can be transformed into a lumped model by using the average

lateral and longitudinal bristle deflection as its only states

z̄i(t) =
1

fz

L∫
0

zi(ζ, t)fz(ζ) dζ where fz =
L∫

0

fz(ζ) dζ (2.46)
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Electric motor Open differential (active or semi-active) TV device

(a) Quad-motor drivetrain (b) Dual-motor drivetrain with
open differential

(c) eAWD drivetrain with
left-to-right TV device

Figure 2.4: Electric drivetrain topologies.

2.3 Chassis System Model

2.3.1 Drivetrain Model

Drivetrain topologies of electric vehicles offer more flexibility than conventional vehicles due to

the possibility of using several motors to control the wheels independently. Addressing these

different topologies is one of the challenges a reusable control architecture must address. Several

drivetrain topologies are considered in this work to evaluate the reusability of the control architecture

(Figure 2.4): a quad-motor topology with one electric motor at each wheel; a dual-motor topology

with one electric motor per axle, and an open differential to split the torque between the two

wheels; an e-All Wheel Drive (eAWD) drivetrain with a traction motor at each axle and an active

or semi-active TV device to create a torque difference between the left and right wheels. For all

topologies, we assume the vehicle is equipped with EHB. Contrary to conventional hydraulic brakes,

EHB allows applying different pressure at each brake; thus, we have control of individual friction

braking torque.
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(a) Quad-motor drivetrain

Se: τmi 1 I: Jmot
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ωmi

τhi

(b) Dual-motor drivetrain

Figure 2.5: Bond graph diagram of the quad and dual-motor drivetrain topologies.

Quad-Motor Model

The quad-motor topology (Figure 2.4a) has one motor per wheel. De Novellis [36] shows that

this configuration provides the best performance in terms of handling and maneuverability when

compared to other drivetrain topologies that cannot achieve left-to-right TV on each axle. This

configuration allows applying wheel torque independently at each wheel. It improves power efficiency

as regenerative braking can be used independently at each wheel. Moreover, compared to conventional

vehicles, it eliminates the power losses associated with the transmission. The individual wheel torque

distribution also has a considerable potential to improve the slip control of the wheels. However, if

one motor becomes inoperable, the axle with the faulty motor cannot produce propulsion/braking

torque without generating left-to-right torque vectoring.

Since there is no mechanical connection between the four wheels, each corner of the car can be

modeled independently. The major assumptions used by this model are: the major dynamic modes

of the system are defined by the electric motor inertia and shaft compliance [37], the gear lash and

shaft inertia are neglected. The bond graph model is shown in Figure 2.5a

τhij = Khijθhij + bhij θ̇hij (2.47)

Jmotω̇mij = τmij −
τhij
Gmot

(2.48)

θ̇hij =
ωmij
Gmot

− ωij (2.49)

where τhij is the torque applied by the halfshaft on the wheel, τmij is the motor torque, Khij and
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bhij are the halfshaft stiffness and damping, Jmot is the motor inertia, Gmot is the gear ratio, θhij is

the halfshaft deflection, ωmij is the motor speed, and ωij is the wheel speed.

Dual-Motor Model

The dual-motor topology (Figure 2.4b) uses two electric motors, one at each axle. The open

differential splits in half the axle torque between the two wheels. Contrary to the quad motor

topology, this configuration cannot achieve left-to-right TV. However, front-to-rear TV can still

improve the handling behavior of a vehicle [19]. Figure 2.4c shows the last topology considered in

this project. It is a variation of the dual-motor topology with left-to-right TV capabilities. It uses

an electric motor on the front axle to apply active left-to-right torque vectoring and an e-Limited

Slip Differential (eLSD) on the rear axle to apply semi-active TV from the wheel with high-angular

velocity to the wheel with low-angular velocity.

The model of the dual-motor is based on the same assumptions as the one used by the quad-motor

drivetrain, the bond graph diagram is shown in Figure 2.5b. Since each axle uses an open differential,

the two halfshafts connecting the wheels to the differential are lumped into an equivalent halfshaft

of stiffness Khi and damping bhi.

τhi = Khiθhi + bhiθ̇hi (2.50)

Jmotω̇mi = τmi −
2τsi
Gmot

(2.51)

θ̇hi =
2ωmot
Gmot

− (ωiL + ωiR) (2.52)

where τhi is the torque applied by the motor on the open differential, τmi is the motor torque, ωmi is

the motor speed, and ωiL and ωiR are the wheel speeds.

eAWD Model

Figure 2.6 shows the eAWD drivetrain layout. There is no mechanical connection between the front

and rear axles. Thus, each axle can be modeled and controlled independently. This drivetrain

provides the same capabilities as the quad-motor topology, i.e., the torque at each wheel can be

controlled independently but with less flexibility, since it requires coordination between the left and

right wheels of each axle.
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Figure 2.6: eAWD drivetrain schematic

Two electric motors power the front axle: the main motor, placed between two planetary gears

and connected to the sun gears, provides traction force to the two front wheels; a smaller TV motor

actively creates a torque difference between the two front wheels, it is connected to the ring gear

and an idler gear which changes the direction of rotation on one side of the axle; The wheel shafts

are connected to the carriers of the planetary gear. The left and right wheels rotate at the same

speed during straight-line driving.

The rear axle is powered by an electric motor which transmits torque to an eLSD. The eLSD can

be controlled to apply a torque difference between the left and right wheel if one wheel is rotating

faster than the other. Contrary to the front axle, it is only possible to apply a torque difference from

the fast-spinning wheel to the low-spinning wheel. The dynamic of the electric motor connected to

the eLSD is not shown in Figure 2.6.

Figure 2.7 shows the bond graph diagram of the front axle of the eAWD drivetrain. The wheel

shaft compliances are modeled by the compliances of stiffness KhFL and KhFR since they represent

the dominant dynamic modes in the drivetrain [37]. The model ignores the inertia of the gears and

shaft, which are negligible compared to the inertia of the wheels and the electric machines; it also

neglects gear lash. From the bond graph diagrams, one can derive the state equations.

ω̇mF =
1

JmF

[
τmF −

ρ

1 + ρ
(τhFL + τhFR)

]
(2.53)
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Figure 2.7: Bond graph of the front axle of the eAWD drivetrain

ω̇mTV =
1

JmTV

[
τmTV −

1

g1g2(1 + ρ)
(τhFR − τhFL)

]
(2.54)

θ̇hFL =
ρ

1 + ρ
ωmF −

1

g1g2(1 + ρ)
ωmTV − ωFL (2.55)

θ̇hFR =
ρ

1 + ρ
ωmF +

1

g1g2(1 + ρ)
ωmTV − ωFR (2.56)

with the wheel shaft torques

τhFL = KhFLθhFL + bhFL

( ρ

1 + ρ
ωmF −

1

g1g2(1 + ρ)
ωmTV − ωFL

)
(2.57)

τhFR = KhFRθhFR + bhFR

( ρ

1 + ρ
ωmF +

1

g1g2(1 + ρ)
ωmTV − ωFR

)
(2.58)

Figure 2.8 shows the bond graph diagram of the eAWD rear axle. We rely on the same assumptions

as the ones used for the model of the eAWD front axle, namely, the dominant dynamic mode is

due to the shaft compliance and the inertia of electric machines, neglected gear lash. In addition

to these assumptions, two small inertias representing the shaft connecting the wheel to the eLSD

are added. Although their inertias are small, they are necessary to prevent an algebraic loop in

the model. Moreover, the compliance of the shaft connecting the traction motor to the eLSD is

included to avoid derivative causality in the electric motor inertia. These modifications yield a model

with integral causality at the expense of three additional states. Finally, the eLSD electric motor is

33



2 System Modeling

Se: τmR

1 I: JmR

01

R: bsm

C: K−1
sm

TF: g−1

1

TF: 2

0R

01

I: Jh

0

1
R:
bhRL

C:
K−1
hRL

1

I: Jh

0

1
R:
bhRR

C:
K−1
hRR

Sf: ωRL Sf: ωRR

ωmR

τLSD

τsmθ̇
sm

ω
h
R
Lτ
h
R
L

θ̇RL

ω
h
R
R τ
h
R
R

θ̇RR

Figure 2.8: Bond graph of the rear axle of the eAWD drivetrain

considered as a perfect actuator applying a torque τLSD on the eLSD. The equations of motion for

the rear axle are:

ω̇mR =
1

JmR

[
τmR − τsm

]
(2.59)

ω̇hRL =
1

Jh

[gτsm
2
− 1

2
τLSD − τhRL

)]
(2.60)

ω̇hRR =
1

Jh

[gτsm
2

+
1

2
τLSD − τhRR

)]
(2.61)

θ̇sm = ωmR −
g

2

(
ωhRL + ωhRR

)
(2.62)

θ̇Rj = ωhRj − ωRj (2.63)

with the wheel shaft and motor shaft torques

τsm = Ksmθsm + bsmθ̇sm (2.64)

τhRj = KhRjθRj + bhRj θ̇Rj (2.65)

The eLSD device is represented a resistive element which defines a torque τLSD from a speed

difference ωcl = 1
2(ωhRL−ωhRR). The torque τLSD applied by the limited-slip differential is computed
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using the Karnopp friction model [38]. This model provides an adequate description for zero velocity;

it was developed to overcome zero-velocity detection problems and avoid the need to switch between

different state equations for sticking and sliding. Moreover, it does not need to change the causality

signs in the bond graph diagrams and therefore does not require switching between different drivetrain

models. When the velocity is large enough (|ωcl| ≥ DV ), the clutch torque τsl arises from the

Coulomb and viscous friction force. When the velocity is small (|ωcl| ≤ DV ), i.e., when the clutch

is locked, the clutch torque depends on external forces so that the clutch remains locked until the

maximum static friction torque τst,max is reached. It is necessary to find an analytical expression of

the clutch torque required to lock the clutch.

The motor velocity is related to the wheel halfshaft velocities via the following kinematic relation:

ωmR =
g

2
(ωhRL + ωhRR)

Plugging the time derivative of this equation in (2.59) yields the shaft torque:

τsm = τmR −
gJmR
2

(ω̇hRL + ω̇hRR)

Inserting this torque in the rear halfshaft dynamics equations (2.60) and (2.61) gives the following

system of two equations:

(
Jh +

g2

4
JmR

)
ω̇hRL +

g2

4
JmRω̇hRR =

g

2
τmR −

1

2
τLSD − τhRL (2.66)

g2

4
JmRω̇hRL +

(
Jh +

g2

4
JmR

)
ω̇hRR =

g

2
τmR +

1

2
τLSD − τhRR (2.67)

The relative velocity of the clutch is defined as:

ωcl =
1

2
(ωhRL − ωhRR) (2.68)

When the clutch is locked, the relative acceleration of the clutch is null, therefore ω̇hRl = ω̇hRR.

Subtracting Equation (2.66) to Equation (2.67), one can find the torque τlock required to maintain

the clutch locked:

τlock = τhRR − τhRL
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(a) Map propulsion motors (b) Map of TV motor

Figure 2.9: Motor torque and efficiency map

The maximum static friction is expressed as a function of the clutch torque capacity τh and the

static friction coefficient µst: τst,max = µstτh. When the clutch is not locked, the clutch torque is

given by the Coulomb friction model with the sliding friction coefficient µsl: τsl = µslτh. Finally, the

clutch torque is given by:

τLSD =


min(|τlock|, |τst,max|)× sign(τlock) if |ωcl| ≤ DV

τsl if |ωcl| > DV

Electric Motor Torque and Efficiency Map

The torque generated by the electric motor is saturated by the base torque τb when the motor speed

is smaller than the base speed ωb. If the motor speed is faster than the base speed, the motor is

saturated in power , i.e. the torque generated by the motor satisfies |τmot| ≤ τbωb
ωmot

where τmot and

ωmot are the motor torque and angular velocities. For a given motor torque τmot and speed ωmot,

the power loss is approximated by the following sum [39],

Ploss(τmot, ωmot) =
∑

(m,n)∈J0,3K2
kmn

(
τmot
τb

)m(
ωmot
ωb

)n
(2.69)

where kmn are parameters defining the power loss. Figure 2.9 shows the motor speed-torque map

and efficiency map of the electric motors used in this dissertation.

36



2.3 Chassis System Model

Master cylin-
der

Master
cylinder
isolation

High-pressure
isolation

Build
valve

Dump
valve

Left rear brake

Right rear
brake

Left front
brake

Right front
brake

Figure 2.10: Hydraulic braking system

2.3.2 Brake Model

We assume that the vehicle uses EHB. Newer electric brake-by-wire actuators could be used, they

allow for higher bandwidth and they are easier to control compared to hydraulic brakes [40].

The structure of the EHB is shown in Figure 2.10; it is composed of a Hydraulic Control Unit

(HCU) and a pedal feel simulator (not shown in the figure). The HCU is controlled electronically

and modifies the wheel brake line pressure independently at each wheel. The independent actuation

at each wheel can be used to regulate the tire slip during traction and braking or regulate the vehicle

sideslip by applying a brake torque difference during cornering on slippery surface [41]. When the

brake pedal is pressed and if the EHB is working normally, the brake fluid is compressed in the

pedal feel simulator, and a pressure source drives the brake fluid from the accumulator to the wheel

cylinders [42].

The entire hydraulic circuit is not modeled in this thesis; for more information, the reader can

refer to [43]. Only the pressure applied at each wheel is modeled; it is regulated with Pulse Width

Modulation (PWM) on the solenoid build and dump valves. The brake pressure control is a discrete

process with three states: increase, hold, and decrease the brake pressure. To represent the on and

off behavior of the valves, the brake line pressure dynamic is described as follows:

Ṗin =
CdSbβhf
Vhf

ub

(
Phigh − Pin

)ϕb
−
CdSdβhf
Vhf

ud

(
Pin − Plow

)ϕd
(2.70)
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where Pin is the brake line pressure, Phigh is the pressure applied by the pump, Plow = 0 is the

pressure of the reservoir, Cd is the flow coefficient of the valves, Vhf is the brake oil volume, βhf

is the bulk modulus of the hydraulic fluid, Sb and Sd are the cross-section area of the build and

dump valves, and ϕb and ϕd are coefficients for increased and decreased pressure. This equation also

neglects some nonlinearity, such as the opening delays of the valves. In increase mode, ub = 1 and

ud = 0 and the pressure Pin increases progressively towards Phigh; in decrease mode, ub = 0 and

ud = 1 and the pressure decreases towards Plow; in hold mode, ub = 0 and ud = 0 and the pressure

Pin remains constant [44]. Because of the PWM of the valves, the pressure is usually not constant;

instead, it oscillates between the values of the high and low-pressure sources. The amplitude of

the oscillations depends on the frequency and type of carrier signal used by the PWM and on the

duty-cycle. The controller defines the PWM duty-cycle to regulate the tire pressure and a PWM

modulator generates the signals ub and ud to control the valve. Zhao [45] implements a backstepping

controller whose outputs are the PWM duty-cycle of the build and dump valves to stabilize the

brake pressure of the EHB. In this work, a PID controller is used.

Figure 2.11 shows the schematic of an EHB actuator. A hydraulic pipe conveys the brake fluid

under pressure Pin to the cylinder chamber. The pressure applied by the chamber on the piston

moves the brake pad and applies friction on the braking disk. The actuator is modeled using the

bond graph modeling technique [29] as follows, the hydraulic line possesses hydraulic resistance

and inertia, the chamber is modeled as a compliance Ccyl, and the piston is modeled by a linear

transformer. The equations of motion are given as follows,

ṗl = Pin −
Rl
Il
pl −

βhf
Vcyl

ql (2.71)

q̇l =
1

Il
pl −

Sp
mp

pp (2.72)

ṗp =
Spβhf
Vcyl

ql − bpẋcal − kcalmax(xcal − x0, 0) (2.73)

ẋcal =
1

mp
pp (2.74)

where Rl is the line hydraulic resistance, pl is the line fluid momentum, Il is the hydraulic line

inertia, Vcyl is the volume of the cylinder chamber, Sp is the surface area of the piston, pp is the

piston momentum, ql is line volumetric flow rate, xcal brake pad position, x0 is the brake clearance,
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ṗl

q̇l

ṗp
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Figure 2.11: Schematic and bond graph model of a single-channel Electro-Hydraulic Brake

and kcal is the caliper stiffness. Note that the pressure is offset such that p = 0 corresponds to the

reservoir pressure. The brake torque is calculated as follows,

τb = 2µcalreffkcalmax(xcal − x0, 0) (2.75)

where µcal is the friction coefficient between the brake pad and disk, and reff is the brake pad

effective radius. The brake torque τb must be modified as described in (2.76) to ensure that the

brake only dissipates energy. This equation applies a torque τb opposite to the wheel spin ω such

that the brake only dissipates power. Moreover, Karnopp friction is used to define the braking torque

applied when the wheel is locked, τd is the torque applied on the wheel by the driveline, and rwfx is

the torque applied by the longitudinal tire force,

τb ←

 − sign(ω) |τb|, if |ω| > ϵ

min{|τd − rwfx|, |τb|} · sign(τb), otherwise
(2.76)

The transfer function from the pressure input to the torque output can be obtained from the

equation of motion of the EHB and the torque equation (2.75), assuming that xcal ≥ x0 and τbω ≤ 0.

The brake model is fourth-order system, however, this brake model can be simplified for control

synthesis. By neglecting the fluid compliance in the chamber and by lumping the fluid inertia and

39



2 System Modeling

resistance to an equivalent mass meq = mp + S2
pIl and an equivalent resistance beq = bp + S2

pIl. The

following equation describes the simplified second-order transfer function from the pressure input

Pin to the brake torque τb,

GEHB =
τb
Pin

=
2µcalreffkcalSp

meqs2 + beqs+ kcal
(2.77)

2.3.3 Steering System Model

In this thesis, we consider several steering configurations: no active steering, AFS, Active Rear

Steering (ARS), and 4WS which combines AFS and ARS. The steering at the front axle is based on

a rack-pinion steering system for all configurations. This section provides a model of the rack-pinion

steering system at the front axle equipped with AFS. For such a system, the steering angle at the

wheel is a function of the steering angle applied by the driver and the steering angle applied by

active steering.

The driver steering angle is transmitted to the rack and pinion mechanism by the steering column;

linear compliance and damping are assumed to model the steering column. An epicyclic gear mounted

at the base of the steering column combines the steering angle applied by the driver and the active

steering. The rack and pinion mechanism is modeled by a linear transformer which converts the

rotational displacement of the output shaft of the epicyclic gear to a linear displacement of the

rack. The rack displacement can then be mapped to a wheel steering angle. We assume a linear

relationship between the rack displacement and the wheel steering angle. In addition to that, the

impact of the suspension geometry on the steering angle is also represented by a linear relation.

If the steering system is equipped with ePAS, the assistance torque can be modeled by a force

FePAS acting on the rack. Additionally, the forces and moments generated by the tire-road interaction

apply an effort Frack that is transmitted to the driver by the steering rack and the steering column.

The forces Frack and FePAS are transmitted to the driver and constitute the steering feel of the

vehicle. Active Left-to-Right TV with a mechanically connected steering column as presented here

can modify that steering feels as discussed in [46].

Figure 2.12 shows the schematic and bond graph of the steering system. The only state of the

system is the steering column compliance θcol; g1 and g2 are the ratios of the epicyclic gear, r is the

ratio of the rack-pinion mechanism, Kcol and Ccol are respectively the stiffness and damping of the

steering column, θdri is the steering angle applied by the driver on the steering wheel, θAFS is the
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Figure 2.12: Schematic and bond graph model of an Active Front Steering System

steering angle applied by AFS, θp is the pinion position, and d is the displacement of the rack. The

equations modeling the system are:

θ̇col = −
1

Ccol
×
(
Kcolθcol + g2r(Frack + Fhyd)

)
(2.78)

d = rθp (2.79)

θp = g1θAFS + g2(θdri − θcol) (2.80)

2.3.4 Chassis Systems and Vehicle Model Integration in MATLAB/Simulink

The vehicle model is implemented in MATLAB/Simulink. The bond graph modeling approach used

to derive models for the different subsystems facilitates the decomposition of the vehicle model into

block diagrams, Figure 2.13 shows how the chassis model interacts with the vehicle model; this

structure allows to quickly replace a subsystem of the vehicle. The chassis block describes the chassis

model with the wheel, tire, and suspension dynamics, see Section 2.1). The driveline, brake, and

steering blocks implement the model derived in the previous sections. In the chassis model, the

torque applied at each wheel is τij = τhij + τbij, where τhij is the torque applied by the drivetrain

and τbij is the torque applied by the brake. The environment block defines the interaction between

the vehicle and the environment, i.e., the friction potential at each wheel and the road input velocity.

The driver block represents the driver interacting with the vehicle through the steering wheel and
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Figure 2.13: Interactions between the chassis systems, vehicle models, and the global chassis con-
troller

gas and throttle pedals. Finally, the controller block implements the control strategies proposed in

this dissertation.

2.4 Planar Vehicle Model

2.4.1 Model Derivation

The model developed in the previous section provides a good representation of the vehicle. However,

it is too complex to be used to analyze the vehicle and develop control systems. A simplified

double-track control-oriented model with seven degree-of-freedom is derived. The model schematics

is shown in Figure 2.14. With such a model, the effects of lateral load transfer are considered. The

degrees of freedom are the yaw motion, the lateral and longitudinal translation, and the rotation of

the wheels. The model assumes steering on the front and rear axle with the same steering angle on

the left and right tires, neglecting Ackerman steering geometry. The following equations describe the

motion of the car:

m(v̇x − vyωz) = (fFLx + fFRx) cos(δF )− (fFLy + fFRy) sin(δF )
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Figure 2.14: Double-track model of the chassis

+ (fRLx + fRRx) cos(δR)− (fRLy + fRRy) sin(δR) (2.81)

m(v̇y + vxωz) = (fFLx + fFRx) sin(δF ) + (fFLy + fFRy) cos(δF )

+ (fRLx + fRRx) sin(δR) + (fRLy + fRRy) cos(δR) (2.82)

Izzω̇z = lF [(fFLy + fFRy) cos δF + (fFLx + fFRx) sin δF ]

− lR[(fRLy + fRRy) cos δR + (fRLx + fRRx) sin δR]

− wL(fFLx cos δF − fFLy sin δF + fRLx cos δR − fRLy sin δR)

+ wR(fFRx cos δF − fFRy sin δF + fRRx cos δR − fRRy sin δR) (2.83)

Jwω̇ij = τij − fijxr, i = F,R, j = L,R (2.84)

where vx and vy are the longitudinal and lateral vehicle speed, the vehicle sideslip is defined as

β = tan−1 vy
vx

, ωij denotes the wheel speeds, m is the vehicle mass, lF , lR, wL, and wR define the

distance from the wheels to the center of mass, Izz is the moment inertia about the vertical axis, Jw

is the moment of inertia of a wheel about its axis of rotation, r is the wheel radius, and τij is the

torque applied on the wheel.

The planar vehicle model uses algebraic expressions to represent the weight transfer due to lateral

43



2 System Modeling

and longitudinal acceleration. Let f0ijz be the static normal load at wheel ij, ∆mx
j and ∆my

i the

longitudinal and lateral mass transfer, respectively. The normal load is expressed as follow:2

fFLz = f0FLz −∆mx
Lax −∆my

Fay, fFRz = f0FRz −∆mx
Rax +∆my

Fay,

fRLz = f0RLz +∆mx
Lax −∆my

Ray, fRRz = f0RRz +∆mx
Rax +∆my

Ray, (2.85)

f0FLz =
mglRwR

(lF + lR)(wL + wR)
, f0FRz =

mglRwL
(lF + lR)(wL + wR)

,

f0RLz =
mglFwR

(lF + lR)(wL + wR)
, f0RRz =

mglFwL
(lF + lR)(wL + wR)

, (2.86)

∆mx
L =

mhwR
(lF + lR)(wL + wR)

, ∆mx
R =

mhwL
(lF + lR)(wL + wR)

,

∆my
F =

mhlR
(lF + lR)(wL + wR)

, ∆my
R =

mhlF
(lF + lR)(wL + wR)

(2.87)

Note that this algebraic expression for the normal force leads to an algebraic loop in the expression

of the planar vehicle model. Indeed, Equations (2.85) to (2.87) requires to know the accelerations

ax = v̇x−vyωz and ay = v̇y+vxωz which depends on the sum of longitudinal and lateral forces applied

on the chassis, however, the tire model also needs the vertical force to express the longitudinal and

lateral tire forces. An algebraic loop forces to express the model as an implicit system of differential

equation f(ẋ, x, u) = 0 which can cause difficulties when analysing the model or designing control.

Fortunately, the algebraic loop can be broken and the system can be expressed as an explicit set of

ordinary differential equation ẋ = f(x, u). After substituting v̇x − vyωz by ax and v̇y + vxωz by ay

in Equations (2.81) and (2.82), the longitudinal and lateral dynamic of the vehicle model can be

rewritten as:

max =
∑
ij

µijxcfijz, may =
∑
ij

µijycfijz (2.88)

where µijxc = µijx cos δi− µijy sin δi and µijyc = µijx sin δi + µijy cos δi are the friction coefficients in

2Recall that the chassis posses an anti-roll bar, hence it does not show the effect of roll stiffness difference between
the front and rear axles. Adding the term ±kϕi(ϕ− ϕi) to the algebraic normal force expression would represent
the effects of an anti-roll bar on the load transfer, where kϕi denotes the rotational stiffness of the anti-roll bar at
the axle i, ϕ− ϕi is the displacement angle of the anti-roll bar at the axle i.
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2.4 Planar Vehicle Model

the vehicle longitudinal and lateral axes. Plugging Equation (2.85) leads to:

[
m+

∑
j=L,R

∆mx
j (µFjxc − µRjxc)

]
ax +

[ ∑
i=F,R

∆my
i (µiLxc − µiRxc)

]
ay =

∑
ij

µijxcf
0
ijz (2.89a)

[ ∑
j=L,R

∆mx
j (µFjyc − µRjyc)

]
ax +

[
m+

∑
i=F,R

∆my
i (µiLyc − µiRyc)

]
ay =

∑
ij

µijycf
0
ijz (2.89b)

The previous equations define a linear system whose unknowns are the accelerations ax and ay;

the linear system can easily be solved to determine the vehicle’s longitudinal and lateral acceleration.

Plugging the acceleration in the algebraic normal force expression yields the tire load distribution,

breaking the algebraic loop.

Only the longitudinal and lateral forces of the tire are taken into account; the self-aligning moment,

overturning moment, and rolling resistance are neglected. The forces exerted by the tires are found

using the Magic Formula described in Section 2.2.1.

2.4.2 Model Analysis

The planar vehicle model is linearized and analyzed to understand the impact of the steering and

the distribution of wheel torque on the vehicle’s dynamics, especially on its yaw behavior. In this

section, we will analyze the impact of front-to-rear TV, i.e., applying a torque difference between

the two axles, and the left-to-rear TV, i.e., applying a torque difference within the same axle.

Planar Model Linearization

The planar model derived in Equations (2.81) to (2.87) is simplified before being linearized so that an

analyses can be conducted. The wheel dynamics are neglected; hence the wheel force is proportional

to the wheel torque rwfxij = τij . The forward velocity vx is assumed constant; thus, the simplified

model is a second-order model whose states are the lateral velocity vy and the yaw rate ωz. The

small-angle approximation is used so that cos δij ∼ 1 and sin δij ∼ δij ; assuming |wjωz| ≪ |vx|

with j = R,L simplifies the expression of the slip angle. Using the small-angle approximation and

ignoring the cross-terms wjωz in the slip angle make the linearized model much simpler; however,

the linearized model is only valid at a low slip angle during moderate cornering. The tire model
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2 System Modeling

is also linearized; since the tire forces are a function of the longitudinal slip (itself dependant on

the wheel torque), the longitudinal slip, and the tire load, the lateral tire force is approximated as

follows:

fyij = Cxifxij +
1

2
Cyisyij + Czifzij (2.90)

where Cxi is the sensitivity of the wheel lateral force with respect to the wheel longitudinal force,

Cyi is the axle lateral stiffness, and Czi is the wheel load sensitivity. The left and right tires of each

axle are assigned the same parameters Cxi, Cyi, and Czi. In practice, these coefficients depend on

the operating condition of the tire and might differ between the left and right sides, for instance,

due to load transfer during cornering. We assume that the discrepancies between the coefficients are

minor and that the same value can be used between the two tires of the same axle.

The inputs of the model are the front and rear steering angle δF and δR, the total torque

τtot =
∑

ij τij , the torque difference between the front and rear axle τTVF/R
= 1

2(τFL+τFR−τRL−τRR),

the front axle torque difference τTVF = 1
2(τFR − τFL), and the rear axle torque difference τTVR =

1
2(τRR − τRL). The state-space representation of the linearized model is as follows,

v̇y
ω̇z

 =

 −CyF+CyR

mvx
−
(
vx +

lFCyF−lRCyR

mvx

)
− lFCyF−lRCyR

Izzvx
− l2FCyF+l2RCyR

Izzvx


vy
ωz

+

 CyF

m

lFCyF

Izz

 δF +

 CyR

m

− lRCyR

Izz

 δR
+

 CxF+CxR
2mrw

− h(CzF−CzR)
mrw(lF+lR)

−
(
wL−wR−lFCxF+lRCxR

2Izzrw
+ h(lFCzF+lRCzR)

Izzrw(lF+lR)

)
 τtot +

 CxF−CxR
mrw

lFCxF+lRCxR
Izzrw

 τTVF/R

+

 0

wL+wR
Izzrw

 τTVF +

 0

wL+wR
Izzrw

 τTVR (2.91)

The linearized model is a second-order system whose natural frequency ω0 and damping ratio ζ

ω0 =

√
(lF + lR)CyFCyR

mIzzv2x

(
lF + lR +KUv2x

)
(2.92)

ζ =
1

2
√
mIzz

Izz(CyF + CyR) +m(l2FCyF + l2RCyR)√
(lF + lR)CyFCyR(lF + lR +KUv2x)

(2.93)
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2.4 Planar Vehicle Model

Table 2.1: Gain Kuωz and numerator time constant τuωz of the linearized model Guωz

Input u Gain Kuωz Time constant τuωz

δF
CyFCyR(lF + lR)

Izzvxm

vxlFm

CyR(lF + lR)

δR −
CyFCyR(lF + lR)

Izzvxm

vxlRm

CyF (lF + lR)

τtot
−

(CyF + CyR)(wL − wR)+
2h(CyFCzR + CyRCzF )+
(CxRCyF − CxFCyR)(lF + lR)

2Izzvxmrw

vxm(wL − wR + lRCxR − lFCxF+
2h(CzF + CzR))

(CyF + CyR)(wL − wR)+
(CxRCyF − CxFCyR)(lF + lR)+

2h(CyFCzR + CyRCzF )

τTVF/R

(CxFCyR + CxRCyF )(lF + lR)

Izzvxmrw

vxm(lFCxF + lRCxR)

(CxFCyR + CxRCyF )(lF + lR)

τTVF or
τTVR

(wL + wR)(CyF + CyR)

Izzvxmrw

vxm

CyF + CyR

where KU is the vehicle understeer gradient defined as:

KU =
m

lF + lR

( lR
CyF

− lF
CyR

)
(2.94)

All the transfer functions mapping an input u of the model to a state x can be expressed as a

transfer function formulated as:

Gux =
Kux(τuxs+ 1)

s2 + 2ζω0s+ ω2
0

(2.95)

where the coefficients Kux and τux can be found in Table 2.1 and Table 2.2, the coefficient for the

input u = τtot are not shown for brevity. Assuming a vehicle such that lF ∼ lR ∼ l, Izz ∼ ml2,

CxF ∼ CxR ∼ Cx, CyF ∼ CyR ∼ Cy, and CzF ∼ CzR ∼ Cz, the time constants of the numerator of

Guωz are all similar to vxm
2Cy

, moreover the natural frequency and the damping factor are similar to:

ω0 ∼
2Cy
mvx

√
1 +

KUv2x
2l

and ζ ∼
(
1 +

KUv
2
x

2l

)− 1
2 (2.96)

Therefore, if the vehicle is a neutral steer, the transfer function is critically damped, and there is

a zero-pole cancellation in the transfer function Guωz . Figure 2.15 shows the step response of the

linearized model for an understeer vehicle. When the forward velocity increases, the system response

becomes more oscillatory, as expected from Equation (2.96) for an understeer vehicle.
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Table 2.2: Gain Kuvy and numerator time constant τuvy of the linearized model Guvy
Input u Gain Kuvy Time constant τuvy

δF
CyF (CyRlR(lF + lR)− lFmv2x)

Izzvxm

Izzvx
CyRlR(lF + lR)− lFmv2x

δR
CyR(CyF lF (lF + lR) + lRmv

2
x)

Izzvxm

Izzvx
CyF lF (lF + lR) + lRmv2x

τTVF/R

mv2x(lFCxF + lRCxR)+
(lFCxRCyF − lRCxFCyR)

(lF + lR)

−Izzvxmrw

−Izzvx(CxF − CxR)
mv2x(lFCxF + lRCxR)+

(lFCxRCyF − lRCxFCyR)
(lF + lR)

τTVF or
τTVR

−
(wL + wR)(mv

2
x + lFCyF − lRCyR)

Izzvxmrw
0

(a) Step response to a 2◦ input (b) Step response to a 1000Nm input

Figure 2.15: Step response of the linearized model at different speeds for an understeer vehicle.

