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Improving mechanistic understanding and prediction capabilities of long-term organic soil system

dynamics is a high priority for biogeochemists, soil scientists, and climate policy researchers who

aim to reduce uncertainty regarding changes in the global trajectory of soil carbon sequestration

and emissions. While popular “black box” machine learning and classical statistics approaches

including XGBoost, LSTM, and ARIMA have been demonstrated to be effective and efficient for

time series forecasting, they are not designed to inform on the physical processes underlying a data

generating process. Instead, we can turn to soil biogeochemical models, also known as soil carbon

models, to jointly predict and falsify soil dynamics. Soil biogeochemical models are formulated

to simulate the microbe-driven movement of organic elements between terrestrial pools of soil

organic matter. As dynamical systems, they provide an avenue to mathematically translate and

formalize hypotheses about soil system mechanics into parameterized differential equations.

If we assume that soil biogeochemical models superior at describing empirical soil measurements

more closely represent the actual data generating processes, we can surmise that models better

at fitting data under biologically realistic parameter regimes are more useful for forecasting pur-

poses; mismatch to data can suggest a need to reparameterize or restructure a model. However,

the determination of statistical frameworks that can rigorously assess the capability of models

to assimilate observations under compute time and resource limitations remains an open and
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unsettled issue. On this note, we will first expound on soil biogeochemical models in greater

detail and motivate the use of Bayesian statistical methods as a means of model fitting and pa-

rameter inference while incorporating expert uncertainty and beliefs across the first two chapters

of this interdisciplinary dissertation. Subsequently, we will demonstrate the use of a contempo-

rary inference algorithm to assimilate two models with the same data set and then compare their

goodness-of-fit quantified with Bayesian information criteria and cross-validation metrics. Finally,

in the remaining chapters, we will trial the ability of two novel Bayesian soil biogeochemical model

inference schemes offering improved computational efficiency to recover observations and param-

eter values of known synthetic data generating processes and evidence algorithm functionality

worthy of future exploration.
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CHAPTER 1

An Overview of Soil Carbon Emissions and

Soil Biogeochemical Models

1.1 General background

Without further international policy intervention, the Intergovernmental Panel on Climate Change

(IPCC) estimates in their landmark Fifth Assessment Report that under their “Business-as-Usual”

emissions scenario, called Representative Concentration Pathway 8.5 (RCP8.5), global mean

temperature could rise by almost 5 °C over pre-Industrial baselines by 2100 (Pachauri et al.,

2014). More extreme scenarios assuming further breakdowns in negative climate feedbacks posit

even larger temperature increases over 8 °C (Schneider et al., 2019; Steffen et al., 2018). Warming

substantially beyond a debated “safer limit” of 2 °C by the end of the century, which is highly

likely (Armstrong McKay et al., 2022; Kemp et al., 2022; Lenton et al., 2019; Raftery et al.,

2017), would accelerate the ongoing biodiversity extinction crises to a point where even human

existence teeters in the face of societal collapse (Ehrlich and Ehrlich, 2013; Ord, 2020; Richards

et al., 2021).
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As demonstrated by the recent passage of the Inflation Reduction Act of 2022 in the United

States that provisioned funds for climate initiatives, there have been modest shifts in various

national policies away from RCP8.5 and “Business-as-Usual” assumptions (Pielke and Ritchie,

2021). However, governmental progress on climate mitigation remains far too incremental to

correspond to immediate emissions improvements (Berrang-Ford et al., 2021; Nascimento et al.,

2022; Peters et al., 2020; Steffen et al., 2018), and in the face of limitations in data availability

and forecasting methods, it is uncertain how much these modest improvements can ultimately

stem warming below catastrophic thresholds (Kemp et al., 2022; Meng et al., 2021; Otto et al.,

2015; Palmer and Stevens, 2019; Pedersen et al., 2020; Sognnaes et al., 2021).

Part of the extensive uncertainty in temperature increase outcomes relates to the unknown of

how climate feedbacks influenced by soil microbes will respond to policy shifts, land-use change,

acidification, and warming itself, among other factors (Armstrong McKay et al., 2022; Beillouin

et al., 2022; Bradford et al., 2016; Friedlingstein et al., 2014; Holden et al., 2018; Luke and

Cox, 2011; Raza et al., 2021; Schaphoff et al., 2013; Shi et al., 2018; Varney et al., 2020). Soil

organic carbon (SOC) constitutes the largest terrestrial pool of carbon (C) (Scharlemann et al.,

2014), and a shift in soil microbe populations and activity could switch the pool from a C sink

to a massive C source contributing to a runaway “Hothouse” climate change regime (Armstrong

McKay et al., 2022; Crowther et al., 2016; Hicks Pries et al., 2017; Steffen et al., 2018; Zomer

et al., 2017). It is thereby of utmost importance to climate scientists and policy makers that we

can model and predict soil microbe responses and C sequestration capacity with more certainty.
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1.2 Soil biogeochemical models offer interpretable mech-

anistic prediction of soil system dynamics

Accurate prediction and mechanistic understanding of biological soil systems are both critical for

guiding the implementation of strategies targeting the preservation of SOC as a C sink. Non-

interpretable and non-dynamical machine learning models solely optimized for prediction typically

offer limited insights regarding system function. Hence, we turn to a class of models called

soil biogeochemical models (SBMs)—also known as soil C models—to generate falsifiable and

interpretable claims about organic soil system mechanics influenced by microbial activity and

predictions about SOC sequestration and heterotrophic soil CO2 efflux in tandem (Manzoni and

Porporato, 2009).

SBMs are dynamical systems. Dynamical systems broadly describe the evolution of one or more

state variables in response to changes in at least one domain variable. A tuple of state variable

values associated with a domain value can be referred to as a single multi-dimensional state or

point. If a dynamical system describing a physical or biological process only has one domain

variable, that system is described as being first-order in domain and its domain variable is typ-

ically time (Irwin and Wang, 2017; Strogatz, 2018). Some more complex dynamical systems

model state variable dependence on space in addition to time (or even more domains than that).

However, since SBMs by and large have been formulated solely with time dependency (Manzoni

and Porporato, 2009; Sierra and Müller, 2015), we will only discuss first-order dynamical systems

within the scope of this thesis (and not engage with the rare SBMs described by partial differential

equations).

Differential equations are frequently used as the type of function relating states to time (Strogatz,

2018). They are effective tools for describing dynamical systems with their organization of state

variable input into functions on the right hand side and the output of state variable derivatives
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with respect to the continuous progression of time on the left hand side. The constrained

translation and codification of system mechanics into the form a finite, precise set of differential

equations to formulate dynamical systems sources the interpretability of dynamical systems (Zhao

and Park, 2016). With specific regard to SBMs, differential equations additionally facilitate the

clear mathematical formalization and enforcement of five related biophysical properties associated

with organic soil systems (Sierra and Müller, 2015). These five properties are:

1. decomposition rate heterogeneity of different soil organic matter (SOM) types,

2. the tendency of SOM toward transformation through biochemical reactions and imperma-

nence,

3. substrate dependence of those reactions,

4. mass balance of those reactions,

5. and the existence of variable environmental influences external to the soil systen (e.g.

changing air temperatures and matter injections from aboveground vegetation).

Various notational conventions have been traditionally used to render state derivatives. Through-

out this thesis, we adhere to the derivative notation set forth by Gottfried Leibniz, where the

derivative of a variable x with regard to time is written as dx
dt . But, other notational schemes

commonly associated with dynamical systems include that proposed by Isaac Newton, where the

derivative of x is instead written as ẋ.

The state variables of SBMs are frequently assigned as C densities or masses held in SOM

pools (Manzoni and Porporato, 2009). Pools are a simplifying biogeochemistry modeling notion

assuming the presence of separate collections of soil organic matter in soil systems that can

grouped by homogeneous qualities such as equivalent decomposition rates. In empirical practice,

orderly isolation of separate pools within soil samples has been difficult to demonstrate, so the

conception of pools is controversial (Crow et al., 2007; Lajtha et al., 2014; Moni et al., 2012;
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Schmidt et al., 2011). Nonetheless, pool-based SBMs have been able to accurately replicate

observed soil system dynamics and phenomena (Manzoni and Porporato, 2009; Sierra and Müller,

2015).

While single pool models can reproduce empirical dynamics surprisingly well (Todd-Brown et

al., 2018), most SBMs have been formulated to be multi-dimensional in state to afford greater

capacity and flexibility in the ability of models to maintain the principles of decomposition rate

heterogeneity and environmental variability (P. Smith et al., 2020). The addition of more pools

and parameters enables the simulation of wider ranges of temporal responses and behaviors

(Manzoni and Porporato, 2009; Sierra and Müller, 2015). Furthermore, some SBMs have been

established to simulate the densities or masses of other non-C elements that are highly represented

in organic material including nitrogen (N) and phosphorous (P), but these models are also outside

the scope of this thesis, which will focus on C-only state variable models.

Up until the 2000s, almost all SBMs were parameterized with ordinary differential equation (ODE)

dynamical systems maintaining linear decay and mass transfer kinetics across all pools (Feller

and Bernoux, 2008; Manzoni and Porporato, 2009; Sierra and Müller, 2015). Under linear

decay assumptions, pool decomposition is determined by singular rate parameters invariant to

pool densities (Allison et al., 2010; Berardi et al., 2020). Prominent linear SBMs include the

CENTURY model along with its variants (Lawrence et al., 2019; Parton, 1996; Parton et al.,

1987), one of which is a constituent part of the fifth version of the coupled Community Earth

System Model. Other established examples of linear SBMs include the DNDC (C. Li et al., 1992)

and RothC models (Jenkinson and Rayner, 1977). A simplified treatment of linear decay SBMs

is presented in Allison et al. (2010) as the so-called conventional model (CON).

Individual differential equations describing a dynamical system belonging to the class of linear
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decay SBMs can be customarily written as

dC1

dt
= I1(t)− k1(t) · C1 +

∑
i∈D−{1}

(T1,i(t) · ki(t) · Ci) (1.1)

dC2

dt
= I2(t)− k2(t) · C2 +

∑
i∈D−{2}

(T2,i(t) · ki(t) · Ci) (1.2)

... (1.3)

dC𝒹

dt
= I𝒹(t)− k𝒹(t) · C𝒹 +

∑
i∈D−{𝒹}

(T𝒹,i(t) · ki(t) · Ci) (1.4)

D = {1, 2, ...,𝒹} is the set of integers indexing the SOM pool C density state variables of an

SBM, where 𝒹 denotes the final state dimension. We use the notation, D − {j}, where j ∈ D,

to signify the subtraction of element j from the set. Ij in each equation indicates optional

exogenous C input into each pool (e.g. C from surface vegetation litter decomposition external

to the soil system) and can be specified as a constant or the output of a time-variant function.

The negative kj ·Cj term is the key expression that mathematically prescribes the linear decom-

position (and ensuing element mass transfer) of state Cj. In establishing decomposition, the

equations enshrine adherence of an SBM to the properties of SOM impermanence, decay rate

heterogeneity, substrate dependence, and mass balance. kj∈D are the decay rate parameters,

which can be modeled as constants, but are typically defined to be the output of time-dependent,

season-dependent, temperature-dependent, moisture-dependent or other-factor-dependent func-

tions modifying baseline “reference” parameter values to then honor the environmental variability

principle.

The summation term in every equation encompasses endogenous (i.e. system-internal) C input

into a pool drawn from C exiting other pools. It is biochemically unrealistic and inaccurate

to assume complete absorption and recycling of decomposed matter into news pools. Partial

input is executed in SBMs through the deployment of T transfer fractions, which are constant

model parameters or function outputs on the interval [0, 1] that ration out pool uptake through
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multiplication. T are also referred to as partition fractions or transfer coefficients.

The above individual equations can be consolidated into matrix and vector notation as

dC
dt

= I(t) + T (t) ·K(t) · C (1.5)

where C = [ C1 C2 ... C𝒹 ]
⊺ is now a multidimensional state vector and I(t) = [ I1(t) I2(t) ... I𝒹(t) ]

⊺.

T is a 𝒹 × 𝒹 matrix in which the index (i, i) ∀ i ∈ D elements down the matrix diagonal are

−1 to indicate complete loss of decomposed C from the pool (Sierra and Müller, 2015). The

non-diagonal elements of each T row are the transfer fraction constants or function outputs on

[0, 1] depicting the proportion of decomposed elements being absorbed by the pool corresponding

to that row; the appearance of a 0 element signals the inability of a pool to accept input from

some source. Finally, K is normally a diagonal-only matrix in which the (i, i) element denotes

the constant or environmentally-influenced decomposition rate of the ith pool.

