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ABSTRACT: A method for the direct methylation of aryl,
heteroaryl, and vinyl boronate esters is reported, involving the
reaction of iodomethane with aryl-, heteroaryl-, and vinyl-
boronate esters catalyzed by palladium and PtBu2Me. This
transformation occurs with a remarkably broad scope and is
suitable for late-stage derivatization of biologically active
compounds via the boronate esters. The unique capabilities of
this method are demonstrated by combining carbon−boron
bond-forming reactions with palladium-catalyzed methylation
in a tandem transformation.

Although a methyl group is the smallest alkyl group, the
presence or absence of this group in a molecule can have

a large effect on the medicinal activity of a compound.1 The
methyl group can affect the solubility (by influencing
conformation),2 selectivity for one protein over another3 and
metabolic half-life,4 among other properties.5 In an extreme
example, a 208-fold increase in potency of an inhibitor of p38α
MAP3 kinase (5) was observed upon simple methylation
(Figure 1).2a This large effect of the small methyl group has
recently been coined the “magic methyl effect.”1a,b

Because pharmacaphores commonly contain aromatic or
heteroaromatic units and because the simple reaction of aryl
organometallic reagents with methyl electrophiles generally
occurs in moderate yields,6 mild, catalytic methods to attach
methyl groups to arenes and heteroarenes are particularly
important to develop. The classic strategies for methylation of

aromatic and heteroaromatic compounds rely in many cases on
either a lithium−halide exchange or an ortho-metalation of the
corresponding aryl halide, followed by trapping with a methyl
electrophile, such as methyl halides, triflates, or tosylates.7 Of
course, this sequence requires the absence of auxiliary
electrophilic and protic functional groups. Alternatively,
addition of methyl radicals to arenes or heteroarenes can
lead to the corresponding methyl derivatives. A protocol
developed by Minisci and co-workers for methylation of
electron-deficient hetereoarenes with methyl radicals leads to
reaction at the electron-poor positions.8 Minisci-type C−H
functionalizations conducted with photoredox catalysts and
peroxo sources9 or methanol10 to form methylated hetero-
arenes have been reported recently11 with similar regioselec-
tivity.
Reactions catalyzed by transition-metal complexes that form

carbon−carbon bonds also can be used to prepare methyl-
arenes and -heteroarenes. Most common is the coupling of aryl
halides with a methyl nucleophile. Those couplings (X = Hal,
OTf) have typically been conducted with magnesium,12 tin,13

boron,14 zinc,15 or aluminum16 reagents. Alternatively,
methylation at a C−H bond catalyzed by a transition-metal
complex directed by coordinating functionality has been
reported.17

The coupling of an aryl nucleophile with a methyl
electrophile is much less developed than the coupling of aryl
electrophiles with methyl nucleophiles. The most valuable of
such a reaction would occur with arylboronates, particularly
arylboronate esters that are more stable than the correspond-
ing boronic acids and can be formed by C−H bond
functionalization. The coupling of arylboronic acids was first
reported by Gooßen and co-workers,18a but these reactions
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Figure 1. (a) Examples of drugs containing carbon-bound methyl
groups being important for their bioactivity. (b) An example for the
magic methyl effect.

Letter

pubs.acs.org/OrgLettCite This: Org. Lett. 2019, 21, 1337−1341

© 2019 American Chemical Society 1337 DOI: 10.1021/acs.orglett.9b00025
Org. Lett. 2019, 21, 1337−1341

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
L

IF
O

R
N

IA
 B

E
R

K
E

L
E

Y
 o

n 
Ju

ly
 9

, 2
01

9 
at

 2
3:

12
:1

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/OrgLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.9b00025
http://dx.doi.org/10.1021/acs.orglett.9b00025


occurred in modest yield with limited scope, and published
reactions of arylboronic esters have been conducted with a
large excess of the boron reagent, which would typically be the
most valuable component.18b More recent methodologies
reported by us18c and other groups18d rely on copper catalysts.
However, applicable palladium-catalyzed solutions remain
undeveloped.
We report a straightforward palladium-catalyzed methylation

of aryl and heteroaryl boronate esters with methyl iodide and
abundant and easily accessible boron sources. The reactions
occur with low catalyst loadings, under mild conditions, with
excellent functional-group tolerance, and with a simple
reaction procedure that would be easily scaled. This method
was successfully applied to late-stage derivatization of active
pharmaceutical ingredients and, when combined with C−B
bond-forming reactions, provides access to methylated
compounds directly from arenes, heteroarenes, or acetylenes.
Several aspects of the reactivity of alkyl halides makes the

development of coupling reactions with methyl iodide more
complex that one might expect. Palladium complexes undergo
oxidative addition and reductive elimination of alkyl halides
more slowly than they undergo addition of aryl halides,19 and
methyl electrophiles can react with phosphines to form
phosphonium salts20 that would poison the catalyst. However,
sterically hindered phosphines should undergo alkylation more
slowly than less hindered phosphines, and strongly electron-
donating phosphines should cause oxidative addition to be
fast.21

Initial studies to develop synthetically useful conditions for
the methylation of arenes and heteroarenes were conducted by
exposing CH3I and the pinacolboronate of benzoxazole 6a,
which is accessible by Ir-catalyzed C−H borylation of 2-
methylbenzoxazole,22 to a series of reaction conditions (Table
1).23 The methylation product was obtained in only 48% yield
under the conditions initially reported by Suzuki and co-
workers (entry 1). The methylation process under these
conditions was accompanied by the formation of large

amounts of arene side product (27%) by protodeboronation.
Variation of the conditions to improve this yield showed that
the identity of the solvent was crucial to suppress the
protodeboronation to form 6ab. Among various protic and
aprotic polar solvents we tested (see the Supporting
Information for details), reactions using the sterically hindered
tert-amyl alcohol occurred in the highest yield (entry 2).
Studies of the effect of the palladium precursor and studies that
evaluated several classes of ligands showed that reactions
catalyzed by combinations of bulky alkylphosphines and
[Pd(OAc)2] as a catalytic precursor occurred in high yields,
and the reaction catalyzed by PtBu2Me occurred in a high 92%
yield (entry 3). Reactions conducted with palladacycle A
containing this phosphine as the palladium source occurred in
similar yields with a lower catalyst loading. Under the
conditions of entry 5 with a catalyst loading of only 1.0 mol
%, the methylated compound formed in 94% yield (entry 5).
The scope of the reactions with a range of benzo-fused five

membered heteroarylboronates (6a−z), which are important
for medicinal or agrochemistry, is shown in Scheme 1. The

scope of the reactions with a range of heteroarylboronates
(6a−z), which are important for medicinal or agrochemistry, is
shown in Scheme 1. Reactions of such substrates derived from
(di)benzofurans, (di)benzothiophenes, carbazoles, indoles,
indazoles, furans and pyrazoles occurred in good to excellent
yields.

Table 1. Optimization of the Reaction Conditionsa

entry catalyst (mol %) solvent
yield (6a)
(%)b,c

yield (6ab)
(%)b

1 [Pd2(dba)3] (2.5),
P(o-tolyl)3 (10)

DMF/H2O
(9:1)

48 27

2 [Pd(OAc)2] (5),
P(o-tolyl)3 (10)

TAA 75 1

3 [Pd(OAc)2] (5),
PtBu2Me (10)

TAA 92 <1

4 A (5) TAA 95 <1
5 A (1) TAA 94(91) <1

aReaction conditions: Boronate ester (0.5 mmol), KOtBu (0.6
mmol), MeI (1.0 mmol), cat. [Pd], solvent (0.1 M) at 65 °C, 18 h.
bYield was determined by GC using n-dodecane as the internal
standard. cValue in parentheses is the yield of the isolated product.
dReaction performed with K2CO3 (2.0 equiv). Bpin = pinacolboro-
nate, dba = dibenzylideneacetone, TAA = tert-amylalcohol.