Figure 2.15b shows the response of the linearized system to a step input of 1000Nm in τTVF/R
,

τTVF , and τTVR . Left-to-right torque vectoring provides higher gain than front-to-rear TV. The

transfer functions from the front axle steering angle δF and the front-to-rear torque difference τTVF/R

to the lateral velocity vy are characterized by a non-minimum phase zero. The inverse of the gain of

the transfer function mapping front and rear steering angle to the lateral velocity and yaw rate is:

G
[δF δR]T [vy ωz ]

T
(s = 0)−1 = vx

1 lF + lRmv
2
x

CyF (lF+lR)

1 −lR + lFmv
2
x

CyR(lF+lR)

 (2.97)

The same steering angle should be applied to the front and rear axles when solely tracking a

constant lateral velocity target. On the other hand, different steering angles between the front and
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2.4 Planar Vehicle Model

rear axles should be used when solely tracking a constant yaw rate target; the difference depends on

the vehicle wheelbase, cornering stiffness, and longitudinal vehicle speed: the steering angle should

be opposite in sign at low-speed and have the same sign at high-speed.

Nonlinear Analysis of Front-to-Rear Torque Vectoring

The model linearization already gives some insights on the effect of front-to-rear TV on the vehicle

yaw angular speed. The presence of the longitudinal and lateral tire stiffness in the coefficients

KτTVF/R
ωz and ττTVF/R

ωz in Table 2.1 indicates that this effect is due to coupling between longitudinal

and lateral tire force. Since this coupling is highly nonlinear, a nonlinear analysis must be conducted

to understand the true potential of front-to-rear TV [47]. We assume that the same torque and

steering angle are applied to the left and right wheels. The left and right wheels can be combined

into a single wheel yielding the single-track bicycle model. The torque is distributed such that

fxF = fxFL + fxFR = kfx and fxR = fxRL + fxRR = (1− k)fx where fx = fxF + fxR is the total

longitudinal force. From Equations (2.34), (2.38) to (2.40) and (2.81) to (2.87), we can write the

following system of equations which represents a single-track bicycle model with longitudinal load

transfer and the Pacejka tire model described in Section 2.2.1.

max = fxF cos δF − fyF sin δF + fxR cos δR − fyR sin δR (2.98)

mz = lF (fxF sin δF + fyF cos δF )− lR(fxR sin δR + fyR cos δR) (2.99)

fxF = kfx, fxR = (1− k)fx (2.100)

syF = δF − tan−1
(vy + lFωz

vx

)
, syR = δR − tan−1

(vy − lRωz
vx

)
(2.101)

sF =
√
s2xF + s2yF , sR =

√
s2xR + s2yR (2.102)

fF =
m(glR − hax)

lF + lR
MF(sF ), fR =

m(glR + hax)

lF + lR
MF(sR) (2.103)

fxi =
sxi
si
fi, fyi =

syi
si
fi i ∈ {F,R} (2.104)

where fF and fR are the combined tire forces of the front and rear axles, fxF and fxR denote the

longitudinal axle force, fyR denote the lateral axle force, mz is the yaw moment applied on the

vehicle, MF is the Pacejka’s magic formula introduced in Equation (2.38).

Solving this nonlinear system of equations for a given longitudinal acceleration ax and torque
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2 System Modeling

(a) Left turn (i.e. positive yaw rate). The plot was generated for the following conditions: velocity
v = 100 kmh−1, sideslip angle β = 2.8 deg, and yaw rate ωz = 30 ◦ s−1.

(b) Right turn (i.e. negative yaw rate). The plot was generated for the following conditions: velocity
v = 100 kmh−1, sideslip angle β = −1.6 deg, and yaw rate ωz = −20 ◦ s−1.

Figure 2.16: Yaw moment during front-to-rear TV. Increasing the front-to-rear torque ratio k leads
to a larger yaw moment in the direction opposite to the yaw motion.
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distribution k under given states (v, β, ωz) yields the yaw moment mz applied by the tire force on

the vehicle. Doing so over a range of values for k and ax allows to produce the graph shown in

Figure 2.16. As can be seen from this graph, modifying the torque distribution between the front

and rear axle modifies the yaw moment applied to the vehicle and affects the yaw behavior of the

car.

Figure 2.16 shows that applying more torque on the front axle (i.e. increasing the ratio k)

introduces a yaw moment in the opposite direction of the vehicle yaw motion, making the vehicle

relatively more understeer. Reciprocally, more torque on the rear axle (i.e. decreasing the ratio

k) makes the vehicle relatively more oversteer. The sensitivity of the yaw moment to the axle

torque distribution is due to the coupling between longitudinal and lateral tire force. Indeed, during

combined slip, increasing the longitudinal slip decreases the lateral cornering stiffness; thus, applying

more torque on the front axle increases the front lateral cornering stiffness and decreases the rear

lateral cornering stiffness, which increases the understeer gradient, see Equation (2.94), and changes

the yaw behavior of the car.

Contrary to active left-to-right TV, front-to-right TV can only modify the yaw moment applied on

the vehicle during combined longitudinal acceleration and cornering. Indeed, Figure 2.16 shows that

under low longitudinal acceleration, the front-to-rear torque distribution does not have a significant

impact on the vehicle yaw moment. Moreover, during pure straight driving, the lateral force would

be zero; modifying the distribution of torque between the two axles would not affect the lateral force,

and the yaw moment would stay unchanged. Finally, front-to-rear TV requires a large actuator

authority over the ratio k, which is not always possible depending on the drivetrain topology. It

also requires operating near the friction saturation limits of one of the axles to significantly alter

the vehicle yaw moment, restricting the application of front-to-rear TV to powerful vehicles at least

during traction.

2.5 System Coupling Mechanism

2.5.1 Tire Force Coupling

The longitudinal and lateral forces generated by the tire are nonlinear functions of the longitudinal

slip, slip angle, and wheel load. The longitudinal and lateral tire forces are not independent of each
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Figure 2.17: Tire load sensitivity of the friction coefficient with an MF94 Pacejka tire model

(a) MF94 Pacejka tire model (b) Steady-state LuGre tire model

Figure 2.18: Steady-state friction coefficient for varying slip ratio and slip angle. Red curves
correspond to fixed slip ratio, and blue curves to fixed slip angle.
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Long. Lat.
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RollPitch

Yaw

Tire coupling

Load transfer

Tire force distribution

Figure 2.19: Summary of system coupling mechanism

other; they are constrained to evolve within a friction ellipse, usually simplified as a friction circle,

by the friction potential between the tire rubber and the road. When the tire operates close to

saturation, the longitudinal and lateral forces compete with each other, and peak longitudinal and

lateral forces cannot be achieved simultaneously. Figure 2.18 shows the friction ellipse, constant slip

ratio curves, and constant slip angle curves with two tire models.

The relation between the longitudinal or lateral force and the vertical force is not linear. Figure 2.17

shows the longitudinal and lateral friction coefficients for several tire loads. As can be seen, the

friction coefficients µx and µy are not independent of the wheel load; instead, increasing the wheel

load leads to reduced friction coefficients and also modifies the slip ratio and slip angle corresponding

to peak friction. This sensitivity of friction coefficient to the wheel load and the load transfer that

happens when the vehicle is subjected to acceleration decreases the maximum friction force the vehicle

can produce. For instance, with the tire model used to generate Figure 2.17, the maximum lateral

force during pure cornering under 2 kN, 4 kN, and 6 kN are respectively 1884N, 3563N, and 5015N,

so an axle where each wheel loads 4 kN should theoretically be able to provide 2× 3563 = 7126 kN

of lateral force, however, because of the weight transfer, the load will be redistributed. If the load is

2 kN on one wheel and 6 kN on the other, the axle can only provide up to 1884 + 5015 = 6899 kN of

lateral force.
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2.5.2 Chassis Coupling

The longitudinal and lateral motions of the vehicle are coupled to the vertical motion; when the

vehicle accelerates, decelerates, or turns, the vehicle pitches up or down and rolls; the pitch and

roll compress or extend the suspensions and redistributes the wheel loads. The distribution of

longitudinal and lateral tire forces can affect the yaw behavior of the vehicle. Left-to-right TV uses

a torque imbalance between the left and right wheels to generate a moment around the yaw axis

of the vehicle; front-to-right TV uses an imbalance between the front and rear axles to modify the

understeer gradient of the vehicle during cornering. Finally, as discussed in Section 2.5.1, the lateral

and longitudinal tire forces depend on the normal wheel load, and the friction ellipse constrains the

lateral and longitudinal motions. Longitudinal, lateral, and vertical tire forces are not independent

of each other, especially when the tire operates in the nonlinear and saturated regions. Figure 2.19

summarizes the different coupling mechanism.
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Chapter 3

Architecture Overview and Control Allocation

3.1 Structure of the IVDC Architecture

This dissertation focuses on electric vehicles with and without active steering. Several electric motors

can be used to propel the vehicle with different constraints: the dual-motor only allows front-to-rear

TV while the quad-motor and eAWD allow for independent wheel torque control; EHB actuator are

used allowing independent wheel braking. We also investigate the use of active steering with AFS,

ARS, and 4WS. The architecture should be reusable between different configurations combining the

aforementioned actuator sets. Actuators controlling the heave, pitch, and roll motions of the vehicle,

such as CDC actuators and active anti-roll bar, are not considered. Therefore, we do not have direct

control over the vehicle pitch, roll, and heave motions; the control architecture is intended for planar

motion control and controls the following variables: the total longitudinal torque, the lateral vehicle

velocity, and the vehicle yaw rate. In addition to restricting the motion covered by the control

architecture, the nonlinear relation between the longitudinal and lateral tire force and the wheel

load is ignored. Figure 3.1 shows the structure of the IVDC architecture.

Contrary to the multi-layer architecture shown in Figure 1.4, the proposed control architecture

allocates controls at each wheel instead of using generalized forces. The wheel control signals are the

wheel torques and steering angles. This research does not consider heave control, but it could be

inserted into the architecture by regulating the wheel load.
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Figure 3.1: Overview of the Integrated Vehicle Dynamics and Control multi-layered control archi-
tecture

3.1.1 Estimation

All the forces applied on the vehicle, except for aerodynamic drag and gravity, result from the

interaction of the tire and the road. Tire-road forces are limited in amplitude by the friction ellipse;

trying to exceed the surface friction limit will lead to excessive slip and instabilities. Information

on the road condition and the tire normal load distribution will help the control strategy evaluate

the vehicle’s maximum capabilities. Unfortunately, the friction potential and the tire normal forces

cannot be measured directly with common vehicle sensors, and they must be estimated.

The algebraic expressions of the normal forces can provide a simple estimate of the tire normal

load from the vehicle’s longitudinal and lateral acceleration [48]. More elaborate observers using

Extended Kalman Filter (EKF) or COO have also been implemented to estimate the tire normal

force [49], [50]. However, these estimation schemes usually rely on algebraic expressions and do not

capture the normal tire force dynamics. In Chapter 4, we propose observers to estimate the tire

normal load distribution without relying on algebraic expressions.

The estimation of the friction potential is also a complex task [32]. First estimation schemes

monitor the tire stiffness to infer the road conditions [51]. However, newer results question the

underlying assumption used by these schemes [52]. Researchers also used model-based estimation

techniques with commonly available sensors to estimate the tire-road friction potential. Ray [53]
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estimates vehicle states and tire forces with an EKF, the friction potential is then inferred from the

tire model using Bayesian selection. A common problem with model-based approaches is that they

require high slip excitation to obtain accurate estimates. In Chapter 4, a simple strategy is developed

to obtain the maximum friction coefficient when the tire operates near its saturation limits.

The control system also needs to estimate several vehicle states, such as the longitudinal velocity vx

and the lateral velocity vy. The vehicle velocities vx and vy are needed to compute the wheel slips

and slip angles to identify if the vehicle is stable. The slip controls developed in Chapter 6 use

a disturbance rejection scheme and rely on an estimate of the longitudinal tire forces; observers

developed by Velazquez [19], [54], [55] are used in this manuscript to estimate the vehicle state and

longitudinal tire forces.

3.1.2 Driver Evaluator

A pedal map converts the pedal position to a longitudinal torque request. Concerning the lateral

velocity and yaw rate targets, they must approximate the vehicle’s handling performance. De

Novellis [36] conducted experiments showing that in quasi-steady-state, the lateral acceleration

of the vehicle can be described by a function, see Equation (3.1). This function is used in the

reference model to imitate the vehicle’s behavior. Below a predefined lateral acceleration threshold

a∗y, the lateral acceleration target is proportional to the driver steering angle at the wheel δdri

to obtain a desired and tunable understeer gradient KU . Above that threshold, the relation

between lateral acceleration and steering angle becomes nonlinear to represent the understeering

of the vehicle caused by tire saturation. The target yaw rate is computed from the target lateral

acceleration assuming steady-state as ωz,ref =
ay,ref
vx

. Finally, the reference lateral velocity is

computed from the steady-state yaw rate equation of a bicycle model with cornering stiffness CF

and CR: vy,ref = lFCF
lFCF−lRCR

vxδdri −
l2FCF+l2RCR

lFCF−lRCR
ωz,ref , where the tunable understeer gradient KU is

utilized to tune the cornering stiffness CF and CR.

ay,ref =


δdri/KU if δ < a∗yKU

ay,max + (a∗y − ay,max)e
a∗yKU−δdri

(ay,max−a∗y)KU if δ ≥ a∗yKU

(3.1)
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Figure 3.2: Structure of the Vehicle Motion Controller for planar motion control

3.1.3 Vehicle Motion Controller

The block labeled ‘Vehicle Motion Controller’ maps the motion request to the actuator commands,

Figure 3.2 shows a more precise implementation of this component. The architecture is decomposed

into two layers to improve the architecture reusability. The abstract layer converts the driver’s

request to commands for each wheel; it considers the vehicle’s four wheels as actuators whose

control signals are the wheel torques and steering angles. The application layer converts the wheel

controls to actuator commands which are sent to the actuator layer. Using this approach reduces the

calibration cost associated with designing the ‘Generalized forces allocation’ layer of the multi-layered

architecture for different vehicles sharing the same platform but equipped with different actuator

sets. Moreover, given an actuator configuration, deteriorated configuration sets can be created to

easily disable faulty actuators, thus improving the architecture fault tolerance.

Abstract Layer

The ‘Optimal Wheel Control Allocation’ is the main component of the abstract layer. Its goal is:

• Allocate the wheel controls to track the driver requests. These controls must be feasible, i.e.

the actuators must be able to apply the allocated wheel torque and steering angle controls.

The abstract layer aims to be actuator-independent so that it does not need to be redesigned

between different actuator sets. However, it still needs to be aware of the capabilities of
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the actuators; this is illustrated by the signals feeding the actuator saturation limits to the

‘Optimal Wheel Control Allocation’ block.

• Enforce vehicle stability. The architecture assumes that information about the road condition

is available in the form of a maximum friction coefficient; constraints limiting the tire forces

within the friction circle are used to maintain vehicle stability.

Several implementations can be envisioned for the ‘Optimal Wheel Control Allocation’ block.

One possible implementation is to define generalized forces to apply on the chassis and a control

allocation mapping the generalized forces to the wheel controls; this would result in an architecture

similar to the multi-layered architecture described in Figure 1.4 where the Layer 4 combines the

control allocation mapping the generalized forces to the wheel controls and the application layer.

Another possibility is to use optimization-based control to directly allocate wheel controls from the

driver’s request. Both approaches will be investigated in this dissertation.

Application Layer

The application layer’s role is to allocate the actuator controls (motor torque for the drivetrain,

brake torque for the friction brake, and motor angular displacement for the active steering) while

enforcing actuator magnitude and rate saturation. It also needs to define actuator capabilities in

terms of constraints, for instance, the dual-motor drivetrain cannot apply a yaw moment without

resorting to brake-based torque vectoring, so the application layer must define the following constraint

τiL − τiR = 0 if brake-based TV is not allowed, and |τiL − τiR| ≤ |τf | where τf is the maximum

torque the brake can applied if brake-based TV is allowed.

Distributing the wheel controls to the actuators can be decomposed into two parts: one that maps

the wheel steering controls to the active steering actuators, and one mapping the wheel torque to the

brake and drivetrain actuators. In addition to coordinating the brake and drivetrain, the application

layer must also ensure wheel stability in case the maximum friction coefficient is over-estimated.

3.2 Dynamic Control Allocation

The control architecture heavily uses control allocation to optimally distribute the controls to the

different wheels and actuators. If the system has more actuators than controlled signals, the system
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is over-actuated. Different inputs can yield the same steady-state output response for such a system.

A control allocation aims to distribute the controls to achieve the desired target optimally.

A mathematical formulation of control allocation is given in this paragraph. A vector y ∈ Rny

defines the desired targets, for instance the generalized forces to apply on the vehicle; u ∈ Rnu defines

the actuator commands; the mapping from actuator command to controlled signals is represented

as y = f(u). The goal of control allocation is to find a vector u such that y = Bu. Since it is

not always possible to find a distribution that perfectly equals the target, this could be due to

constraints on the actuators or infeasible target y; it is usually preferable to minimize the error

y−Bu between the requested targets and the achieved ones. Some prioritization is usually involved

so that if the desired target cannot be achieved, the allocation will favor some control objectives (i.e.,

element of the vector y) over others. Hence, one of the goal of the optimization can be formulated as

minimizing a weighted cost of the tracking error ∥Q(y −Bu)∥. The solution to this problem is not

unique if the number of actuators nu is greater than the number of targets ny; in this situation, it is

possible to specify secondary objectives J (u) to uniquely define the controls u. Finally, constraints

g(u) ≤ 0 on the system can be defined to limit the operating range of the actuators. To summarize,

the control allocation can be formulated as the following optimization problem:

u = arg min
u

∥Q(y −Bu)∥+ J (u) (3.2a)

subject to: g(u) ≤ 0 (3.2b)

3.2.1 Unconstrained Control Allocation

Assuming a linear map from controls to target y = f(u) = Bu where B is a ny × nu matrix,

an obvious solution if nu = ny and B is not singular is u = B−1y. The Moore-Penrose pseudo-

inverse B†, defined as B† = BT (BBT )−1 if B is non-singular and ny ≤ nu, generalizes the previous

result to the case of singular or non-square matrix B. Moreover, if the secondary cost is chosen

as a quadratic cost of the error between the controls u and a desired allocation up, i.e. J (u) =
1
2(u−up)

TW (u−up) =
1
2 ∥u− up∥2W where W is a positive definite symmetric matrix, the solution

of the optimization problem is defined by the weighted pseudo-inverse B♯ =W−1BT (BW−1BT )−1

and u = (I −B♯)up +B♯y, which reduces to u = B♯y if up = 0.
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3.2.2 Constrained Control Allocation

The weighted pseudo-inverse method can be modified to accommodate actuator constraints, yielding

the redistributed pseudo-inverse. This method uses the solution of the unconstrained weighted

pseudo-inverse as an initial solution. If some control elements exceed their saturation limits, the

vector of control is decomposed into elements that exceed their limits and elements that do not.

The value of the control signals exceeding their limits is saturated to ensure feasibility, and the

unsaturated controls are recomputed to include the error caused by the saturation. This process is

repeated until an adequate solution is found or all the controls are saturated.

Daisy-chaining offers a similar approach. The actuators are ranked in a hierarchy (ui) based on

a priori knowledge of the system, the control target y = Bu =
∑

iBiui is distributed first to the

actuators that are higher in the hierarchy by a weighted pseudo-inverse ûi = B♯
i (y −

∑
j<iBjuj).

If the value of ûi satisfies the actuator bounds, the actuator ui is set to ûi and ∀j > i, uj = 0. If

the actuators cannot provide such command, the value of the control input is clipped to satisfy the

actuator constraints and the process is repeated for the actuator ui+1.

Both approaches only differ in how they deal with actuator saturation: the redistributed pseudo-

inverse redistributes the target error due to saturation to all unsaturated actuators, whereas

the daisy-chain method redistributes the control to the unsaturated actuator with the highest

priority. These two approaches do not guarantee optimal results because they do not consider the

entire attainable set of command signals. Finally, they only enforce bounds actuator constraints

umin ≤ u ≤ umax. To use more general constraints, the control allocation must be formulated by

an optimization problem.

Three classes of optimization problems are presented: Linear Programming (LP), Quadratic

Programming (QP), Nonlinear Programming (NLP).

LP minimizes a linear cost subject to polytopic constraints, the problem can be formulated as

described in Equation (3.3) where the ℓ1-norm of a vector is ∥x∥1 =
∑

i |xi|. LP problems can be

solved with the simplex algorithm which proceeds by iteratively visiting the vertices of the polytope

described by the constraints of the problem, each iteration provides an improved solution. To use

the simplex algorithm, the problem must be transformed to a canonical LP problem defined as

arg minu c
Tx subject to Ax ≤ b and x ≥ 0, where x are the optimization variables, this can be
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achieved by introducing the variable s = Q(y − Bu) and t = Wu(u − up) and decompose them

into positive and real parts such that s = s+ + s− and t = t+ + t− where s+ and t+ are positive

and s− and t− are negative, the optimization variable is then the stacked vector of s+, s−, t = t+,

and t−. This illustrates one of the disadvantages of LP, even though the simplex algorithm is fairly

efficient, formulating the control allocation of ny signals to nu allocated controls as a LP problem

results in an optimization problem with 2(ny + nu) optimization variables. Moreover, solutions of

LP problems are found at the vertices of the polytope defined by the constraints, this often result in

solution where only a few actuators are used close to their saturation limits; on the contrary, QP

and NLP problems yields solution which tends to use all actuators but to a smaller extent, this is

usually a more suitable behavior.

u = arg min
u

∥Q(y −Bu)∥1 + ∥Wu(u− up)∥1 (3.3a)

subject to: Au ≤ b (3.3b)

QP solves problem with a quadratic cost and polytopic constraints defined in Equation (3.4), where

∥x∥2 =
(∑

i x
2
i

) 1
2 denotes the ℓ2-norm of x. Several classes of algorithms exist to solve such problems.

Interior point solvers, such as HPIPM, convert the constrained problem to an unconstrained problem

by introducing a barrier function that penalizes the constraints violation; the solution can then be

obtained using Newton’s method. Active set methods use another approach; they identify a subset

of active inequality constraints to reduce the complexity of the search; examples of QP solver based

on the active set method include qpOASES. QP has been widely used in the context of control

allocation. A common cost function is to penalize a weighted sum of the quadratic tracking error

and the actuator rate of change; it ensures perfect tracking if enough actuation is available and

allows for tuning the bandwidth of the actuators.

u = arg min
u

∥Q(y −Bu)∥22 + ∥Wu(u− up)∥22 (3.4a)

subject to: Au ≤ b (3.4b)
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NLP represents the most general class of optimization problems described in this manuscript;

see Equation (3.5). NLP problems can be highly computationally intensive, Sequential Quadratic

Programming (SQP) provides a method to solve such problem, it produces a sequence of solutions,

each solution to a QP subproblem, which converge to a local minimum of the NLP problem. Given

an estimate of the solution, it linearizes the NLP problem into a QP problem (using a second-order

Taylor expansion of the NLP cost function and a first-order Taylor expansion of the NLP inequality

constraints). The solution of the QP subproblem defines a search direction, and the estimate of the

solution is updated using this direction; the process is repeated until an optimal enough solution is

found.

u = arg min
u

∥Q(y −Bu)∥+ J (u) (3.5a)

subject to: g(u) ≤ 0 (3.5b)

3.3 Stability and Robustness of Feedback System with Dynamic

Control Allocation

The structure of the multi-layer control architecture is extensible, intuitive, and flexible. The high-

level controllers are usually implemented as MIMO controller generating a desired generalized forces

to be applied on the vehicle. The forces and moments are then allocated to the actuators by a control

allocation usually formulated as an optimization problem. The control allocation is usually placed

inside the feedback loop between the high-level controller and the low-level controls/smart-actuators;

this approach was used in [11], [17], [19], [21] to implement multi-layered IVDC architectures.

However, additional considerations must be taken when adding the control allocation inside the

feedback loop: e.g., constrained allocations can cause windup issues; dynamic allocations include

addition of different dynamics inside the feedback loop. The control allocation and control loop

designs are not independent; neglecting these considerations can destabilize the control loop.

63



3 Architecture Overview and Control Allocation

Controller Gc{
ẋc = Acxc + Bcuc + Brr
yc = Ccxc + Dcuc + Drr

Plant Gp{
ẋ = Ax + Bu + Bdd
y = Cx + Du + Ddd

r
yc = u

d

y
uc

(a) Without control allocation and saturation

Controller Gc{
ẋc = Acxc + Bcuc + Brr
yc = Ccxc + Dcuc + Drr

Allocator Ka{
ẇ = −KB⊥W (yu − up)

yu = yc + B⊥w

Plant Gp{
ẋ = Ax + Bu + Bdd
y = Cx + Du + Ddd

r
yc

up
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uc

(b) With control allocation and without saturation

Controller Gc{
ẋc = Acxc + Bcuc + Brr
yc = Ccxc + Dcuc + Drr

Allocator Ka{
ẇ = −KB⊥W (yu − up)

yu = yc + B⊥w

Plant Gp{
ẋ = Ax + Bu + Bdd
y = Cx + Du + Ddd

Anti-windup
compensator Kaw ẋaw = Axaw + B(u − yu)

yaw = Cxaw + D(u − yu)
v1 = k(xaw)

r
yc

up

yu

−

u

d

y

v1

yaw

−

uc

(c) With control allocation and saturation

Figure 3.3: Feedback loop with dynamic control allocation using the nullspace allocator [56]

3.3.1 Nullspace Allocator Framework

Zaccarian [56] proposes a framework for dynamic control allocation of over-actuated systems, which

decouples the design of control allocation and feedback controller while guaranteeing internal stability,

see Figure 3.3. Given a feedback loop with a controller Gc and a plant Gp (Figure 3.3a), Zaccarian

shows that an allocator block Ka, whose design is independent of the controller, can be interconnected

between the controller and the plant (Figure 3.3b) to modify the plant input without modifying

its steady-state output while maintaining stability. The allocator block minimizes a quadratic cost

between a fictitious control input up representing the desired input allocation and the input applied

to the plant u, allowing to take advantage of the additional degree of freedom offered by the plant

over-actuation.

A distinction is made in the design of the allocator between strong and weak input redundancy.

Given a state-space (A,B,C,D) of the plant, if the right nullspace Ker(P ∗) of the matrix P ∗ =
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[
BT DT

]T
is not empty, the plant is strongly-input redundant; if Gp(s = 0) = CA−1B +D is a

finite matrix and its right nullspace is not empty, the plant is weakly-input redundant and P ∗ is

used to denote Gp(s = 0). The design of the nullspace allocator is based on the matrix B⊥ whose

column space Im(B⊥) corresponds to the right nullspace of P ∗:

Im(B⊥) = Ker(P ∗) (3.6)

Zaccarian [57] shows that if the plant Gp is strongly input redundant, interconnecting the nullspace

allocator Ka between the controller and the plant does not affect internal stability and that the

system outputs of the controls loops with and without allocator are the same at any time, i.e., the

allocation is invisible at the plant output. The guarantees are less strict if the system is weakly

input redundant since Zaccarian shows that with weakly-input systems, the dynamic of the allocator

must be made slow enough to guarantee stability; moreover, the allocation will be invisible at the

plant output only during steady-state, but it will be visible during transient.

This framework can also be used in the presence of actuator magnitude and rate saturation;

Figure 3.3c shows a feedback loop equipped with control allocation and magnitude saturation, an

anti-windup compensator is used to guarantee closed-loop stability.

The nullspace allocator framework is convenient since it provides modularity and flexibility. The

different components can be designed independently; in particular, the design of the allocator is

independent of the controller and have their own goal: the controller stabilize the plant, the allocator

modifies the distribution without losing stability to follow a desired distribution up, which can

be defined by a control allocation, anti-windup compensator and magnitude, and rate saturation

blocks ensure the feasibility of the command. However, the nullspace allocator framework also

has some limitations. First, even though magnitude and rate constraints can be added with the

anti-windup compensator and saturation blocks, the optimization problem solved by the actuator

is unconstrained; Kolaric et al. [58] address that issue and impose actuator constraints directly in

the optimization problem. Second, a distinction must be made between weakly and strongly-input

redundant systems. Cristofaro [59] shows that this distinction can be waived for linear systems,

generalizing the invisible property of strongly input-redundant systems to weakly input-redundant

systems during transient and alleviating the need for slower allocator dynamics. Cristofaro [59] and
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Serrani [60] propose to modify the dynamic allocation framework by decomposing the allocator into

two components: an annihilator block which injects a signal to the plant input that is invisible at the

plant output (thus providing new degrees of freedom to redistribute the plant inputs), a steady-state

optimizer exploits these extra degrees of freedom to minimize a cost function. Third, the allocator

only minimizes quadratic cost. Cocetti [61] uses the annihilator block with an optimizer formulated

as a gradient flow of a cost function minimizing a ℓ1, ℓ2, or ℓ∞-norm to generalize the nullspace

allocator framework to other cost function. Finally, there is no robustness guarantee in the presence

of uncertainties. Cocetti partially addresses that issue by showing that there exists a slow enough

gradient flow optimizer that guarantees robust stability to parametric uncertainties.

3.3.2 Nullspace Allocator from the Smith-McMillan Form

In this section, we rederive the nullspace allocator proposed by Zaccarian in [57] but by using the

properties of the Smith-McMillan form of the system instead of using a state-space representation.

The Smith-McMillan-based nullspace allocator generalizes the properties of strongly-input redundant

to the case of weakly-input redundant systems and facilitates the robustness analysis of the allocator

framework.