As regulation of the decomposition and mass transfer of individual organic C pools is abstracted

and simplified into singular function outputs or parameters in these linear decay SBMs, they

are also commonly referred to in the field of biogeochemistry as “microbial-implicit” models

(Schimel, 2001; Wieder, Allison, et al., 2015). Meanwhile, SBMs that mechanistically describe

C decomposition with more biologically realistic and mathematically sophisticated rate-limited

functions acknowledging enzyme catalyses kinetics are called “microbial-explicit” models (Allison

et al., 2010; Schimel, 2001; Tang, 2015; Tang and Riley, 2013; Wieder, Grandy, Kallenbach,

Taylor, et al., 2015).

These microbial-explicit models represent the decomposition of at least one pool and result-

ing endogenous C uptake into one or more other pools with nonlinear, state-variant functions

which, through the present, have typically been multiplicative or Michaelis-Menten in nature (Al-

lison et al., 2010; Blagodatsky et al., 2010; J. Li et al., 2014; Manzoni and Porporato, 2007;

Schimel and Weintraub, 2003; Shi et al., 2018; Sinsabaugh and Follstad Shah, 2012; Sulman
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et al., 2014; G. Wang et al., 2013; Y. P. Wang et al., 2014; Wieder, Grandy, Kallenbach, and

Bonan, 2014; Wieder, Grandy, Kallenbach, Taylor, et al., 2015; Zelenev et al., 2000). Michaelis-

Menten functions can in turn be subcategorized into expressions of original Michaelis-Menten,

reverse Michaelis-Menten, equilibrium chemistry approximation, or quadratic kinetics assumptions

(Tang, 2015; B. Wang and Allison, 2019). To notate SBMs in a manner that accommodates

heterogeneous systems featuring both linear and nonlinear decomposition, we can substitute K(t)

in (1.5) with the less specific multivariate functional operator F (C, t) such that

dC
dt

= I(t) + T (t) · F (C, t) · C (1.6)

In the subsequent thesis chapters, we will introduce relevant SBM systems in individual uncom-

pressed equation rather than consolidated matrix form for readability and interpretability purposes.

The dynamical systems we work with are small enough in dimensionality such that the verbosity

cost is tractable and manageable. The highest-dimensioned systems we will interact with are

from the nonlinear, microbial-explicit AWB family of systems, which have four state variables.

1.3 Employing Bayesian inference in model refinement

loops accounting for mechanistic uncertainty

The establishment of mechanistic models to account for the biophysics and kinetics underpin-

ning complex biological data-generating processes like soil systems brings substantial inductive

uncertainty, which is uncertainty derived from incomplete knowledge regarding system operations

(Pawitan, 2001). In contrast, in the unlikely chance that a model correctly and fully explains the

persistent dynamics governing a data-generating process, model uncertainty is entirely derived

from the expression of nonstandard, incidental influences during data-generation constituting

stochastic uncertainty (Pawitan, 2001). One common source of inductive uncertainty arises from
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the proposal of dynamics which are inconsistent with unelucidated environmental reality. Another

likely source is associated with the practical needs of modelers to make simplifying assumptions in

the conceptualization of model structure that promote computational tractability and feasibility

but diverge the model from the complexities of the true data-generating process. Parameters in-

troduced to ensure stability and constrain mathematical behavior of a model may either collapse

multiple biophysical processes into one or not correspond to any simple biological indicators. As

a result, model parameters frequently cannot be directly measured empirically, even if they are

interpretable with clear definitions.

Thus, parameter values most often cannot be directly measured and instead must be inferred and

calibrated based on information from data that can be practically observed. In the case of SBMs,

their parameters can ideally be inferred based on the comparison of observations of soil pool and

CO2 efflux measurements to model output. Recalling that SBM state variables are themselves

pool densities, CO2 is then typically defined for SBMs as a pool-dependent explicit algebraic

variable, which is a variable that is a function of one or more states. To clarify, explicit algebraic

variables (also termed as state-dependent observations in machine learning literature) are not

states themselves and their time derivatives do not correspond to the differential equations of a

system. Formulation of the CO2 function is frequently part of the SBM conceptualization process

(Manzoni and Porporato, 2009).

To collate an empirical data set that is suitable for parameter inference, the inclusion of CO2

soil efflux observations is usually essential. It is hard and labor-intensive to physically isolate and

directly measure SOC and harder still to measure the densities of other model SOM pools that are

even less tightly delimited than SOC, so applicable pool observations from individual longitudinal

soil experiments are normally in short supply (P. Smith et al., 2020). On the other hand, being

a specific compound rather than an amorphously classified pool of molecules, CO2 is are easier

to quantify and record. An extensive set of literature and experimental techniques exists that

documents procedures for separating CO2 from soil gas emissions and then filtering captured
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CO2 by respiration source (e.g. autotrophic versus heterotrophic respiration, mycorrhizal versus

free-living microbe respiration) (Lankreijer et al., 2003; Moore et al., 2015; P. Smith et al., 2008;

P. Smith et al., 2010). Thus, supplementing sparse pool measurements with denser soil CO2 flux

observations can be instrumental for inferring and estimating parameters.

So, once a data set of soil respiration and pool observations has been compiled, how do we

algorithmically perform data assimilation (also called model-data integration, as in Bradford et

al. (2016)) to condition an SBM on that data and arrive at inference results that indicate the

likelihood of the model for serving as the data-generating process? For an approach that accom-

modates varying a priori certainty and biological realism constraints surrounding parameter value

ranges as a reflection on model beliefs and mechanistic inductive uncertainty, we can apply and

develop methods from the Bayesian paradigm of statistics.

The foundations of Bayesian statistics originated in large part from the seminal contributions

of James Bernoulli and Pierre-Simon Laplace to the philosophy and theories of probability from

the 16th and 18th centuries (Jaynes and Justice, 1986). Pierre-Simon Laplace is credited by

statisticians and historians with the formalization of what is now commonly known as Bayes’

theorem (Jaynes and Justice, 1986; Stigler, 1990), the all-important rock of Bayesianism that

anchors its methods and interpretations of probability. In adherence to Stigler’s Law of Eponymy,

which posits that scientific discoveries are rarely named after their originator (Stigler, 1980), we

note obviously that neither the name of the theorem nor the field bear Laplace’s name. Instead,

the name follows Thomas Bayes, who posthumously documented a special case of Bayes’ theorem

before Laplace’s independent rediscovery (Stigler, 1983).

Of course, Bayesian statisticians maintain a range of opinions and beliefs regarding appropriate

applications of Bayes’ theorem and do not unanimously agree on probability interpretations (Good,

1971). However, to preface with a non-rigorous summary of Bayesian methods and practioners,

they assume that model parameters are random variables distributed in some manner such that

models are inherently random and uncertain. Fixed data are used to update beliefs about the
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parameter distributions by matching model output to the data as closely as possible. This

procedure of matching is varyingly synonymized across different subfields and disciplines with the

verbs ‘fitting,’ ‘conditioning,’ ‘assimilating,’ ‘calibrating,’ ‘harmonizing,’ ’training,’ ‘integrating,’

and more, so some of these terms may accordingly be more familiar than others. We use these

verbs intercheageably in this interdisciplinary thesis. The initially proposed parameter distributions

are known colloquially as prior distributions or priors. The updated distributions are known as

posterior distributions or posteriors.

Hence, the Bayesian perspective of persistent model and model parameter randomness is con-

venient for SBM comparison and validation. It accommodates mechanistic and stochastic un-

certainty, which are in high supply for SBMs, as biogeochemical modelers are highly uncertain

about the correspondence between true data-generating and proposed model dynamics and the

potential influence of external environmental factors on top. In contrast, techniques and devo-

tees associated with the other dominant probabilistic viewpoint in statistics called frequentism

by default hold that data is a random variable sampled from a distribution, while parameters are

fixed and can be deduced in the long-run from repeated experiments and data samples. Under

frequentist probability interpretations, representation of model uncertainty is less straightforward.

Additionally, the time and labor costs of most soil experiments preclude repeatability in alignment

with long-run assumptions. Of course, this paragraph offers a pithy, simplified encapsulation of

the difference between Bayesianism and frequentism; one can start with Jaynes and Justice (1986)

and Stigler (1990) for deeper treatments on the debates inciting the two camps.

Figure 1.1 illustrates the basic nodes of a Bayesian SBM refinement and validation loop for a

single model stepping from dynamical system equation proposal to prior specification to posterior

estimation and so forth. Each node of this workflow is associated with a presently unresolved

cluster of questions and issues in the disciplines of biogeochemistry and soil science relating to

the construction of SBM evaluation testbeds to benchmark, troubleshoot, compare, and select

SBMs for predictive and mechanistic precision (Luo et al., 2016; Wieder, Allison, et al., 2015).
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Figure 1.1: A schematic depicting the SBM validation and refinement loop for a single model. We
assume the use of a vetted Bayesian inference algorithm; otherwise, the loop must be expanded to
acknowledge validation of the algorithm itself. In an ideal situation, enough empirical observations
exist for segmentation of the data non-overlapping training and testing sets. In practice, due to
the financial, temporal, and labor costs of conducting longitudinal soil manipulation experiments
and maintaining regular collection of measurements, data is limited and must be conserved for
effective model training (if even enough for that). With respect to the planning and design
of future experiments, we recommend that redundant data collection practices be prioritized as
much as resources allow to better facilitate train-test splits in data from experiment outset.

This dissertation makes a contribution to the exploration, informing, and motivation of best

practices linked to execution of the Figure 1.1 steps. In the next chapter, we survey recent de-

velopments in the quantification and formalization of soil ecosystems with mathematical models

including SBMs and establish areas of research need in the advancement of SBM-data integration.

In chapter three, we novelly demonstrate the use of a prominent Bayesian inference algorithm

called the No-U-Turn sampler to assimilate two different SBMs to a simple data set and compare

their predictive accuracy with contemporary Bayesian goodness-of-fit metrics. Finally, in chap-

ters four and five, we describe the implementation and validation of two novel SBM inference

algorithms drawn from the variational inference area of Bayesian statistics that leverage ma-
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chine learning approximation techniques for computational efficiency gain. This work can benefit

biogeochemists, soil scientists, climate modelers, and environmental policy-makers who seek to

effectively assess SBMs, construct compatible model-training data sets, evaluate predictions of

soil C sequestration and emissions, or design long-term soil experiments with SBM inference in

mind from the outset.
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CHAPTER 2

Advancing Quantitative Models of Soil

Microbiology, Ecology, and Biochemistry

2.1 Introduction

Soils host diverse biological communities, including plants, animals, and microbes. Together,

these communities provide benefits essential for ecosystem functioning and human well-being.

Decomposition of organic matter–primarily driven by microbes–regenerates nutrients that sup-

port plant growth in agricultural and unmanaged systems. In turn, plant growth and microbial

transformations of organic matter enhance soil carbon (C) sequestration that mitigates green-

house gas emissions from human activities.

At the same time, the biological services provided by soils are vulnerable to human-caused envi-

ronmental change (Cavicchioli et al., 2019; Jansson and Hofmockel, 2020). For example, there

is concern that global warming will stimulate metabolic activity in soils, weakening C sequestra-

tion and potentially turning soils into a net source of greenhouse gases (Davidson and Janssens,

2006). Given these concerns, soil microbes and biological processes are topics of intense research
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interest.

Improvements in sequencing technologies and other approaches for probing biological diversity

and functioning have led to rapid advances in fundamental knowledge of soil ecology (Bahram

et al., 2018). In parallel with these empirical advances, mathematical models of soil systems

have blossomed recently (Allison, 2017; Wieder, Allison, et al., 2015. Foundational models of soil

biogeochemistry developed during the 1980s and 1990s have been joined by a new generation of

biologically-inspired models starting in the early 2000s. Since then, these models have increased

in scale and complexity.

Still, there is room for additional model improvement and intellectual development. Large-scale

models struggle to replicate fundamental patterns in soil biogeochemical pools and fluxes (Todd-

Brown et al., 2014; Todd-Brown et al., 2013; Wu et al., 2018). Many of the most recent models

with updated biological mechanisms have not been tested extensively. The field of soil ecological

modeling has come a long way, but the pathway to addressing soil-relevant challenges with models

remains uncertain.