Scheme 1. Methylation of Heteroaryl Boronate Estersa,b

aYield of isolated product. bValue in parentheses is the yield
determined by 1H NMR spectroscopy (using 1,3,5-trimethoxyben-
zene as internal standard). cReaction at 100 °C with 5.0 mol % of A.
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The methylation of a series of aryl boronates containing a
variety of substituents under the developed conditions are
shown in Scheme 2. A wide range of functional groups in the

starting material, including an alkoxy, thioalkoxy, formyl,
carbamoyl, alkoxycarbonyl, cyano, nitro, trifluoromethyl,
fluoro, or chloro group near the reaction site, as well as a
heteroaryl substituent, were tolerated. In each case, the
methylated product was obtained in excellent yield (7a−n).
Furthermore, the conditions we developed for the methylation
of pinacolate esters also induced the methylation of boronic
acids and other commonly available boronic acid derivatives
(Scheme 3).

In addition to the methylation of aryl and heteroarylboro-
nates, the methylation of vinyl boronate esters occurred in high
yield with substrates bearing aromatic, heteroaromatic, or
aliphatic moieties connected to the double bond (8a−h;
Scheme 4). These reactions enabled the stereoselective
synthesis of trisubstituted double bonds (8g and 8h) in high
yield, while retaining the E or Z configuration of the alkene
unit. Classical approaches to prepare trisubstituted alkenes in
which one of the groups is a methyl group typically involve

multiple synthetic operations and occur with moderate
stereoselectivity.24

Having established the exceptional functional-group toler-
ance and broad scope of arenes and heteroarenes, we assessed
the methylation process for the late-stage derivatization of
active pharmaceutical ingredients and pharmaceutical candi-
dates (9a−h; Scheme 5). Indeed, methylation of the eight
pinacolboronates in Scheme 5 derived from active pharma-
ceutical ingredients occurred in good to excellent yields.

The value of this process is further demonstrated by
combining the methylation with C−B bond-forming reactions.
These C−B bond-forming reactions include iridium-catalyzed
C−H borylation of arenes and heteroarenes,25 as well as
stereoselective hydroboration,26,27 and carbaboration of
alkynes (Scheme 6).28 A two-step processes involving
generation of an aryl or heteroaryl boronate ester and
methylation of the boronate intermediate in one pot without

Scheme 2. Methylation of Heteroaryl Boronate Estersa

aYield of isolated product.

Scheme 3. Methylation of Various Boronic Acid
Derivativesa

aReaction conditions: Boronate ester (0.5 mmol), KOtBu (0.6
mmol), MeI (1.0 mmol), A (1.0 mol %), tert-amylalcohol (0.1 M) at
65 °C, 18 h. bYield of isolated product. cRatio was determined by GC.

Scheme 4. Methylation of Vinyl Boronate Estersa

aYield of isolated product. bReaction with 5.0 mol % of A.

Scheme 5. Late-Stage Methylation of Complex and
Bioactive Moleculesa

aYield of isolated product. bReaction with the B(neop) precursor.
cReaction performed in 0.2 mmol scale.
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purification of the boronate provided methylated arenes (7l)
and heteroarenes (1b and 10) in good yield, including two
examples on the 700 mg to gram scale. Likewise, the
stereoselective hydroboration of terminal or internal alkynes,
followed by subsequent methylation, led to (E)-alkenes (8b
and 8d) selectively, and the regioselective carboboration of
terminal alkynes, followed by palladium-catalyzed methylation
of the resulting vinylboronate, generated a trisubstituted
methylalkene (8h) with high stereoselectivity in good yield,
directly from its corresponding alkyne.
In conclusion, an efficient method for the methylation of

arylboronic acid esters has been developed with CH3I as the
source of the methyl group under mild conditions. The
methylation proceeds with high functional-group compatibility
and a broad scope of arenes, heteroarenes, and alkenes and is
suitable for late-stage functionalization of complex structures.
Sequential, one-pot processes allow the methylation of arenes,
heteroarenes, and alkenes to occur through aryl or vinyl
boronate ester intermediates generated in situ.
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