The Smith-McMillan form generalizes the concept of poles and transmission zeros for MIMO

systems. If the system is represented by a rational transfer function matrix Gp(s) such that

y = Gp(s)u, it can be decomposed1 as follows [62], [63]

ULGpUR =Mp =

diag(η1δ1 , . . . , ηrδr ) 0r×(nu−r)

0(ny−r)×r 0(ny−r)×(nu−r)

 (3.7)

where r is the rank of the system, UL and UR are unimodular matrices, the numerator ηk divides

ηk+1 and the denominator δk divides δk−1, and ∀k, ηkδk is irreducible. The transmission zero of the

system are the the value of s which would decrease the rank of the matrix Gp, i.e. the roots of the

1The most straightforward way to obtain the Smith-McMillan form is to decompose the rational matrix Gp into a
numerator polynomial matrix P and a denominator polynomial function δ such that Gp = P/δ, and to compute
the Smith normal form of the polynomial matrix P . Unfortunately, some software only allows computing the Smith
normal form of a square matrix. This problem can be easily circumvented by first computing the column-style
Hermite normal form H of P . Because the matrix H is wide and lower triangular if the system is over-actuated, a
square matrix Hs can be extracted from the first columns of H such that H = [Hs 0]. Finally, the Smith normal
form of P is [Ms 0] where Ms is the Smith normal form of the square matrix Hs.
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Figure 3.4: Dynamic control allocation with the Smith-McMillan-based allocator. Ga = KaPaw(s)
denotes the Smith-McMillan-based allocator where Ka is the polynomial matrix gener-
ating the right nullspace of Gp, Pa is a rational matrix defining the extra DoF α due to
over-actuation, and w(s) is a unit gain scalar transfer function.

numerators ηk; the poles of the systems are the value of s for which Gp(s) is singular, i.e. the roots

of the denominators δk.

If the system Gp has maximum rank and is over-actuated (i.e. r = ny and nu > ny), the last

na = nu − r columns of the Smith-McMillan form are zeros, or similarly the last na columns of

GpUR = U−1
L Mp are zeros, thus the last na columns of UR generate the right nullspace of the rational

matrix Gp. Let the last na column of UR be denoted as Ka, such that Im(Ka) = Ker(Gp). The

matrix Ka generalizes Equation (3.6) for both weakly and strongly-input redundant systems by

using dynamic rational transfer function instead of a static gain matrix.

With an over-actuated non-singular linear system, the dimension of the vector space generated

by the plant output is rank (Gp(s)) = ny; if a one degree-of-freedom linear controller is used (i.e.,

its input is the target error) the vector space generated by the plant input is also of dimension nu.

Therefore, a single one degree-of-freedom controller does not fully utilize the over-actuation since

the controller does not use na = nu − ny directions in the input space. The matrix Ka allows to

inject a signal of dimension na and take advantage of the extra DoF offered by the over-actuation

without modifying the plant output response.

Proposition 1 Suppose the closed-loop connecting the controller Gc and the plant Gp is well-posed and

the transfer function matrix verifies GpGa = 0. In that case, inter-connecting the allocator (I −Ga)

between the controller and the plant preserves the well-posedness of the control loop. Moreover, if the

closed-loop without allocator is internally stable and the allocator Ga is stable, then the closed-loop

with allocator is also internally stable.

Proof. We can derive relations between the transfer function of the control loops with and without
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allocator. Because of the invisibility property of the allocator, i.e. GpGa = 0, the allocator does not

modify the output return ratio Ly = GpGc, the output sensitivity function Sy = (I + Ly)
−1, and

the output closed-loop transfer function Ty = LySy. However, the Youla transfer function, input

return ratio Lu = GcGp, input sensitivity transfer function Su = (I + Lu)
−1, and input closed-loop

Tu = LuSu are modified by the allocator. If Y , Lu, Tu, and Su denote respectively the Youla

transfer function, input closed-loop, input sensitivity transfer function without allocator, then with

allocator they become respectively Y a = (I − Ga)Y , Lau = (I − Ga)Lu, T au = (I − Ga)Tu, and

Sau = (I +GaLu)Su.

A MIMO system is well-posed if and only if (I +Ly(s)) is invertible ∀s [63]. Because the allocator

does not modify the output return ratio, the closed-loop with allocator is well-posed if the original

closed-loop without allocator is well-posed.

Moreover, the closed-loop system is internally stable if the transfer functions mapping all exogenous

inputs to any signal are stable. All the transfer functions inside the control loop can be expressed in

terms of Y , Tu, Ty, and SyGp [63]. For the control loop shown in Figure 3.4, all transfer function

can be expressed in terms of Ga and the Y , Tu, Ty, and SyGp of the control loop without allocator.

Therefore, if the closed-loop without allocator is internally stable and the allocator Ga is stable,

then the closed-loop with allocator is internally stable.

Proposition 2 Let W be a symmetric matrix such that the polynomial matrix KT
aWKa is invertible,

let the filter Ḡa be defined as Ḡa = Ka(K
T
aWKa)

−1KT
aW , and let Ga be defined as Ga = Ḡaw(s)

where w(s) is a scalar transfer function with unit gain. Then, injecting the signal ya = Ga(uref − yc)

to the controller output yc such that the plant input is u = yc + ya does not modify the plant output

response and it guarantees that the signal u follows the signal uref in the least-square sense minimizing

∥uref − u∥2W = 1
2(uref − u)

TW (uref − u) at any time if w(s) = 1 and only during steady-state if

w(s) ̸= 1.

Proof. The right nullspace of the plant Gp is generated by the transfer function matrix Ka; thus,

injecting any output signals of Ka in the plant input will result in a zero plant output.

Let α be the input of the filter Ka, and let ua and ya be the input and output of the allocator Ḡa

such that uref − u = uref − yc −Kaα = ua −Kaα (see Figure 3.4 with w(s) = 1). The objective is
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now to chose α such that the cost ∥uref − u∥2W is minimized:

α = arg min
α

∥uref − u∥2W = arg min
α

∥ua −Kaα∥2W (3.8)

= arg min
α

(
1

2
αTKT

aWKaα− uTaWKaα+
1

2
uTaWua

)

This is an unconstrained QPP whose solution must satisfy KT
aWKaα = KT

aWua, since by

assumption (KT
aWKa) is invertible, the solution is α = (KT

aWKa)
−1KT

aWua and using u =

yc+Ḡaua = yc+Ḡa(uref−yc) guarantees that the input u minimizes the quadratic cost ∥uref − u∥2W
at any time.

Finally, if the filter w(s) ̸= 1, the same analysis can be done and the final value theorem

yields that the steady-state of the signal u follows the constant signal uref by minimizing the cost

∥uref − u∥2W .

Interconnecting the allocator Ga as shown in Figure 3.4 is equivalent to modifying the controller

transfer function Gc by (I −Ga)Gc and adding a feedforward term Ga from uref to u. Proposition 1

shows that the allocator preserves the well-posedness of the control loop and that if the allocator is

stable, internal stability is preserved too. Proposition 2 shows that the filter Ḡa allows modifying

the input of the plant to follow the desired distribution without modifying the plant output response.

However, the filter Ḡa is not guaranteed to be stable or even proper. If it is not, it must be multiplied

by a scalar and unit gain transfer function w(s) to obtain the stable and proper filter Ga. Canceling

the unstable modes of the allocator Ḡa is permissible since the cancellation takes place inside

the allocator block Ga. The transfer function w(s) does not affect the invisibility property of the

allocator; however, it only guarantees that the steady-state plant input u follows the input target

uref in the least-square sense but not its transient. The allocator block is defined by:

Ga = Ḡaw(s) = Ka(K
T
aWKa)

−1KT
aWw(s) (3.9)

The matrix W defines the tracking priority of the different signals in the control distribution uref

and the transfer function w(s) defines the dynamic of the allocator.
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Figure 3.5: Step response of the input-delayed system with the Smith-McMillan-based allocator
with yref = 1 and several uref . The time delays are τ1 = 0.05 s and τ2 = 0.1 s, ω0 is set
to 4Hz and the controller is design to have a closed-loop bandiwdth of 0.5Hz.

Example with an Input-Delayed System To illustrate the design of the Smith-McMillan-based

allocator, we consider a system with two identical actuators suffering from different communication

delays, let the plant be written as Gp = Gp0Gd = Gp0
[
e−τ1s e−τ2s

]
where Gp0(s) ̸= 0 can be

any transfer function. Since Gp0 ̸= 0, the right nullspace of Gp and the matrix Ka are set by the

matrix Gd and are independent of Gp0. The allocator design requires a rational transfer function,2

so the pure time delays are replaced by a first-order Padé approximation G̃d =
[
2−τ1s
2+τ1s

2−τ2s
2+τ2s

]
.

The Smith-McMillan form MP of the plant and the unimodular matrices UL and UR such that

MP = ULGpUR are:

MP =

[
1

(2+τ1s)(2+τ2s)
0

]
, UL = 1, UR =

1
8 −

sτ1τ2
16(τ1−τ2) (2 + τ1s)(2− τ2s)

sτ1τ2
16(τ1−τ2) +

1
8 −(2− τ1s)(2 + τ2s)

 (3.10)

The matrix Ka can be obtained from the Smith-McMillan decomposition and is defined as

KT
a =

[
(2 + τ1s)(2− τ2s) −(2− τ1s)(2 + τ2s)

]
. Then, with W = I:

Ḡa =
1

(τ1s− 2)2(τ2s+ 2)2 + (τ1s+ 2)2(τ2s− 2)2 (τ1s+ 2)2(τ2s− 2)2 −(τ21 s2 − 4)(τ22 s
2 − 4)

−(τ21 s2 − 4)(τ22 s
2 − 4) (τ1s− 2)2(τ2s+ 2)2

 (3.11)

2For this system, the right nullspace is generated by the causal matrix KT
a = e−max(τ1,τ2)s

[
eτ1s −eτ2s

]
. The

allocator could be designed based on the previous matrix Ka, however, the pure delays are approximated by
rational functions to illustrate the design of the allocator for a rational transfer function.
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This transfer function matrix is proper but it might be unstable, it is multiplied by the following

unit-gain transfer function to cancel unstable poles:

w(s) =
ω4
0

32

(τ1s− 2)2(τ2s+ 2)2 + (τ1s+ 2)2(τ2s− 2)2

(s2 + 2ζω0s+ ω2
0)

2
(3.12)

Since the transfer function has a unit gain, it still guarantees optimal steady-state least-square

tracking of the desired control input uref . Any value for ω0 should guarantee stability; however,

choosing ω0 such that ω2
0τ1τ2 ≥ 1 would increase the gain of the allocator at high frequencies,

increasing the gain of the Youla transfer function at high frequencies. We will show in the following

sections that it would also deteriorate the robustness properties of the system. Figure 3.5 shows the

step response of the feedback loop with and without allocator to several inputs uref with the same

feedback controller Gc. The controller Gc used to generate the plot was designed with a bandwidth

of 0.5Hz such that the closed-loop is a second-order Butterworth filter. The figure shows that the

allocator allows modifying the distribution of inputs without modifying the output response of the

plant, despite approximating the system as a rational transfer function matrix.

3.3.3 Robust Stability and Performance and the Linear Fractional Transform

Framework

Nominal stability and nominal performance respectively guarantee that the system is stable and

the performance metrics are satisfied for the nominal system Gp. Robust stability and robust

performance extend this definition to any uncertain system in a set of perturbed plants derived from

Gp; both robust stability and performance assume nominal stability as a prerequisite.

Uncertainties may have several origins: parameters in the model can be wrong or vary because of

changes in the operating conditions; for a closed-loop system, there might be a mismatch between the

synthesized controller and the one that is implemented (e.g., due to the balanced reduction to obtain

a lower order controller or due to time discretization), the sensor might also differ from its model

(e.g., neglecting the signal quantization and time discretization for digital sensors); higher-order

model dynamics might be ignored. Uncertainties are often categorized in parametric uncertainties,

where the order of the model is unchanged, and the exact value of some parameters is unknown but

usually bounded, and unmodelled dynamics, where some dynamics would increase the system order
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controller synthesis.
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(b) N −∆ framework for robust
performance analysis. N is
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(c) M −∆ framework for robust
stability analysis. M is
defined as the upper left
sub-block N11 of
N = Fl(P,K).

Figure 3.6: General framework for robustness analysis and robust controller synthesis

is missing.

The framework shown in Figure 3.6 generalizes the analysis for robust stability and robust

performance and synthesis of the robust controller. The uncertainties are gathered in a block ∆, P

represents an augmented plant, and K is the controller. The signal w stacks the exogenous input

of the system, z are the regulated outputs, yK are measured signals fed to the controller, uK are

the plant inputs defined by the controller, y∆ and u∆ are fictitious signals representing the inputs

and outputs of the uncertainty block ∆. This framework makes extensive use of Linear Fractional

Transformation (LFT), the lower and upper fractional transforms are respectively defined as follows,

Fl(P,K) = Fl(

P11 P12

P21 P22

 ,K) = P11 + P12(I − P22K)−1P21 (3.13)

Fu(P,∆) = Fu(

P11 P12

P21 P22

 ,∆) = P22 + P21(I − P11∆)−1P12 (3.14)

where the matrix P is decomposed into sub-blocks P11, P12, P21, P22 of the appropriate size. Given

a plant P and a controller K, the closed-loop mapping the fictitious signal u∆ and exogenous inputs

w to the fictitious signal y∆ and regulated outputs z is denoted N and computed from the lower

fractional transform Fl(P,K). Similarly, given ∆ an admissible uncertainty, a sampled uncertain

augmented plant can be obtained from the upper fractional transform Fu(P,∆). The set of admissible

uncertainties is usually restricted to stable transfer functions with a unit H∞-norm, this is without

loss of generality because one can define filters in the augmented plant P so that the uncertainties

satisfy ∥∆∥∞ ≤ 1 and the assumption about ∆ being stable may be relaxed [7, p. 311]. Therefore,
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with the LFT framework robust stability of the closed-loop N can be defined as Fu(N,∆) is stable

∀∆ such that ∥∆∥∞ ≤ 1 and N is nominally stable. If N is nominally stable, the only possible way

Fu(N,∆) would be unstable is if (I − N11∆)−1 were not invertible, i.e. if one of the eigenvalues

λi(N11∆) of N11∆ would be equal to 1. The LFT framework reduces the robust stability of N to a

criterion on M = N11.

Moreover, regulated outputs are usually weighted by filters to define the requested performance

of the system in the frequency domain by ∥Fl(P,K)∥∞ ≤ 1. Therefore, with the LFT framework,

robust stability of the closed-loop M can be defined as Fu(M,∆) is stable ∀∆ such that ∥∆∥∞ ≤ 1

and N is nominally stable. Similarly, robust performance of N is defined as ∥Fu(N,∆)∥∞ ≤ 1 ∀∆

such that ∥∆∥∞ ≤ 1 and N is nominally stable.

The uncertainty block ∆ is qualified as structured if it can be written as a block diagonal matrix

∆ = blockdiag(∆1, · · · ,∆i); if ∆ is a full matrix, it is qualified as unstructured. The distinction

between structured and unstructured uncertainties is important because the structure uncertainties

define stricter constraints on the uncertainty which lead to better guarantees in terms of robustness.

Indeed, for unstructured uncertainties, robust stability of M is ensured if and only if ∀ω,∀∆ the

determinant det Im∆(jω) ̸= 0 [7, p. 324], or equivalently λi(M∆) ̸= 1 ∀∆ such that ∥∆∥∞ ≤ 1.

Therefore, for unstructured uncertainties, robust stability is equivalent to ∥M∥∞ ≤ 1. For structure

uncertainties, ∥M∥∞ ≤ 1 is only a sufficient condition for robust stability, in fact a better sufficient

condition for robust stability can be found: given an structured uncertainty ∆, if M is nominally

stable and

min
D∈D∆

∥∥DMD−1
∥∥
∞ ≤ 1 where D∆ = {D | D∆ = ∆D} (3.15)

then the closed-loop M is robustly stable. This condition is stronger because
∥∥DMD−1

∥∥
∞ may

be significantly smaller than ∥M∥∞. It is convenient to introduce the following set defining all the

matrices with the same structure as ∆:

S∆ = {Ξ | Ξ stable with the same structure as ∆ and ∥Ξ∥∞ ≤ 1} (3.16)

The structured singular value provides a way to quantify the robust stability and robust performance

of a system by generalizing the concept of singular values. Given a structure for the uncertainty ∆,
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it is defined as follows,

µ∆(M) =

 0 if {km | det (I −MkmD) = 0, D ∈ S∆} = ∅
1

min {km | det (I−MkmD)=0,D∈S∆} otherwise
(3.17)

The structured singular value corresponds to the inverse of the smallest factor km for which the

uncertainty km∆ with ∥∆∥∞ destabilizes the system M . A small structured singular value indicates

good robustness since a larger disturbance is necessary to destabilize the system. If the uncertainty

is a full matrix ∆P , the structured singular value µ∆(M) reduces to the maximum singular value of

M denoted as σ(M). If ∆ is a structured uncertainty, an upper bound on the structured singular

value can be found:

µ∆(M(jω)) ≤ min
D(jω)∈D∆

σ(D(jω)M(jω)D(jω)−1) (3.18)

Another property of the structured singular value with uncertainty ∆ is

µ∆(AB) ≤ σ(A)µ∆A(B) and µ∆(AB) ≤ σ(B)µB∆(A) (3.19)

where µ∆A denotes the structured singular value to uncertainties with structure similar to ∆A.

Therefore, if ∆ as the same structure as A (resp. B), the previous inequality yields µ∆(AB) ≤

σ(A)µ∆(B) (resp. µ∆(AB) ≤ σ(B)µ∆(A)).

The following theorems define the notions of robust stability and robust performance in terms of

conditions on the structured singular value and using the LFT framework [7].

Theorem 1 (Robust stability to structured uncertainty ∆ [7, p. 331]) Let M be a stable nominal system

and ∆ be a stable uncertainty, then any uncertain system Fu(M,D) with D ∈ S∆ are stable if and

only if ∀ω, µ∆(M(jω)) ≤ 1.

Theorem 2 (Robust performance to structured uncertainty ∆ [7, p. 343]) Let N be a stable nominal

system and ∆ be a stable uncertainty, ∀D ∈ S∆, ∥Fu(N,D)∥∞ ≤ 1 if and only if ∀ω, µ∆̄(N(jω)) ≤ 1

where ∆̄ = blockdiag(∆,∆P ) and ∆P is a full matrix such that ∥∆P ∥∞ ≤ 1.
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3.3.4 µ-Analysis of the Smith-McMillan-Based Nullspace Allocator

This section analyses the robustness performance of the Smith-McMillan-based allocator to mul-

tiplicative input and output uncertainties.3 For such uncertainties, the uncertain plant can be

expressed as a function of the nominal plant Gp as follows,

G = (I +Wy∆y)Gp(I +Wu∆u) (3.20)

where the uncertainty blocks ∆u and ∆y are assumed to be unstructured full-block complex

perturbations, they are stacked in the uncertainty block ∆ = diag(∆u,∆y). The filters Wu and

Wy defines the range of the input and outputs uncertainties. To fit the LFT framework defined

in Figure 3.6a, the controller is defined such that its inputs and outputs are respectively yTK =[
(uref − yc)T (yref − y)T

]
and its output is uTK = [yTa yTc ]. The performance of the closed-loop

is defined by the signal z∞ = Wpe = Wp(yref − y) and the tracking performance of the allocator

is quantified by the signal z2 =Wa(uref − u) where Wp and Wa are tunable filters. These signals

are stacked in the regulated output vector zT = [z∞ z2]. The augmented system P such that[
y∆ z yK

]T
= P

[
u∆ w uK

]T is shown in Equation (3.21); the augmented closed-loop system

NGc , obtained from the lower fractional transformation of P and Gc, is given in Equation (3.22).

P = diag(Wu,Wy,Wp,Wa, I, I)



0 0 0 0 I I

Gp 0 0 0 Gp Gp

−Gp −I I 0 −Gp −Gp

0 0 0 I −I −I

0 0 0 I 0 −I

−Gp −I I 0 −Gp −Gp


(3.21)

3Several type of uncertainties exist, multiplicative uncertainties are convenient to represent parametric uncertainties
and higher frequency model mismatch. For multivariable systems, it is necessary to specify whether the perturbation
is at the input or output of the plant, especially if the plant is ill-conditioned.
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NGc = Fl(P,Gc) = diag(Wu,Wy,Wp,Wa, I)



−Tu −GcSy GcSy 0 Su

SyGp −Ty Ty 0 SyGp

−SyGp −Sy Sy 0 −GpSu

Tu GcSy −GcSy I −Su

Tu GcSy −GcSy I Tu


(3.22)

Finally, the closed-loop system with allocator NGa,Gc and the closed-loop system without allocator

N0,Gc can be obtained using another lower fractional transformation. Note that because the allocator

has the property GpGa = 0, the following properties can be used to simplify the expression of the

closed-loop NGa,Gc : TuGa = 0, SuGa = Ga.

N0,Gc = Fl(NGc , 0nu×nu) = diag(Wu,Wy,Wp,Wa)



−Tu −GcSy GcSy 0

SyGp −Ty Ty 0

−SyGp −Sy Sy 0

Tu GcSy −GcSy I


(3.23)

NGa,Gc = Fl(NGc , Ga) = diag(Wu,Wy,Wp,Wa(I −Ga))

−(I −Ga)Tu −(I −Ga)GcSy (I −Ga)GcSy Ga

SyGp −Ty Ty 0

−SyGp −Sy Sy 0

Tu GcSy −GcSy I


(3.24)

As can be seen from Equation (3.24) and Equation (3.23), connecting the allocator to the feedback

loop brings several modifications to the closed-loop transfer function. Connecting the allocator

is equivalent to modifying the weighing filter Wa on the regulated output z2 = Wa(uref − u) by

Wa(I −Ga) without modifying the output z∞ as should be expected since the allocator does not

change the output response of the nominal system.

Theorems 1 and 2 shows that the µ value quantifies the robust performance and robust stability

of the system, the following paragraphs derive bounds on the structured singular value. Let MGa,Gc

and M0,Gc be the transfer function from u∆ to y∆ of the closed-loop with and without allocator

respectively. These matrices can be obtained by extracting the upper left sub-block from the NGa,Gc
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and N0,Gc matrices. Assuming that the filters Wu and Wy are invertible, the following relation exists

between M0,Gc and MGa,Gc : MGa,Gc =W∆M0,Gc where W∆ = diag(Wu(I −Ga)W−1
u , I). Since the

filter W∆ has the same structure as the uncertainty block ∆, using (3.19) we have:

∀ω ∈ R, σ(W∆(jω))µ∆(M0,Gc(jω)) ≤ µ∆(MGa,Gc(jω)) ≤ σ(W∆(jω))µ∆(M0,Gc(jω)) (3.25)

The previous inequality shows that the µ value quantifying the robust stability of the closed-loop

with allocator is bounded by the robust stability µ value of the closed-loop without allocator and by a

multiplicative factor defined by the allocator transfer function and the filter on the input uncertainty.

The singular value σ(W∆) is bounded by 1 ≤ σ(W∆) ≤ 1+κ(Wu)σ(Ga) where κ denotes the condition

of a matrix. Indeed, using the following properties of singular values: σ(diag(I, A)) = max(1, σ(A));

σ(AB) ≤ σ(A)σ(B); σ(I −A) ≤ 1 + σ(A); and σ(A−1) = σ(A)−1, we have:

σ(W∆) = σ(diag(Wu(I −Ga)W−1
u , I))

= max(1, σ(I −WuGaW
−1
u )) ≥ 1

≤ max(1, 1 + σ(WuGaW
−1
u ))

≤ 1 + σ(Wu)σ(Ga)σ(W
−1
u )

≤ 1 + κ(Wu)σ(Ga)

Thus, Equation (3.25) shows that the robust stability µ value of the closed-loop without allocator

is determined by the µ value associated with the robust stability of the closed-loop without allocator

and by the singular values of the allocator. Increasing the H∞ norm of the allocator would increase

the upper bound on the µ value and deteriorate the robust stability of the system.

Similarly, we can derive bounds on the robust performance of the system with exogenous input

w = r and regulated output z = z∞ =Wpe with and without allocator. Let N∞
Ga,Gc

and N∞
0,Gc

be

this closed-loop with and without allocator respectively, these matrices can be obtained by extracting

the upper left sub-block from NGa,Gc and N0,Gc .

∀ω ∈ R, σ(W∆̄(jω))µ∆̄(N
∞
0,Gc

(jω)) ≤ µ∆̄(N∞
Ga,Gc

(jω)) ≤ σ(W∆̄(jω))µ∆̄(N
∞
0,Gc

(jω)) (3.26)
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(a) Relative error between a pure time delay and
its first-order Padé approximation

(b) Robust stability performance

Figure 3.7: Uncertainty of the input-delayed system and robust stability with different Smith-
McMillan-based allocators

where W∆̄ = diag(Wu(I −Ga)W−1
u , I, I) which can be bounded by 1 ≤ σ(W∆̄) ≤ 1 + κ(Wu)σ(Ga).

So the same conclusion applies for robust performance as robust stability.

The filter Wy does not appear in the upper bound on the structured singular value for both

robust stability and performance. Indeed, the allocator is not sensitive to multiplicative output

uncertainties: if an uncertain plant has only multiplicative output uncertainty, it can be formulated

as G = (I+Wy∆y)Gp where Gp is the nominal plant, ∆y is an uncertain block such that ∥∆y∥∞ ≤ 1,

and Wy is a filter that weights the uncertainty. Without allocator, i.e. with connection u = yc,

the plant output is given by y0 = Gu = (I +Wy∆y)Gpyc. With allocator, i.e. with connection

u = yc +Gaua, the plant output is y1 = Gu = (I +Wy∆y)Gp(yc +Gaua) = (I +Wy∆y)Gpyc since

by design GpGa = 0. The uncertainty can be moved from the input of the plant to the output by

multiplying the uncertainty filter by the conditional number of the plant κ(Gp) [7]; therefore, this

analysis should guarantee robust stability and robust performance of the control-loop with allocator

for systems that are well-conditioned.

Example with an Input-Delayed System Continuing with the same example as in Section 3.3.2,

the relative error between a pure time delay τi and its first-order Padé approximation is upper

bounded by the magnitude of the following filter at any frequency, see Figure 3.7a:

wτi(s) =

(
τis

τi
2 s+ 1

)3

guarantees

∣∣∣∣∣e−τis −
2−τis
2+τis

2−τis
2+τis

∣∣∣∣∣ ≤ |wτi(s)| (3.27)

Therefore, the approximation of the pure time delay of the actuators can be represented by a
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multiplicative input uncertainty ∆u weighted by the filter Wu = diag(wτ1(s), wτ2(s)) such that

∥∆u∥∞ ≤ 1. Figure 3.7 shows the structured singular value for robust stability of the closed-loop

system for several Smith-McMillan-based allocator designed with different bandwidths ω0. As can

be seen from the figure, the upper bound defined in Equation (3.25) correctly overestimates the

structured singular value of the closed-loop with allocator. Moreover, the upper bound guarantees that

robustness is not deteriorated after connecting the allocator for frequencies ω0 ≤ 1√
τ1τ2

= 14.14 rad s−1.

With this example, robust stability is actually preserved for frequencies up to 30 rad s−1, using a

faster allocator deteriorates the robustness of the closed-loop.

3.3.5 Summary

The Smith-McMillan-based allocator allows the decoupling of the design of the controller and the

control allocation by injecting a signal in the feedback loop that is invisible at the output, which lets

us use the extra DoF provided by the plant over-actuation. Its design is independent of the controller

design and only depends on the plant model. For the nominal system, the allocator guarantees to

maintain internal stability. For an uncertain system with multiplicative uncertainties, the µ-values

associated with the robust stability and performance of the closed-loop with allocator are bounded

by the µ-values of the closed-loop without allocator if the filters weighting the uncertainties are

invertible. However, the Smith-McMillan-based allocator does not always provide optimal results.

For instance, if the gain of the allocator is high, the bound on the µ-values might be large; if the

filter weighting the multiplicative uncertainty is not invertible, Equations (3.25) and (3.26) are

not valid and another approach must be used. Appendix A proposes a more general method to

consider these cases and synthesize an allocator for an ill-conditioned system. Contrary to the

Smith-McMillan-based allocator, the approach proposed in appendix A does not allow to decouple

the design of the controller and allocator. Moreover, the appendix A shows that the ill-conditioned

system exhibit a trade-off between robust performance and control allocation.

The Smith-McMillan-based allocator is used in Chapter 6 when integrating wheel slip controls

with regenerative braking and allocating wheel torque to the electric motors of the drivetrain and to

the EHB.
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Chapter 4

Vehicle State and Parameters Estimation

Information on the road surface limit can help improve the performance and safety of the vehicle.

The maximum friction force the tire can apply is limited by the friction potential of the road surface

and by the normal tire force. These signals cannot be directly measured with standard vehicle

sensors; they must then be estimated.

In this chapter, we present methods to estimate the tire normal force using the Youla Controller

Output Observer (YCOO) and the Unbiased Minimum Variance Filtering (UMVF). Both provide

real-time estimates of the normal forces based on inertial sensors and suspension deflection sensors.

The last part of this chapter conducts a literature review of tire-road friction estimation methods

and proposes a simple algorithm to estimate the maximum friction coefficient.

4.1 Tire Normal Force Estimation

Some observers have already been developed to estimate wheel normal force. Doumiati et al. [64],

[65] propose a cascaded observer to estimate the tire normal forces, the first step of the algorithm

implements a linear Kalman filter to estimate the lateral load transfer from the suspension deflection

and accelerometer measurements, the second step infers the tire normal force from the lateral load

transfer by using an algebraic expression for normal force. Jiang [49] extended the application of this

estimation framework by adding the vehicle pitch dynamics to take into account the road angle and

the road irregularities. These estimation methods usually rely on algebraic expressions for normal

forces and do not capture the suspension dynamic that generates the tire forces.
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4.1.1 Estimation Model

The model presented in Section 2.1 is used to analyze the coupling between input and outputs pairs

using the Relative Gain Array (RGA). Given a linear system G(s), the RGA defines the matrix

Λ whose elements are defined by Λij = (G(0))ij(G
−1(0))ji, i.e. Λ is the result of the element wise

product between the gain of the system G(0) and the transpose of its inverse (G−1(0))T . The RGA

measures the ratio of magnitude between input-output pairs to identify which input should be pair

to some output and to identify the couplings in the system. Since the RGA is a linear analysis tool,

its computation require to linearize the model, the operating point is chosen to be a steady-state

cornering such that the vehicle velocity is vx = 90 kmh−1 and the vehicle lateral acceleration is

ay = 0.4 g (the vehicle lateral velocity is vy = 0.2m s−1; the heave velocity is vz = 0ms−1; and the

roll, pitch, and roll angular velocities are ωx = ωy = 0 rad s−1 and ωz = 0.15 rad s−1). The following

matrices shows the RGA of two models mapping the tire forces [fFLz fFRz fRLz fRRz] to the

suspension deflection [qFLs qFRs qRLs qRRs], Λ1 shows the RGA for a vehicle without anti-roll

bar and Λ2 shows the RGA for a vehicle whose rear axle is equipped with an anti-roll bar.

Λ1 =



0.956 −0.052 0.047 0.049

−0.052 0.960 0.045 0.047

0.047 0.045 0.949 −0.042

0.049 0.047 −0.042 0.945


, Λ2 =



0.956 −0.052 0.047 0.049

−0.052 0.960 0.045 0.047

0.047 0.045 1.211 −0.305

0.048 0.046 −0.304 1.208


(4.1)

The matrix Λ1 has all its diagonal elements near one and small off-diagonal elements. The RGA

analysis shows that when there is no anti-roll bar, there is almost no coupling between the four

suspensions, and the model can be simplified by considering only the input-output pair from fijz to

qijs. However, if the rear axle is equipped with an anti-roll bar, the left and right sides are coupled

together, and this effect should not be neglected. In the following, we assume that the vehicle is not

equipped with anti-roll bars to simplify the design of the observer, allowing us to use a quarter car

model to represent the system and neglecting the coupling between the four corners of the vehicle.