In an effort to elevate the relevance and impact of soil modeling, this chapter aims to summarize

the current state of the art while providing guidance for next steps to advance the field. We

discuss some of the main reasons for engaging in soil modeling and then review selected modeling

approaches from molecular to global scales. This review does not attempt to be exhaustive,

and we focus our attention primarily on advances from the past 5-10 years, especially since the

publication of Parton et al. (2015). The chapter concludes with recommendations for model-data

integration and future intellectual development.
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2.2 Justification for modeling

As with empirical approaches, soil scientists use models to address a range of different goals

and questions. Models play an important role in advancing fundamental understanding of soil

processes by representing concepts and mechanisms in a quantitative framework. For instance,

the priming effect is a common biological mechanism in soil whereby addition of fresh organic

matter stimulates, or “primes,” the decomposition of existing soil C that may be older and more

resistant to decay (Fontaine and Barot, 2005). Soil researchers have developed models that

represent this mechanism, thereby quantifying the magnitude and impact of priming effects in

soil systems (Guenet et al., 2016).

Models are also useful for generating hypotheses. Koven et al. (2015) used a depth-resolved

version of the Community Land Model (CLM4.5BGC) to simulate permafrost thaw and its effects

on ecosystem C balance. This version of the model is notable for incorporating fundamental

understanding of how soil processes vary with depth, a crucial concept in frozen soils with seasonal

changes in active layer thickness. Moreover, CLM4.5 represents nitrogen (N) dynamics which

likely play into carbon-climate feedbacks. In response to climate warming, the modeling study

of Koven et al. (2015) suggested that the positive effects of N release on C storage would be

outweighed by the negative effects of permafrost thaw and increased microbial metabolism with

soil warming. This outcome is a testable hypothesis that can be addressed with laboratory, field,

and global change experiments (Mack et al., 2004; Xue et al., 2016).

More broadly, models can help guide experimental work. A conceptual paradigm proposed by

Blankinship et al. (2018) calls for better integration between theory, models, and measurements.

This aim could be partially achieved by aligning modeled mechanisms and outcomes with exper-

imental data. For example, models of soil biogeochemistry include a wide array of pools ranging

from largely inert to mineral-associated organic matter and highly dynamic microbial biomass.

Aligning these pools with the chemical composition of real soils provides a rationale for exploit-
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ing cutting-edge organic matter fractionation and characterization approaches, such as nuclear

magnetic resonance (NMR), X-ray microspectroscopy, and pyrolysis mass spectroscopy (Kalbitz

et al., 2003; Lehmann et al., 2008; Quideau et al., 2005). Likewise, recent advances in mod-

eling microbial diversity can drive new approaches for analyzing sequencing and other datasets

that probe the functioning of microbial communities. Building a model can generate practical

guidelines for distilling, organizing, and processing the information contained in complex ‘omics

datasets.

Scaling is another relevant application of soil models (Allison, 2017; Wieder, Allison, et al.,

2015). Nearly all of the grand challenges facing soils at the global scale require knowledge of

emergent properties arising from smaller spatial scales and shorter time scales. At the molecular

level, cells exchange metabolites, enzymes catalyze reactions, and organic compounds interact

with mineral surfaces. At cellular to ecosystem scales, these molecular processes combine into

emergent biological properties such as growth and respiration. All the way up to the global

scale, biological systems interact with soil physical properties to determine outcomes like C and

nutrient balance. Modeling offers a quantitative, rational approach for representing key emergent

properties at ever-increasing scales. Nested sets of models can, for example, provide insight on

how Michaelis-Menten enzyme kinetics at the molecular level scale up to control organic matter

decomposition rates at the community scale (Tang and Riley, 2013; B. Wang and Allison, 2019).

Models are also the primary tool available to scientists for making predictions, particularly in

the context of global environmental change (Bradford et al., 2016; Todd-Brown et al., 2011).

In many studies, the goal of prediction complements other modeling aims such as advancing

fundamental understanding, generating hypotheses, and scaling up. Although predictions remain

highly uncertain, soil models offer the potential to apply empirical and theoretical advances to

simulate C and nutrient pools at the scale of the entire planet, decades or centuries into the

future. Such models can provide answers to scientists and decision makers concerned about the

future state of soils, such as their capacity to store C in the face of climate and land use change
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(IPCC, 2013). The increasing prominence of model outputs in IPCC reports and policy making

emphasizes that prediction as a relevant, if not always singular, goal of model development.

2.3 Modeling approaches

Across scales, including the ecosystem scale, differential equation models are often applied to track

soil biogeochemical pools and fluxes. Sierra and Müller (2015) described a general framework

for this type of soil model based on first principles of mass balance, substrate dependence, het-

erogeneity of decomposition rates, chemical transformations, variation in environmental drivers,

and interactions among soil pools. Nearly all existing models of soil biogeochemistry fit under

this general framework, allowing for rigorous comparison of model stability and mathematical

properties.

Differential equation models like RothC and Century emerged in the late 1970s and 1980s (Jenk-

inson and Rayner, 1977; Parton et al., 1988), embracing the principles of mass balance and

substrate dependence as envisioned by Olson (1963) with organic matter decaying in proportion

to its concentration. These models further included the principle of heterogeneity by representing

different pools of organic matter with different decay rates. Transfers among the pools were

allowed, following the principle of chemical transformations, and decay rates were functions of

temperature and moisture levels, consistent with the principle of varying environmental drivers.

Bosatta and Ågren (1985, 1999) generalized the principle of heterogeneous decomposition in their

theory of continuous organic matter quality which was intended to better reflect the complexity

and diversity of soil organic compounds.

Models like RothC and Century have some convenient mathematical properties, but they omit

the fundamental principle of interacting soil pools in the framework of Sierra and Müller (2015).

Commonly known as “linear” or “first-order,” differential equation models without complex depen-
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Figure 2.1: A) Conventional first-order linear model with microbial implicit transfers among pools.
B) Allison-Wallenstein-Bradford (AWB) model with microbial explicit interactions among pools
of soil organic carbon, dissolved organic carbon, microbial biomass, and extracellular enzymes.
Adapted from Allison et al. (2010).

dencies among pools can be readily represented in matrix form and solved analytically (Xia et al.,

2013). They also tend to be mathematically stable, meaning that pool sizes and fluxes do not

oscillate as the system returns to steady state following perturbation. Despite these advantages,

linear models simplify or omit mechanisms of interaction among organic matter pools, such as

the enzymatic degradation driven by microbial decomposers (Figure 2.1). Rather, the biological

roles of microbes in linear models are assumed to be “implicit” (Schimel, 2001).

An alternative approach to account for the principle of soil pool interactions is to make microbial

mechanisms mathematically “explicit.” The idea of microbial control over soil biogeochemical

processes dates back to at least Waksman (1927). In the late 1970s, O. L. Smith proposed a

complex model of soil microbial biogeochemistry that included many of the features described by

the general framework of Sierra and Müller (2015), but did not receive much attention (O. L.

Smith, 1979a, 1979b). More recently, there has been an explosion of microbially explicit model

development and applications (Abramoff et al., 2018; Allison et al., 2010; Fontaine and Barot,

2005; Schimel and Weintraub, 2003). Although they attempt to represent biological mechanisms

with higher fidelity, challenges remain with the stability, interpretability, and scaling of microbially-

explicit-models (Y. P. Wang et al., 2014). Efforts to analyze microbial processes with models at

different scales could help address some of these challenges (Allison, 2012; Kaiser et al., 2014).

19



Dynamical differential equation models are valuable for representing fundamental processes, but

predictive statistical models are a valuable alternative approach. Process-based models with

many differential equations require careful parameterization, otherwise they may be mathemati-

cally unstable or generate inaccurate predictions. If accurate prediction is the goal, rather than

representing mechanisms, statistical models can be very useful, assuming sufficient training data

are available. Rapid development of machine learning techniques has made it possible to ex-

trapolate soil properties across time and space based on training data and algorithms such as

neural networks and random forest. For example, this approach has been used to determine the

global age of soil C based on radiocarbon profiles (Shi et al., 2020) and map soil C stocks across

Scotland (Aitkenhead and Coull, 2016).

New approaches have started to combine features of process-based and probabilistic modeling.

Rather than representing explicit pools of C, the PROMISE model of Waring et al. (2020) tracks

the flow of individual C molecules through a heterogeneous soil system. Molecules undergo

transformations and movements based on soil parameters, proximity to microbes and enzymes, and

stochastic processes. In this way, molecules with different chemical properties vary in transit time

such that the total soil C pool contains a distribution of residence times. This modeling framework

requires relatively few assumptions and parameters while replicating emergent properties of soil

C more accurately than pool-based models. It also incorporates mass balance and interactions

among soil compounds, consistent with the six key principles identified by Sierra and Müller

(2015).
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2.4 Modeling across scales

2.4.1 Cellular/Molecular

Molecular interactions, both within and outside cells, underlie all soil biotic and abiotic processes.

Key interactions include metabolic pathways within microbial cells along with sorption/desorption,

enzymatic catalysis, and molecular diffusion outside of cells. Molecular-scale interactions between

organic molecules and soil minerals contribute to the physical protection of soil organic matter

(Schmidt et al., 2011), whereas extracellular enzyme activity catalyzes decomposition of polymeric

molecules (Burns et al., 2013). Many of these interactions are represented in models at larger

scales.

Metabolic pathways can be represented with flux balance models that simulate how specific sub-

strates are metabolized in microbial cells. In 13C metabolic flux analysis (13C-MFA), isotopic

labeling experiments provide models with information to estimate intracellular metabolic fluxes.

Together with 13C fingerprinting to pinpoint central metabolic pathways and RNA-seq to com-

plement the results of 13C-MFA, Varman et al. (2016) uncovered the lignin degradation pathway

of the bacterium Sphingobium sp. SYK-6. Environmental constraints and microbial community

interactions must also be considered when modeling microbial metabolism. Jansson and Hof-

mockel (2018) defined the term metaphenome as the product of microbial functions that are

expressed given abiotic and biotic environmental constraints. Flux balance models can be used to

determine how microbial metaphenomes will respond to different environmental conditions and

perturbations.

Information from molecular mechanisms can be used to quantify and better represent emergent

properties in models. Carbon use efficiency (CUE) describes the proportion of C converted to

microbial biomass and results from a combination of multiple metabolic processes. Hagerty et al.
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(2018) suggested modeling CUE explicitly to account for its dependence on microbial growth

and C allocation strategy, including costs from extracellular enzyme production and assimilation

efficiency. By representing these additional cellular processes, the accuracy of larger-scale models

with static CUE parameters could be improved.

Enzymes are biochemical catalysts involved in many molecular transformations that occur in soil

(Burns et al., 2013). Microbes secrete extracellular enzymes outside the cell to obtain resources

from complex biopolymers which are abundant in soils and litter. Given their role as bio-catalysts

targeting soil organic matter, extracellular enzyme activity represents a mechanism of interaction

between soil pools, namely microbial biomass and organic polymers. The Michaelis-Menten (MM)

equation describes this activity, which often represents the initial and rate-limiting step of micro-

bial decomposition. The MM equation predicts reaction velocity
(dC

dt

)
as a function substrate

concentration (C) based on two parameters: the maximum velocity (Vmax) at unlimited substrate

concentration and the half-saturation constant (KM), which is the substrate concentration at 1
2

Vmax:

dC
dt

=
Vmax · C
KM + C

Vmax and KM can be experimentally determined and used to parameterize models. German et al.

(2012) used experimental data on MM enzyme kinetics obtained from enzyme assays to build a

decomposition model and determine the temperature sensitivity of extracellular enzymes. They

found that both Vmax and KM are temperature-sensitive and the level of sensitivity is enzyme-

specific.

Michaelis-Menten theory was extended in the Dual Arrhenius Michaelis-Menten (DAMM) model

(Davidson et al., 2012). DAMM represents the interaction between Arrhenius and MM kinetics

at the scale of enzyme active sites to predict CO2 production from soil. The model accounts for

temperature, moisture, and oxygen limitation effects on the metabolism of soluble C substrates.
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Model predictions aligned well with laboratory measurements of extracellular enzyme activity at

different temperatures and field measurements of soil respiration across seasons. DAMM was later

extended to incorporate microsite variation in substrate concentrations and applied to predict not

only soil respiration but also CH4 and N2O fluxes (Sihi et al., 2020).

The Reverse Michaelis Menten (RMM) and Equilibrium Chemistry Approximation (ECA) equa-

tions have also emerged as additional options to explicitly model enzyme kinetics (Moorhead and

Weintraub, 2018; Tang, 2015). The RMM equation describes the reaction velocity as a function

of enzyme concentration (E) where KE is the enzyme concentration at 1
2
Vmax:

dC
dt

=
Vmax · E
KE + E

This equation is a better fit for situations where substrate available for enzyme binding is limiting.

Such situations may be common in soils, and therefore RMM was included in one of the first

microbial explicit models of soil C and N dynamics (Weintraub and Schimel, 2003).

The ECA considers both free substrate and enzyme limitations by accounting for mass balance

constraints. MM and RMM kinetics are special cases of the ECA (Tang, 2015):

dC
dt

=
k · E · C

KES + E + C

where k is a rate constant, and 1
KES

is the apparent substrate affinity of the enzyme. The ECA

is more widely applicable than the MM and RMM due to its ability to consider a wider range of

substrate-to-enzyme ratios. These ratios can shift in soil systems, and the ECA accounts for those

changes by converging to either MM or RMM kinetics (B. Wang and Allison, 2019). However,

the ECA is more complex and requires additional data for parameterization, so the simpler MM

and RMM formulations may be better fits in some environmental contexts.
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2.4.2 Population

As microbes consume substrates to obtain energy and nutrients, population size increases, result-

ing in changes in substrate demand and decomposition ability. Monod growth is an established

model used to describe microbial growth given substrate availability (Parton et al., 2015). Anal-

ogous to MM kinetics, the specific growth rate (µ′) is a function of substrate concentration (S),

where µmax is the maximum potential growth rate and Kt is the Monod constant, or substrate

concentration at 1
2
µmax:

µ′ =
µmax · S
Kt + S

Under the assumption that initial microbial biomass is much greater than initial substrate con-

centration, the Monod equation can be simplified to the MM equation. The Monod equation

does not account for density dependence, so other models such as the logistic equation may be

more appropriate if resources limit microbial population growth.

2.4.3 Community

Moving up in scale, multiple models represent interacting populations of microbes, and many

of those also include physical features of the environment. Georgiou et al. (2017) found that

introducing density-dependent growth of microbial biomass in decomposition models of vary-

ing complexity reduced divergence between model predictions and experimental observations.

Density-dependent growth accounts for community-level mechanisms, such as competition and

spatial limitations, though the exact parameterization may vary across biomes and should be

experimentally determined.

Multiple community-scale models have adopted trait-based approaches that focus on the phys-
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iological characteristics of microbes. Analogous to some vegetation models, the Guild Decom-

position Model (GDM) represents three distinct microbial functional groups involved in litter de-

composition: opportunists that process available organic matter, decomposers that break down

holocellulose, and miners that degrade more chemically-resistant lignin polymers (Moorhead and

Sinsabaugh, 2006). The GDM is a differential equation model with explicit degradation of sub-

strate pools by the microbial functional groups following MM kinetics. The model also includes

N which is often a limiting nutrient for fresh litter decomposition. Overall, the GDM successfully

simulated decomposition and successional patterns consistent with observations.

The MIMICS model also represents microbial functional groups along with mineral stabiliza-

tion, making it suitable for application to soil systems (Wieder, Grandy, Kallenbach, and Bonan,

2014). The functional groups in MIMICS distinguish r- versus K-selected life histories, where

r-strategists specialize on the degradation of low molecular weight compounds and K-strategists

process structural litter and chemically-protected compounds relatively more efficiently. Like the

GDM, MIMICS assumes MM kinetics and reproduces observed patterns, including litter decom-

position rates and soil response to disturbance.

Building on the idea of functional traits, other community-scale models represent interacting

populations and even individuals. The DEMENT model (Allison, 2012) assigns traits at random

to tens or hundreds of individual microbial taxa that compete and interact on a spatial grid

(Figure 2.2). Rather than assigning taxa to functional groups a priori, taxa with favorable trait

combinations for a given set of environmental conditions increase in abundance in the model

simulations. The model is individual-based, meaning that it tracks the locations of individual

cells or colonies that grow, divide, and disperse according to model assumptions and parameters.

DEMENT’s unique structure allows for simulation of “virtual microbiome” composition and func-

tioning, including the cycling of C, N, and phosphorus. Once assigned, the traits of individual taxa

in DEMENT are fixed, but related models have allowed for trait evolution within taxa (Allison,

2005; Folse and Allison, 2012).

25



Figure 2.2: Schematic of the Decomposition Model of Enzymatic Traits (DEMENT). Traits are
assigned to microbial taxa by drawing at random from empirically-based distributions. Taxa
are placed randomly on a spatial grid where they consume substrates, reproduce, disperse, and
interact over time. The model predicts community composition and function as taxon abundances
change due to environmental selection. Adapted from Allison (2012).

Other models also represent microbial traits at the community scale. For example, an individual-

based model with trait-based functional groups interacting on a spatial grid predicted tight cycling

of N during litter decomposition, allowing the microbial community to maintain CUE by over-

coming stoichiometric imbalances (Kaiser et al., 2014). These findings, along with applications

of DEMENT (Allison, 2014), show that community-scale models are essential for predicting

emergent, and sometimes unexpected, properties of community functioning. At the same time,

challenges remain in translating genomic and physiological datasets into the trait distributions

required to parameterize these models.

Spatially-explicit models like DEMENT are designed to represent enzyme kinetics and microbial

interactions at appropriately small scales. Simulations with these models have provided insight

into the emergent properties of heterogeneous enzyme-substrate interactions occurring at sub-

micron scales, which could be useful for refining differential equation models operating at larger

scales (B. Wang and Allison, 2019). Similarly, modeling the heterogeneous spatial structure of

soil aggregates and associated microbial communities leads to more mechanistic prediction of

trace gas fluxes (Ebrahimi and Or, 2016). Like individual-based models, aggregate-based models

are useful for determining the scaling rules needed to incorporate heterogeneous soil properties

and microbial communities into larger-scale models (B. Wang et al., 2019).
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2.4.4 Ecosystem

Ecosystem-scale models of soil microbial and biological processes often include community-level

processes as well as inputs and outputs that interact with other ecosystem components such as

plants and minerals. Classical models such as RothC and Century have long been applied in an

ecosystem context, and now microbial-explicit models are also being used at ecosystem scales.

Efforts to integrate these approaches are gathering momentum as well. The Millennial model

combines the best of both classical and microbial explicit models, including microbial processes,

mineral stabilization, aggregate dynamics, and soil pools that can actually be measured (Abramoff

et al., 2018).

Microbial-explicit models represent key microbial traits such as CUE, microbial turnover, and

enzyme production that lead to different behaviors and predictions compared to microbial implicit

models. The Allison-Wallenstein-Bradford (AWB) model was proposed as a relatively simple

microbial explicit model of soil C cycling at the ecosystem scale (Allison et al., 2010). In contrast

to the MIMICS model (as described in the Community section), the AWB model does not include

functional groups. Instead, it represents average traits of the whole microbial community, such as

CUE, enzyme kinetic parameters, and temperature sensitivities. Simulations with AWB showed

that the soil C response to 5 °C warming depends on the temperature sensitivity of CUE. Greater

temperature sensitivity of CUE results in more stable soil C pools in response to warming due to

reductions in the biomass of microbial decomposers.

The Microbial-Enzyme-mediated Decomposition (MEND) model, developed by G. Wang et al.

(2013), is similar in structure to AWB but also accounts for mineral stabilization mechanisms.

MEND splits soil organic C (SOC) into particulate organic C (POC) and mineral-associated

organic C (MOC), both of which are converted into DOC via enzyme activity. DOC can adsorb

onto or desorb from MOC. The rate of breakdown into DOC is lower for MOC than POC,

representing the physical protection of soil organic matter (Schmidt et al., 2011). Still, MOC and
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POC respond similarly to a step increase in temperature, meaning that MEND and AWB end up

making comparable predictions of SOC response to warming.

Sulman et al. (2014) proposed the Carbon, Organisms, Rhizosphere, and Protection in the Soil

Environment (CORPSE) model, which also explicitly represents microbes but has a somewhat

unique structure. Carbon in CORPSE can move between physically protected and unprotected

pools, but unlike in MEND, only unprotected C pools can be decomposed. Another difference

between CORPSE and MEND is that protected C pool sizes in CORPSE increase with clay

content. These differences emphasize a need for additional empirical studies that quantify physical

protection and the decomposition rates of protected SOC.

Soil models at the ecosystem scale differ substantially in their responses to plant C inputs. Micro-

bial explicit models like AWB and CORPSE represent the priming effect, or increased turnover of

SOC in response to the addition of fresh plant C, documented in many empirical studies (Bernal

et al., 2016; Perveen et al., 2019). For example, Sulman et al. (2014) fitted CORPSE to em-

pirical data from free-air CO2 enrichment experiments at Duke Forest and Oak Ridge National

Laboratory (ORNL). They found that the priming effect almost completely offset increased litter

input at Duke Forest. However, they found that modeled physical protection was stronger at

ORNL while the modeled priming effect was much weaker, which corresponds with observations

at ORNL showing increased protection of SOC in soil microaggregates.

Ecosystem model development remains a very active area of research. Although there are mul-

tiple microbial explicit models available now, many of them still lack key mechanisms such as

spatial heterogeneity and cycling of N and other nutrients. When these mechanisms are incorpo-

rated, model outcomes may change substantially. For example, the SCAMPS model includes N

dynamics and allows for variable C:N within the microbial community (Sistla et al., 2014). This

stoichiometric flexibility allows the microbial community to acclimate to warming, resulting in

greater losses of soil C through decomposition, especially in winter. The implication is that soil

C dynamics likely depend on interactions with nutrients mediated by decomposers and plants.
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2.4.5 Earth system

Most earth system models (ESMs) do not explicitly represent microbial communities. Of the

11 ESMs in the 6th Coupled Model Intercomparison Project (CMIP6), only one ESM explicitly

represents microbes (Arora et al., 2020). That model—GFDL-ESM4.1 from NOAA’s Geophysical

Fluid Dynamics Laboratory—represents soil C cycling using CORPSE.

Although they are not fully coupled, there have been efforts to run microbial explicit models

on a global grid, forced with output from ESMs. Wieder et al. (2013) created a microbial-

explicit version of the Community Land Model (CLM) and compared its outputs with those

from the Daily Century (DAYCENT) model and CLM4cn, a version of CLM with N cycling.

Compared to microbial implicit CLM4cn and DAYCENT, microbial CLM predicted spatial patterns

of steady state soil C that better aligned with global observations. Furthermore, a 20% increase

in litter inputs only increased global soil C temporarily due to priming effects in microbial CLM

(Figure 2.3). In contrast, soil C steadily increased in the microbial-implicit models CLM4cn

and DAYCENT. Global soil C responses to warming were also variable and mediated by the

temperature sensitivity of CUE as observed with the AWB model at the ecosystem level.

Hararuk et al. (2015) ran AWB and an ecosystem model by German et al. (2012)—which the

study called the GER model—on a global grid. Both models simulated steady state empirical

global soil C more accurately than the microbial implicit CLM-CASA model. After calibrating

the models using a global soil C database, AWB and GER predicted faster declines in soil C

compared to CLM-CASA under the RCP 8.5 climate forcing scenario. The analysis of Hararuk

et al. (2015) also quantified the net outcome of decreasing CUE and the priming effect, allowing

for key insights into how these opposing processes ultimately influence soil C predictions.
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Figure 2.3: Soil carbon response of first-order and microbial explicit models to A) increased litter
inputs and B) warming at the global scale. Warming response in the microbial model depends on
whether carbon use efficiency (CUE) declines or remains constant with increasing temperature.
Adapted from Wieder et al. (2013).

2.5 Model-data integration

2.5.1 Uncertainty quantification

As soil models continue to advance, they should be evaluated systematically for their effective-

ness in achieving research goals (Figure 2.4). The process of reviewing and stress-testing models

against observations is termed model validation (Marzouk and Willcox, 2015). Uncertainty quan-

tification is a core part of model validation that involves assessment of model variation, biases,

limitations, and constraints that lead to deviations between the model and the true, underlying

data-generating processes. Uncertainty may arise from unknown values and meanings of system

parameters and inputs, potentially because parameters do not correspond to measurable quan-

tities. Related to parameter uncertainty, parametric variability concerns the unknown effects of
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Figure 2.4: Framework for model-data integration. Observations are used for validating model
outputs or calibrating model parameters via data assimilation. Bayesian approaches can be used
for data assimilation and model validation to obtain posterior parameter distributions and calculate
indices of model fit that aid in model selection. Adapted from Wieder, Allison, et al. (2015).

varying conditions on parameter and input values. Uncertainty also stems from model discrep-

ancy, or the intentional and unintentional assumptions and simplifications separating a model

from the actual processes it aims to represent.

Parameter uncertainty, parametric variability, and model discrepancy continue to be high for soil

biogeochemical models (Shi et al., 2018). Some soil models have parameters that facilitate

the functionality of the model, but do not have clear biological interpretations. For instance,

the AWB model assumes Arrhenius temperature dependence for SOC transformations, but the

associated activation energy parameters are not easy to measure directly (Allison et al., 2010;

Xie et al., 2020). Modeling temperature dependence also introduces parametric variability and

model discrepancy. Empirical studies confirm that parameters such as CUE and enzyme Vmax

and Km are temperature sensitive (Sinsabaugh et al., 2013; Sinsabaugh et al., 2017), but the

magnitude and functional form of temperature dependency is still an active area of investigation

(Alster et al., 2020; Davidson et al., 2006).