To consider the coupling between the left and right sides and the presence of an anti-roll bar, the

observers should be redesigned using a roll half-car model instead of the quarter car model.

The quarter-car model shown in Figure 4.1 is used to estimate the wheel load at each tire. The
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Se: fz −mug

ṗs

q̇s

ṗu

Figure 4.1: Quarter-car model of the suspension with wheel normal force and load transfer as inputs.

model has several inputs, a vertical force ∆fz applied to the sprung mass, representing the load

transfer, and the normal tire force fz. Inertias ms and mu represent respectively the sprung mass

and unsprung masses, ks and bs represent the suspension compliance and damping. The states of

the model are the sprung mass and unsprung mass momentums ps, and pu, and the suspension

deflection qs. Measurement are the sprung mass heave acceleration ṗs
ms

and the suspension deflection

qs. The equations of motion of the model are:

ṗs = ksqs + bsq̇s −msg −∆fz (4.2)

ṗu = −ksqs − bsq̇s −mug + fz (4.3)

q̇s =
pu
mu
− ps
ms

(4.4)

With this model, the tire normal force is an input to the model and not a function of a model

state. In the traditional quarter-car model, an additional state representing the tire compliance qt

is present, its state derivative is given by q̇s = vin − pu
mu

where vin is the road input velocity. The

traditional quarter-car model then computes the tire normal force as fz = ktqt with kt the tire

stiffness. Modifying the quarter-car model to consider fz as an input requires to use observer capable

of estimating unknown inputs instead of state estimation techniques (e.g., Kalman filtering), but

using the traditional quarter-car model would necessitate knowing the road input velocity vin and it

would require to assume a parameter kt to map the estimated tire compliance to the estimate of the

normal force.
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Plant Gp

Estimation
model Ĝp

Controller
Gc

u

−
ŷ

y

û

Figure 4.2: Block diagram of the YCOO estimation concept.

4.1.2 Youla Controller Output Observer

The YCOO is based on the COO framework and is developed using multi-variable Youla parameteri-

zation; it is a model-based estimation method that uses a controller to obtain the desired estimates

by minimizing the error between the measurements and the virtual output of the estimation model.

The YCOO block diagram is shown in Figure 4.2; this framework does not assume that all inputs of

the estimation model are known, making it suitable for input estimation. Given some measurements

y, the framework uses an estimation model mapping estimates û to estimated output ŷ, a controller

that minimizes the error between these two measurements.

The transfer function from the the true input u to the estimated input û is given by (I+Lu)
−1GcGp

where Lu = GcĜp is the return ratio. If the estimation model is a perfect representation of the

system, i.e. Gp = Ĝp, then this transfer function reduces to the closed-loop transfer function

Tu = Lu(I + Lu)
−1. If the plant has multiplicative uncertainty such that Gp = Ĝp(I + ∆), the

relation becomes û = Tu(I + ∆)u. Thus, the YCOO relies on an accurate model of the system.

The controller must be designed such that Tu ≈ I at low frequencies to guarantee good tracking

of the measured quantities. Moreover, the Youla transfer function Y maps the sensor noise to the

estimation error. Thanks to its loop shaping approach, the YCOO directly addresses the trade-off

between noise rejection, bandwidth, and robustness to high-frequency multiplicative uncertainties.

Indeed, a higher bandwidth would make the YCOO less robust to multiplicative uncertainties and

make the estimation more sensitive to noise.

The quarter-car model from Figure 4.1 is used as the estimation model Ĝp. The plant model can

be written as a transfer function Ĝp = 1
δP mapping the signals û to ŷ

Ĝp =

 ṗs
msfz

ṗs
ms∆fz

qs
fz

qs
∆fz

 (4.5)
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=
1

msmus2 + (ms +mu)bss+ (ms +mu)ks

ks + bss −(mus
2 + bss+ ks)

ms mu

 (4.6)

The Smith-McMillan form MP of the system and its unimodular matrices such that MP = ULĜpUR

are:

MP =

 1
msmus2+(ms+mu)bss+(ms+mu)ks

0

0 1
msmu

 , (4.7)

UL =

 0 1

mu mus
2 + bss+ ks

 , UR =

 0 1
msmu

1
mu

− 1
m2

u

 (4.8)

The controller is designed such that the closed-loop is a second-order Butterworth filter with unit

gain MT =
ω2
0

s2+2ζω0s+ω2
0

1
(τs+1)2

I, an additional pole must be added to the Butterworth filter to make

the controller proper. The damping ratio ζ is set to 1√
2
. The closed-loop bandwidth must be high

enough to provide good estimates, but a too high bandwidth will also lead to poor noise rejection.

The natural frequencies of a quarter car model are the suspension frequency, approximately 1Hz,

and the wheel-hop frequency, approximately 10Hz[66]. To provide a good estimate, the closed-loop

bandwidth should be faster than the fastest dynamics of the system. Thus, the bandwidth of the

closed-loop system is chosen 30Hz. Singular values of the closed-loop transfer function and the

controller are shown in Figure 4.3. At frequencies below the bandwidth, Tu is 0 dB and Su has

low gain, ensuring a good tracking. At higher frequencies, the gain of Tu decreases to reject sensor

noise and make the estimate robust against high-frequencies model mismatch. The decoupled Youla

transfer function is MY such that MT =MYMP , the closed-loop transfer function is Tu = URMTU
−1
R

and the Youla transfer function is Y = URMY UL. The controller is then obtained from Gc = S−1
u Y

where Su = I − Tu is the input sensitivity function. This yields the following controller:

Gc =
ω2
0

(s2 + 2ζω0s+ ω2
0)(τs+ 1)2 − ω2

0

 mu mus
2 + bss+ ks

−ms ks + bss

 (4.9)

The transfer function which maps the measurements y to the input estimate û is the Youla transfer
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4.1 Tire Normal Force Estimation

Figure 4.3: Singular values of the YCOO closed-loop transfer function Tu, Su, and Y and of the
return ratio Lu, controller Gc, and estimation plant Gp

function:

Y =
ω2
0

(τs+ 1)2(s2 + 2ζω0s+ ω2
0)

 mu mus
2 + bss+ ks

−ms bss+ ks

 (4.10)

Therefore, the estimate of the normal force is as follows,

f̂z(s) =
[
mus×

(ps(s)
ms

+ sqs(s)
)
+ bssqs(s) + ksqs(s)

] ω2
0

(s2 + 2ζω0s+ ω2
0)(τs+ 1)2

(4.11)

4.1.3 Unbiased Minimum Variance Filtering

The UMVF is a variation of the Kalman filter for systems with unknown inputs. In addition to

providing state estimates, it also computes an unbiased (i.e., with zero mean error) estimate of the

unknown inputs [67]; the UMVF requires a stricter assumption than the Kalman filter; indeed, the

model must be strongly observable. While observability guarantees that the sequence of states can

be uniquely reconstructed from the measurements and knowledge of the inputs, a system is strongly

observable if the sequence of both states and unknown inputs can be uniquely reconstructed from

the measurements (and known inputs).

Considering a discrete-time Linear Time-Invariant (LTI) system defined by xk+1 = Axk+Buk+Hek

and yk = Cxk +Duk +Gek where xk are the states, uk are the known inputs, ek are the unknown

inputs, the LTI system is strongly observable if and only if the matrix Ψ has full column rank

where Gd is the G matrix considering only feedthrough unknown inputs, i.e. with all zero-columns
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removed [68].

Ψ =



C G

CA CH
. . .

...
...

. . . G

CAn−1 CAn−2H . . . CH Gd


(4.12)

The first column of the matrix Ψ corresponds to the observability matrix, thus observability and

necessary for strong observability. The estimation model proposed in Equations (4.2) to (4.4) is not

observable. Indeed, the state associated to msps +mupu does not produce an observable output.

Similarity transformations are used to remove this unobservable state and obtain an observable

model. Moreover, it is necessary to measure the suspension relative velocity q̇s to make the system

strongly observable. Suspension deflection sensors such as linear variable transformers can only

measure the suspension suspension displacement [69], therefore measuring the signal q̇s will require to

differentiate the signal qs. The strongly observable model is defined by the following matrices where

the states are xT = [mspu−mups
m2

s+m
2
u

qs − msg
ks

], the unknown inputs are eT = [∆fz fz − (ms +mu)g]

and the outputs are yT = [ ṗs
ms

qs q̇s], note that the suspension deflection and the tire normal force

are offset by their steady-state to zero input.

A =

− bs(ms+mu)
msmu

−ks(ms+mu)
m2

s+m
2
u

m2
s+m

2
u

msmu
0

 , H =

 mu
m2

s+m
2
u

ms
m2

s+m
2
u

0 0

 , (4.13)

C =


(m2

s+m
2
u)bs

m2
smu

ks
ms

0 1

m2
s+m

2
u

msmu
0

 , G =


− 1
ms

0

0 0

0 0

 (4.14)

The UMVF filter assumes that the model can be described by the following discrete-time state-space

system:

xk+1 = Axk +Buk +Hek + wk (4.15a)

yk = Cxk +Duk +Gek + vk (4.15b)
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where xk are the states, uk are the known inputs, ek are the unknown inputs of the system, wk is

the process noise, and vk are the sensor noise. The noises vk and wk are assumed to be Gaussian

random variables with zero mean, independent over time and between them, and with covariance

E[wkw
T
k ] = Qk and E[vkv

T
k ] = Rk.

Similarly to the Kalman filter, the UMVF algorithm works in two steps. The first step uses the

plant model to propagate the estimation of the state and the error covariance matrix. The a priori

estimates are:

x̂k+1|k = Ax̂k|k +Buk (4.16a)

Pk+1|k = APk|kA
T +Qk (4.16b)

The Kalman filter executes the measurement update defined by the following equations when a

new sensor measurement is available. The gain Lk+1 is computed to obtain the a posteriori state

and covariance matrix.

R̃k+1 = CPk+1|kC
T +Rk+1 (4.17a)

Φk+1 =

[
−G CH

]
(4.17b)

Ωk+1 =

[
0n×p H

]
− Pk+1|kC

T R̃−1
k+1Φk+1 (4.17c)

Lk+1 = Pk+1|kC
T R̃−1

k+1 − Ωk+1(Φ
T
k+1R̃

−1
k+1Φk+1)

−1ΦTk+1R̃
−1
k+1 (4.17d)

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − Cx̂k+1|k −Duk+1) (4.17e)

Pk+1|k+1 = Lk+1R̃k+1L
T
k+1 − Pk+1|kC

TLTk+1 − Lk+1CP
T
k+1|k + Pk+1|k (4.17f)

Palanthandalam-Madapusi [70] shows that êk = H†Lk+1(yk+1 − Cx̂k+1|k − Duk+1) and êk =

G†(yk − Cx̂k|k − Duk) respectively guarantee that E[êk] = G†GE[ek] and E[êk] = H†HE[ek].

Therefore, if H (resp. G) has full column rank the first equation (resp. the second equation)

guarantees an unbiased estimate of the unknown input ek, i.e. E[êk−ek] = 0. The H and G matrices

of the observable quarter-car model do not have full column rank, indeed rank (H) = rank (G) = 1,

however we can combine both equations to obtain an unbiased estimate of the unknown inputs. Let
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V T
H and V T

G be the left eigenvectors of H†H and G†G associated to a non-zero eigenvalues,1, then

the unknown inputs is the solution of the linear system:

V T
H

V T
G

 êk =
V T

HH
†Lk+1(yk+1 − Cx̂k+1|k −Duk+1)

V T
GG

†(yk − Cx̂k|k −Duk)

 (4.18)

From the previous equation, one can obtain an unbiased estimate of the unknown input ek; indeed,

taking the mean of the previous equation leads to:

V T
H

V T
G

E[êk] =

V T
HH

†H

V T
GG

†G

E[ek] =

V T
H

V T
G

E[ek] (4.19)

Finally, the matrix V T = [VH VG]
T has full column rank which guarantees that E[êk] = E[ek],

êk is an unbiased estimate of ek. Multiplying Equation (4.18) on the left by V † yields the value of

the unbiased estimate êk.

4.1.4 Vehicle Mass Estimation

Both observers can estimate the transfer load ∆fz and the offset normal tire force fz − (ms +mu)g

from the sprung mass acceleration and suspension displacement. However, the vehicle’s mass must

also be known to obtain the normal tire force fz. This section proposes a calibration algorithm

to obtain the static load at each wheel when the vehicle is at rest or during straight driving with

constant speed.

Algebraic expression defined in Equations (2.85) to (2.87) gives the tire load during quasi-steady-

state. When the vehicle is at rest or during straight driving at constant speed, the suspension force is

given by fijz = ksqijs, therefore ksqijs = f0ijz ±∆mx
j ax ±∆my

i ay. Even though the vehicle is at rest,

the acceleration ax and ay might not be zero since they correspond to the acceleration measured

by the accelerometers in the vehicle x and y directions and include the acceleration of gravity if

the vehicle roll and pitch are not zero. The variables f0ijz, ∆m
x
j , and ∆my

i depend on the value of

distances wL, wR, lF , lR, the sprung mass ms, and the height of the center of gravity h. Since the

vehicle wheelbase lF + lR and the vehicle width wL +wR are known, this reduces to a system of four

1For any real matrix, the eigenvalues of A†A and AA† are either 0 or 1.
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4.1 Tire Normal Force Estimation

(a) Braking step of 3000Nm and wrong initial
estimate.

(b) Double lane change maneuver with 0.6 g max-
imum lateral acceleration.

Figure 4.4: Vertical tire force estimation on maneuvers with only longitudinal or lateral acceleration.

equations with four unknowns and can be solved to obtain the location of the center of gravity and

the total sprung mass. Finally, the static load can be computed from Equation (2.86).

4.1.5 Simulation Results and Robustness Analysis

Both observers are tested on the full vehicle model derived in Chapter 2. Figure 4.4a shows the

estimates during a braking step of 3000Nm at 1 s from an initial velocity of 90 kmh−1. The two

observers are intentionally not initialized; both observers converge in approximately 0.1 s. The two

observers provide better estimates than the algebraic expression, which suffers from a steady-state

error. Figure 4.4b shows the estimate during a double lane change maneuver with a constant velocity

of 90 kmh−1 and with maximum lateral acceleration of 0.6 g. Both estimators provide a good

estimate of the vertical tire force, whereas the estimation from algebraic expression does not capture

the transient response. Figures 4.4a and 4.4b validate the two estimators for situations where the

load transfer is due to longitudinal or lateral acceleration.

Figure 4.5 shows the estimate during a bounce sine sweep test. The vehicle velocity is maintained at

20m s−1. The road profile corresponds to sinusoidal bumps of decreasing wavelength with decreasing

amplitude. The minimum wavelength is 1.6m. Thus, the road excites the suspension over the

frequency range 0Hz to 3.5Hz. The YCOO and the UMVF can estimate the wheel loads. Both

observers reproduce the frequency response of the suspension: the wheel load amplitude increases

when the road excitation gets closer to the suspension frequency (1Hz obtained when t ≈ 13 s)

and remains constant at frequencies between the suspension and wheel-hop frequencies. Since the
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Figure 4.5: Vertical tire force estimation during a bounce sine sweep test. Vehicle speed is constant
at 20 kmh−1. The minimum wavelength is 1.6m at t = 20 s. The bottom figure shows
the road profile.

longitudinal and lateral accelerations during this maneuver are almost zero, the algebraic expression

cannot provide an accurate estimation of the wheel loads.

A robustness analysis investigates how robust the observers are to measurement noise and variation

in the model parameters. Figure 4.6 evaluates the sensitivity of the wheel load estimation against

the suspension stiffness. Uncertainties over this parameter result in an offset between the real and

estimated wheel load due to the wrong calibration of the mass estimation strategy. The load transfer

estimate also suffers from uncertainties in the suspension stiffness. Indeed, without any uncertainty,

both observers yield a correct load transfer of 700N, but with a SI50% stiffer suspension, the load

transfer estimate is only 450N. The robustness against the damping coefficient bs is investigated in

Figure 4.7a, the YCOO and the UMVF provide very close estimate, and only the estimate given by

the UMVF is shown. The estimation is not robust against the damping coefficient in the transient,

but it does not affect the steady-state estimation. Similarly, nonlinearities in the damper map affect

the transient of the wheel load estimate when the suspension operates in the region approximated

by the linear damper map. The linear and nonlinear damper maps are given in Figure 4.7b.

Figure 4.8 shows the estimated signals obtained with the YCOO and the UMVF when Gaussian

white noise of time correlation 10ms and power spectral density 10−4 and 10−9 are respectively

added to the sprung mass vertical acceleration and to the suspension deflection measurements. The

90



4.1 Tire Normal Force Estimation

Figure 4.6: Robustness against suspension stiffness. Solid lines show the ground-truth signals and
dashed lines show the estimated ones.

(a) Robustness against damping coefficient (top)
and damping map (bottom). (b) Suspension linear and nonlinear damper map.

Figure 4.7: Robustness against uncertainties in the damping map during a braking maneuver. Solid
lines show the ground-truth signals and dashed lines show the estimated ones.

Figure 4.8: Normal force estimation with noisy measurements
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YCOO offers better noise rejection than the UMVF.

4.2 Road Condition Identification

The tire forces are responsible for the stability and maneuverability of the vehicle [71]. Although

describing the tire forces is complex, they are usually defined as a function of the wheel slip; these tire

maps have a maximum that defines the tire friction potential. This value gives valuable information

on the road condition in a compact way. The goal of active systems such as ABS and TCS is to

maximize the tire forces by maintaining the wheel slip in a stable region. Knowledge of the road

condition and the maximum friction coefficient can be used to improve the performance of these

algorithms [72], [73]. Some systems rely strongly on a prediction of the road friction potential:

e.g.Autonomous Emergency Braking (AEB) and Collision Avoidance System (CAS) monitor the

distance between vehicles to ensure safe driving and use an estimate of the tire-road friction to

compute a minimum distance between vehicles; Adaptive Cruise Control (ACC) can also benefit from

information on the road condition to compute the vehicle maximum cornering velocity. Without a

priori knowledge of the road grip, a conservative assumption must be taken, or it could lead to vehicle

collision; this, however, could result in an unnecessary large safety margin or false intervention [74].

These new features will become even more critical with the predicted rise of fully autonomous

vehicles. Indeed, to ensure safe driving, the vehicle should adapt its speed to the driving condition,

and the friction potential would represent precious information.

Figure 4.9 illustrates a classification of different estimation concepts for the road grip potential. A

distinction is made between approaches that rely on special sensors and model-based approaches

that utilize a tire, vehicle, or powertrain model.

A possible classification of road friction estimation methods using special sensors is the cause-based

versus effect-based methods. Cause-based approaches identify environmental causes that impact the

maximum friction coefficient; this includes road lubricant properties and road textures. Conversely,

effect-based approaches measure the effect of the tire-road friction, such as the noise emitted by

the tire, the tire deformation, or the effect of the friction potential on the vehicle dynamics for the

model-based approach.

The main drawback of effect-based methods is that they can only estimate the current grip
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Tire-Road Friction
Estimation Methods

Special
Sensor-Based

Methods

Cause-
Based

Methods

Optical sen-
sors, Identifi-
cation of the
road texture,
Redundant
wheel

Effect-
Based

Methods

Acoustic sen-
sors, Tire
tread sensors,
Piezo-electric
sensors

Model-Based
Methods

Low-Slip
Based

Methods

Slip-slope, Vi-
bration meth-
ods

Slip Based
Methods

Active
Excitation
Methods

Longitudinal
dynamics, Lat-
eral dynamics

Figure 4.9: Classification of tire-road friction coefficient estimation methods

potential; on the contrary, a preview is possible with some cause-based methods, especially those

using optical sensors. On the other hand, caused-based approaches strongly rely on databases of

previous experiments. These methods do not estimate the friction coefficient directly but instead

identify environmental or vehicle parameters known to be correlated with a given road surface. For

instance, optical sensors can be used to identify the reflectivity of a road surface [75] to detect the

presence of ice or water on the road and determine a maximum friction coefficient. It can still provide

valuable information by narrowing the range of the maximum friction coefficient. However, this is

only a rough estimation. Indeed, the friction coefficient is impacted by countless parameters, and two

different tires can provide different grip potential on the same road surface [76]. This classification

scheme is used extensively by sensor-based approaches but also by some model-based approaches

such as the slip-slope method (see Section 4.2.2).

Some approaches do not require special sensors; instead, they implement a model-based estimation

scheme that relies on standard vehicle sensors, three categories of model-based methods are listed.

First, low-slip and slip-based methods estimate the impact of the road friction on the tire forces

and moments. Low-slip-based methods aim to observe the road potential from the tire properties at

low slip. These methods are based on the slip-slope assumption, which is described in Section 4.2.2.

93



4 Vehicle State and Parameters Estimation

Slip-based methods require higher slip values as the wheel has to operate in the nonlinear region of

the tire. A certain degree of excitation is required for slip-based methods to work correctly. Finally,

active excitation methods are a variation of the slip-based methods that can detect the maximum

friction coefficient when the vehicle is driven at a constant speed.

4.2.1 Sensor-Based Approaches

The tire-road friction potential is dependent on many different factors. Vehicle speed, tire load, tire

pressure, and environmental and road parameters (e.g., lubricant properties, temperature, the road

micro, and macrotexture) influence the tire-road grip. Most of these parameters can be measured or

estimated with sensors equipped on most commercial vehicles. However, road lubricant properties

and road roughness have the most impact on the friction potential and are difficult or impossible to

measure with standard sensors. The idea behind special sensor-based approaches is to use sensors

not commonly found on commercial vehicles to measure signals correlated to the road’s friction

potential. These signals can result from the effect of the road-tire friction (effect-based) or relate to

the friction generation mechanism (cause-based).

Optical sensors have been widely used to detect road surface properties correlated to the road

friction potential. The main advantage of optical sensors is that they can provide predictive

information on the friction potential by looking ahead of the contact patch. The use of optical

sensors for friction detection started in the 1990s. The friction monitoring group of PROgraM for

a European Traffic with Highest Efficiency and Unprecedented Safety (PROMETHEUS) uses the

following three sensors [75]:

Water detection A 20mW pulsating LED emits light on the road surface. A diode measures the

reflected light to detect the presence of water on the road and to characterize the road by a

wetness number. However, this sensor cannot estimate the water depth and thus the risk of

aquaplaning. It is also not capable of detecting ice and snow.

Water depth measurement and ice detection This sensor addresses the limitation of the LED

reflection sensor. A halogen lamp replaces the LED transmitter. The reflected light of different

bands in the infrared 1 µm to 3 µm region depends on the water depth and the presence of ice.

Road texture detection A 30mW laser diode is used to determine the road micro and macro texture
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using optical triangulation, allowing to estimate the road roughness and identify the road

surface.

The sensor signals are processed to obtain parameters such as a wetness number, water dept, and

texture descriptors used to infer a friction potential. The prediction scheme was tested on a vehicle,

and the error of maximum friction coefficient was found to be less than 0.1 for more than 90% of

the tested road surfaces.

Tuononen [77], [78] uses an optical sensor built inside the tire to measure the tire carcass deflection.

While the main objective is to estimate the tire forces and moments, the combined measurement

and estimation of the aligning torque and the slip angle allows one to estimate the friction potential

during cornering. Indeed, the map from slip angle to self-aligning moment depends on the maximum

friction coefficient (see Figure 2.3). Note that the self-aligning torque is more sensitive to the

maximum friction coefficient at low slip angles than the longitudinal and lateral tire force, which

should help provide a more reliable estimate of µmax. The author also proposes to estimate the

friction potential during free rolling from the estimated stress distribution along with the contact

patch, which can be obtained from the tire carcass deflection.

Given the increasing interest in autonomous vehicles equipped with many optical sensors, re-

searchers are taking the opportunity to use these new sensors and the enhanced processing power

of embedded computers. Roychowdhury et al. [79] implement machine learning techniques for

road surface condition identification and friction estimation from a front-headed camera. First, a

convolutional neural network classifies the road surface into four categories (dry road, wet road,

slush, and snow). Analyzing the hidden layers of the neural network shows that it uses information

about the road texture, the sky, and the surroundings. Second, the road surface is divided into

several patches (5 columns and three rows) to estimate the friction potential. Three levels of friction

are possible: high, medium, and low. While other authors use different partitioning, Roychowdhury

uses five columns for the two tracks of a vehicle and the three other lanes defined by the wheel tracks.

A probability is associated with each patch, indicating the likelihood of being dry or snow, yielding

a 5× 3 matrix. A rule-based strategy identifies the friction state. If two columns are most likely dry

surfaces in the proposed strategy, the friction potential is considered high. Otherwise, it may be

medium or low. The authors report a road condition classification accuracy around 95% and a road
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friction estimation classification around 90%.

4.2.2 Low-Slip Model-Based Approaches

Low-slip-based methods provide tire-road friction estimation based on the assumption that the

longitudinal tire stiffness Cx depends on the friction potential; this property is called the slip-slope

assumption. Experimental observations were first made by Dieckmann [80] and Ito [81]. They both

reported that the tire stiffness, i.e., the slope of the tire force versus wheel slip curve in the low-slip

region, is significantly lower for an icy road than for a dry or wet road. From these observations,

researchers hypothesize that the road friction potential is a function of the tire stiffness properties so

that µmax could be observed by examining the tire stiffness properties.

According to tire modeling theory, the tire forces at low slip depends on the tire property only

and is independent of the maximum friction coefficient. This is illustrated by the LuGre model (see

Section 2.2.2 and Figure 2.3 which shows the steady-state tire forces and self-aligning moment with

different friction potentials), indeed, assuming longitudinal slip only (i.e. sxv = rω − v = vrx and

vry = 0), a uniform normal force distribution, and neglecting the damping coefficient σ1x and viscous

friction σ2x the longitudinal force of the lumped LuGre tire model is [82]

fx(t) = sign(vrx)g(vrx)
(
1− Z

L
(1− e−L/Z)

)
where Z =

∣∣∣rwω
vrx

∣∣∣g(vrx)
σ0x

(4.20)

The tire longitudinal stiffness is given by

k =
1

fz

dfx
dsx

∣∣∣∣∣
sx=0

≈ 1

2

Lσ0x
fz

(4.21)

As can be seen from this equation, the longitudinal stiffness does not depend on the road friction

properties but only on the contact patch length L, the tire normal force fz, and the tire tread

longitudinal stiffness σ0x. Though this equation explains how aquaplaning and tire pressure can

affect the longitudinal stiffness k. Indeed, an increase in tire pressure results in a decrease in the

contact patch length L. Similarly, the tire is lifted during aquaplaning, and the length L decreases.

Both situations are observed as a reduction of the longitudinal tire stiffness k.

Dieckmann [83] explains the slip-slope phenomenon by a specific longitudinal friction force
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distribution at the contact patch during low-slip. The contact patch can be decomposed into two

zones: a micro-sliding zone and a sticking zone [52]. Bristles in the sticking zone are not entirely

stretched, and the end of the bristles is stuck to the ground. On the contrary, in the micro-sliding zone

located at the trailing edge of the tire, the end of the bristles are sliding. Tire force measurements

show that most of the friction forces are produced in the micro-sliding zone. If the road has a low

friction potential, the peak of friction force at the trailing edge of the contact patch is saturated.

Hence, a larger part of the contact patch must be used to provide the same amount of friction

force which requires higher slip. Therefore, the slip-slope depends on the road friction potential.

Dieckmann shows that this phenomenon occurs only for roads where µmax ≈ 0.3, e.g., for icy and

snowy roads.

Nevertheless, the slip-slope property has been challenged by newer experimental results performed

by Andrieux et al. [52]. After conducting various braking tests on different road surfaces whose

µmax values ranged from 0.4 to 1.2, Andrieux denies the existence of a relationship between the

friction potential and the slip-slope. Finally, authors like Dieckmann, Gustaffson, and Muller, who

observe a slip-slope phenomenon, acknowledge that the longitudinal stiffness k is sensitive to other

parameters such as tire pressure and tire wear.

Road-Condition Estimator Based on the Slip-Slope Property

Gustafsson [51], [84] proposed a road condition estimator based on the experimental evidence

provided by Dieckmann. The estimator uses an EKF to estimate the longitudinal tire stiffness.

He proposed a linear regression model where the slip-slope k = Cx
fz and a bias δ are the unknown

parameter to estimate. The regression model is

λ =
1

k
µ+ δ + e (4.22)

where µ is the under-the-tire friction coefficient µ = fx
fz

and e is the measurement noise. The slip

is computed by comparing the velocity of the driven and undriven wheels, while the longitudinal

tire forces are estimated from measurements of the engine torque. The main reason invoked to use

an EKF over other estimation methods like Recursive Least Square (RLS) is to track parameters

with different speeds (e.g., fast-tracking for 1
k and slow for δ). Gustafsson performed tests on asphalt,
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wet asphalt, gravel, snow, and ice road surfaces with different tires and driving styles. It was possible

to distinguish asphalt roads from snowy or icy roads from the estimated slip-slope k. Gustaffson

suggests a threshold k0 = 30 to classify between asphalt and snow or ice in his article. The author

remarks that this threshold should depend on the tire type (summer or winter tire), the tire pressure

and wear, and other parameters. Hence, they provide a simple self-calibrating algorithm for the

threshold. However, the slip-slope method is unable to distinguish between asphalt and gravel roads.

Another parameter was introduced to fix this issue

γ = Var[ωdriven − ωundriven] (4.23)

Gustafsson reported that the road condition could be identified using this new parameter. The

maximum friction coefficient is then obtained from a database that relates the slip-slope to the

friction coefficient from previous tests.

The estimator presented by Gustafsson suffers from some limitations. First, the estimator relies

on an accurate wheel slip measurement, hence, an accurate vehicle speed measurement. Gustafsson

used the rotational speed on undriven wheels to estimate the vehicle speed. Nevertheless, this cannot

be implemented during braking or when all vehicle wheels are driven for Four-Wheel Drive vehicles.

Second, the estimator is designed to work only at low-slip and does not produce accurate results

during high-friction demands (e.g., ABS or TCS events). Third, cold tires lead to an overestimate

of the slip-slope, and Gustafsson suggests that a 10 km drive is sufficient to obtain stationary and

accurate road friction estimates. Finally, abnormal tire pressure corrupts the estimation results, but

it can be detected by inspecting the estimated offset δ.

Müller [85] and Uchanski [86] extend the operating range of the estimator to moderate braking

intervals by disconnecting the brakes of the rear axle, which allows for estimating the vehicle speed.

In [85], the braking torque is estimated from the measured brake cylinder pressure. The same

estimator proposed by Gustaffson is then applied to infer a maximum friction coefficient. Miller [87]

suggests using Global Positioning System (GPS) signals to estimate the vehicle speed and improve

the estimation of the wheel slip even during braking.
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K

TL + Td

ωrim

ωtire

Figure 4.10: Tire vibration model

Road-Condition Estimator Based on the Vibration Methods

The vibration model-based methods are also based on the slip-slope assumption. However, instead

of directly utilizing the slip-slope property, they focus on the frequency response of some vehicle

subsystems (e.g., the spectrum of the wheel speed signal or the driveline frequency response).