Complex models may have many parameters that may covary, making it difficult to constrain

parameter uncertainty (Sierra et al., 2015). Reducing this uncertainty requires that model pa-

rameters are identifiable, such that change in parameter value causes an associated change in

variables predicted by the model. Sierra et al. (2015) proposed a collinearity index to quantify the

identifiability of a model–the higher the index, the lower the identifiability, and the more difficult
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it is to find the true parameter values. Increasing the number of datasets used to parameterize

a model can increase identifiability of linear models and reduce overfitting, thereby improving

predictive accuracy. For microbial explicit models, additional datasets including microbial vari-

ables (e.g. soil enzyme activities, microbial biomass) might be needed to increase parameter

identifiability and reduce uncertainty.

Bayesian probabilistic frameworks are increasingly applied to interpret uncertainty in soil models.

Central to Bayesian uncertainty quantification and model validation are the processes of Bayesian

parameter estimation and inference, also known as data assimilation and probabilistic/Bayesian

inversion in the geosciences (Lahoz and Schneider, 2014). With these approaches, the likely

distribution of model parameter values for a given data set is estimated and characterized. The

numerical approximation of parameter distributions and model likelihood estimation is carried

out through Markov chain Monte Carlo (MCMC) simulation methods (O. F. Christensen et al.,

2006). Although the exact Monte Carlo simulation algorithm may vary, most data assimilation

frameworks include the following steps:

1. Choose model types and specific models to evaluate. In the case of soil biogeochemistry, the

assimilation of linear and non-linear ordinary differential equation models can be compared,

for instance (Xie et al., 2020).

2. Choose a dataset for comparison with model outputs.

3. Establish pre-inference probability density functions of model parameter values (known as

the prior distributions or priors).

4. Iteratively propose model parameter values to generate model outputs for computing model

likelihood for the given data set.

5. Approximate the distributions and probability density functions of parameter values that

correspond to better model fits to the data set (known as the posterior distributions or

posteriors).
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6. Compare model likelihoods conditional on the data set with available and desired goodness-

of-fit metrics. The specific Monte Carlo algorithm will dictate the options available for

goodness-of-fit metrics.

Asymptotically “exact” Bayesian Monte Carlo schemes aim to comprehensively sample parameter

values to compute posterior distributions. These methods include traditional Gaussian random

walk Metropolis-Hastings MCMC and Gibbs samplers (McElreath, 2020), adaptive approaches de-

rived from evolutionary optimization algorithms such as differential adaptive evolution Metropolis

(Vrugt, 2016), and the physics-inspired, momentum-driven family of Hamiltonian Monte Carlo

algorithms (Neal, 2011).

Statisticians have also been investigating “non-exact” Bayesian inference schemes that seek to

increase speed through approximation and simplification of parameter spaces. Non-exact ap-

proaches include the approximate Bayesian computation (Alahmadi et al., 2020; Csilléry et al.,

2010) and variational Bayesian classes of methodologies (Blei et al., 2017; Ryder et al., 2018).

Goodness-of-fit methods range from simpler frequentist computations such as coefficient of de-

termination and maximum likelihood estimation to Bayesian metrics including information criteria

and cross-validation computations (Gelman et al., 2013). Fully Bayesian goodness-of-fit metrics

can be more stable than their frequentist counterparts and provide more diagnostic informa-

tion about overfitting and inference validity (Vehtari et al., 2017), though there may be higher

computational resource demands.

There have been several powerful applications of Bayesian parameter estimation to soil biogeo-

chemical models. Hararuk et al. (2014) integrated global soil C data into the C-only version of the

Community Land Model coupled with the Carnegie-Ames-Stanford Approach submodel (CLM-

CASA), while Ťupek et al. (2019) integrated respiration data from boreal forests in Finland into

the Yasso07, Yasso15, and Century models. Both studies compared model outputs before and

after using a Bayesian data assimilation process to constrain model parameters. In all cases, data
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integration resulted in model predictions that more closely matched observations.

However, each of these studies has caveats. The soil C database used by Hararuk et al. (2014) did

not include time-series data, thereby necessitating a steady-state assumption about C pool sizes.

If this assumption is not accurate, estimates of model uncertainty may be difficult to interpret.

Ťupek et al. (2019) calibrated models with observed data but did not use an independent dataset

to validate model predictions, which can lead to model overfitting. Maintaining separate training

and validation datasets, a common practice in machine learning approaches, can help avoid this

problem (Botu et al., 2017).

Approaches like Bayesian data assimilation are most effective when extensive, multivariate datasets

are available for model calibration and validation across a range of ecosystems. For example,

field measurements of dryland soils have improved biogeochemical models of ecosystem-specific

C-cycling dynamics (Shen et al., 2016; X. Zhang et al., 2014). Going forward, rapid advance-

ments in remote and in situ environmental sensing tools like light detection and ranging (LiDAR)

(Kemppinen et al., 2018) and soil nutrient sensors (Burton et al., 2020) can increase the amount

and availability of ecosystem-specific measurements at lower cost, higher resolution, and greater

sampling intensity than ever before.

2.5.2 Model intercomparison

Model intercomparison goes hand-in-hand with model selection and data assimilation to evaluate

the behaviors and performance of different models relative to one another. For instance, J. Li et

al. (2014) compared 3 microbial-explicit models with a conventional first-order model and found

that steady-state SOC was much more responsive to varying temperature sensitivity of CUE in

the microbial-explicit models. In contrast, SOC stocks were largely independent of microbial CUE

in the first-order model. This analysis points toward a need for additional empirical research on

how microbial CUE varies with temperature and other factors.
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The application of Bayesian approaches to model calibration and selection can readily be extended

to model intercomparison. In their global analysis of soil C responses under RCP8.5, Hararuk

et al. (2015) used a Bayesian approach to show that the microbial-explicit models AWB and GER

better explained the spatial variation of steady-state soil C compared to the CLM-CASA model.

However, at least with some parameter values, the microbial-explicit models simulated oscillations

in soil C over time, which is an unrealistic behavior at ecosystem to global scales.

Xie et al. (2020) also applied a Bayesian approach to compare AWB with a conventional model

(Fig. 16.1). Both models were fit to a meta-analysis dataset on soil respiration response to

warming Romero-Olivares et al., 2017 and compared using Bayesian goodness-of-fit metrics such

as the widely applicable information criterion (WAIC) and leave-one-out-cross validation (LOO).

These metrics account for the posterior distributions of parameter values after model fitting, and

LOO is a useful metric when limited data are available for model selection. Both models fit the

meta-analysis data reasonably well, but the simpler structure of the conventional model led to

slightly better WAIC and LOO scores. These findings emphasize that model selection involves

tradeoffs. Simple models with few parameters may be calibrated to match observational datasets

with good validation scores, but these models may fall short in capturing the mechanistic details

needed to make accurate predictions across a broader range of soil ecosystems.

2.6 Recommendations to advance soil models

Despite recent progress, substantial barriers still prevent the widespread application of models to

grand challenges in soil biology. In particular, specialized language, expertise, and skill sets can

make it challenging to integrate modeling with other scientific approaches. This specialization

can be a barrier to information flow between model and empirical analyses. Such barriers can

exacerbate the challenge of collecting data in a form that supports model development, calibra-

tion, and validation. In addition, models can be difficult to access and apply if recent versions,
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adequate documentation, and user interfaces are not available. Scaling up models, for example to

make Earth system predictions, can be limited by insufficient tools for model selection and inter-

comparison. Approaches for model validation are still under development and involve specialized

knowledge of computational and statistical tools.

Overcoming these barriers would be beneficial. Predictive accuracy would increase for models

applied to simulate future soil C stocks, nutrient cycling, and climate change. Given that models

have multiple uses beyond prediction, efforts to engage a broader community would also advance

fundamental knowledge across the disciplines of soil science, biology, and biochemistry. To reap

these benefits, we recommend the following actions:

• Integrate modeling and empirical approaches. Rather than viewing modeling and empir-

ical activities as separate, we recommend co-developing models and empirical research.

Operationally, this means reconfiguring scientific teams so that researchers with modeling

expertise interact directly and frequently with empirical researchers. From the proposal

writing stage through model development and manuscript publication, scientists creating

models and collecting data should create spaces to develop a common language and align

research goals. By co-creating models and experiments, researchers can ensure that models

represent key processes, critical model parameters are measurable, and both model and ex-

perimental outcomes are relevant to one another. Such cooperation would be particularly

helpful for incorporating complex ‘omics datasets into trait-based community models.

• Collect more data. Relatively few time-series datasets are available for some soil variables,

such as C stocks, making it difficult to evaluate or avoid the steady-state assumptions often

made in biogeochemical models. Sparse data can also limit the possibility of separating data

into training versus validation subsets. Better integration between modeling and empirical

research could help fill some of these data gaps.

• Cross-train researchers in modeling. To enable the interactions necessary for integration,
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researchers should receive training in modeling perspectives and approaches. For example,

training activities such as workshops, short courses, and online modules can help students

acquire common vocabulary used in modeling. Conversely, students with a modeling back-

ground can benefit from training activities focused on theory and empirical work. If designed

thoughtfully, seminars and courses can provide opportunities for students to get comfortable

communicating and collaborating across the modeling-empirical divide.

• Improve accessibility to model code and analysis tools. The principles of F.A.I.R. data

should also apply to model code and outputs: findable, accessible, interoperable, and

reusable (Wilkinson et al., 2016). Code repositories such as GitHub and platforms such

as the Department of Energy’s KBase can host code along with input/output files and

user interfaces to make models findable and accessible. For new models, writing and

documenting code in widely-used, open-source formats such as R Markdown and Jupyter

Notebooks for Python can promote interoperability and reusability. A version control system

is also important to ensure analyses from a prior model version can be replicated. Regardless

of the model or platform, researchers should always strive to make model code and analyses

publicly available with guidelines for reuse so that others may validate, build upon, and

broaden applications of published models.

• Plug-and-play models and datasets. Taking the principle of interoperability to another

level, we encourage the development of model testbeds that enable mixing and matching

of different models and datasets (Wieder et al., 2018). Ideally, such testbeds should al-

low for modifications of model structure and input datasets. Testbeds can also facilitate

standardization of input/output protocols and datasets to enhance interoperability, thereby

avoiding tedious data reformatting procedures while also providing guidance on standards

that could be adopted by the broader soil science community.

• Develop improved model selection and intercomparison tools. Moving beyond testbeds,

the research community would benefit from wider availability of model selection and inter-
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comparison resources. For example, the soilR package enables users to run simulations

with an array of differential equation models, including some that represent soil radiocar-

bon (Sierra et al., 2012). Global intercomparison initiatives such as the Coupled Model

Intercomparison Project (CMIP) have also been tremendously valuable for comparing Earth

system models by establishing a standardized set of simulation scenarios and output vari-

ables (Arora et al., 2020; Todd-Brown et al., 2013). As new tools for model inference

become available, they could be incorporated into intercomparison projects to enable one-

stop-shopping for model comparison and selection (Xie et al., 2020).

2.7 Conclusion

Within the last 5-10 years, models of soil systems have advanced substantially. There are now

many new approaches for representing microbial and biochemical processes in soil models. As

these new models came online, synthesis efforts placed them in the context of broad principles

that guide quantitative soil science across scales and ecosystems. We anticipate that these

advances will support further integration and unification of soil biological modeling in the next

5-10 years. Still, another modeling renaissance faces some significant challenges. Disciplinary

silos as well as difficulties in scaling models from genes to ecosystems must be overcome to

maximize the impact of recent model advances. Breaking down these barriers will require better

integration of modeling approaches into all branches of soil science. Our recommendations to build

computational infrastructure and train a new generation of researchers well-versed in modeling

can serve as an initial roadmap for integration. Following our roadmap should help elevate models

as valuable tools for tackling soil-related grand challenges facing society, from food security to

climate change.
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CHAPTER 3

A Bayesian approach to evaluation of soil

biogeochemical models using information

criteria and cross-validation

3.1 Introduction

Note: We abbreviate soil organic carbon, dissolved organic carbon, microbial biomass carbon, and extracellular enzyme carbon

respectively with SOC, DOC, MIC, and ENZ in this chapter, rather than the SOC, DOC, MBC, and EEC acronyms we use in other

chapters. This was done to match the manner in which this chapter was originally published as Xie et al. (2020) in Biogeosciences.

Coupled Earth system models (ESMs) and constituent soil biogeochemical models (SBMs) are

used to simulate global soil organic carbon (SOC) dynamics and storage. As global climate

changes, some ESM and SBM simulations suggest that substantial SOC losses could occur,

resulting in greater soil CO2 emissions (Crowther et al., 2016). However, there is vast divergence

between model predictions. For instance, one ESM predicts a global SOC loss of 72 Pg C over

the 21st century, while another predicts a gain of 253 Pg C (Todd-Brown et al., 2014).
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Soil biogeochemical models vary greatly in structure (Manzoni and Porporato, 2009) but can

be broadly partitioned into two categories: those that implicitly represent soil C dynamics as

first-order linear decay processes and those that explicitly represent microbial control over C dy-

namics with nonlinear Michaelis-Menten functions (Wieder, Allison, et al., 2015). Explicit models

typically include more parameters than linear models because multiple microbial parameters are

needed for each decay process as opposed to a single rate parameter. The additional parameters

allow explicit models to represent microbial mechanisms, but at the expense of greater model

complexity.

Rigorous statistical approaches should be applied to investigate how explicit representation of

microbial processes affects predictive model performance. ESM and SBM comparisons involving

empirical soil C data assimilations have been conducted previously (Allison et al., 2010; J. Li et al.,

2014) but few standardized statistical methods for ESM and SBM benchmarking and comparison

have been developed that would allow for rigorous model selection. Prior model comparisons

have involved graphical qualitative comparisons or use of basic fit metrics, such as the coefficient

of determination, R2, to judge fit quality. However, these simple approaches are insufficient for

comparing an increasing number of complex models (Jiang et al., 2015; Luo et al., 2016; Wieder,

Allison, et al., 2015).

R2 on its own provides limited information about goodness-of-fit. In unmodified form, it quantifies

the extent to which the variation of just one chosen model outcome — for instance the mean

outcome for a range of parameter values — corresponds to the variation in the data set (Gelman

et al., 2019). R2 does not capture model complexity, overfitting, or parameter uncertainty, which

is a reason why R2 by itself is not sufficient for model evaluation (Kvålseth, 1985). Without

accounting for model complexity and parameter count, focusing on optimizing fit by R2 values

alone can easily lead to overfitting (Spiess and Neumeyer, 2010).

Encouragingly, a rich toolset to further inform quantitative model evaluation and comparison can

be drawn from Bayesian statistics (Hararuk and Luo, 2014; Hararuk et al., 2014; Hararuk et al.,
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2018). These tools include information criteria and approximate cross-validation, goodness-of-fit

metrics designed for the simultaneous comparison of multiple structurally diverse models. Like R2,

information criteria and cross-validation are quantitative measures that estimate the fit quality

of a model to a given data set. Differing from R2, information criteria and cross-validation are

relative rather than absolute measures. These metrics evaluate the extent to which the data set

supports particular distributions of parameter values and, in turn, the uncertainty of parameter

estimates. Consequently, if the distribution of model A outcomes aligns more closely to the

data set than the distribution of model B outcomes, we regard model A as being more likely

to explain the data compared to model B. Information criteria and cross-validation metrics also

typically include terms penalizing for model complexity and overfitting as part of their computation

(Gelman et al., 2014). Hence, information criteria and approximate cross-validation are useful

tools for model evaluation because they present a comprehensive summary of model fit to time

series data and can estimate model predictive accuracy for unmeasured and out-of-sample data

points.

Examples of information criteria popularized by widely used R packages such as lme4 and rjags

include the Akaike information criterion (AIC), Bayesian information criterion (BIC), and deviance

information criterion (DIC) (Vehtari and Ojanen, 2012). However, these metrics have some limi-

tations. AIC, BIC, and DIC do not use full sampled posterior distributions in their computational

processes. AIC and BIC both rely on a pointwise maximum likelihood estimate that cannot be

derived from nonuniform Bayesian prior distributions, including normal distributions. AIC and

BIC (despite BIC’s name) thereby have limited use in Bayesian statistics settings. DIC can ac-

commodate nonuniform priors but is calculated from pointwise simplified posterior means. The

compression of full posteriors into pointwise means can prompt DIC to compute an impossible

negative effective model parameter count in select situations (Gelman et al., 2014). Consequently,

the original forms of AIC, BIC, and DIC are no longer recommended for use in Bayesian model

assessment by some statisticians in light of superseding alternatives (Gelman et al., 2014).
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Three predictive goodness-of-fit metrics address the limitations and stability issues of AIC, BIC,

and DIC by incorporating full, nonuniform posterior distributions in their calculations to better

account for overfitting and model size (R. Christensen et al., 2010; Gelman et al., 2014). These

metrics include the widely applicable information criterion (WAIC), log pseudomarginal likelihood

(LPML), and Pareto-smoothed important sampling leave-one-out cross-validation (PSIS-LOO

and hereby referred to as LOO). WAIC, LPML, and LOO can estimate the ability of models to

fit unobserved measurements outside of the set of measured data samples (Vehtari et al., 2017).

Thus, WAIC, LPML, and LOO can be considered as superior barometers for model predictive

accuracy compared to AIC, BIC, and DIC.

The overarching goal of this study was to develop a statistically rigorous and mathematically con-

sistent data assimilation framework for SBM comparison that uses predictive Bayesian goodness-

of-fit metrics. We pursued three specific objectives as part of that goal. First, we compared

the behaviors of two different SBMs, a linear microbial-implicit model termed the conventional

model (CON) and a nonlinear microbial-explicit model called the Allison-Wallenstein-Bradford

model (AWB) (Figure 3.1), following data assimilation with soil respiration data sourced from a

meta-analysis of soil warming studies (Romero-Olivares et al., 2017). Second, we characterized

the parameter spaces of these models using prior probability distributions of parameter values

informed by previous studies and expert judgment. Third, we compared specific Bayesian predic-

tive information criteria in WAIC, LPML, and LOO to the coefficient of determination, R2, for

quantifying goodness-of-fit to data. AIC, BIC, and DIC were not analyzed due to their stability

limitations, our usage of nonuniform prior distributions, and redundancy with WAIC.
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(a) (b)

Figure 3.1: Diagrams of the pool structures of the (a) CON model and (b) AWB model drawn
from Allison et al. (2010). Pools are shown within circles including soil organic carbon (SOC),
dissolved organic carbon (DOC), and microbial (MIC) pools. AWB has SOC, DOC, and MIC
pools as in CON but also an extra enzymatic (ENZ) pool. AWB additionally differs from CON in
its nonlinear feedbacks and assumption that MIC can influence SOC-to-DOC turnover through
the ENZ pool.

3.2 Methods

3.2.1 Model structures

We compared two SBMs, the CON and AWB models (Allison et al., 2010). The models were

selected for this study due to their relative equation simplicity, their tractable parameter count,

and limited biological data input requirements. The CON system models three separate C pools

as state variables including SOC, dissolved organic C (DOC), and microbial biomass C (MIC)

pools, while AWB includes SOC, DOC, MIC, and extracellular enzyme biomass C (ENZ) pools

(Figure 3.1). Additionally, these models were chosen because they are C-only models without

nitrogen (N) pools. The increased complexity of N-accounting SBMs will require future studies

with coupled N data sets (Manzoni and Porporato, 2009).
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3.2.2 Meta-analysis data

The data set for model fitting was compiled from a recent meta-analysis of 27 soil warming studies

that measured CO2 fluxes (Romero-Olivares et al., 2017). The experiments reported between 1

and 13 years of CO2 flux measurements following warming perturbation. The elements of this

data set consisted of empirical response ratios calculated by dividing CO2 fluxes measured in the

warming treatments by time-paired CO2 fluxes measured in the control treatments. We calculated

an annual mean response ratio for each experiment (if data were available for that year) after

warming treatment began. Using these annual means, we calculated one overall mean response

ratio for each year along with pooled variances and standard deviations. Pooled data points

were assumed to be “collected” at the halfway point of each year. Because the experiments had

variable lengths, the sample size for the pooled annual mean declines with increasing time since

warming perturbation. The warming perturbation was 3 °C on average across all the studies, and

this average was used as the magnitude of warming in the model simulations.

Model-outputted response ratios were calculated by dividing simulated CO2 flux following warming

perturbation by the CO2 flux at prewarming steady state. We fit models to flux response ratios

rather than raw flux measurements for several reasons (Wieder, Grandy, Kallenbach, Taylor, et

al., 2015). First, we eliminate the need to convert flux measurements from different experi-

ments into a common unit. Second, response ratios represent a standardized metric for warming

response across disparate ecosystem types with varying climate, soil, and vegetation properties.

Finally, fitting a mean response ratio overcomes data gaps present in individual experiments.
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3.2.3 Hamiltonian Monte Carlo fitting of differential equation mod-

els

CON and AWB ordinary differential equation systems were simulated using the CVODE backward

differentiation method (Curtiss and Hirschfelder, 1952) from the SUNDIALS library of equation

solvers (Hindmarsh et al., 2005). Differential equation models contain parameters that affect state

variables, and model fitting through Markov chain algorithms involves iterating through parameter

space one set of parameters at a time. We performed model fitting using a Markov chain algorithm

called the Hamiltonian Monte Carlo (HMC), using version 2.18.1 of the RStan interface to the

Stan statistical software (Carpenter et al., 2017; Stan Development Team, 2020) and version 3.4.1

of R (R Core Team, 2017). HMC is not a random-walk algorithm and uses Hamiltonian mechanics

to determine exploration steps in parameter space. HMC has been theorized to offer more

efficient exploration of high-dimensional parameter space than traditional random-walk Metropolis

algorithms (Beskos et al., 2013).

Conditional on the meta-analysis data set, the HMC algorithm computed posterior and posterior

predictive distributions, from which Bayesian statistical inferences on likely ranges of parameter

values were then made. Posterior distributions are the distributions of more likely model parameter

values conditional on the data. Posterior predictive distributions are the distributions of more

likely values for unobserved data points from the data-generating process conditional on the

observations. In the case of this study, the experiments constituting the meta-analysis would be

the data-generating process.

For the sake of clarity, it is important to distinguish between the frequentist confidence intervals

and Bayesian posterior predictive intervals and distributions we describe in our study. Confidence

intervals are calculated from the sample means and standard errors at observed data points and

indicate ranges of values that are likely to contain the true data values with repeated sample col-

lections using the same methodology. Posterior predictive intervals and distributions are computed

45



after estimation of the posterior parameter distributions and represent the likely distributions of

unobserved data values conditional on observed data values. Bayesian credible intervals, which

we will also discuss in this study, are ranges of values that parameters are likely to take with some

probability that are conditional on the observed data. Credible areas indicate the probability

densities of parameter values across credible intervals.

We ran four chains for 35000 iterations each for our HMC simulations, with the first 10000

iterations being discarded as burn-in for each chain. Hence, our posterior distributions consisted

of 100000 posterior samples per HMC run. In retrospect, because our credible areas displayed

sufficient smoothness and Bayesian diagnostics indicated adequate posterior sampling, we could

have reduced simulation time without impairing posterior computation by running shorter chains

that consisted of 20000 to 30000 iterations. To minimize the presence of divergent energy

transitions, which indicate issues with exploring the geometry of the parameter space specified

by the prior distributions, we set the adaptation delta to 0.95, the initial step size to 0.1, and

maximum tree depth to 12. Those parameters determine how the HMC algorithm proposes

new sets of parameters at each step and were set so that the HMC would begin with smaller

exploration steps. The algorithm varies the step size from its initial value throughout posterior

sampling to maintain a desired acceptance rate; the tuning sensitivity of the step size is governed

by the adaptation delta value, with higher values indicating reduced sensitivity.

We further constrained our HMC runs to characterize parameter regimes corresponding to higher

biological realism. Normal informative priors were used to initiate the runs, and the prior dis-

tribution parameters were chosen based on expert opinion and previous empirical observations

(Allison et al., 2010; J. Li et al., 2014). Prior distributions had noninfinite supports; supports

were truncated to prevent the HMC from exploring parameter space that was unrealistic.
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3.2.4 Model steady-state initialization

Because we were mainly interested in testing model predictions of soil warming response, the

models were initiated at steady-state prior to the introduction of warming perturbation to isolate

model warming responses from steady-state attraction. We fixed pre-perturbation steady-state

soil C densities to prevent HMC runs from exploring parameter regimes corresponding to biolog-

ically unrealistic C pool densities and mass ratios.

To set prewarming steady-state soil C densities, we first analytically derived steady-state solutions

of the ordinary differential equations of the models. Then, with the assistance of Mathematica

version 12, we rearranged the equations by moving the steady-state pool sizes to the left-hand

side, such that we could determine the value of parameters dependent on pool sizes while allowing

the rest of the parameters to vary for the HMC. Consequently, we could constrain the prewarming

pool sizes from reaching unrealistic values in the simulations.