Figure 4.10 shows the tire vibration models. It includes the tire sidewall compliance K whose

deflection angle is θs. The system is excited by the longitudinal tire friction torque τ and a torque

disturbance τd which arises from the unevenness of the road and which can be considered as a white

noise. The tire sidewall compliance creates a resonance frequency at approximately 40Hz. The tire

pressure has an impact on the tire sidewall compliance, hence is also has an impact on the resonance

frequency. Moreover, experiments have shown that the wheel speed signal frequency response is also

affected by the road condition [88]. Equation of the tire vibration model are given by

Jrimω̇rim = −Kθs (4.24)

Jtireω̇ = Kθs + τ + τd (4.25)

θ̇s = ωrim − ω (4.26)

The friction torque τ = rwfx is a non linear function of the wheel longitudinal slip. At low slip,

its derivative is the slip slope, hence ∆τ = dτ
dsx
×∆sx = krwfz ×∆sx. Assuming a constant vehicle

speed vx, the relation becomes ∆τ = kr2wfz
vx

∆ω. Substituting τ in (4.25) and computing the transfer
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function from the torque disturbance to the measured wheel speed yields

G(s) =
ω(s)

τd(s)
=

K

JrimJtires3 + Jrimαr2ws
2 +K(Jrim + Jtire) +Kαr2w

where α =
kfz
vx

=
dfx
dvrx

∣∣∣
vrx=0

(4.27)

In the previous transfer function, the ter associated to the third degree in the polynomial can be

neglected. After this simplification, the transfer function becomes a second order transfer function

whose resonant frequency and damping ratio are

fr =
1

2π

√
K

Jrim
, ζ = πfr

Jrim + Jtire
αr2w

(4.28)

According to these equations, the slip-slope does not affect the resonant frequency of the wheel,

which is mainly dictated by the tire sidewall compliance K. However, it affects the damping ratio,

a smaller slip-slope results in more damped frequency response around the resonant frequency.

Umeno [88] uses a band-pass filter to extract the torsional resonance frequency of the tire and use

identification methods to obtain the damping ratio. First, a RLS approach is implemented, but due

to the band-pass filter, the white noise assumption is no longer valid, and the RLS estimator fails to

identify the parameters. Second, the instrumental variable method is used in place of the RLS. The

second approach is finally tested on an actual vehicle; a clear distinction can be made between dry

asphalt and icy road. Moreover, the observer can detect aquaplaning.

The main advantage of the vibrations methods is that they do not require the computation of

the wheel slip, and thus there is no need to estimate the vehicle velocity. Only the wheel speed

measurement is necessary. However, Ono et al. [89] notice that the 40Hz resonance frequency

disappears during braking because of the friction generated at the brake pad.

Low-slip-based methods aim to infer the friction potential of a road surface in the low-slip region;

this would be extremely useful as the tire usually operates in this region. However, a controversy

surrounding the impact of the friction potential in the low-slip region exists. Some experiments show

that the road surface can be identified based on the slip-slope assumption. However, theoretical tire

models and newer measurements by Andrieux fail to show a relationship between the grip potential

and the slip-slope. Moreover, most of the low-slip-based methods require precise estimation of
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the wheel slip, thus requiring the vehicle speed. Vibration methods alleviate this requirement by

using the frequency response of the wheel speed signal at the expense of additional complexity in

the hardware (sensor) and software (preprocessing). Finally, the low-slip estimation schemes do

not estimate the friction potential directly; instead, they identify the slip-slope and correlate this

parameter to a known road surface. However, the actual friction potential depends on the current

tire-road surface combination. Therefore, it does not provide an estimate of the friction potential

but only a (possibly large) range for µmax.

4.2.3 Slip Model-Based Methods

Ray [53] proposed a Bayesian selection procedure to infer the most likely estimate of the maximum

friction coefficient. An Extended Kalman-Bucy Filter (EKBF) estimates the vehicle state and

tire forces. Given the estimate of the wheel slip and tire forces and a predefined tire model,

the coefficient µmax is inferred iteratively from the Bayesian rule. The estimation is validated

experimentally with braking, cornering, and combined maneuvers. The estimation was adequate

for braking and combined maneuvers with acceleration greater than 0.3 g. However, it was difficult

to determine a reasonable estimate from maneuvers with steering only because of the proximity of

lateral force versus slip angle for different µmax at low slip.

Newer methods have been tested to estimate the road grip potential. Zanon [90] utilized Moving

Horizon Estimation (MHE) to predict µmax. MHE is an optimization-based approach that uses a

series of measurements over a moving time window instead of measurements at a single timestep to

determine the estimate. It can handle nonlinear systems and does not rely on a predefined error

distribution contrary to the EKF. The vehicle is modeled as a double-track planar vehicle with

a Pacejka tire model. The MHE defined the estimated by minimizing a cost function combining

measurement errors and control inputs. The estimation scheme was tested in simulation. The observer

can detect µmax jump from wheel speed, vehicle acceleration, speed, and position measurements.

The estimate is good during cornering but less accurate when the vehicle is driven in a straight line.

Excitation Problem for Slip Based Methods

A significant drawback of a slip-based approach is the need for high excitation to estimate the road

maximum friction coefficient adequately. The level of excitation required varies widely, from 30%
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of grip utilization for model-based methods based on the tire self-aligning moment, up to 90% for

low-mu surfaces [32].

Wielitzka [91] et al. use an Unscented Kalman Filter (UKF) whose model is a two-track nonlinear

vehicle model with both longitudinal and lateral dynamics. The model assumes a simplified magic

formula as the tire model. Lateral forces are not static but assume a first-order dynamic; the dynamic

behavior of longitudinal forces is neglected. Available measurements are the vehicle yaw rate, the

longitudinal and lateral acceleration, and the four-wheel angular velocities. The vehicle is assumed to

be front-driven; hence the rear wheel velocities can be used to measure the vehicle velocity. To avoid

the drift of the estimated friction coefficient when the excitation is low, the authors stop estimating

the coefficient when the sensitivity measure is below an empirically defined threshold. Moreover, the

UKF does not directly estimate the friction coefficient µ̂max but a substitute parameter µ̂sub. This is

useful to maintain the estimated coefficient within predefined bounds µlb and µub at the expense of

additional nonlinearities. The relation between the substitute parameter and the estimated coefficient

is

µ̂max =
µlb + µub

2
+
µub − µlb

2
tanh µ̂sub (4.29)

4.2.4 Active Force Excitation Methods

Active force excitation methods aim to address the excitation problem when estimating the friction

coefficient during low-slip, especially when the vehicle is driven at a constant velocity, by applying

a torque of opposite sign on the front and rear axles [92]. The front-to-rear torque difference

generates high excitation allowing to estimate the friction potential while maintaining the vehicle

speed constant: a ramp torque input is applied on the front axle while a controller adjusts the

rear axle torque to maintain the vehicle speed. An obvious drawback of active force excitation

methods is the power loss resulting from applying an opposite torque on the front and rear axle.

Moreover, it assumes that a front-to-rear torque difference can be applied to the vehicle, requiring

either independent braking for a front-wheel-drive vehicle or a dual-motor drivetrain topology. To

estimate the friction coefficient, a decision must also be made on when to execute the active force

excitation method. Finally, the effect of applying a torque difference between the front and rear

axles on the vehicle handling should be considered (see Section 2.4.2).
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Figure 4.11: Friction potential algorithm estimation flowchart

4.2.5 Proposed Maximum Friction Coefficient Estimation Scheme

This dissertation uses a simple model-based approach to estimate the maximum friction coefficient

when the wheel slip is high. The approach is described in Figure 4.11 and is based on the slope of

the friction s–µ curve; the friction coefficient is obtained when the slope ∂µ/∂s is smaller than a

predefined threshold. An estimate of the slope ∂µ/∂s is constructed by storing the last estimated

values of the friction coefficient µ =
√
f2x + f2y /fz and the combined slip ratio s. An online linear

regression with two parameters is used to compute the y-intercept and the slope of the line that best

fits the data of the s–µ curve. It is then assumed that the value of this slope corresponds to the

partial derivative ∂µ
∂s . Other methods can be used to obtain this partial derivative, notably the RLS

algorithm.

If the absolute value of the current slip ratio is smaller than a predefined value smin, the algorithm

does not update the value of the maximum friction coefficient. If the longitudinal slip is large enough,

the update rule of the maximum friction coefficient µmax is:

• µmax ← |µ| if ∂µ
∂s ≤ a with a a small positive number, i.e. the new estimate of µmax is the

current estimate of µ. In this situation the wheel is assumed to be saturated or close to
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Figure 4.12: Simulation results for the friction potential estimation on a µmax = 0.5 surface during
a 3500Nm step braking torque

saturation.

• µmax ← µmax +∆ if the value of the slope is higher than a threshold value b with 0 < a < b,

the estimate of µmax is increased at a constant rate ∆. The wheel is assumed to be in the

linear region in this situation. Since the wheel is not saturated, µmax cannot be estimated;

instead, it is increased until it reaches the maximum value possible (typically 1.0 or 1.2).

• µmax ← µmax if the slope is between a and b.

The concept relies on the availability of different signals from the vehicle. First, an estimation

of the slip ratio must be available; this is usually computed from the wheel speed sensors and the

vehicle longitudinal speed estimation. Second, an estimation of the friction coefficient µ is needed;

this can be computed from the estimation of the longitudinal and normal tire forces.

Simulation results

A simulation is used to demonstrate the effectiveness of the observer. The vehicle is driven on a straight

line on a surface whose friction coefficient is µmax = 0.5; the driver requests a step braking torque

of 3500Nm which exceeds the maximum torque the tire-road can provide (approximately 2000Nm),

wheel torque controllers regulate the wheel torque applied at the wheel based on the estimate µ̂max.

Figure 4.12 shows the simulation results; the estimation scheme provides a reasonable estimate of

104



4.2 Road Condition Identification

the maximum road-tire friction coefficient when the tire is close to saturation.
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Chapter 5

Optimal Wheel Control Allocation

This chapter uses several control methodologies to implement the ‘Optimal Wheel Controls Allocation’

block of Figure 3.2 mapping the driver’s requests to optimal wheel torque and steering angle: a

multivariable control strategy defining generalized forces to apply on the chassis which are then

distributed to the different wheels by a control allocation; model predictive controllers which directly

allocate the wheel controls from the driver’s request. Thus, this layer takes care of the front-to-rear

and left-to-right torque split and the contribution of active steering. Constraints are also enforced to

respect the surface friction limit and the actuator saturation and bandwidth.

All control methodologies used in this chapter are model-based strategies based on the vehicle

planar model described by Equations (2.81) to (2.87). Inputs of this model are the wheel torque

and steering angle which is compatible with the interface of the controller according to the control

architecture defined in Figure 3.2. This planar vehicle model has seven states: the longitudinal

and lateral velocities, yaw rate, and wheel speed; it would be beneficial in terms of computation

and implementation to reduce the order of the model. The model is simplified to neglect the wheel

inertia defined in Equation (2.84), thus removing the four states associated with the wheel spin in

the vehicle model. Siampis [93] already used this assumption to simplify the design of a controller

for TV on the rear axle near the handling limit. Note that since the wheel speeds are not states of

the simplified model, it is impossible to define the wheel longitudinal slip ratio.

Neglecting the wheel inertia allows to directly map the wheel torque to the longitudinal tire force

by rwfijx = τij . Given the vehicle states (vx, vy, ωz) and the wheel steering angle δij , the wheel

slip angle sijy can be computed from Equation (2.34). Using Pacejka’s tire model presented in
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Neglecting wheel
inertia rwfijx = τij

Lateral slip angle sijy =

δij − tan−1(
vy±liωz

vx±wjωz
)

Inverse lat. force
tire model (ellipse
approximation)

τij

δij

(vx, vy, ωz)

sijy fijy

•
fijx

Figure 5.1: Computation of tire forces from wheel controls using the simplified tire model

Section 2.2.1, the computation of the lateral tire force requires the longitudinal slip ratio; however,

as stated earlier, this is not possible. Thus, the tire model must be simplified in a way that preserves

the coupling phenomenon between longitudinal and lateral tire forces but without relying on the

longitudinal wheel slip; to accomplish that, the lateral tire force is computed by approximating the

constant sip curves by ellipses, see Figure 5.1. The next section describes the approximation of the

constant slip angle curves by ellipses, and it explains how to map the wheel controls, i.e., the wheel

torque τij and wheel steering angle δij , to the generalized forces.

5.1 Tire Map from Wheel Controls to Tire Forces

Figure 5.2 shows the friction circle with friction curves for constant slip ratio and slip angle. The

figure shows that ellipses can approximate the constant slip angle curve. The next section shows

that the lateral friction coefficient can be computed using the ellipse from the current slip angle sy

and a desired longitudinal friction coefficient µx. The ellipse is defined as follows:

(µx − µ̄x)2

∆µ2x
+

(µy − µ̄y)2

∆µ2y
= 1 (5.1)

where (µ̄x, µ̄y) define the ellipse center, and ∆µx and ∆µy are the ellipse semi axes.

5.1.1 Computation of the Ellipse Coefficients

The ellipse coefficients are computed by selecting four points on the constant slip angle curves so

that the major and minor axes are aligned with the µx and µy axes. The first selected point is the

origin (µx, µy) = (0, 0) as it always belongs to the slip angle curves; indeed, with the simplified
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5 Optimal Wheel Control Allocation

Figure 5.2: Constant slip angle curve with the tire ellipse simplification. Blue dashed curves are
obtained with the MF94 Pacejka tire model used in the vehicle simulation model; solid
blue curves show the constant slip curves for the simplified Pacejka model presented in
Section 2.2.1 used in the model-based controls.
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Pacejka tire model, the tire does not generate force when there is no slip. The second point

is selected to correspond to maximum lateral force given a constant slip angle sy, lateral force

generation is maximized in pure cornering, i.e. when sx = 0 and s = sy, hence the second point

(µx, µy) = (0, µ(sy)). The third and fourth points could be chosen to be the two points maximizing

|µx| under a given slip angle sy, unfortunately, this would require to solve the nonlinear equation

sµ̄y = syµ(s) = syMF(s) for the unknown s, where MF denotes the Pacejka’s magic formula. Since

the approximation of the tire model by ellipse coefficients is aimed to be used online inside an

optimization routine to generate optimal control allocation, it would be preferable to choose two

points whose coordinates can be obtained from a simple analytical expression. Instead, the two

last points are chosen such that the slip ratio is sx = ±smax where smax ≈ 1
B tan

(
π
2C

)
is the slip

providing the maximum friction according to the s–µ curve. Therefore, the third and fourth points

are defined by the coordinates (±µ∗x, µ∗y) where:

µ∗x =
smax√
s2max + s2y

MF(
√
s2max + s2y), µ∗y =

sy√
s2max + s2y

MF(
√
s2max + s2y) (5.2)

The two first point allows to compute the lateral friction offset µ̄y =
MF(sy)

2 and semi-axis of the

lateral friction coefficient ∆µy = µ̄y. The two last points set the value of the coefficients µ̄x and

∆µx. Assuming that the points (±µ∗x, µ∗y) are on the major axis, we have µ̄x = 0 and ∆µx = µ∗x.

Hence the ellipse friction coefficients:

µ̄y = ∆µy =
MF(sy)

2 , µ̄x = 0,∆µx =
smax√
s2max + s2y

MF(
√
s2max + s2y) (5.3)

The friction circle can be scaled down by an estimate of the maximum friction coefficient to

account for different road conditions; this can be achieved by multiplying the ellipse coefficients µ̄x,

µ̄y, ∆µx, and ∆µy by the maximum friction coefficients µmax or by modifying the friction model

MF(s) depending on the road condition.

Figure 5.2 shows the ellipse and constant slip angle curves for the Pacejka tire model used to

represent the vehicle in simulation and the simplified Pacejka tire model described in Section 2.2.1

and used by the model-based controls. All curves are close to each other for a given slip angle; the

ellipse adequately represents the coupling between longitudinal and lateral tire force. For low slip
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angles, the ellipse gives a good approximation even in the nonlinear when the tire is saturating; for

high slip angles, the ellipse gives a good approximation only when the longitudinal slip is small (i.e.,

on the side of the ellipse with larger µy in absolute value).

5.1.2 Mapping Wheel Controls to Generalized Forces

Given a torque τij and a steering angle δijy, the constant slip angle ellipses define the longitudinal

and lateral tire forces while considering the coupling phenomena between them: neglecting the wheel

inertia, the torque set the longitudinal tire force fijx =
τij
rw

and the longitudinal friction coefficient

µx = fx
fz

; the steering angle sets the slip angle sijy using Equation (2.34). The coefficient of the

ellipse for a given slip angle sijy is obtained from sijy itself and the parameters of the simplified

Pacejka tire model using Equation (5.3). The lateral friction coefficient µijy can be obtained from

the ellipse given the current slip angle sijy and a desired longitudinal friction coefficient µijx with

Equation (5.4), and the lateral tire force can be obtained from Equation (5.5).

µijy =
∆µijy
∆µijx

√
∆µ2ijx − (µijx − µ̄ijx)2 + µ̄ijy (5.4)

fijy = µijyfijz (5.5)

Note that in the previous formula, µijx must be constrained by µ̄ijx−∆µijx ≤ µijx ≤ µ̄ijx+∆µijx,

doing so guarantees that the tire force is inside the friction circle. Moreover, Equation (5.4) only

describes one-half of the ellipse, which corresponds to small slip ratios in amplitude as ∆µijy and

µ̄ijy have the same sign.

Once the wheel controls τij and δij have been mapped to the longitudinal and lateral friction

coefficients µijx and µijy, the longitudinal and lateral tire forces of the wheel ij in the chassis frame

fijxc and fijyc can be obtained by multiplying the friction coefficient by the wheel load and using

rotation transformation; the total longitudinal and lateral forces and the yaw moment applied on

the chassis can be computed from fijxc and fijyc as follows,

fijxc = µijxfijz cos δij − µijyfijz sin δij , fijyc = µijxfijz sin δij + µijyfijz cos δij (5.6)

fx =
∑
ij

fijxc, fy =
∑
ij

fijyc, (5.7)
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MIMO Controller Constrained
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Figure 5.3: Youla Vehicle Motion Controller concept. Black signals ( ) refer to regulated variables;
blue signals ( ) refer to generalized controls; and orange signals ( ) refer to allocated
controls.

mz = lF
∑
j

fFjyc − lR
∑
j

fRjyc + wR
∑
i

fiRxc − wL
∑
i

fiLxc (5.8)

Given the state x = [vx vy ωz] and the wheel control uα = [τij δij ], g(x, uα) denotes Equa-

tions (5.3), (5.4) and (5.6) to (5.8) such that the chassis forces and moments u = [fx fy mz] can

be written as u = g(x, uα). Note that the model simplification reduces the state of the vehicle planar

model, the wheel speed are no longer necessary after neglecting the wheel inertia.

5.2 MIMO High-Level Control With Control Allocation

Figure 5.3 shows the implementation of the vehicle motion controller block for this section. The

framework developed in this section aims to solve the control problem by allocating longitudinal

and lateral force targets and the yaw moment target to the different wheels. A linear multivariable

controller sets the generalized forces. The control allocation is implemented as a constrained

optimization problem. If the targets are not feasible, e.g., due to constraint violation, there will be

a discrepancy between the total forces and moments requested by the MIMO controller and the

outputs of the control allocation; an anti-windup controller is implemented to address this problem.

5.2.1 High-Level Controller and Anti-Windup Compensator

The goal of the controller is to define the total longitudinal and lateral forces and yaw moment

to apply on the chassis to follow the driver’s request. A model-based multivariable controller is
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designed in this section based on the following planar vehicle model:

m(v̇x − vyωz) = fx (5.9)

m(v̇y + vxωz) = fy (5.10)

Izzω̇z = mz (5.11)

This model is nonlinear, the first step to design a linear multivariable controller is to linearize the

system around the operating point (vx0, vy0, ωz0). The linearized system is given by:


v̇x

v̇y

ω̇z

 =


0 ωz0 vy0

−ωz0 0 −vx0

0 0 0



vx

vy

ωz

+


1
m 0 0

0 1
m 0

0 0 1
Izz



fx

fy

mz

 (5.12)


τtot

vy

ωz

 =


0 0 0

0 1 0

0 0 1



vx

vy

ωz

+


rw 0 0

0 0 0

0 0 0



fx

fy

mz

 (5.13)

From the state-space representation, we can deduct the transfer function from chassis forces and

moment fx, fy, mz, to the outputs τtot, vy, ωz:

Gp =


rw 0 0

− ωz0

m(s2+ω2
z0)

s
m(s2+ω2

z0)
− svx0+vy0ωz0

Izzs(s2+ω2
z0)

0 0 1
Izzs

 (5.14)

The transfer function mapping the total longitudinal force fx to the total wheel torque τtot is

modified to include the dynamic of the drivetrain and to remove the direct feed through term in

Gp, this added dynamics is represented by a first-order transfer function with time constant τ . The

transfer functions mapping the generalized forces fx and fy to the vehicle lateral velocity vy are not

stable and have a resonant frequency when ω = ωz0 if ωz0 ̸= 0. The value of ωz0 is usually small,

ranging from −0.5 rad s−1 to 0.5 rad s−1. The linearization point is chosen such that ωz0 = 0 which
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reduces the plant to:

Gp =


rw
τs+1 0 0

0 1
ms − vx0

Izzs2

0 0 1
Izzs

 (5.15)

In the previous model, the longitudinal dynamic is decoupled from the lateral and handling

dynamics. Moreover, the vehicle model whose inputs are the chassis forces and moment and

represented by Equations (5.9) to (5.11) is a more simplified model than the one described in

Section 2.4.2, it neglects some dynamics in the vehicle yaw moment and lateral velocity. Indeed,

with the linearized model from Section 2.4.2, the transfer functions mapping the yaw moment mz to

the lateral velocity vy and yaw rate ωz can be obtained by multiplying the transfer function mapping

a left-to-right torque difference τTVi to vy and ωz by rw
wL+wR

, yielding:

vy
ωz

 =
rw

wL + wR

KτTVF
mz (ττTVF

mz s+1)

s2+2ζω0s+ω2
0

KτTVF
vy (ττTVF

vy s+1)

s2+2ζω0s+ω2
0

mz
KU=0−−−−→

−
vx0
Izz

1

(s+
CyF+CyR

mvx0
)2

1
Izz

1

s+
CyF+CyR

mvx0

mz (5.16)

where parameters ζ, ω0, ττTVF
vy , ττTVF

mz , KτTVF
vy , KτTVF

mz are coefficients from the linearized

planar vehicle (see Tables 2.1 and 2.2). The linearized planar vehicle model presented in Section 2.4.2

and the vehicle model used to design the high-level controller defined in Equations (5.9) to (5.11)

only match at high-frequencies and for a neutral-steer vehicle (i.e., KU = 0).

The high-level controller is designed via mixed-sensitivity H∞-synthesis using the transfer func-

tion (5.15); this is a loop-shaping design method where the sensitivity and closed-loop transfer

functions are shaped along with other transfer functions (e.g., Youla transfer function). In this

section, the controller aims at minimizing the H∞ norm of [w∆T wpS]
T where T is the closed-loop

transfer function, S is the sensitivity transfer function, and w∆ and wp are filters chosen to obtain

the desired transfer function shape. The filter wp penalizes the error signal to enforce good tracking

and allows the designer to shape the sensitivity S, w∆ penalizes the output signal and shapes the

closed-loop T . Such a problem can be solved by H∞-synthesis, which aims at finding the controller

113



5 Optimal Wheel Control Allocation

Figure 5.4: Singular values of the closed-loop system with an H∞-controller

K minimizing ∥Fl(P,K)∥∞. The augmented plant P is defined as:

P =


wpI −wpGp

0 w∆Gp

I −Gp

 such that Fl(PK) =

wpS
w∆T

 (5.17)

The weighting filter w∆ is chosen as a first-order low-pass filter with a high gain at frequencies

below the closed-loop bandwidth to penalize the sensitivity function S and steady-state error. The

filter wp is designed similar to a lead-compensator to force the closed-loop transfer function T to be

low-gain at frequencies beyond the bandwidth and improve noise rejection. Figure 5.4 shows the

singular values of the sensitivity and closed-loop transfer functions and the weighing filters.

The controller output signals are fed to a constrained control allocation; because the allocation

is constrained, it is not guaranteed that the allocated controls uα will produce the requested high-

level target yc defined by the controller. The mismatch between high-level control target yc and

actual efforts sat(u) might cause integral windup, deteriorate performance, and cause closed-loop

instabilities.

Given a state-space representation (A,B,C,D) of the plant Gp, Teel and Kapoor [94], [95] propose
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the following multivariable anti-windup compensator:

ζ̇ = Aζ +B(sat(u)− yc) (5.18)

v1 = Kζ (5.19)

v2 = Cζ +D(sat(u)− yc) (5.20)

where sat(u) is the saturated control input and yc is the controller output signal, a precise value

of sat(u) is not necessary, in this work, the constrained control allocation will provide an estimate

of sat(u). The gain K must be chosen such that K = −BTP where P is a symmetric positive

definite matrix solution of the Lyapunov inequality ATP + PA ≤ 0. Teel and Kapoor show that

interconnecting the anti-windup compensator in the feedback loop such that the controller input

is uc = r − (y − v2) and the plant input is u = sat(v1 + yc) provides appropriate anti-windup

behavior for a marginally stable system;1 i.e., when the controller outputs are within the saturation

limits, the anti-windup compensator leaves the closed-loop behavior unchanged, and the anti-windup

compensator quickly recovers back to the linear unconstrained behavior after the saturation limits

have been exceeded.

This paragraph explains the derivation of the matrix P , necessary to derive the anti-windup

compensator, for a marginally stable system [95]. Since the plant is marginally stable, its state-space

matrix A can be decomposed into a matrix As which has all its eigenvalue in the left half plane and

a matrix A0 with all its eigenvalues on the jω-axis by using a similarity transformation T as follows,

T−1AT = blockdiag(As, A0). For the stable part of the system, we find the solution of the Lyapunov

equation ATs Ps + PsAs = −Qs where Qs is a symmetric positive definite matrix. Finally, the matrix

P is chosen as P = (T−1)T blockdiag(Ps, P0)T
−1 where P0 is a symmetric positive definite matrix.

Building P accordingly guarantees that the matrix P is positive definite and ATP + PA is negative

semi-definite.

Figure 5.5 shows the closed-loop system response to a step input τtot = 100Nm, vy = −3m s−1,

and ωz = 0.5 rad s−1 with input saturation such that |fx| ≤ 500N, |fy| ≤ 16 000N, and |mz| ≤

2000Nm. The closed-loop correspond to the interconnection of the nonlinear system described

1Anti-windup compensation for unstable systems is more involved than for marginally stable systems [96, p. 271]. In
this dissertation, anti-windup compensation is used only for marginally stable plants.
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Figure 5.5: Step response of the MIMO controller with saturated inputs. In the control signal
response, dashed lines are the (unsaturated) controller outputs yc, and solid lines are
the saturated plant input u = sat(v1 + yc).

in Equations (5.9) to (5.11) with m = 1800 kg and Izz = 3515 kgm2, the H∞-controller, and the

anti-windup compensator. The blue curve shows the system’s response without actuator saturation;

the linear controller can stabilize the nonlinear system. The red curve shows the system’s response

without the anti-windup compensator, and the yellow curve shows the response with the anti-windup

compensator. For all configurations, the longitudinal controller does not saturate and applies the

same total longitudinal force, illustrating that the anti-windup compensator does not modify the

system response when inputs are not saturating; moreover, the longitudinal and handling controller

are decoupled. Without an anti-windup compensator, the controller attempts to apply excessive

lateral force and produces large lateral velocities. Note that the nonlinear model (5.9)–(5.11) does

not include a tire friction model; this effect combined with large lateral velocities would result in

excessive slip angle on a vehicle, limiting the lateral force the vehicle can generate and further

destabilizing the system. The closed-loop system with the anti-windup compensator tracks the

targets well while maintaining actuator signals within their saturation limits.
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5.2.2 Optimal Wheel Control Allocation from Generalized Forces

Once the high-level target uT = [fx fy mz] have been defined, they must be distributed to the

wheel controls uTα = [τij δi]. This allocation is formulated as a constrained optimization problem.

The cost function penalizes tracking error, power loss, and actuator rate of change; constraints

enforce the feasibility of the controls uα by respecting actuator saturation limits and preventing tire

saturation by constraining the friction coefficients to stay within the friction circle.

Given the vehicle state xT = [vx vy ωz] and wheel controls uα, the longitudinal, lateral forces

and the yaw moment applied on the chassis is g(x, uα), see Section 5.1.2. In the optimization

problem, the tracking error is penalized in the cost function by the weighted nonlinear least square

term ∥u− g(x, uα)∥2Qe
= 1

2(u− g(x, uα))
TQe(u− g(x, uα)) where Qe is a positive definite matrix.

The optimization penalizes the rate of change of the actuator to account for the bandwidth of

the wheel controls. Instead of penalizing the rate of change of the individual wheel torques τij and

steering angles δij , we choose to penalize the rate of change of the total torque applied on the chassis

τtot =
∑

ij τij , the left-to-right torque difference on each axle τTVi =
1
2(τiR − τiL), the front-to-rear

torque difference τTVF/R
= 1

2(τFL + τFR − τRL − τRR), and active steering angle at each axle δi. The

penalty is represented by the term ∥∆uα∥2R∆
= 1

2∆u
T
αR∆∆uα, the matrix R∆ is positive definite

and ∆uα = uα−uprevα where uprevα is the wheel controls at the last timestep. This term also prevents

obtaining a singular Hessian matrix of the cost function and helps to guarantee a unique, well-defined

solution to the optimization problem.

Only penalizing the tracking of the chassis forces and moment and the bandwidth of the wheel

controls might still result in inadequate allocation; for instance, nothing prevents the allocation from

distributing a positive torque to the front axle and a negative torque of the same amplitude to the

rear axle when tracking a zero longitudinal torque target. The optimization problem is set up to

avoid using actuators, resulting in high-power usage. More precisely, the optimization penalizes

the power loss P associated with the drivetrain electric motors and the power dissipated by the

eLSD and friction brakes; drivetrain transmission losses and losses in active steering actuators are

neglected. The exact power dissipated by the actuators depends on the actuator configuration,

and the distribution of actuator signals, the design of the abstract layer of the vehicle motion

controller is supposed to be independent of the actuator configuration; therefore, the exact value of
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the power dissipated is not known; instead, we assume that the application layer (which is aware

of the actuator configuration and actuator states) provides the Jacobian pT = ∂P
∂∆uα

∣∣∣
uprevα

and the

Hessian P = ∂2P
∂∆uα

∣∣∣
uprevα

of the power loss with respect to wheel controls uα evaluated at uprevα .

The power loss is indirectly penalized by the the second-order Taylor expansion of the power loss

P(∆uα) = P0 + pT∆uα + 1
2∆u

T
αP∆uα, and the constant term P0 can be dropped.

The optimization problem must guarantee that the actuators can apply the requested wheel target,

this is enforced by constraints on uα. For instance, the quad-motor drivetrain with EHB allows to

control the wheel torque independently at each wheel but the wheel torque must be constrained by

the brake and motor actuator capabilities. The wheel torques and steering angles are dealt with

independently; so the constraints can be separated in two parts: one for steering controls and one

for wheel torque controls. In the general case, we assume a linear map between the steering actuator

controls δact and the wheel steering angles δij and a linear map between the drivetrain and brake

actuator signals τact to wheel torques τij , i.e. δij = Aδδact and τij = Aττact. Actuator constraints

δact ≤ δact ≤ δact and τact ≤ τact ≤ τact can be expressed as constraints on the wheel controls by

Aδδact ≤ δij ≤ Aδδact and Aττact ≤ τij ≤ Aττact. This can be sum up by:

Auα ≤ b where A =

 I

−I

 , and bT =

[
(Aττact)

T (Aδδact)
T (−Aττact)T (−Aδδact)T

]
(5.21)

where the matrices Aτ and Aδ, and the vector b are provided by the application layer since they

depend on the vehicle actuator configuration. For instance, for the quad-motor topology equipped

with EHB without active steering, the drivetrain and brake actuator signals are the four electric

motor torques τmij and the four friction braking torque τbij and there is no active steering actuator,

thus:

τTact =

[
τmFL τmFR τmRL τmRR τbFL τbFR τbRL τbRR

]T
, and Aτ =

[
I I

]
(5.22)

Note that Equation (5.21) is a necessary condition to enforce actuator constraint but not sufficient.