3.2.5 Sensitivity analysis of C pool ratios

Sensitivity analyses examine how the distributions of model input values influence the distributions

of model outputs. In our study, we considered prewarming C pool densities as a model input. We

performed a sensitivity analysis to observe how the choice of prewarming C pool densities and C

pool ratios would affect the model fits and posterior predictive distribution of C pool ratios.

We compared the model outputs and postwarming response behavior of AWB and CON at equiv-

alent C pool densities and ratios. The ratio of soil microbe biomass C (MIC) density to SOC

density has been observed to vary approximately from 0.01 to 0.04 (Anderson and Domsch, 1989;

Sparling, 1992), so we used those numbers as guidelines for establishing the ranges of the C pool

densities and density ratios explored in our simulations. One portion of the analysis involved run-

ning HMC simulations in which we set the prewarming MIC density at 2 mgCg−1 soil and then
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varied the SOC density from 50 to 200 mgCg−1 soil in increments of 25, stepping from 0.04 to

0.01 with respect to the MIC-to-SOC ratio. A second portion of the analysis involved observing

the effect of varying prewarming MIC from 1 to 8 mgCg−1 soil while holding prewarming SOC

at 100 mgCg−1 soil.

For some combinations of the prior distributions and prewarming steady-state C pool densities,

AWB HMC runs wandered into unstable parameter regimes that would prevent the algorithm

from reliably running to completion. Consequently, we do not compare simulation results for

AWB and CON with prewarming SOC densities below 50 mgCg−1 soil. Other combinations of

prior distribution and prewarming C pool density choices that were not necessarily biologically

realistic allowed stable AWB runs with lower prewarming SOC densities.

3.2.6 Information criteria and cross-validation

In addition to R2, we used the WAIC, LPML, and LOO Bayesian predictive goodness-of-fit metrics

to evaluate models with the meta-analysis warming response data. LPML is an example of cross

validation that is calculated similarly to LOO (Gelfand and Dey, 1994; Gelfand et al., 1992;

Ibrahim et al., 2001) but differs from LOO in how the importance ratio sampling portion of its

computation is handled. For further explanation regarding importance ratios and their role in

evaluating approximate cross-validation metrics, refer to the description of the LOO algorithm

presented in Vehtari and Ojanen (2012). LOO updates LPML by implementing a smoothing

process in which the largest importance ratios are fitted with a Pareto distribution and then

replaced by expected values from the distribution, which stabilizes the importance ratio sampling.

We used version 2.0.0 of the loo package available for R to calculate our WAIC and LOO values

(Vehtari et al., 2019). We specifically employed the LOOIC variant of LOO implemented in loo

so that LOO could operate on a comparable numerical scale to WAIC. A lower WAIC and LOO

and a higher LPML indicate a more likely model for a given data set. LPML can be multipled by
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a factor of -2 to occupy a similar scale to LOO.

3.3 Results

3.3.1 Parameter posterior distributions

We obtained distributions of posterior predictive fits to the univariate response ratio data for both

AWB and CON across different prewarming MIC-to-SOC ratios. Posterior samples totaled 100000

for each simulation. Sampler diagnostics for the HMC runs indicated that the statistical models

were valid at all prewarming steady-state values observed, that model parameter values converged

across the four Markov chains, and that the posterior parameter space was effectively sampled and

explored to generate enough independent posterior samples for inference. The ratios of effective

posterior parameter samples to total samples for parameters were generally satisfactory; across

observed MIC-to-SOC ratios, they were all greater than 0.25 and mostly greater than 0.5.

We also tracked divergent transitions, which mark points in chains at which the HMC algorithm

was inhibited in its exploration and posterior sampling, potentially due to the parameter space

becoming geometrically confined and difficult to navigate. Divergent transitions occurred in the

AWB HMC runs, though the ratios of divergent transitions to sampled iterations were relatively

low for all runs. The highest divergent transition ratio observed was 0.0217, corresponding to

the simulation initiated with prewarming SOC = 200 mgCg−1 soil. There were no divergent

transitions in the CON runs.
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3.3.2 Model behaviors

The CON curve monotonically decreases in response ratio over time, whereas the AWB curve

displays changes in slope sign (Figure 3.2). The difference in curve shape (Figure 3.3a, b) is in line

with CON’s linear status and AWB’s nonlinear formulation with more parameters (Allison et al.,

2010). By 50 years after warming, mean fit curves for AWB and CON return to 1.0 after their

initial increase (Figure 3.3c, d), consistent with prior observations and expectations at steady

state (Romero-Olivares et al., 2017; van Gestel et al., 2018).

From a cursory visual evaluation, neither of the models clearly outperforms the other across all

prewarming steady states. The 95% confidence interval of the first data point at t = 0.5 year

(hereby abbreviated as year) does not include the AWB SOC100 posterior predictive mean as it

does for the CON SOC100 mean (Figure 3.2), which most likely impaired AWB’s quantitative

goodness-of-fit metrics. However, the 95% response ratio posterior predictive interval suggests

that AWB is able to replicate the response ratio increase in the data from 1.5 to 3.5 years

following the warming perturbation, which CON does not. The shape of the AWB posterior

predictive interval also fits the data points and confidence intervals occurring 8 years or more

after the perturbation more closely than that of CON (Figure 3.3a, b).

For both AWB and CON, increasing the prewarming SOC to higher densities from SOC = 50

to 200 mgCg−1 soil (hereby labeled from SOC50 to SOC200) while holding prewarming MIC at

2 mgCg−1 soil, DOC at 0.2 mgCg−1 soil, and ENZ at 0.1 mgCg−1 soil corresponded to lower

initial mean response ratios in the first year at the t = 0.5 year time point, which certainly

inhibited the quantitative goodness-of-fit (Figure 3.3a, b). For CON, increasing prewarming SOC

also reduced the magnitude of the mean fit slope. For AWB, increasing prewarming SOC had no

clear effect on the curve slope, but the model needed more time to achieve peak mean response

ratio from a lower start, with the peak being reached at t = 1.5 year in the SOC50 case and t

= 3.5 year in the SOC 200 case (Figure 3.3b). At the higher prewarming SOC, CON’s reduced
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Figure 3.2: Distribution of fits of (a) CON and (b) AWB to the meta-analysis data from Romero-
Olivares et al. (2017). Open circles show the meta-analysis data points. Blue vertical lines mark
the 95% confidence interval for each data point calculated from the pooled standard deviation.
The black line indicates the mean model response ratio fit. The orange shading marks the
95% posterior predictive interval for the fit. For (a), prewarming steady-state soil C densities
were set at SOC = 100 mgCg−1 soil, MIC = mgCg−1 soil, and DOC = 0.2 mgCg−1 soil. For
(b), prewarming steady-state soil C densities were set at SOC = 100 mgCg−1 soil, MIC =
mgCg−1 soil, DOC = 0.2 mgCg−1 soil, and ENZ = mgCg−1 soil.

slope magnitude and AWB’s lagging response ratio peak caused both models to exhibit slower

returns to the steady-state response ratio of 1.0 (Figure 3.3c, d). On their trajectories back to

steady state, the mean SOC 200 CON curve substantially overshoots the data mean after t = 7.5

year (Figure 3.3a), whereas the SOC200 AWB curve exceeds the data means at a more moderate

extent through the t = 8.5, 9.5, 10.5, and 11.5 year time points (Figure 3.3b).

Changing the prewarming MIC-to-SOC steady-state pool size ratio by increasing prewarming MIC

from 1 to 8 mgCg−1 soil (hereby labeled from MIC1 to MIC8) while holding prewarming SOC at

100 mgCg−1 soil had marginal to moderate qualitative effects on the mean response ratio curves

for CON and AWB. The CON MIC1 and MIC8 curves were visually indistinguishable, while the

AWB MIC1 and MIC8 curves differed with the MIC8 curve displaying more gradual changes in

slope and lower slope magnitudes.
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Figure 3.3: Intramodel comparisons of mean posterior predictive response ratio fits for AWB and
CON across different MIC-to-SOC ratios. Open circles show the meta-analysis data points for
reference. The blue, black, and red lines indicate model mean fits corresponding to different
prewarming steady-state SOC values of 50, 100, and 200 mgCg−1 soil. The dashed gray line
indicates the steady-state expectation at the response ratio of 1.0. Mean fits are plotted in order
of (a) CON and (b) AWB over the time span of the data and (c) CON and (d) AWB over 57
years.

3.3.3 Sensitivity analysis of parameter distributions to prewarming

C pool densities and density ratios

In addition to response ratio fits, we observed the influence of prewarming MIC-to-SOC ratios on

model SOC stock response ratios in AWB and CON simulations following warming. Similar to the

model flux response ratios, SOC response ratios were calculated by dividing evolved postwarming

SOC densities by prewarming densities. The SOC response ratios at 12.5 years for CON and

AWB increased as prewarming SOC was raised (and, hence, the MIC-to-SOC ratio decreased)

with other prewarming C densities held constant, indicating reduced proportional SOC loss when
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SOC stocks were initiated at higher prewarming densities. For CON, SOC loss decreased from

27.1% at SOC50 to 9.2% at SOC200. In a similar trend for AWB, SOC loss decreased from

17.2% at SOC50 to 8.1% at SOC200. In contrast, raising prewarming MIC densities (and, hence,

increasing the MIC-to-SOC ratio) with other prewarming C densities held constant did not produce

a shared trend for CON and AWB. CON SOC loss decreased from 18.8% at MIC1 to 17.4% at

MIC8, while AWB SOC loss increased from 11.3% at MIC1 to 16.3% at MIC8.

Truncation of prior supports, or distribution domains, generally did not prevent posterior densities

from retaining normal distribution shapes. Deformation away from Gaussian shapes for the

densities of EaS from CON was observed at SOC50 and SOC75. For AWB, deformation was

observed for the densities of EaV , EaK , and EC,ref. All CON and AWB parameter posterior

densities were otherwise observed to be Gaussian from SOC100 to SOC200. Example posterior

densities and means for select model parameters at prewarming SOC100 are presented in Figure

3.4.

3.3.4 Sensitivity analysis of quantitative fit metrics to prewarming

C pool densities and density ratios

For both CON and AWB, LOO, WAIC, LPML, and R2 all worsened as prewarming steady-state

SOC density was increased from SOC50 to the less biologically realistic SOC200 (Figure 3.5).

CON’s LOO and WAIC values increased respectively from -15.704 and -15.818 at SOC50 to

-6.891 and -6.966 at SOC200, while AWB’s LOO and WAIC values increased respectively from

-11.028 and -11.379 at SOC50 to -5.97 and -6.579 at SOC200. Compared to AWB’s metrics,

CON’s goodness-of-fit metrics deteriorated at a faster rate with the increase in prewarming SOC.

Nonetheless, CON outperformed AWB in LOO, WAIC, and LPML across all observed prewarming

SOC densities. The Bayesian metrics accounted for AWB’s larger model size and increased

propensity for overfitting as demonstrated by the consistently higher effective parameter counts
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associated with AWB.

Varying prewarming steady-state MIC from MIC1 to MIC8 modestly impaired goodness-of-fit

across the various metrics. CON’s LOO and WAIC values increased respectively from -11.963

and -12.035 at MIC1 to -11.731 and -11.802 at MIC8, while AWB’s LOO and WAIC values

increased respectively from -8.63 and -9.302 at MIC1 to -8.181 and -8.711 at MIC8. CON did not

deteriorate in goodness-of-fit at a faster rate than AWB with respect to increasing prewarming

MIC. Increasing prewarming MIC has the opposite effect on the MIC-to-SOC ratio compared

to increasing prewarming SOC, but both changes worsened goodness-of-fit across all metrics,

indicating that changes to the prewarming MIC-to-SOC ratio did not produce consistent trends.

3.4 Discussion

Our study develops a quantitative, data-driven framework for model comparison that could be

applied across different research questions, ecosystems, and scales. We demonstrated the novel

deployment of WAIC and LOO, two more recently developed Bayesian goodness-of-fit metrics

that estimate model predictive accuracy, to evaluate SBMs using data from longitudinal soil

warming experiments. WAIC and LOO improve upon older and more frequently used metrics,

such as AIC and DIC, by accounting for model complexity and overfitting of data in a more

comprehensive, stable, and accurate fashion. The quantitative agreement between WAIC, LOO,

and LPML reinforces the reliability and validity of information criteria and cross-validation metrics

to complement use of frequentist R2.