For instance, let’s consider the dual motor topology and let τm and τm be the maximum and

minimum torques the traction motor can applied at the wheel and τ bk and τ bk the maximum and

minimum torques the friction brake can apply, Equation (5.21) yields 1
2τm + τ bk ≤ τij ≤ 1

2τm + τ bk
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but it would not enforce τiL = τiR if friction-based left-to-right TV is not authorized and τ bk− τ bk ≤
1
2(τiR − τiL) ≤ τ bk − τ bk if it is authorized. If the actuators have such limitations, they are added

to the polytopic constraints Auα ≤ b such that it becomes a necessary and sufficient condition for

actuator constraints.

Recall that Equation (5.4) requires that the longitudinal friction coefficient is inside the friction

circle, i.e. it must be lower-bounded by µ̄ijx −∆µijx and upper-bounded by µ̄ijx +∆µijx. Since the

value of the longitudinal friction coefficients is set by the wheel torque in τij = rwµijxfijz, the wheel

torque must be constrained as follows:

µ̄ijx −∆µijx ≤
τij

rwfijz
≤ µ̄ijx +∆µijx (5.23)

The upper and lower bounds of the previous inequality are a nonlinear function of the wheel controls

uα; therefore, this constraint is summarized as g(uα) ≤ 0. Moreover, this constraint helps prevent

tire saturation since it forces the tire to operate inside the tire friction circle, which is scaled down

by the maximum friction coefficient.

To summarize, the control allocation problem is formulated as follows,

arg min
uα

∥u− g(x, uα)∥2Qe
+ qpP(∆uα) + ∥∆uα∥2R∆

(5.24a)

subject to Auα ≤ b (5.24b)

g(uα) ≤ 0 (5.24c)

u are the high-level targets, uα are the wheel controls, g(x, uα) represents the mapping from wheel

controls to generalized ones, ∆uα is the wheel controls rate of change, Qe, qp, and R∆ are tuning

parameters. Equation (5.24b) represents the actuator magnitude saturation, and Equation (5.24c)

represents the tire saturation constraint. The ‘Constrained Control Allocation’ block in Figure 5.3 is

set up to output the optimal wheel control uα and the chassis forces and moment applied by those

controls sat (u) = [fx fy mz] = g(x, uα). It is implemented in MATLAB with the fmincon solver

and executed in Simulink inside a MATLAB System object.
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5.3 Model Predictive Control

Model Predictive Control (MPC) is a method that uses an internal model of the system to control

the system predictively. The major advantage of MPC is that it allows enforcing constraints on

the actuator limits and the system dynamics by solving an optimization problem and can therefore

avoid violating the dynamics of the system and the limits of the actuator. The main drawback of

this method is that it relies heavily on solvers, and finding a solution in real-time can be difficult.

Explicit or multi-parametric MPC attempt to reduce the time complexity at the expense of space

complexity by solving problems offline and implementing the MPC as a lookup table of controllers.

Another disadvantage of MPC is that, because of its time-window formulation, MPC makes it hard

to analyze its robustness in the frequency domain as opposed to linear control. Instead, some other

formulation aims at minimizing an objective function while considering a worst-case disturbance,

i.e., minimizing a cost function, this is the minimax or robust MPC; however, these formulations

further increase the computational burden of MPC [97], [98].

Because MPC is an optimization-based control strategy that assigns controls to be optimal while

enforcing constraints, it is suited to control and allocate the torque and steering angle at each wheel.

This section will present different types of MPC controllers to implement the ‘Optimal Wheel Control

Allocation’ block of Figure 3.2 and replace the implementation with an H∞-controller and control

allocation presented in Section 5.2.

5.3.1 Implementations of Model Predictive Controller

A linear-quadratic MPC propagates a discrete-time linear state-space representation of the plant

to control over an horizon of time from an initial state x0|t = x̂(t) where x̂(t) is the measured or

estimated state of the model at t and computes a sequence of inputs (uk|t) to minimize a cost function

subject to constraints on the states and on the input. The constraints are polytopic and represented

by the inequality Equation (5.25d). The control law of the MPC implements the first iteration u0|t

of the sequence (uk|t) for a time period corresponding to the sampling time Ts of the model, at the

next timestep, the MPC recomputes a solution (uk|t+Ts) solution to the same optimization problem

with the updated initial state x0|t+Ts = x̂(t+ Ts) over a horizon shifted in time by one timestep,

hence the name receding window control. A linear-quadratic MPC problem solves the following
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Optimal Control Problem (OCP):

arg min
(uk|t)k∈J0,N−1K

J =
∥∥xk|t∥∥2P +

N−1∑
k=0

∥∥xk|t∥∥2Q +
∥∥uk|t∥∥2R (5.25a)

subject to x0|t = x̂(t) (5.25b)

xk+1|t = Axk|t +Buk|t (5.25c)

umin ≤ uk|t ≤ umax (5.25d)

Axxk|t +Auuk|t ≤ b (5.25e)

The term
∥∥xk|t∥∥2P is the terminal cost and

∑N−1
k=0

∥∥xk|t∥∥2Q +
∥∥uk|t∥∥2R is the incremental cost. The

matrix Q must be positive definite and the matrix R positive semi-definite. Choosing a positive

semi-definite matrix P solution to the discrete algebraic Riccati equation P = Q + ATPA −

ATPB(R + BTPB)−1BTPA ensures the recursive feasibility of the problem, however, for more

general formulations (e.g. nonlinear or with time-varying weighting matrix and bound) this term

can be hard to defined and it is omitted in the next formulations. Equation (5.25b) initializes the

state, Equation (5.25c) defines the dynamic of the system, and Equations (5.25d) and (5.25e) are

bounds and polytopic constraints. For each variable, the subscript k indicates the timestep within

the time window and the subscript t shows the time at which the receding horizon starts.

Applying the solution of the previous optimization problem results in a regulation controller

making the state converge to zero [99]. The problem must be modified, or the model must be

augmented to track the desired signal yref,k|t. A common approach is to augment the plant by

adding an integrator at the input: instead of controlling the plant input directly, the MPC problem

is formulated in terms of the rate of change of the actuator input ∆uk|t = uk|t − uk−1|t such that in

steady-state only the tracking error is penalized.

arg min
(∆uk|t)k∈J0,N−1K

J =

N−1∑
k=0

∥∥yk|t − yref,k|t∥∥2Qe
+
∥∥∆uk|t∥∥2R∆

(5.26a)

subject to x0|t = x̂(t) (5.26b)

xk+1|t = Axk|t +Buk|t (5.26c)

yk|t = Cxk|t +Duk|t (5.26d)
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∆uk|t = uk|t − uk−1|t (5.26e)

umin ≤ uk|t ≤ umax (5.26f)

Axxk|t +Auuk|t ≤ b (5.26g)

Previous problem consider the implementation of an MPC for an LTI system. One possible

strategy to implement a MPC controller for a nonlinear systems described by xk+1 = f(xk, uk) and

yk = g(xk, uk) is to approximate the internal model by a linearized state-space of the nonlinear

model at the operating point (xop,t, uop,t) =
(
x̂(t), u(t− Ts)

)
=

(
x0|t, u0|t−Ts

)
. Doing so yields the

Linear Time-Varying MPC (LTVMPC) where the plant internal model is a linear state-space over

the receding horizon and the state-space model is updated when the receding horizon is shifted,

i.e. the model is LTI for setting up the optimization problem but Linear Time-Varying (LTV) over

time. The perturbed variable of the linearized system are x̃k|t = xk|t − xop,t, ũk|t = uk|t − uop,t, and

ỹk|t = yk|t − g(xop,t, uop,t), and the state-space matrices are:

At =
∂f

∂xk

∣∣∣
(xop,t,uop,t)

, Bt =
∂f

∂uk

∣∣∣
(xop,t,uop,t)

, Ct =
∂g

∂xk

∣∣∣
(xop,t,uop,t)

, Dt =
∂g

∂uk

∣∣∣
(xop,t,uop,t)

(5.27)

The LTVMPC solves the following optimization problem. The optimization variables are the

perturbed model input ũk|t, note that ũ0|t = ∆u0|t and ∆uk|t = ũk|t − ũk−1|t for k > 0. The OCP

can still be solved with the same computational complexity as for the problem (5.26), appendix B

describes the transformation of the LTVMPC problem (5.28) into a QPP, a standard QP solver can

then be used to obtain the solution.

arg min
(ũk|t)k∈J0,N−1K

J =

N−1∑
k=0

∥∥yk|t − yref,k|t∥∥2Qe
+
∥∥∆uk|t∥∥2R∆

(5.28a)

subject to x̃0|t = 0 (5.28b)

x̃k+1|t = Atx̃k|t +Btũk|t (5.28c)

ỹk|t = Ctx̃k|t +Dtũk|t (5.28d)

xk|t = xop,t + x̃k|t, uk|t = uop,t + ũk|t (5.28e)

yk|t = g(xop,t, uop,t) + ỹk|t (5.28f)
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∆uk = uk − uk−1 (5.28g)

umin ≤ uk|t ≤ umax (5.28h)

Axxk|t +Auuk|t ≤ b (5.28i)

Nonlinear MPC (NMPC) directly tackles nonlinear constraints and nonlinear dynamics without

resorting to linearization, instead it solves a nonlinear optimization problem defined by the following

OCP:

arg min
(uk|t)k∈J0,N−1K

J = m(xN |t) +
N−1∑
k=0

l(xk|t, uk|t) (5.29a)

subject to x0|t = x̂(t) (5.29b)

xk+1|t = f(xk|t, uk|t) (5.29c)

h(xk|t, uk|t) ≤ 0 (5.29d)

The previous NMPC problem is a NLP optimization problem, such problems are not necessarily

convex and can be extremely computationally intensive to solve. Various approaches exist to solve

this kind of problem, one of the most popular option is SQP which was presented on page 63.

SQP approximates the nonlinear optimization by a sequence of QP defined from the Jacobian and

Hessian2 matrices of the cost function, system dynamics, and inequality constraints evaluated at

a guess solution xTguess,t = [xTguess,0|t · · · xTguess,N |t] and uguess,t = [uTguess,0|t · · · uTguess,N−1|t].

Given xguess,t and uguess,t, the QP subproblem is defined as follows,

arg min
(ũk|t)k∈J0,N−1K

J = x̃TN |tPN |tx̃Nt +
N−1∑
k=0

x̃k|t
ũk|t


T

Hk|t

x̃k|t
ũk|t

+ JTk|t

x̃k|t
ũk|t

 (5.30a)

subject to x̃0|t = x̂(t)− xguess,0|t (5.30b)

x̃k+1|t = Ak|tx̃k|t +Bk|tũk|t + f(xguess,k|t, uguess,k|t)− xguess,k+1|t (5.30c)

2The Hessian matrix is usually not computed exactly, instead a procedure approximates it, e.g. Gauss-Newton
Hessian approximation.
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Ck|tx̃k|t +Dk|tũk|t + h(xguess,k|t, uguess,k|t) ≤ 0 (5.30d)

where the matrices Ak|t, Bk|t, Ck|t, and Dk|t are the Jacobian of the state and constraint equa-

tions evaluated at (xguess,k|t, uguess,k|t). Once the problem (5.30) has been solved and the search

direction (x̃k|t, ũk|t) is known, Newton’s iterative method is used to update the guess solution:

(xguess,k|t, uguess,k|t)← (xguess,k|t, uguess,k|t) + α(x̃k|t, ũk|t) where α ∈ [0, 1] is computed to guarantee

a better solution. Several QP iterations (i.e. transforming the NLP into a QP and using Newton’s

method to update the guess solution) may be necessary until a satisfying solution is found, thus

requiring to solve several QPP to solve a single NMPC problem which can be very computationally

intensive and time-consuming even though efficient QP solvers exist. Recent developments in algo-

rithms promise to solve NMPC problem faster. The Real-Time Iteration (RTI) scheme implements

a single QP iteration to compute the search direction and use a full Newton step (i.e. α = 1) to

update the solution [100]. RTI relies on assumption that NMPC problems with horizon starting at t

and t+Ts have similar solutions. With (xguess,t,uguess,t) the solution of the NMPC problem at time

t, the shifting procedure set the guess solution of the problem starting at time t+ Ts as follows:

xguess,k|t+Ts = xk+1|t ∀k ∈ J0, N − 1K, (5.31a)

uguess,k|t+Ts = uk+1|t ∀k ∈ J0, N − 2K, (5.31b)

xguess,N |t+Ts = f(xguess,N−1|t+Ts , uguess,N−1|t+Ts), (5.31c)

uguess,N−1|t+Ts = uguess,N−2|t+Ts (5.31d)

Therefore, RTI allows to solve NMPC problems with the computational cost close to the one of a

linear MPC problem. In addition, the RTI scheme help reducing the feedback latency associated

with solving the NMPC problem on real-life implementation. Indeed, the shifting procedure (5.31),

the computation of the Jacobian and Hessian matrices Ak|t, Bk|t, Ck|t, Dk|t, Jk|t, Hk|t, and PN |t do

not depend on the measurement x̂(t) and can thus be computed in advance. In general, the RTI

algorithm is decomposed in two parts: a preparation part which is independent of and executed

before the state measurement, a feedback phase which solves the QP problem. Under some conditions
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provided in [100] and [101], the RTI scheme guarantees to follow the global solution of the NMPC

problem.

5.3.2 Linear Time Varying Model Predictive Control

The goal of the abstract layer is to define controls at the wheel level so that the driver’s requests are

met while ensuring vehicle stability. Since actuators have saturation limits, the controller should

also prevent them from exceeding those limits even though the abstract layer does not perform the

allocation to the vehicle actuators. Constraints are used to maintain vehicle stability and to prevent

actuator saturation.

The internal model used by the MPC is based on the planar vehicle model presented in Equa-

tions (2.81) to (2.83) where the tire lateral and longitudinal tire forces are computed as described in

Equation (2.83). The vehicle model approximates the longitudinal and lateral load transfer by solving

the system (2.89) and neglect the wheel dynamics, the states of the system are x = [vx vy ωz]

and its inputs are u = uα = [τij δij ]. Reducing the number of state of the system by neglecting the

wheel inertia decreases the size of the QP problem and helps reducing the computational burden of

the MPC.

The objective function is defined by the incremental cost ∥y − yref∥2Qe
+ qpP(∆uk) + ∥∆uk∥2R∆

,

where:

• The term ∥y − yref∥2Qe
is the error between the output yT =

[
τtot vy ωz

]
and the reference

signals yTref =

[
τtot,ref vy,ref ωz,ref

]
, the reference signals are kept constant over the

prediction horizon since the driver’s request is not known in advance. Contrary to the

control strategy developed in Section 5.2, the MPC implementation directly defines controls to

track the target without the need to define generalized forces.

• The term qpP(∆uk) penalizes the power loss associated with the torque distribution. This

penalty should be smaller than the one associated with target following to avoid introducing

significant steady-state tracking error in situations where large power loss cannot be avoided.

Secondary penalties might be considered; for instance, one might penalize the covariance of

the friction coefficients for reducing tire wear.
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5 Optimal Wheel Control Allocation

• The term ∥∆uk∥2R∆
is the actuator rate of change, and it penalizes sudden change in wheel

controls.

For the tire model simplification to be valid, the longitudinal friction coefficient must be bounded as

described in (5.23), this constraint is a nonlinear constraint and it is linearized around (xop,t, uop,t) =(
x̂(t), u(t− Ts)

)
to be formulated as a polytopic constraint. The bounds of this constraint are scaled

by an estimate of the maximum friction coefficient to prevent traction forces from exceeding the

surface limit. In addition, to prevent tire force saturation, state constraints on the yaw rate and

lateral velocity enforce vehicle stability; the yaw rate is bounded by |ωz| ≤ µg
|vx| , and the lateral

velocity is bounded by |vy| ≤ 0.01|vx|µg as suggested in [48]. The constraints on tire saturation, yaw

rate, and lateral velocity are state constraints; they are therefore formulated as soft constraints to

ensure the feasibility of the optimization problem. Finally, polytopic constraints on the actuators,

see Equation (5.21), are enforced.

5.3.3 Nonlinear Model Predictive Control

The free and open-source software acados [102] compute solutions to OCP that typically have to be

solved for NMPC and MHE, it implements a SQP solver with RTI and allows to solve the underlying

QP problem using a variety of solver (HPIPM, qpOASES, qpDUNES. . . ), Runge-Kutta integrators

are available to discretize the continuous-time system, acados has interfaces for C/C++, Python,

and MATLAB.

A NMPC is implemented using the acados solver, it implements the same cost function as the

linear MPC designed in Section 5.3.2 and uses the same internal model, i.e. planar vehicle model with

algebraic load distribution and with the tire model simplification. Contrary to the LTVMPC, the

constraints on the tire saturation, vehicle yaw rate and lateral velocity are not linearized. Actuator

constraints are formulated as polytopic constraints. The NMPC uses acados RTI-SQP solver.

5.3.4 Tuning of the Hyper-Parameters

The hyper-parameters of the MPC have a significant impact on the computational load required to

implement the controller. In this section, we investigate the trade-off between computational burden

and performance when applying MPC to the vehicle motion control problem. The computational
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(a) Sampling time (b) Prediction horizon (c) Control horizon

Figure 5.6: Tuning of the LTVMPC hyper-parameters. The arrow indicates the direction of increas-
ing sampling time, prediction and control horizons. The red dot highlights the chosen
parameters (Ts = 30ms, Np = 25, Nt = 5).

load is characterized by the ratio of the time needed to solve the MPC problem over the sampling

time. The performance is quantified by the following metric, which uses the same penalty matrix as

the one in the MPC problem.

J =

Tsim∫
0

(
∥y(t)− yref (t)∥2Qe

+ qpP(u(t)) + ∥∆u(t)∥2R∆

)
dt (5.32)

The metric represents a cost similar to the MPC cost function, both the metric and the MPC cost

function compute the integral of the error, power loss, and input rate of change. Contrary to the

MPC which integrates it over the prediction horizon, the metric integrates it over the duration of the

benchmark simulation, which consists of a set of maneuvers. The sampling time, prediction horizon,

and control horizon are tuned, Figure 5.6 shows the effect of varying the MPC hyper-parameters on

the controller performance in term of controls and computational need and highlight the trade-off

between computational load and control performance. First, the sampling time is tuned while using

large prediction and control horizons (both are kept constant in duration, not in the number of

steps); the computational load increases rapidly when the sampling time is smaller than 30ms

without a significant increase in performance (Figure 5.6a). Indeed, short sampling time and large

prediction horizons result in a computationally complex optimization problem. Second, both the

prediction and control horizons Np and Nt are decreased such that Np = Nt, a prediction horizon

of 25 is selected, corresponding to a prediction window of 0.75 s (Figure 5.6b). Finally, the control

horizon Nt is decreased (Figure 5.6c) to limit the number of decision variables and speed up the

optimization problem. The MPC is set to use a control horizon Nt = 5.
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5 Optimal Wheel Control Allocation

Figure 5.7: Generalized forces during double-step steer

5.4 Simulation Results

The controllers are tested on a 90◦ double-step-steer maneuver performed at 120 kmh−1. During

this maneuver, the driver holds the steering angle at −90◦ for one second and 90◦ for another second;

during the transition, the steering angle is changed linearly with a rate of 1000deg s−1. The vehicle

is equipped with 4WD and with AFS.

Figure 5.7 shows the target signals for the three different controllers and the passive vehicle. The

driver’s inputs cause the passive vehicle to become unstable; all controllers can stabilize the vehicle

and track the target signals. Note that the yaw rate target is saturating, i.e. |ωz,ref | = µmaxg
vx

.

None of the controllers tracks the lateral velocity target well because the cost function is set up to

prioritize the tracking of the yaw rate over the lateral velocity. The MIMO high-level controller with

a control allocation achieves the best yaw rate target tracking. All the controllers use left-to-right

torque-vectoring and active steering to apply a positive yaw moment on the vehicle between t = 1 s

and t = 2 s to reduce the vehicle yaw rate, and a negative yaw moment between t = 2 s and t = 3 s

(Figure 5.8).

Figure 5.9 shows the high-level force and moment requested by the multivariable controller with
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Figure 5.8: Wheel torques during double-step steer

anti-windup compensation, i.e. the input of the control allocation u = yc + v1 from Figure 5.3,

and the allocated generalized forces reported by the control allocation, i.e. sat(u), during a double

step-steer maneuver. The control allocation tracks adequately the longitudinal and lateral tire forces

and yaw moment, the tracking error at t = 1 s, t = 2 s, and t = 3 s are due to the rapid change in

the driver steering input.
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5 Optimal Wheel Control Allocation

Figure 5.9: High-level request tracking with the MIMO and control allocation strategy
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Chapter 6

Drivetrain and Brake Coordination

The drivetrain and the friction brakes control requests must be coordinated to apply the correct

wheel torque. With the quad-motor drivetrain topology with independent EHB braking, the wheel

motor and EHB torque requests must be coordinated to apply the desired wheel torque. With other

drivetrain topologies or without independent braking, the coordination is more complex because of

the coupling between the different actuators; for instance, a left-to-right torque vectoring request

can be executed by applying a torque difference using the friction brakes or by using the TV motor

or eLSD.

Several aspects must be considered when allocating the actuator signals to follow the desired wheel

torque. Regenerative braking should be preferred over the use of friction brakes due to improved

energy efficiency; however, friction brakes can provide larger wheel torque during braking and apply

a larger left-to-right torque difference than the TV devices. During braking, different strategies

exist to blend the wheel torque applied by electric motors and friction brakes [103], [104]. In series

braking, the electric motor applies a braking torque up to a defined threshold; friction braking is only

employed if the braking torque request is too large and the electric motor cannot meet the braking

request. In parallel braking, regenerative braking and friction brakes are used simultaneously; thus,

the ratio of regenerative braking torque over friction braking torque is independent of the braking

wheel torque request. Series braking allows to maximize energy recovered during braking but is

more complex to implement than parallel braking and requires a pedal feel simulator.

In addition to coordinating the actuator to follow the desired wheel torques, the coordination layer

is also responsible for preventing excessive longitudinal slip ratio if the tire saturation constraint of
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6 Drivetrain and Brake Coordination

the ‘Optimal Wheel Controls Allocation’ block does not guarantee wheel stability (for instance, if the

constraint is violated or if the maximum friction coefficient is over-estimated). Proper coordination

between the different actuators must be ensured to guarantee reasonable slip control, especially during

ABS events. Regenerative braking is usually deactivated during ABS event [105]; however, since

electric motors promise faster and better control, many researchers have investigated integrated wheel

slip control methods using both electric motors, especially IWEM, and friction brakes. Wang [106]

designs a sliding mode controller for wheel slip and validates the algorithm in simulations; the

controller is robust against uncertainties in vehicle parameters such as vehicle mass and effective

wheel radius. De Castro et al. [107] replaces the sliding mode controller with a nonlinear controller

obtained from input-output linearization; the allocation algorithm is formulated as a QPP with

constraints on each actuator magnitude and rate saturation, the optimization cost is a weighted

sum of torque and torque variation applied by the IWEM and EHB. In addition to the controller

and allocation algorithm, De Castro provides a braking supervisor whose role is to define several

operating modes (e.g., series or parallel braking, IWEM failure) by modifying the weights of the cost

function.

6.1 Wheel Slip Stability Analysis

A simple model based on the single-wheel model is provided to understand the wheel slip dynamics;

only the longitudinal dynamic is considered, and the lateral dynamic is ignored. The model has two

states: the wheel speed ω and the vehicle speed vx; the input is the torque applied on the wheel.

Equations of motion are,

v̇x =
fx
m

(6.1)

ω̇ =
1

Jw,eq

(
τ − rwfx

)
(6.2)

where m is the quarter-car mass, Jw,eq is the lumped wheel and motor inertia,1 rw is the wheel

radius, and fx is the tire longitudinal force. The longitudinal tire force is a nonlinear function of the

1The wheel, shaft, and motor inertias are lumped together to reduce the order of the controller derived from this
model. For instance with the quad-motor drivetrain the equivalent inertia is Jw,eq = Jw + JmotG

2
mot with Jw the

wheel inertia, Jmot the motor inertia, and Gmot the motor gearing ratio.
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slip ratio sx and it is assumed to be a linear function of the normal force fz, i.e. fx = µ(sx)fz. The

slip ratio is defined as,

sx =
rwω − vx

max (rwω, vx)
(6.3)

When the vehicle is braking, sx ≤ 0 or rwω ≤ vx. After differentiating the slip definition (6.3),

the dynamics of the system can be formulated as a first-order system with the slip as the only state,

ṡx =
rw

Jw,eqvx

[
τ −

(
1 +

Jw,eq
mr2w

(1 + sx)
)
rwfx

]
(6.4)

When the vehicle is accelerating, sx ≥ 0 or rwω ≥ vx, the slip dynamics is described by,

ṡx =
rw(1− sx)

vx

[ 1

Jw,eq
(1− sx)(τ − rwfx)−

fx
mrw

]
(6.5)

The time-derivative of the longitudinal slip is a nonlinear function of the wheel slip. A linear

system analysis is conducted at the steady-state operating points (sx0, τ0), moreover, the dynamics

associated with the longitudinal vehicle velocity vx is assumed to be slower than the slip dynamics

and the longitudinal velocity is treated as a constant parameter vx = vx0. For the system to be at

steady-state with slip sx0, the wheel torque τ0 must be defined as follows,

τ0 =

 rwµ(sx0)fz

(
1 +

Jw,eq

mr2w
(1 + sx0)

)
, if sx0 ≤ 0

rwµ(sx0)fz

(
1 +

Jw,eq

mr2w

1
1−sx0

)
, if sx0 > 0

(6.6)

After linearization, the slip equation of motion becomes ˙̃sx = As̃x + Bτ̃ , where A = ∂ṡx
∂sx
|(sx0,τ0)

and B = ∂ṡx
∂τ |(sx0,τ0) are the Jacobian matrices and where s̃x = sx − sx0 and τ̃ = τ − τ0 are the

perturbed variables after linearization. The Jacobian matrices of the linearized slip model are given

by:

A =

 − r2wfz
Jw,eqvx0

[
Jw,eq

mr2w
(µ0 + (1 + sx0)µ

′
0) + µ′0

]
, if sx0 ≤ 0

− r2wfz
Jw,eqvx0

[
Jw,eq

mr2w
(µ0 + (1− sx0)µ′0) + (1− sx0)2µ′0

]
, if sx0 > 0

(6.7)

B =


rw

Jw,eqvx0
if sx0 ≤ 0

rw
Jw,eqvx0

(1− sx0)2 if sx0 > 0
(6.8)
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Figure 6.1: Road friction coefficient and pole of the single-wheel model versus the longitudinal slip
operating point

where µ0 = µ(sx0) and µ′0 = ∂µ
∂sx
|sx0 are respectively the value of the friction coefficient and the

slope of the friction coefficient evaluated at the operating point sx0. Assuming that sx0 ≪ 1 and

given that Jw,eq ≪ mr2w, for both braking and acceleration, the pole is given by A ∼ − r2wfz
Jw,eqvx0

µ′0.

Therefore, the system is locally asymptotically stable when µ′0 > 0, i.e. when the tire operates in

the linear region. This is illustrated by Figure 6.1 which shows a friction curve and the pole of the

linearized system.

6.2 Actuator Dynamics

The actuator dynamics are represented by the transfer function Gact such that the total wheel torque

is τ = Gactτact where τact are the actuator torques, this transfer function will be used to derive

controllers. The electric motor is modeled by a first-order low-pass filter of cutoff frequency 1
τEM

and

the hydraulic brakes are modeled by Equation (2.77). With the quad-motor drivetrain, the actuator

dynamics is given in Equation (6.9).

τ = Gactτact =

[
1

τEMs+1
kcal

mp,eqs2+bp,eqs+kcal

]τmot
τbk

 (6.9)

where τEM is the electric motor time constant, mp,eq = mp + S2
pIl and bp,eq = bp + S2

pIl are the

equivalent piston and fluid mass and damping coefficient, and kcal is the caliper stiffness.
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6.3 Drivetrain and Brake Coordination Control Architecture

Figure 6.2 shows the proposed control architecture for regulating the wheel slip and coordinating the

drivetrain and brake actuators. Since the four wheels are decoupled with the quad-motor topology,

this control structure is used independently at each wheel for this topology; for the dual-motor and

eAWD topology, a coupling occurs between the left and right wheels, so this control structure can

only be used independently at each axle.

Several controllers are designed to implement ABS, TCS, they define the wheel torque τw to apply

in order to follow a wheel speed target ωref . The ‘Wheel Slip Supervisor’ block decides whether

to use the ABS or TCS slip controller or the torque defined by the abstract layer based on the

wheel slip and wheel torque applied. The ‘Control Allocation’ block maps the four wheel torques

output by the ‘Wheel Slip Supervisor’ to actuator signals τTact = [τTmot τTbk] where τmot denotes

drivetrain torques and τbk denotes the torque applied by the friction brakes; e.g., τmot denotes the

four electric motor torque commands for the quad-motor topology, it corresponds to the two motor

torque commands for the dual-motor drivetrain, and the two traction motor and the two torque

vectoring device torque commands for the eAWD drivetrain; for all topologies, τbk denotes the four

friction brake wheel torque requests. The ‘Control Allocation’ block considers the actuator dynamics

and saturation. It implements a daisy-chain allocation represented by the ‘Algebraic Allocation’

block, which defines the desired actuator distribution τdes based on the actuator saturation limits

and the desired wheel torques. A Smith-McMillan-based nullspace allocator (see Section 3.3.1) is

used to make sure that the dynamic allocation does not destabilize the feedback loop by making the

control allocation invisible at the wheel torque level.

The ABS and TCS slip controllers are implemented with SISO Youla parameterized model-based

controllers, both ABS and TCS controllers are implementing the same controllers, only their setpoints

ωref are different. Since the tire model is nonlinear and the slip controllers are implementing linear

controllers, it would be necessary to define several controllers–one for each operating point (i.e.,

wheel slip) at which the wheel-tire model is linearized–and switch between the different controllers.

Moreover, anti-windup compensators would be needed to ensure bumpless transfer, and their design

can be difficult if the model is not marginally stable (i.e., in the tire saturation region). Instead, the

ABS and TCS slip controllers implements two controllers labeled ‘First spin/dip’ and ‘Closed-loop’
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Figure 6.2: Control architecture for drivetrain and brake coordination and slip control of a single
wheel. Thick lines represent actuator multichannel signals, thin lines represent wheel
scalar signals. The architecture is illustrated for the quad-motor drivetrain. With the
dual-motor and eAWD drivetrains, additional feedforward blocks should be inserted in
the ‘First spin/dip’ and ‘Closed-loop’ ABS and TCS slip controllers to decouple the
left and right wheel speeds (see Section 6.5.1 and Figure 6.5); the ‘Control Allocation’
should be given the left and right wheel torque requests τw.
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controllers derived after two marginally stable models. The ‘First dip/spin’ controller design is

based on a model where the longitudinal tire force is treated as a disturbance;2 hence it does not

use a tire model. Instead, the controller uses a disturbance rejection scheme and an estimate of the

longitudinal tire force f̂x, which is computed using a YCOO developed in [55]. Because the estimate

of the tire force may not be perfect, the ‘First spin/dip’ controller cannot ensure perfect tracking; its

goal is only to bring the wheel slip back to the linear tire region. The ‘Closed-loop’ controller is

based on a model that includes a tire map linearized in the stable region of the tire near the peak

of friction.3 It ensures perfect tracking of the wheel slip ratio as long as the wheel slip is near the

controller lineariation point. Thus, the strategy of the ABS and TCS slip controllers to regulate

the wheel slip is: first, use the ‘First dip/spin’ controller to bring the wheel slip near the peak of

friction independently of the initial wheel slip; second, switch to the ‘Closed-loop’ controller once

the wheel slip is inside the controller’s operating range to ensure good tracking. The design of the

slip controllers and the anti-windup compensators is further explain in Sections 6.5.1 and 6.5.2.

The ‘Wheel Slip Supervisor’ block is shown in Figure 6.3, it is implemented as a finite-state

machine. When the longitudinal slip ratio and wheel torque become smaller than the threshold

sx,ABS and τABS , the ABS slip controller becomes active. Similarly, if the slip ratio and wheel

torque are too big, the TCS becomes active. The slip controllers are deactivated when the wheel

torque request of the abstract layer becomes smaller than the torque applied by the slip controllers.

To take the vehicle to a complete stop, the ABS controller must be deactivated below a threshold

vehicle speed; the ABS slip controller cannot guarantee closed-loop stability at low speed due to

poor velocity estimation at low speed and to a large unstable pole in the plant. Thus, the ABS

makes a distinction between high-speed and low-speed.

When ABS or TCS are engaged, the slip control switch from the ‘Off’ state to the ‘First dip/spin’

mode for a predefined period before switching to the ‘Closed-loop’ state or reverting to the ‘Off’

state if the supervisor switches back to the torque control mode.

2The model used to design the ‘First spin/dip’ controller is marginally stable; thus, an anti-windup compensator can
be easily designed.

3The model is asymptotically stable.
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Supervisor

TCS mode
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during: τ = τTCS
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Figure 6.3: Finite state machine of the ‘Wheel Slip Supervisor’ block

6.4 Dynamic Control Allocation

6.4.1 Dynamic Pseudo-Inverse

The Smith-McMillan decomposition generalizes the concept of poles and zeros to multivariable

systems; it also defines a basis for decoupling the system, which facilitates the controller design.

Using the Smith-McMillan decomposition, the system is represented by MP = ULGactUR, and UL

and UR are unimodular polynomial matrices. With the quad-motor drivetrain:

MP,act =

[
mp,eqτEM

(τEMs+1)(mp,eqs2+bp,eqs+kcal)
0

]
, (6.10)

UL = 1, UR =

 mp,eqτ3EM

kcalτ
2
EM−bp,eqτEM+mp,eq

s+ 1
τEM

−mp,eqτEM (bp,eqτEM+mp,eq(τEMs−1))

kcal(kcalτ
2
EM−bp,eqτEM+mp,eq)

−mp,eqs2+bp,eqs+kcal
kcalτEM

 (6.11)

Because the system is over-actuated, we define the matrix MP,act as the full-rank square matrix
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extracted from MP,act such that MP,act = [MP,act 0]. The ‘Control Allocation’ block maps the wheel

torque to the actuator signals, it considers the actuator dynamics and uses a dynamic pseudo-inverse

matrix defined from the Smith-McMillan decomposition of Gact:

G+
act = UR

M−1
P,act

0

UL (6.12)

When Gact is strictly proper, G+
act is not proper, and unstable zeros of Gact are unstable poles

of G+
act. If the system Gact is strictly proper or has unstable zeros, G+

act is multiplied by a transfer

function w(s) of unit gain to make G+
act proper and cancel its unstable poles. With the quad-motor,

one can select the transfer function w(s) = kcal/((τEMs+1)(mp,eqs
2+bp,eqs+kcal)). By construction,

we have:

GactG
+
act = w(s)I and G+

actGact = w(s)

I 0

0 0

 (6.13)

The dynamic pseudo-inverse is used to define a control distribution from the wheel torque τw

requested by the ‘Wheel Slip Supervisor’: τinv = G+
actτw.

6.4.2 Nullspace Allocator

The slip controllers define a control distribution to stabilize the wheel slip; the actuators have

variable saturation levels: at high speed, the maximum torque the motor can apply depends on the

motor speed, whereas at low speed, the maximum torque corresponds to the base torque; the friction

brake can only apply negative wheel torque. Moreover, series braking is more efficient than parallel

braking but requires modifying the ratio of regenerative braking torque over friction braking torque.

Variable saturation levels, series braking, and deteriorated modes (e.g., if the electric motor becomes

faulty) forces to use of a dynamic control allocation and to modify the actuator distribution defined

by the controller, the Smith-McMillan-based nullspace allocator presented in Section 3.3.1 is used to

modify the control distribution without affecting the closed-loop response.

The plant model can be written as GwGact where Gw is a scalar transfer function mapping the

wheel torque τ to the wheel speed ω (see Section 6.1) and Gact is a non-square matrix mapping

the actuator commands τact to the wheel torque τ (see Section 6.2). Since the matrix Gw is square
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6 Drivetrain and Brake Coordination

and has full rank, the nullspace allocator is designed based on the matrix Gact representing the

actuator dynamics. With the quad-motor drivetrain, the right nullspace of the plant corresponds to

the column space of the following matrix:

Ka =

 τEMs+ 1

−mp,eqs2+bp,eqs+kcal
kcal

 (6.14)

The allocator is designed to follow the desired control distribution τdes by minimizing the quadratic

error ∥τact − τdes∥2W with W = I, from Equation (3.9), the allocator is defined as:

Ga = Ḡaw(s) = Ka(K
T
aWKa)

−1KT
aWwa(s) (6.15)

For the quad-motor drivetrain and with wa(s) = 1, the nullspace allocator is defined as follows,

Ga =


(τEMs+1)2

(τEMs+1)2+

(
mp,eqs2+bpeq,s+kcal

kcal

)2 −
(τEMs+1)

(
mp,eqs

2+bp,eqs+kcal
kcal

)
(τEMs+1)2+

(
mp,eqs2+bpeq,s+kcal

kcal

)2

−
(τEMs+1)

(
mp,eqs

2+bp,eqs+kcal
kcal

)
(τEMs+1)2+

(
mp,eqs2+bpeq,s+kcal

kcal

)2

(
mp,eqs

2+bpeq,s+kcal
kcal

)2

(τEMs+1)2+

(
mp,eqs2+bpeq,s+kcal

kcal

)2

 (6.16)

6.4.3 Drivetrain and Brake Algebraic Allocation

Several actuators can be used to follow the wheel torque request from the abstract layer or slip

controllers. The electric motors allow for faster, more power-efficient, and more accurate controls

than the EHB and eLSD, but they cannot generate as much braking torque. Moreover, with the

dual-motor drivetrain, electric motors cannot apply a left-to-right TV. However, with the eAWD

drivetrain, a left-to-right TV can be generated either by the TV device (i.e., the TV motor on

the front axle or eLSD on the rear axle) or by a brake-based torque difference. The additional

DoF due to over-actuation are used to improve the power efficiency of the vehicle. The ‘Algebraic

Allocation’ block defines the steady-state control distribution to apply for a given wheel torque,

enforcing actuator saturation limits and neglecting the actuator dynamics. The Smith-McMillan

allocator ensures the tracking of the control distribution in the ℓ2 sense while maintaining internal

stability and addressing actuator dynamics.
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Figure 6.4: Daisy-chain control allocation coordinating the drivetrain and friction brakes

Quad-motor Drivetrain

With the quad-motor drivetrain, the wheel torque are decoupled at each wheel and depends on

the torque generated by the wheel motor and the friction brake torque. In steady-state, the wheel

torque is given by τij = Gmotτmot,ij + τbk,ij where τmot,ij is the torque generated by the motor,

τbk,ij is the torque applied by the friction brake, and Gmot is the electric motor gearing ratio. A

daisy-chain allocation is employed (see Figure 6.4a) since the regenerative braking is more efficient

than friction brakes, the electric motor are used up to their saturation limits, friction brakes assist

the electric motor if necessary to provide additional braking torque. Given the wheel torque request

τij , the electric motor torque is defined as τmot,ij = satmot,ij (τij) and the friction brake torque is

τbk,ij = satbk,ij (τij − τmot,ij), where satmot,ij is the speed dependent electric motor torque saturation

and satbk,ij denotes the EHB torque saturation. This control allocation is carried out at each wheel
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6 Drivetrain and Brake Coordination

independently.

Dual-motor and eAWD Drivetrains

With the dual-motor and eAWD drivetrains, the front and rear axles are decoupled but the

torque applied on the left and right wheels of each axles are not independent, the wheel torque is

τij =
Gmot
2 τmot,i ± τTVi + τbk,ij . The control allocation tracks two targets: the left and right wheel

torque τiL and τiR; the targets can be reformulated as an axle torque target τtot,i = τiL + τiR and

the axle torque difference τTVi =
1
2(τiR − τiL). The torque difference can be generated by the TV

device or by applying different brake torque on each side of the vehicle, the latter option has the

drawback of generating a negative axle torque bias while the TV device generates a torque difference

without modifying the axle torque, this torque bias deteriorates the vehicle efficiency, hence the

allocation prioritize the TV device to generate a torque difference τTVi and electric traction motor

to generate the axle torque.

The functions satTVi , satmot,i , and satbk,ij denote respectively the magnitude saturation of the

TV device, electric traction motor, and friction brakes; note that the torque saturation of the electric

motors and TV device are speed dependent. Variables τiL and τiR denote the left and right wheel

torque request from the abstract layer. Since the electric traction motor and the torque vectoring

device are more efficient than the friction brakes, the axle torque and the left-to-right TV torques

should be respectively allocated first to the traction motor and to TV device up to their saturation

limits. However, filling the remaining left and right torque requests using the friction brakes does

not guarantee perfect tracking. Indeed, if the axle torque request is positive and the TV device is

saturating, the request on the side with the highest torque cannot be met since the friction brakes

can only apply negative torques. Moreover, the friction-based torque applied on the side with the

lowest torque introduces an axle torque bias which decreases the total axle torque, deteriorating the

tracking of the axle torque request. The traction motor must compensate the bias introduced by the

friction-based axle torque to perfectly track both the TV and axle torques. Pre-compensation, the

TV device torque is set as τTVi = satTVi(
1
2(τiR−τiL)); the axle torque is allocated only to the electric

traction motor and τpre,i = Gmot
2 satmot,i (G

−1
mot(τiL + τiR)) corresponds to the wheel torque applied by

the traction motor, the friction brakes need to generate τbias,ij = τij− (τpre±τTVi) to track the target

which result in a torque bias τbias,i = max (0, τbias,iL, τbias,iR). Post-compensation, the bias is added
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6.5 Wheel Slip Controller

to the motor torque command τmot,i = satmot,i (
2

Gmot
(τpre,i + τbias,i)), the TV torque command τTVi

is not modified, and the brake torque request are adjusted τbk,ij = satbk,ij (τij − (Gmot
2 τmot,i ± τTVi)).

The control allocation is depicted in Figure 6.4b, it uses the traction motor and the TV device

up to their saturation limits, friction brakes assist if additional braking torque is required. The

allocation is carried at each axle independently; both drivetrain topologies use the same daisy-chain

control allocation; with the dual-motor drivetrain, the torque difference τTVi = 0.

6.5 Wheel Slip Controller

6.5.1 Slip Controller Design

In [108], a Youla parameterized controller design for slip control is compared to a first-order sliding

mode controller. Although the sliding mode controller guarantees stability based on Lyapunov

arguments, finite-time convergence, and robustness to parametric uncertainties, its design is more

complex than the Youla controller; moreover, the Youla controller does not suffer from chattering

and guarantees perfect tracking. H∞ or µ-synthesis could also be used to derive a linear controller

and optimize the controller’s robust performance, but these methods usually yield a high-order

controller; Youla parameterization is preferred for this application since it gives a lower order linear

controller than H∞ and µ-synthesis while showing good robustness properties.

Youla parameterization is a loop-shaping control design method, the controller Gc is defined from

desired closed-loop transfer functions and a model of the system Gp. By selecting three transfer

functions–the closed-loop transfer function Ty, the sensitivity function Sy = I − Ty, and the Youla

transfer function Y = GcSy–one can ensure good disturbance and sensor noise rejection. When

designing the controller, interpolation conditions on the rational functions Ty and Sy are enforced

such that the transfer functions Y , Sy, Ty, and SyGp are stable, guaranteeing internal stability.

For any unstable pole p with multiplicity kp and for any unstable zero z with multiplicity kz, the

interpolation conditions are:

Ty(s = p) = 1 and
dkSy
dsk

∣∣∣∣∣
s=p

= 0 ∀k ∈ J0, kp − 1K (6.17)

Sy(s = z) = 1 and
dkTy
dsk

∣∣∣∣∣
s=z

= 0 ∀k ∈ J0, kz − 1K (6.18)
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6 Drivetrain and Brake Coordination

If the transfer functions Sy and Ty respect the previous interpolation conditions, the feedback loop

combining the controller Gc and the plant Gp is internally stable where Gc is defined as Gc = Y S−1
y .

First Spin and First Dip Slip Control

The ‘First spin’ and ‘First dip’ slip controllers are based on the wheel inertia (6.2) and consider the

tire force as a disturbance, the wheel speed is ω = Gwτ +Gdfx where Gw = 1
Jw,eqs

and Gd = −rw
Jw,eqs

.

The ‘Control Allocation’ block inside the feedback loop add additional dynamics, the dynamic

allocation is invisible thanks to the Smith-McMillan nullspace allocator, however, the pseudo-inverse

block adds the dynamic w(s) to the system. Indeed, the wheel torque applied at the wheel is

τ = Gactτact where τact = τinv +Ga(τdes − τinv) is the sum outputs of the pseudo-inverse G+
act and

the nullspace allocator (see Figure 6.2), so τ = Gactτact = GactG
+
actτw since the nullspace allocator is

designed such that GactGa = 0; finally, τ = w(s)τw where τw is the controller output.

The plant model to design the controller is Gp = Gww(s), the plant Gp has an unstable pole at

p = 0, the interpolation condition Sy(0) = 0, or equivalently Ty(0) = 1, guarantees internal stability.

The closed-loop transfer function is selected to be a second-order Butterworth filter of unit gain and

crossover frequency ω0, additional poles τp are added to ensure the controller is proper.

Tdes =
ω2
0

(s2 + 2ζω0s+ ω2
0)(τps+ 1)2

(6.19)

To obtain Ty = Tdes, the sensitivity function must be Sy = 1−Tdes and the Youla transfer function

Y must satisfy Y Gp = Tdes, one can obtain the controller transfer function from Gc = Y S−1
y . This

yields the controller Gc = URMY (I −MPMY )
−1UL. For the quad-motor drivetrain, the controller

is:

Gc =
Jw,eqsω

2
0

w(s)[(s2 + 2ζω0s+ ω2
0)(τps+ 1)2 − ω2

0]
(6.20)

For a system with disturbance defined by y = Gpu + Gdd, modifying the control input by

u← u−G−1
p Gdd cancels the effects of the disturbance at the output. The first spin/dip controller

implements this disturbance rejection scheme to cancel the effect of the tire force, the wheel torque is

modified by τ ← τ−G−1
w Gdf̂x. With the quad-motor drivetrain, this yields the following feedforward
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6.5 Wheel Slip Controller

transfer function, an extra pole τd is added to prevent inserting noise in the control loop:

Gf = −G−1
w Gd =

rw
τds+ 1

(6.21)

Closed-loop Slip Control

The ‘First spin’ and ‘First dip’ controllers are independent of the tire model; they can stabilize the

system independently of the operating condition since the model does not need to be linearized.

However, it relies on a disturbance rejection scheme (implemented as a feedforward control) and the

tire force estimation; therefore, it cannot ensure perfect tracking. Once the ‘First spin’ and ‘First dip’

controllers bring the wheel slip ratio close to the operating point of the ‘Closed-loop’ controller, the

‘Closed-loop’ controller takes over the wheel slip control. This controller does not use an estimate of

the tire force; instead, its design is based on a tire model linearized near the peak friction.

The wheel dynamics is defined by the linearized wheel model presented in Section 6.1, the wheel

dynamics is represented by Gw = B
s−A where A and B are given in Equations (6.7) and (6.8) and

the plant model is defined as Gp = Gww(s). The system is linearized near the peak of friction

but in the linear region, hence A < 0. The system has no unstable pole and zero so there is no

interpolation condition needed to enforce internal stability, to obtain good tracking to step input,

the closed-loop transfer function must satisfy Ty(0) = 1. The closed-loop transfer function is defined

as Equation (6.19) which yields the following controller:

Gc =
(s−A)ω2

0

Bw(s)[(s2 + 2ζω0s+ ω2
0)(τps+ 1)2 − ω2

0]
(6.22)

Decoupling with Dual-Motor and eAWD Drivetrains

The slip controllers are SISO controllers; each filter is responsible for preventing excessive slip at a

single wheel and assumes no coupling with other wheels; this is true for the quad-motor drivetrain

but not for the dual-motor and eAWD topologies. For instance, after neglecting the shaft compliance
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Figure 6.5: Control architecture for drivetrain and brake coordination and slip control of a single
axle for the dual-motor and eAWD drivetrains. The structure of the ‘Control Allocation’
block remains the same as one in Figure 6.2; but it must assign the two wheel torques
τw,iL and τw,iR.
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of the dual-motor drivetrain, one can obtain the following equation of motion:

(
Jw +

G2
mot

4
Jmot

)
ω̇iL +

G2
mot

4
Jmotω̇iR = τbk,iL − rwfxiL +

Gmot
2

τmot (6.23a)

G2
mot

4
Jmotω̇iL +

(
Jw +

G2
mot

4
Jmot

)
ω̇iR = τbk,iR − rwfxiR +

Gmot
2

τmot (6.23b)

The terms G2
mot
4 Jmot are not negligible and create a coupling between the left and right wheel

speeds. In practice, it would be necessary to design a MIMO slip controller regulating both left and

right wheels; however, only one wheel may require active slip control while the other wheel does

not have excessive slip (e.g., a split-µ scenario). To avoid the need for multiple MIMO controllers

implementing all possible combination of torque and slip controls, we instead use a disturbance

rejection scheme to respectively cancel the cross-terms G2
mot
4 Jmotω̇iR and G2

mot
4 Jmotω̇iL in the state

equation of ωiL and ωiR; the disturbance rejection scheme allows to use SISO slip controllers while

decoupling the left and right side. Figure 6.5 shows the wheel slip control architecture for the

dual-motor and eAWD. As can be seen from the figure, the disturbance rejection scheme decouple

the control of the left and right wheels, allowing to reuse a similar control architecture to the one

used with the quad-motor drivetrain.

6.5.2 Anti-Windup and Bumpless Transfer

Anti-windup compensator are added to the feedback loop to address the actuator saturation and to

ensure bumpless transfer between the different modes. Given (A,B,C,D) a state-space realization

of the plant, Zaccarian [109] proposes the following anti-windup compensator:

ζ̇ = Aζ +B(sat(τw)− τc) (6.24a)

v1 = Kζ + L(sat(τw)− τc) (6.24b)

v2 = Cζ +D(sat(τw)− τc) (6.24c)

where ζ are the anti-windup compensator states, K is the compensator gain, sat(τw) is the torque

applied at the wheel, τc is the torque command of the feedforward and feedback controllers, the

compensator must be connected such that the torque command send to the control allocation is

τw = τc + v1 and the feedback controller input is e = ω − v2 (see Figure 6.2).
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The design of the anti-windup compensator for slip controllers differs from the design of the

anti-windup compensator used with the MIMO high-level controller (Section 5.2.1) since the former

uses a gain L ̸= 0. The gain L improves the anti-windup performance but creates an algebraic loop

around the saturation block. The design of the anti-windup compensator assumes a marginally

stable plant (A,B,C,D), hence the choice of linearization point for the closed-loop controller in the

linear tire region; with a marginally stable plant, the gains K and L must be chosen such that there

exists a symmetric positive definite matrix P = P T > 0 and a diagonal positive definite matrix W

so that:  ATP + PA PB +KTW

BTP +WK LTW +WL− 2W

 < 0 (6.25)

If the plant (A,B,C,D) is stable, choosing K and L such that Equation (6.25) is true guarantees

that the closed-loop system with the anti-windup compensator is well-posed and stable. Among all

possible solutions of (6.25), the gains (K,L) which minimizes the cost function J =
∫∞
0 (ζTQP ζ +

vT1 RP v1) dt can be obtained by solving the following Linear Matrix Inequality (LMI) system in

(γ,Q,U,X1, X2) [109]

arg min
(γ,Q,U,X1,X2)

γ (6.26a)

subject to

QAT +AQ BU +XT
1

UBT +X1 XT
2 +X2 − 2U

 < 0 (6.26b)

γI I

I Q

 > 0 (6.26c)


QAT +AQ+BX1 +XT

1 B
T Q XT

1

Q −Q−1
P 0

X1 0 −R−1
P

 < 0 (6.26d)

Q = QT > 0 and U > 0 diagonal (6.26e)

and the compensator gains are obtained from K = X1Q
−1 and L = X2U

−1.
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Figure 6.6: Extremum Seeking Control

6.5.3 Slip Reference Generation

The slip controllers rely on a target value for the wheel speed to maximize the longitudinal friction

coefficient; unfortunately, the relation between wheel slip ratio to longitudinal friction coefficient is

unknown and changes over time depending on the properties of the road and the tire. Extremum

Seeking Control (ESC) is a model-free algorithm that tracks the maximum of a time-varying

performance function. The algorithm is illustrated in Figure 6.6, the signal b sin(ωt+ ϕ) is injected

into the plant to probe the objective function; this is referred to as the modulation stage; if the

change in the cost J is in-phase with the sine perturbation, the estimate of the extremum û should

increase to track the extremum, if it is out-of-phase, it should decrease. The high-pass filter s
s+ωh

removes the low-frequency component of the cost J and keeps only the variation; the demodulation

stage multiplies the variation of the cost by the sine wave such that the signal ζ is positive if both

signals are in-phase and negative if they are out-of-phase. The integrator increases or decreases the

estimate û based on the signal ζ to implement the desired update law. An optional low-pass filter

1
s+ωl

is added to eliminate high-frequency measurement noise, and the gain of the integrator allows

for tuning the rate of convergence.

ESC is used to find the longitudinal slip ratio sijx,ref which yields the maximum friction coefficient,

hence the cost J = |µijx|, the slip ratio is then converted to a wheel speed setpoint ωij,ref by

modulating the wheel speed as follows ωij,ref = (1 + sijx,ref )ωij,0 where ωij,0 is the wheel speed

without slipping. The ESC strategy is running only when the slip controller is active; when slip

controls are not active, the slip ratio yielding the maximum friction coefficient is not updated and

kept at a constant guess value sijx,ref = ±0.10; when slip controls become active, the ESC integrator

is initialized with the most recent slip ratio target.
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Figure 6.7: Longitudinal wheel slip and friction coefficient with slip controls. The dotted line shows
the tire map.

6.6 Simulation Results

The performance of the slip controller is evaluated in a simulation in which the driver requests

a braking step torque that exceeds the surface friction limit. The maximum friction coefficient

estimation is disabled, and a wrong value of µ̂max = 1.0 is provided such that the abstract layer

applies excessive torque and the tire saturates, the actual maximum friction coefficient is µmax = 0.55.

Results are shown in Figures 6.7 and 6.8. The longitudinal slip ratio oscillates around the value

yielding the maximum friction coefficient, approx. −0.05 when the initial guess is sijx,ref = −0.10.

ABS is engaged when the slip becomes high, the ‘First Dip’ controller is able to stabilize the wheel

slip and the ‘Closed-loop’ controller successfully tracks the desired wheel slip.
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Figure 6.8: Simulation results of the slip controllers. Plots are for the front left wheel.
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Chapter 7

Results and Analysis

The control framework developed in this dissertation is tested in simulation with a high-fidelity

vehicle model for validation; the chassis model is the 18 DoF developed in Section 2.1 with the

MF94 Pacejka tire model; the drivetrain, brake, and steering models are the bond graph models from

Section 2.3. The control framework is evaluated in open-loop driving scenarios where the driver’s

input are functions of time and on closed-loop maneuvers where the driver’s input depends on the

environment (e.g., the car’s position relative to a predefined trajectory).

7.1 Metrics

Several metrics are used to compare the performance of the different configurations. The Root Mean

Square Error (RMSE) evaluates the Root Mean Square (RMS) of the error between a time signal

x(t) and a desired signal xd(t), the RMS value xRMS of the signal x(t) and the RMSE between x(t)

and xd(t) are defined as follows:

xRMS =

√
1

T

∫ T

0
x(t)2 dt, xRMSE =

√
1

T

∫ T

0
(x(t)− xd(t))2 dt (7.1)

where T is the duration of the maneuver.

The RMSE between the vehicle and desired lateral velocity, yaw rate, and total torque quantify

the tracking performance of the control system; it should be noted that the yaw rate target depends

on the vehicle velocity; thus, the target might differ between simulations despite using the same user

steering and throttle inputs. The energy dissipated by the brake actuators and by the drivetrain
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(i.e., electric motors and eLSD) measures the energy efficiency of the vehicle and control strategy.

7.2 Open-Loop Maneuver: Sine with Dwell Steering Input

The open-loop sine with dwell maneuver is applied to the vehicle model. The vehicle is initially

traveling at 120 kmh−1. The steering input is a single sine period of amplitude 90◦ and of frequency,

f = 0.7Hz, when t > 3
4f , the steering angle is maintained at −90◦ for 0.5 s before applying the last

quarter phase of sine input.

Figure 7.1 shows the vehicle yaw rate of the uncontrolled vehicle and with all configurations of

drivetrain and active steering considered in this dissertation, Tables 7.1 and 7.2 list the RMSE of

lateral velocity, yaw rate, and torque. The uncontrolled vehicle exhibits a large yaw rate and sideslip

angle; the control framework can stabilize all tested configurations. The control strategy uses the

more flexible capabilities of the quad-motor and eAWD drivetrain to better track the yaw rate target;

similarly, active steering actuators are employed to improve further the tracking of the desired lateral

velocity and yaw rate. The results show that AFS is employed in this scenario to improve the energy

efficiency of the vehicle.

7.3 Closed-Loop Maneuvers

7.3.1 Driver Model

Closed-loop maneuvers where a driver model defines the vehicle’s input based on the environment are

necessary to evaluate how the vehicle would behave in real driving scenarios; this model represents the

driver and defines the steering and throttle inputs given to the vehicle to follow the desired trajectory.

The driver model is separated into two parts: a longitudinal and lateral controller: a PID controller

defines the throttle input to follow the desired velocity profile, the lateral controller implements

Sharp and Valtetsiotis’s optimal steering controller, which consists of an Linear Quadratic Regulator

(LQR) with preview outputting the steering wheel input to follow the desired trajectory [110].
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Figure 7.1: Sine with dwell maneuver. Dashed lines represent target signals, dotted lines represent
bounds.

Table 7.1: Simulation results for several driving scenarios (no active steering and AFS)

Base
(Quad)

Passive steering Active Front Steering

Quad eAWD Dual Quad eAWD Dual

90◦ sine with dwell at 120 kmh−1

Lateral vel.
RMSE (ms−1) 6.35 0.72 0.68 0.68 0.61 0.61 0.64

Yaw rate RMSE
(deg s−1) 15.21 4.00 3.95 4.95 3.69 3.68 3.98

Torque RMSE
(Nm) 166.2 531.0 400.8 719.6 262.5 97.7 199.9

Total energy
dissipated (kJ) 3.88 55.56 133.65 321.80 26.97 98.77 195.57

High-speed double lane change
Lateral vel.

RMSE (ms−1) 13.52 1.19 1.12 1.08 1.11 1.06 1.06

Yaw rate RMSE
(deg s−1) 40.15 5.78 6.21 6.44 5.54 5.10 5.70

Torque RMSE
(Nm) 6996.8 869.6 708.8 1690.0 566.7 310.3 756.9

Total energy
dissipated (kJ) 442.20 382.46 474.86 746.28 352.76 487.72 701.40

Terminal vel.
(kmh−1) 73.09 129.84 129.98 130.35 129.69 129.86 129.90

Steer. angle θdri
RMS (deg) 431.97 44.02 51.72 42.96 64.47 62.93 72.93

Max. wheel slip
angle (deg) 80.78 8.70 9.37 7.99 9.05 8.91 8.89
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Table 7.2: Simulation results for several driving scenarios (ARS and 4WS)

Base
(Quad)

Active Rear Steering Four Wheel Steering

Quad eAWD Dual Quad eAWD Dual

90◦ sine with dwell at 120 kmh−1

Lateral vel.
RMSE (ms−1) 6.35 0.66 0.64 0.66 0.59 0.59 0.61

Yaw rate RMSE
(deg s−1) 15.21 4.05 3.80 4.40 3.61 3.53 3.76

Torque RMSE
(Nm) 166.2 599.0 382.1 580.5 267.1 98.0 189.5

Total energy
dissipated (kJ) 3.88 60.30 137.28 315.22 27.10 99.22 194.99

High-speed double lane change
Lateral vel.

RMSE (ms−1) 13.52 0.93 0.99 0.94 1.06 1.03 1.10

Yaw rate RMSE
(deg s−1) 40.15 6.00 6.12 5.29 5.27 4.86 5.31

Torque RMSE
(Nm) 6996.8 1097.9 672.8 1253.8 552.8 250.5 588.5

Total energy
dissipated (kJ) 442.20 400.26 479.63 707.43 355.12 450.45 655.74

Terminal vel.
(kmh−1) 73.09 130.06 130.03 130.26 129.84 129.88 129.96

Steer. angle θdri
RMS (deg) 431.97 44.96 50.27 44.27 61.09 59.90 67.45

Max. wheel slip
angle (deg) 80.78 8.21 8.72 7.96 8.99 8.85 8.83

7.3.2 U-Turn

During this maneuver, the driver only controls the lateral vehicle dynamics to perform a U-turn of

45m radius; the driver requests no acceleration or braking command. The vehicle’s initial speed is

80 kmh−1. Figure 7.2 shows the vehicle trajectory, driver steering input, lateral acceleration, velocity,

and yaw rate for the quad-motor drivetrain vehicle; no active steering actuators are equipped on

the vehicle. The uncontrolled vehicle tracks a wider path during the first half of the turn than the

controlled vehicle. The driver must apply large steering input and a sudden change at t ≈ 6 s to

stabilize the vehicle trajectory. The IVDC control strategy employed by the controlled vehicle allows

for an easier turn with a faster exit speed, showing the effectiveness to maintain the vehicle yaw rate

and lateral velocity within reasonable values. The controlled vehicle is more maneuverable and safer
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7 Results and Analysis

Figure 7.2: U-turn maneuver with the quad-motor drivetrain and no active steering. Dashed lines
represent target signals, dotted lines represent bounds.

than the passive one.

7.3.3 High-speed Double Lane Change

The double lane change is a well-known test method to evaluate the vehicle dynamics under extreme

cornering. In this maneuver, the vehicle must be driven through the tracks. The trajectory followed

by the driver model corresponds to a straight segment, followed by a lane transition 3.5m to the left

and 20m long, a 40m long straight segment, a lane transition 20m long to the original lane, and a

final straight segment. The longitudinal controllers aim at maintaining the vehicle’s original velocity.

Results are shown in Figures 7.3 to 7.6 and Tables 7.1 and 7.2. The base vehicle is unstable

when the driver performs the double lane change maneuver; the driver applies large steering angle;

without action to improve the vehicle’s handling performance, the base vehicle sideslip and yaw rate

become too large, and the driver loses control of the vehicle. The control framework can stabilize

the vehicle for all configurations tested. The control framework reduces the driver load, indeed the

RMS of the steering input signal with the base model is θdri,RMS = 430 deg, and θdri,RMS = 44 deg

with the quad-motor topology without active steering. The driver load is slightly higher when the

vehicle is equipped with AFS or 4WS than when equipped with no active steering or ARS (see

Figure 7.6 and Tables 7.1 and 7.2). This is not due to violation of tire saturation constraints since
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for all configurations the wheel slip angle stays below the value yielding maximum lateral force

(approx. 10◦). Instead, this is due to the design of the driver evaluator which makes the car more

understeer, hence more stable but also less maneuverable; AFS and ARS provide more actuation,

allowing to improve the tracking of the reference signals (τtot,ref , vy,ref , ωz,ref ), making the car less

maneuverable and increasing the driver load.

When the vehicle is equipped with active steering, AFS is used to reduce the steering angle applied

by the driver at the front wheels and to reduce the slip angle at the front wheels. Torque vectoring

capabilities, either from TV device or brake-based torque vectoring, are employed to maintain the

vehicle yaw rate within the bounds and follow the target. Tables 7.1 and 7.2 show the metrics

used to compare the performance with the different configurations. The quad-motor and eAWD

drivetrains usually provide better tracking for yaw rate than the dual-motor topology due to more

flexible TV capabilities. Active steering improves the tracking of the lateral velocity and reduces the

energy dissipated by the drivetrain and the friction brakes. Overall, the best-combined performance

is obtained with the quad-motor or eAWD drivetrain and 4WS, showing that the control framework

can use the different actuators to improve the system performance.
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7 Results and Analysis

Figure 7.3: Double lane change maneuver with the quad-motor drivetrain. Dashed lines represent
target signals, dotted lines represent bounds.
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Figure 7.4: Double lane change maneuver with the eAWD drivetrain. Dashed lines represent target
signals, dotted lines represent bounds.

159
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Figure 7.5: Double lane change maneuver with the dual-motor drivetrain. Dashed lines represent
target signals, dotted lines represent bounds.
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7.3 Closed-Loop Maneuvers

(a) Quad-motor drivetrain

(b) eAWD drivetrain

(c) Dual-motor drivetrain

Figure 7.6: Driver steering input during the double lane change maneuver
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This research presents the development of vehicle dynamics control for electric vehicles. Vehicle

models are provided to investigate and better understand the system dynamics, the effect of front-to-

rear TV, left-to-right TV, and active steering on the vehicle handling have been presented. Several

actuators have been modeled with the bond graph method to show the reusability of the architecture:

three drivetrains and brake topologies with varying TV capabilities, namely the quad-motor, dual-

motor, and eAWD drivetrain topologies equipped with EHB; possible steering configuration include

passive steering, AFS, ARS, and 4WS. The actuators considered in this research include TV and

active steering, other actuators such as active suspension or active roll control are outside the scope

of this research.

The control framework proposed in this dissertation is based on a multi-layered control architecture.

However, instead of using generalized forces as controls to follow the motion requests, we used

controls at the wheel level, i.e., wheel torque and steering angle. The architecture is decomposed into

two parts: upstream of the wheel controls is the abstract layer, and downstream is the application

layer.

The abstract layer goal is to define wheel controls to follow the motion requests without precise

knowledge of the actuators equipped on the vehicle; this is done to make the architecture more

reusable when developing a vehicle with new actuators; only the application layer must be redefined.

The abstract layer uses a simplified tire model to generate the wheel controls optimally while

considering the coupling between the longitudinal and lateral tire force; the tire model approximates
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the pairs of longitudinal and lateral friction coefficients given a slip angle by ellipses. The abstract

layer is also responsible for ensuring vehicle stability and attempts to preemptively avoid tire

saturation by relying on estimating the maximum road-tire friction coefficient. Observers for the

tire normal force and maximum tire-road friction coefficients are developed and used by the control

framework. Several control methodologies have been proposed to implement the abstract layer: a

MIMO H∞-controller with a nonlinear control allocation and anti-windup compensators; a LTVMPC;

and a NMPC implemented with the acados library.

Once the wheel controls are defined, the abstract layer coordinates the actuators. A daisy-chain

control allocation is proposed to blend the EHB and drivetrain torques. The control allocation is

not directly connected to the plant inside the control loop; instead, it defines the desired control

distribution, and the Smith-McMillan-based nullspace allocator is responsible for following the

requested control distribution without modifying the plant output response. This control structure

allows a more modular approach where the feedback controller design is independent of the control

allocation. The stability and robustness properties associated with adding the Smith-McMillan-based

allocator in the feedback loop have been investigated. Indeed, nominal stability is maintained after

connecting the allocator to the feedback loop; the framework is not sensitive to multiplicative output

uncertainties; bounds on the closed-loop structured singular value with the nullspace allocator under

multiplicative input uncertainties are provided given some assumptions. In addition, the abstract

layer pro-actively ensures wheel stability, ABS and TCS slip controllers are implemented to maintain

the wheel slip in the tire’s stable region. The slip controllers are implemented by several SISO Youla

parameterized controllers, which track the desired wheel speed by controlling the wheel torque: when

a slip event occurs, the ‘first spin/dip’ controllers bring the wheel slip in the ‘closed-loop’ controllers

operating range, once this is done, the ‘closed-loop’ controller takes over and ensure good tracking of

the wheel speed reference defined by an ESC.

8.2 Future Work

The performance of the slip controller might be improved by ensuring smoother transitions. Currently,

a slip supervisor decides the control law to apply and switches between the different controllers. A

smoother transition between the different modes could be implemented using fuzzy logic instead.
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8 Conclusions and Future Work

The abstract layer relies on a simplified tire model to model the coupling phenomenon between the

longitudinal and lateral tire forces where the fx–fy curves for a given slip angle are approximated by

ellipses. The coefficients defining the ellipse are chosen by selecting four points of the fx–fy curve to

be on the ellipse. This method approximates the tire forces reasonably well at low slip values. This

approach was chosen because of its simplicity and the ability to provide an analytical expression

(instead of lookup tables) that can be used online to solve optimization problems efficiently. However,

this method does not guarantee finding the best set of coefficients; more advanced regression methods

could provide a better approximation. Moreover, this method relies on a static tire model; using a

tire model with time-varying parameters and estimating these parameters could further improve

system performance.

The control architecture developed in this dissertation focuses on a vehicle equipped with an electric

drivetrain, independent braking, and active steering, with a major focus on the vehicle’s longitudinal,

lateral, and handling behavior; the control framework could be extended by considering additional

actuators. More specifically, active or semi-active suspension via CDC or ARC via active roll-bar

allows for modifying the vehicle’s ride, roll, and pitch behavior by modifying the vehicle’s normal

tire forces. Additionally, several simplifications have been done when designing the proposed control

architecture: the tire coupling phenomenon only considers the coupling between the longitudinal

and lateral friction coefficient but neglects the nonlinear relation between the longitudinal or lateral

friction coefficient and the tire normal force. The abstract layer could be modified to consider

this coupling and define wheel normal load targets to the application layer; the application can

then coordinate the actuators that impact the tire normal loads. Perhaps a comparison between a

time-varying tire model and a dynamic one would also be beneficial for this work.

We proposed an implementation of the abstract layer using MPC where the driver’s requests are

kept constant during the prediction horizon since they cannot be known beforehand. Suppose the

architecture was implemented on autonomous vehicles; in that case, the control architecture could

make full use of the predictive power of MPC to stabilize the vehicle trajectory: the MPC in the

abstract layer would need to be redesigned, the internal model should be augmented to allow defining

a desired trajectory, and the cost function should be modified to penalize trajectory tracking error.
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Appendix A

Robust Dynamic Control Allocation Synthesis

From Equations (3.25) and (3.26), if bounds on the structured singular values are not enough to

guarantee robust performance and stability, or if the uncertainties cannot be represented by Equa-

tion (3.20) with invertible filters Wu and Wy, another approach must be conducted to design a

robust feedback loop with dynamic control allocation. This chapter proposes a general solution to

this problem by modifying the DK-iteration algorithm used for µ-synthesis.

Using the LFT framework, µ-synthesis is a method that aims at finding a controller that minimizes

the maximum µ-value of an uncertain system over a frequency range to maximize the robust

performance of the closed-loop system. There is no direct way to compute such a controller directly;

therefore, µ-synthesized controllers are usually computed with the DK-iteration algorithm, which is

motivated by the following upper-bound on the µ value:

µ∆̄(N(jω)) ≤ σ(DRND
−1
L (jω)), (DL, DR) ∈ S∆̄ (A.1)

where S∆̄ = {(DL, DR) ∈ Rnu∆̄
×nu∆̄ × Rny∆̄

×ny∆̄ | DL∆̄ = ∆̄DR} (A.2)

The DK-iteration algorithm, described in Algorithm 1, works in two steps. In the D-step, the two

scaling filters DL and DR are computed in order to minimize the upper-bound
∥∥DRFl(P,K)D−1

L

∥∥
∞

given a controller K. In the K-step, a controller is computed by solving an H∞-synthesis problem that

minimizes the ∞-norm of the scaled closed-loop DRFl(P,K)D−1
L given the scaling filters (DL, DR).

By successively iterating between the K and D steps, the DK-iteration algorithm tries to minimize

the upper-bound (A.1), which in turn minimizes the µ-value of the closed-loop. Nevertheless, the
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Algorithm 1 DK-iteration algorithm
Input: Augmented plant P
Parameters: Signal size nuK , nyK
Output: Robust controller Kµ

1: µ←∞, PD ← P
2: while termination condition not reached do
3: Solve the H∞-optimization problem in K: // K-step

K = arg min
K

∥Fl(PD,K)∥∞
4: if ∥Fl(PD,K)∥∞ =∞ then
5: break
6: end if
7: Solve the optimization problem for several frequencies ω: // D-step

(DL, DR) = arg min
(DL,DR)∈S∆̄

σ̄(DRFl(P,K)D−1
L (jω))

8: Fit stable minimum-phase filters DL(s) over (ω,DL(jω)) and DR(s) over (ω,DR(jω)).
9: Compute the scaled augmented system PD as follows

PD ←
[
DR 0
0 InyK

]
P

[
D−1
L 0
0 InuK

]
10: if maxω µ∆̄(Fl(P,K)(jω)) < µ then // Select the best controller
11: Kµ ← K and µ← maxω µ∆̄(Fl(P,K)(jω))
12: end if
13: end while
14: return Kµ

DK-iteration algorithm does not guarantee finding the optimal controller and may converge to a

local optimum.

We propose to modify the DK-iteration algorithm to modify the K-step to solve an H∞-

optimization problem subject to an H2 constraint. This optimization problem can be achieved by a

mixed H2/H∞-synthesis. For mixed H2/H∞ optimization, the regulated outputs z are divided into

two parts zT = [zT∞ zT2 ] to define two augmented plants P 2 and P∞; the optimization minimizes

a weighted sum of the H2-norm of P 2 and the H∞-norms of P∞ subject to constraints on each

norm [111], [112].

arg min
K

α ∥Fl(P∞,K)∥2∞ + β
∥∥Fl(P 2,K)

∥∥2
2

(A.3a)

s.t. ∥Fl(P∞,K)∥∞ ≤ γ0 (A.3b)∥∥Fl(P 2,K)
∥∥
2
≤ ν0 (A.3c)

By setting α = 1, β = 0, and γ0 = ∞, it is possible to minimize an H∞-norm subject to a
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A Robust Dynamic Control Allocation Synthesis

K∞

K2

G

Wa

Wp

w∞ = yref e
u∞

w2 = uref u2

u

−

z2

y

−

z∞

Figure A.1: Augmented system for the controller/allocator synthesis

constraint on the H2-norm. In this section, the control allocation performance is expressed as a

H2-norm on the plant mapping exogenous inputs to the signal z2 =Wa(uref − u). If the objective

is that u tracks a constant signal uref during steady-state, the weight Wa(s) should be big at

low-frequencies and small at high-frequencies.

Robust performance specifications are set by the filter Wp which defines a signal z∞ =Wp(yref−y),

see Figure A.1. Modifying the K-step to minimize the H∞-norm of the plant P∞ mapping exogenous

inputs w to z∞ =Wp(yref − y) with a constraints on the H2-norm of the plant P 2 mapping w to z2

will aim at finding the most robust controller able to achieve a desired control allocation performance.

For an over-actuated system, the number of secondary objectives that can be achieved while

providing output tracking during steady-state is given by nu−r, where nu is the number of actuators

and r is the rank of the system; therefore, the signal z2 should have at most na = nu − r elements.

We showed that connecting the Smith-McMillan-based allocator to the control loop is equivalent to

modifying the feedback controller and adding a feedforward term from the desired control distribution

uref to the applied input u; the same structure will be used to synthesize a robust controller for

the over-actuated system. Figure A.1 shows the controller K is decomposed into two parts, a

feed-forward term K2 and a feedback controller K∞. One major drawback of the method presented

compared to the Smith-McMillan-based allocator is that the design of the allocator and the controller

are not independent; instead, a unique controller K will achieve both roles.

The modified DK-iteration algorithm, which computes a robust controller while enforcing an H2

constraint, is shown in Algorithm 2. Its inputs are the upper bound on the H2 constraint and an

augmented plant P mapping the output of the uncertainty block u∆, the exogenous output w, the
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Algorithm 2 Modified DK-iteration algorithm subject to an H2-constraint
Input: Augmented plant P , upper-bound ν0
Parameters: Signals size nuK , nyK , nw2 , nz2 , ny∆ , nz∞
Output: Robust controller Kµ

1: µ←∞, P 2 ←
[
0 Inz2+nyK

]
P , P∞ ←

[
Iny∆

+nz∞ 0 0

0 0 InyK

]
P , P∞

D ← P∞

2: while termination condition not reached do
3: Solve the mixed H2/H∞-optimization problem: // K-step

arg min
K

∥Fl(P∞
D ,K)∥∞

s.t.
∥∥Fl(P 2,K)

∥∥
2
≤ ν0

4: if no solution K or ∥Fl(PD,K)∥∞ =∞ then
5: break
6: end if
7: Solve the optimization problem for several frequencies ω: // D-step

(DL, DR) = arg min
(DL,DR)∈S∆̄

σ̄(DRFl(P
∞,K)D−1

L (jω))

8: Fit stable minimum-phase filters DL(s) over (ω,DL(jω)) and DR(s) over (ω,DR(jω)).
9: Compute the scaled augmented system P∞

D with exogenous output z∞ as follows

P∞
D ←

[
DR 0 0
0 0 InyK

]
P

[
D−1
L 0
0 Inw2+nuK

]
10: if maxω µ∆̄(Fl(P

∞,K)(jω)) < µ then // Select the best controller
11: Kµ ← K and µ← maxω µ∆̄(Fl(P

∞,K)(jω))
12: end if
13: end while
14: return Kµ

controller output uK to the input of the uncertainty block y∆, regulated output z, and controller

input yK . As is has been said, the regulated outputs are decomposed into two parts, the same applies

to the exogenous inputs w, they are decomposed into w2 and w∞ such that wT = [wT∞ wT2 ]. We

assume that there is no coupling in the mapping from w∞ to z2 and from w2 to z∞; this assumption

is necessary to avoid scaling H2 constraint by the DL and DR filters used in the D-step.

Like to the original DK-iteration algorithm, the D-step computes the filters DL and DR to scale

the augmented plant P∞. The K-step has been modified to minimize the H∞-norm of the scaled

closed-loop Fl(P∞
D ,K) subject to an H2 constraint on the closed-loop Fl(P 2,K).

Example with an Ill-Conditioned System The plant describes an over-actuated system. Although

the plant defined in Equation (A.4) has maximum rank, it is ill-conditioned and its condition number

is κ(Gp) = 40. The plant is assumed to have multiplicative input and output uncertainties as

defined in Equation (3.20). In this example, only the second actuator suffers from uncertainties.
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A Robust Dynamic Control Allocation Synthesis

The weighting filters on the uncertainty blocks are:

Gp =
1

75s+ 1

 85 80 75

100 100 100

 (A.4)

Wu = diag(0, w∆, 0), Wy = w∆I2, w∆ =
3s+ 0.42

s+ 42
(A.5)

The filter Wu is not invertible, thus Equations (3.25) and (3.26) do not apply. The objective of

the control allocation is to minimize a tracking error between a target value and the actual value of

the first actuator as defined by the following filter

W T
p =

3.16× 10−3s+ 3.16

s+ 3.16× 10−6
, W T

a =

[
100

10s+1 0 0

]
(A.6)

The uncertainty block of the input and output multiplicative uncertainty are stacked in a single

uncertainty block ∆. With the LFT framework, the controller input are yTK = [uref
T (yref − y)T ]

and its output is uK = u. The exogenous inputs are wT = [wT∞ wT2 ] = [yTref uTref ] and the regulated

outputs are zT = [zT∞ zT2 ]. The augmented system mapping [uT∆ wT uTK ] to [yT∆ zT yTK ] is

given by:

P = diag(Wu,Wy,Wp,Wa, I)×



0 0 0 0 I

Gp 0 0 0 Gp

−Gp −I I 0 −Gp

0 0 0 I −I

0 0 0 I 0

−Gp −I I 0 −Gp


(A.7)

The Smith-McMillan-based allocator Ga does not provide combined robustness with control

allocation for such a system. Indeed, with a controller KG designed via µ-synthesis,1 connecting the

allocator substantially degrades the robustness of the feedback loop. Table A.1 shows that the µ-value

for robust performance is 0.58 without allocator, and 2.05 with allocator. Designing a controller

KG(I−Ga) based on an augmented system that includes the allocator improves the robustness while

1The controller KG ignores the presence of the allocator Ga in its design, contrary to the controller KG(I−Ga); this
is used to show that the flexibility offered by designing the allocator and controller independently comes at the
expense of robustness.
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Table A.1: Trade-off between robust performance (quantified by maxω µ∆̄(N
∞(jω))) and dynamic

control allocation (quantified by
∥∥N2

∥∥
2
) for an ill-conditioned system.

Feedback Controller Feedforward controller maxω µ∆̄(N
∞(jω))

∥∥N2
∥∥
2

KG 0 0.58 340
(I −Ga)KG Ga 2.05 0

(I −Ga)KG(I−Ga) Ga 1.45 0

Figure A.2: Trade-off between robust performance and dynamic control allocation

providing reasonable control allocation. This result suggests that there is a trade-off between control

allocation and robust performance for this ill-conditioned plant.

Figure A.2 shows the structured singular value for robust performance and the control allocation

metric of the closed-loop with several controllers designed using Algorithm 2; note that the algorithm

is initialized with the feedforward controller K2 = Ga and the feedback controller K∞ = (I −

Ga)KG(I−Ga). Relaxing the H2 constraint allows the algorithm to find a controller which provides

better robustness at the expense of control allocation; this further illustrates the trade-off between

control allocation and robust performance that this ill-conditioned system exhibits. Figure A.3

shows the output and input responses with several controllers. On the one hand, controllers which

track the desired input u1 do not have good robust performance; on the other hand, controllers with

robust performance do not have good control allocation performance.

Like the original DK-iteration algorithm, the modified algorithm is not guaranteed to find the opti-

mal solution. This is illustrated by the controller obtained using the modified DK-iteration algorithm

which yield the point maxω µ∆̄(N
∞(jω)) = 0.68 and

∥∥N2
∥∥
2
= 342, this controller is less optimal than

KG both in terms of robustness and control allocation since KG yields maxω µ∆̄(N
∞(jω)) = 0.58

and
∥∥N2

∥∥
2
= 340.
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A Robust Dynamic Control Allocation Synthesis

Figure A.3: Closed-loop response of several controllers designed with the modified DK-iteration
algorithm. Blue curve show the response with a sampled uncertain system, the red
curve correspond to the nominal system.
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Appendix B

Solving a Model Predictive Control Problem

MPC is a control method that uses an internal representation of the system it controls to define

command by minimizing a control function and enforcing constraints. The internal model is used to

propagate or simulate the model over a finite horizon in the future: at time t, the internal model will

generate a sequence of inputs to apply to the system and enforce constraints over a time window

[t, t+ T ] called prediction horizon, only the first element of this sequence of input will actually be

used by the plant; at the next timestep t+ Ts, this process will be repeated over the time window

[t+ Ts, t+ Ts + T ]. Note that the time window over which the controller generates a sequence of

input is not always the same as the one used to enforce constraints; in this case, the controller uses

different control and prediction horizons.

The MPC shown in this chapter uses a nonlinear system as its internal model, its outputs are

computed by optimization methods and model is linearized during each timestep at the current state

x0 and the previous input u−1, if the model is defined by the state function ẋ = f(x, u) and output

function y = g(x, u), the linearized state-space is defined from the Jacobian matrices:

Ac =
∂f

∂x

∣∣∣
(x0,u−1)

, Bc =
∂f

∂u

∣∣∣
(x0,u−1)

, C =
∂g

∂x

∣∣∣
(x0,u−1)

, D =
∂g

∂u

∣∣∣
(x0,u−1)

(B.1)

Variables x̃k = xk − x0, ũk = uk − u−1 and ỹk denote the perturbed variables obtained after

linearization; x0, u−1, and y0 = g(x0, u−1) are the linearization points. Moreover, ỹref is defined

as ỹref = yref − y0. The MPC is a discrete-time controller and the model it is designed upon

needs to be discrete-time. The continuous-time state-space (Ac, Bc, C,D) can be discretized into the

discrete-time state-space system (A,B,C,D). Assuming a sampling time Ts and that the control

185



B Solving a Model Predictive Control Problem

input uk is kept constant over the sampling time, the discrete-time state space can be obtained from

the following transformation:

A = eAcTs , B =

Ts∫
0

Bce
Acτ dτ (B.2)

The following equation describes the MPC control problem, penalizes the tracking error, actuator

use, and actuator rate of change and is subject to actuator bounds constraints and polytopic

constraints on the states xk and inputs uk. Variables Nt and Np refers to the control and prediction

horizon and Nt ≤ Np. After the control horizon, the control input are kept constant, possibly at

a non-zero value, i.e. ∀k ≥ Nt, uk = uNt−1 or equivalently ũk = ũNt−1. To simplify the notations,

only the timestep within the receding horizon is indicated, the time at which the horizon starts is

not shown, all variable refers to the timestep within the receding horizon starting at time t with the

exception of u−1 which refers to the value of u at the first timestep of the previous receding horizon

starting at t− Ts. The timestep at which the receding horizon starts is not indicated. The MPC

problem is written as follows,

arg min
(ũk)k∈J0,N−1K

Np−1∑
k=0

||yk − yref ||2Qe
+

Np−1∑
k=0

||uk||2Ru
+

Nt−1∑
k=0

||∆uk||2R∆u
(B.3)

subject to: x̃0 = 0 (B.4)

x̃k = xk − x0, ũk = uk − u−1, ỹk = yk − y0 ∀k ∈ J0, Np − 1K (B.5)

x̃k+1 = Ax̃k +Bũk ∀k ∈ J0, Np − 1K (B.6)

ỹk = Cx̃k +Dũk ∀k ∈ J0, Np − 1K (B.7)

∆uk = uk − uk−1 ∀k ∈ J0, Np − 1K (B.8)

umin ≤ u−1 + ũk ≤ umax ∀k ∈ J0, Np − 1K (B.9)

Ax(x0 + x̃k) +Au(u−1 + ũk) ≤ b ∀k ∈ J0, Np − 1K (B.10)

uk = uNt−1 ∀k ≥ Nt (B.11)

To solve the MPC problem, it is reformulated as a standard quadratic programming problem using

the batch approach whose decision variables are the control inputs uk over the control horizon. The

problem can then be solved using a QP solver. In this work, the solver qpOASES is used [113], [114],
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it is based on the online active set strategy [115]. The following paragraphs show how to express the

cost function and the constraints as a function of the initial state x̃0 and the sequence of control

inputs over the control horizon ũ.

It is convenient to stack the sequence of states, inputs and inputs rate of change over the control

and prediction horizons to define the following vectors:

x̃T =

[
x̃T0 . . . x̃TNp−1

]
, ũTp =

[
ũT0 . . . ũTNp−1

]
, (B.12)

ũT =

[
ũT0 . . . ũTNt−1

]
, ∆uT =

[
∆uT0 . . . ∆uTNt−1

]
(B.13)

The input rate of change ∆uk = uk − uk−1 can be rewritten in terms of the perturbed variables

∆uk = ũk− ũk−1 since the linerization point does not change. Moreover, the controls are constrained

to be constant after the control horizon. Thus, the sequence of control signals over the prediction

horizon ũp and the sequence of input rate of change ∆u can be expressed as function of the sequence

of control signals over the control horizon ũp as follows,

ũp =



INu 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

... 0 INu

... 0
...

0 · · · 0 INu


︸ ︷︷ ︸

Sũp

ũ, ∆u =



INu 0 · · · 0

−INu

. . . . . .
...

0
. . . . . . 0

...
. . . −INu INu

... 0 0

...
...

...

0 · · · 0 0


︸ ︷︷ ︸

S∆u

ũ (B.14)

The sequence of states over the prediction horizon can be computed from the initial state and
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B Solving a Model Predictive Control Problem

sequence of input over the prediction horizon from the state update equation (B.6).

x̃ =



INx

A

...

ANp−1


︸ ︷︷ ︸

Sx

x̃0 +



0 · · · · · · 0

B
. . .

...

AB
. . . . . .

...
...

. . . . . . 0

ANp−1B · · · AB B


︸ ︷︷ ︸

Su

ũp (B.15)

Sũp is NuNp×NuNt, S∆u is NuNp×NuNt, Sx is NxNt×Nx and Su is NxNp×NuNp. Using (B.14)

to express ũp as function of ũ, the above equation can be rewritten as x̃ = Sxx̃0 + S̄uũ where

S̄u = SuSũp .

Plugging (B.7) in the cost function and substituting uk by ũk + u−1 leads allows to reformulate

the cost function J as follows,

J =

Np−1∑
k=0

[
x̃Tk ũTk

]CTQeC CTQeD

DTQeC DTQeD +Ru


x̃k
ũk


+

Np−1∑
k=0

[
−2ỹTrefQeC −2ỹTrefQeD + 2uT−1Ru

]x̃k
ũk


+

Nt−1∑
k=0

∆uTkR∆u∆uk +

Np−1∑
k=0

uT−1Ruu−1 (B.16)

The last term of the cost function is constant and can be ignored. Introducing the following

matrices,

Q̄ = blockdiag(CTQeC, . . . , C
TQeC)

R̄u = blockdiag(DTQeD +Ru, . . . , D
TQeD +Ru)

R̄∆u = blockdiag(R∆u, . . . , R∆u)

T̄ = blockdiag(CTQeD, . . . , C
TQeD)

F Tx =

[
−2ỹTrefQeC . . . −2ỹTrefQeC

]
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F Tu =

[
−2ỹTrefQeD + 2uT−1Ru . . . −2ỹTrefQeD + 2uT−1Ru

]

where Q̄ is NxNp ×NxNp, R̄u is NuNp ×NuNp, R̄∆u is NuNp ×NuNp, T̄ is NxNp ×NuNp, Fx is

NxNp × 1, and Fu is NuNp × 1, the cost function can be reformulated as follows,

J =

[
x̃T ũTp

] Q̄ T̄

T̄ T R̄u


 x̃

ũp

+

[
F Tx F Tu

] x̃

ũp

+∆uT R̄∆u∆u (B.17)

Using ũp = Sũpũ, ∆u = S∆uũ, and x̃ = Sxx̃0 +Suũp from (B.14) and (B.15) to substitute x̃, ũp,

and ∆u in the cost function (B.17) allows to express it only as a function of the initial state and of

the sequence of control inputs.

J =

x̃0
ũ


T  STx Q̄Sx STx (Q̄S̄u + T̄ S∆u)

(Q̄S̄u + T̄ S∆u)
TSx S̄Tu Q̄S̄u + STũp T̄

T S̄u + S̄Tu T̄ Sũp + R̄


x̃0
ũ


+

[
F Tx Sx F Tx S̄u + F Tu Sũp

]x̃0
ũ

 (B.18)

where R̄ = STũpR̄uSũp + ST∆uR̄∆uS∆u.

Moreover, inequality and equality constraints can also be reformulated as constraints on ũ using the

matrices Sx and Su. Indeed, inequalities constraints are written as ∀k ∈ J0, N − 1K, Axx̃k +Auũk ≤

b̃ = b−Axx0 −Auu−1. Defining the following matrices

Āx = blockdiag(Ax, . . . , Ax) (B.19)

Āu = blockdiag(Au, . . . , Au) (B.20)

b̄T =

[
b̃T . . . b̃T

]
(B.21)

where Āx is NineqNp×NxNp, Āu is NineqNp×NuNp, and b̄ is NineqNp× 1 with Nineq the number

of polytopic constraints.

The polytopic constraints over the prediction horizon can be written as Āxx̃ + Āuũ ≤ b̄. This

yields:

(ĀxS̄u + ĀuSũp)ũ ≤ b̄− ĀxSxx̃0 (B.22)
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B Solving a Model Predictive Control Problem

Finally, since the MPC problem sets the perturbed initial state x̃0 to 0, its formulation as a QP

problem can be simplified as follows,

arg min
ũ

1

2
ũH̄ũ+ F̄ T ũ (B.23)

subject to: ũmin ≤ ũ ≤ ũmax (B.24)

Āũ ≤ b̄ (B.25)

where

H̄ = 2(S̄Tu Q̄S̄u + STũp T̄
T S̄u + S̄Tu T̄ Sũp + R̄) (B.26)

F̄ = S̄Tu Fx + SũTp Fu
(B.27)

Ā = ĀxS̄u + ĀuSũp (B.28)

ũmin =


umin − u−1

...

umin − u−1

 and ũmax =


umax − u−1

...

umax − u−1

 (B.29)

The previous QP problem has NuNt optimization variables which are the controls inputs over

the control horizon and is subject to NuNt bound constraints on the control inputs in addition to

NineqNp polytopic constraints on the control inputs.

B.1 Soft Constraints and Slack Variables

Soft constraints are implemented by using slack variables denoted as ϵ, which will be considered as

additional optimization variables.

In order to implement soft constraints, two steps are required:

• The inequality constraints Axx̃k +Auũk ≤ b is replace by Axx̃k +Auũk −Asϵ ≤ b.

• The slack variables are highly penalized in the cost function: J ← J +ρϵ2 where ρ is a positive

constant.

• Optionally, the value of the slack variables can be lower bounded by 0.
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B.2 Slew Rate Constraints

Using the batch approach, the first condition can be enforced by modifying the inequality constraints

of the optimization problem:

Āũ− Āsϵ ≤ b̄ (B.30)

where Ās is a matrix of 1 and 0 used to add the slack variables on the desired inequalities.

Finally, the cost function need to be modified to add the slack variables. The modified optimization

problem becomes

arg min
ũ

[
ũ ϵ

]H̄ 0

0 ρI


ũ
ϵ

+

F̄
0


T ũ

ϵ

 (B.31)

subject to:

ũmin

0

 ≤
ũ
ϵ

 ≤
ũmax

∞

 (B.32)

[
Ā Ās

]ũ
ϵ

 ≤ b̄ (B.33)

B.2 Slew Rate Constraints

Slew rate constraints are formulated as ∀k ∈ J0, Nt − 1K, ∆min ≤ ∆uk ≤ ∆max where ∆uk =

uk − uk−1 = ũk − ũk−1. In a matrix form, it gives



INu 0

−INu

. . .

. . . . . .

0 −INu INu

−INu 0

INu

. . .

. . . . . .

0 INu −INu



ũ ≤



∆max

...

∆max

−∆min

...

−∆min


(B.34)
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