We constrained the fitting of AWB and CON to bio- logically reasonable parameter space by

fixing prewarming steady-state C pool densities and establishing prior distributions informed by

expert judgment. We observed that, despite the qualitative difference in the shapes of their

mean posterior predictive fit curves, CON and AWB could both potentially account for the
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soil warming response in the meta-analysis data set. For both models, posterior predictive fit

distributions overlapped with the confidence intervals of the data points (Figure 3.2). However,

with respect to the Bayesian goodness-of-fit metrics, CON quantitatively outperformed AWB

across all prewarming SOC and MIC densities observed (Figure 3.5) because the Bayesian metrics

adjusted for AWB’s larger model size and consistently higher effective parameter count. For both

models, lower prewarming SOC densities corresponded to better warming response fits (Figure

3.5).

3.5 Model responses to warming over time

After fitting, the response ratio curves of CON and AWB both trended toward the prewarming

steady-state response ratio of 1.0 following the soil warming perturbation (Figure 3.3). The

settling of the curves to the prewarming model steady states aligns with previous literature which

demonstrated that the magnitude of CO2 flux tends to fall after reaching a postwarming maximum

(Crowther et al., 2016; Romero-Olivares et al., 2017). In the meta-analysis data set, this peak is

reached immediately at the first data point at t = 0.5 year (Figure 3.2). CON matched this data

pattern in all of our observed simulations in outputting maximum response ratios at the first time

point after warming. AWB was unable to output maximum response ratios at the first time point

(Figure 3.3b, d) and was therefore penalized in quantitative goodness-of-fit. Examining AWB’s

system of equations, we surmise that one reason for the later peak was due to the slower growth

of MIC in the biologically truncated parameter space that AWB was limited to. MIC is a driving

force for the increase in the CO2 flux as a numerator term in the AWB flux equation. Unlike MIC

biomass in CON, MIC biomass growth in AWB has two loss terms in its differential equation.

This is not to say that CON was clearly superior from a qualitative standpoint. CON’s mean

posterior predictive curves were not able to match a subsequent local data maximum in the

meta-analysis data set at t = 3.5 year, a trend which AWB’s curves were able to replicate. The
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mean CON curves also substantially overshoot the data at later time points following t = 7.5

year (Figure 3.2a and 2.3a, c) because of the inability of first-order linear models such as CON

to display oscillatory dynamics (Hale and LaSalle, 1963).

In contrast, AWB displays damped oscillations in its re- sponse ratios following warming due to

its nonlinear dynamics (Figure 3.2 and 3.3). AWB was able to match the points after t = 7.5 year

more closely than CON. The presence of respiration oscillations has been observed in long-term

warming experiments, such as the one taking place at Harvard Forest (Melillo et al., 2017). It

is possible AWB would be quantitatively rewarded in goodness-of-fit metrics over CON for its

ability to replicate biologically realistic oscillations in larger, site-specific data sets such as those

from Harvard Forest.

3.6 Sensitivity analyses of C pool densities and density

ratios

We performed a goodness-of-fit sensitivity analysis to check whether the response ratio trends

stayed consistent, biologically realistic, and interpretable across a range of prewarming, steady-

state soil C densities and pool-to-pool density ratios. For instance, we imposed constraints to

reflect that MIC-to-SOC density ratios range between 0.01 and 0.04 across various soil types

(Anderson and Domsch, 1989; Sparling, 1992). CON and AWB response ratio curves exhibited

realistic values and qualitatively consistent shapes across all prewarming SOC and MIC steady-

state densities, even at less realistic SOC densities above 100 mgCg−1 soil (Figure 3.3). There

was enough uncertainty in the data that the 95% posterior predictive intervals for the model

output always overlapped with the 95% confidence intervals of each fitted data point (Figure

3.2). In most cases, the posterior mean response ratio curve also fell within the 95% data

confidence interval.
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We were unable to initiate our prewarming SOC steady-state density below SOC50 with the

priors and MIC-to-SOC ratios used for AWB. Under SOC50, AWB HMC runs would not reliably

run to conclusion and would terminate due to ODE instabilities. Even at SOC50, we saw a

reduction in independent and effective samples for certain parameters, namely EaK and EC,ref.

We did not drop under SOC50 for CON, as we sought to compare AWB and CON at similar

MIC-to-SOC ranges. Our experience underscores the challenge of choosing realistic steady-state

soil C densities, density ratios, and prior distributions to obtain valid model comparisons limited

to biologically realistic regimes.

The information criteria and cross-validation fit metrics generally indicated higher relative prob-

ability and predictive performance at lower prewarming SOC values for AWB and CON (Figure

3.5). The fit results suggest that SOC density of the soil at the sites included in the meta-analysis

was likely closer to the lower end of the SOC density ranges examined in our sensitivity analysis. A

less pronounced trend toward better fits was observed as prewarming MIC density was decreased

while prewarming SOC density was held constant. No clear relationship was observed between

MIC-to-SOC ratio and goodness-of-fit in the AWB and CON models.

The worsening IC and CV results at higher SOC densities support the notion that prewarming

steady-state SOC densities should not be initialized over SOC100 in AWB and CON when fitting to

this meta-analysis data set. Prewarming SOC density was not observed to exceed 50 mgCg−1 soil

at sites included in the meta-analysis, reaching a maximum of 45 mg SOC g−1 soil for the top

20 cm in one study with alpine wetland soil (B. Zhang et al., 2014). The majority of the CO2

respired by soil microbes is sourced from surface soil (Fang and Moncrieff, 2005), and it is well

documented that SOC densities increase toward the soil surface (Jobbágy and Jackson, 2000).

14C measurements of CO2 fluxes suggest that SOC densities representing the source of most

heterotrophic respiration range between 40 and 80 mg SOC g−1 soil (Trumbore, 2000), so the

effective SOC densities associated with soil respiration at some meta-analysis sites may have been

in this range.
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Overall, the Bayesian metrics from the goodness-of-fit sensitivity analysis suggest that CON is

superior to AWB at explaining the meta-analysis data set when accounting for model parsimony,

particularly when the models are initiated in more realistic ranges of prewarming SOC densities

under SOC100. However, we caution against using these results to conclude that CON is a com-

prehensively superior predictive model over AWB without comparisons involving other longitudinal

soil warming data sets. And other data aside, we observe that AWB has a useful advantage over

CON conditional on the meta-analysis data set alone: AWB was more tolerant of changes in

prewarming conditions, displaying less IC and CV than CON as prewarming SOC is increased

(Figure 3.5a-c). AWB’s compensatory ability stemming from its larger model size could be more

quantitatively rewarding in goodness-of-fit sensitivity analyses conducted on data assimilations

with larger data sets.

For an additional check on the biological realism and plausibility of our simulations, we conducted

a sensitivity analysis examining changes in model SOC stocks following warming. The response

ratios of postwarming SOC stocks after 12.5 years, evaluated as the ratio of postwarming to

prewarming SOC densities, was computed from observed CON and AWB simulations at the

posterior parameter means. SOC losses indicated by the response ratios ranged from 8.13% to

27.1% across both models. These results aligned with a recent comprehensive meta-analysis of

143 soil warming studies. The largest loss of 27.1%, occurring in CON at SOC50, is sizable, but

the meta-analysis included seven studies measuring losses greater than 20%, with the maximum

loss observed at 54.4% (van Gestel et al., 2018).

Raising prewarming SOC reduced SOC loss after 12.5 years of warming for both models. For

CON, SOC loss decreased from 27.1% at SOC50 to 9.2% at SOC200. For AWB, SOC loss

decreased from 17.2% at SOC50 to 8.13% at SOC200. Varying prewarming MIC affected the

SOC response ratio more substantially for AWB than CON. For AWB, SOC loss increased from

11.4% at MIC1 to 16.3% at MIC8, while SOC loss decreased from 18.8% at MIC1 to 17.4% at

MIC8 for CON. The larger effect of increasing MIC on the SOC response ratio in AWB is likely
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due to MIC influence on SOC-to-DOC turnover, which is not a feedback accounted for in the

equations of the CON model.

The posterior means for the Arrhenius activation energy parameters Eai of CON and AWB

returned by the HMC simulations across the observed prewarming C densities differed somewhat

from the parameter values used in Allison et al. (2010) and J. Li et al. (2014), which were in turn

tuned based on activation energies estimated in a prior empirical analysis of enzyme-catalyzed soil

organic matter decomposition processes (Trasar-Cepeda et al., 2007). In Allison et al. (2010),

CON parameters EaS, EaD, and EaM were respectively set at 47, 40, and 40 kJmol−1, and

AWB parameters EaV and EaV U were both set at 47 kJmol−1. The AWB Michaelis–Menten

KM terms were not parameterized to have Arrhenius temperature dependence in Allison et al.

(2010). In J. Li et al. (2014), CON parameters EaS, EaD, and EaM were set at 47, 47, and

20 kJmol−1, and AWB parameters EaV , EaV U , EaK , and EaKU were set at 47, 47, 30, and

30 kJmol−1. These values were in line with the activation energies calculated in Trasar-Cepeda

et al. (2007), which ranged from 17.0 to 57.7 kJmol−1, with the energies corresponding to the

decomposition of plant litter and protected organic matter being on the higher end and the

energies corresponding to microbial biomass degradation being on the lower.

Our HMC simulations arrived at higher Ea values, with the posterior means of EaS, EaD, and

EaM respectively ranging from 51.3 to 77.6, 50.1 to 50.3, and 51.8 to 52.6 kJmol−1 in the

prewarming SOC-varied simulations for CON, and the posterior means of EaV , EaV U , EaK ,

and EaKU respectively ranging from 58.5 to 74.8, 50.2 to 51.1, 25.8 to 42.4, and 49.0 to

49.8 kJmol−1 for AWB. However, these values are still within the ranges of organic matter

decomposition activation energies, which have been empirically estimated to exceed 100 kJmol−1

at their highest in the A horizons of temperate soils (Steinweg et al., 2013), suggesting that the Ea

posterior means, aided by prior truncation, effectively remained within biologically realistic space

across all observed prewarming C densities. The presence of higher EaS posterior means also

agreed with the empirical trends of higher activation energies for the degradation of SOC-related
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organic compounds and lower activation energies for the degradation of material associated with

microorganisms.

We found it less useful to compare the posterior means of other fitted parameters including

the C pool transfer coefficients, C use efficiency EC,ref and Vmax to empirical estimates for

biological benchmarking purposes. Unitless parameters like transfer coefficients and EC,ref defy

straightforward interpretation, measurement, and estimation from experiments (Bradford and

Crowther, 2013). Very different values can be found based on whether substrate-specific or

substrate-nonspecific assumptions and methods are used (Geyer et al., 2019; Hagerty et al.,

2018). Vmax parameters are not unitless but display even higher variance than the bounded C

transfer and efficiency coefficients. The Vmax parameter corresponding to a specific enzyme can

vary over orders of magnitude when the sensitivity of the enzyme to an interval of temperatures

is considered (Nottingham et al., 2016). The process of consolidating experimental substrate-

specific and substrate-nonspecific measurements into a single number to correspond to a model

Vmax value introduces further complications and uncertainty, rendering comparisons of potentially

drastically different Vmax values less informative regarding model biological realism.

3.6.1 HMC parameter space exploration

Truncating prior and posterior parameter distributions proved useful for establishing biological

constraints and only modestly deformed posterior densities for AWB and CON. From SOC100 to

SOC200, CON and AWB posterior densities showed little or no deformation from typical normal

distribution shapes. Moderate posterior density deformation was observed for some parameters

in both models at SOC50 and SOC75, namely EaS for CON and EC,ref for AWB. Even so, most

of the other parameter posterior densities still remained undeformed at those SOC values. Thus,

prior truncation generally did not prevent posterior means from falling within biologically realistic

intervals, suggesting that priors were appropriately informed and chosen.

60



A small frequency of divergent transitions was detected in the AWB HMC simulations. Divergent

transitions can be thought of as algorithm trajectory errors arising during the HMC’s exploration of

a convoluted region of parameter space; a more thorough description of the theory, computation,

and implications of divergent transitions can be found in literature focusing on the Hamiltonian

Monte Carlo algorithm (Betancourt, 2016, 2017). The number of divergent transitions generally

increased as the prewarming MIC-to-SOC steady-state ratio was reduced. Prior truncation and

the fixing of select parameters to constrain the prewarming steady-state mass values for biological

realism could have played a combined role in generating the Markov chain divergences by hindering

the smooth exploration of parameter space. We were unable to eliminate divergent transitions by

adjusting HMC parameter proposal step size, suggesting that other methods, such as modification

of the HMC algorithm itself or introduction of auxiliary parameters to AWB that reduce correlation

between existing model parameters, may be more applicable in reducing divergent transitions in

our case (Betancourt and Girolami, 2015). Additionally, the interaction between the ranges of

values used for the prior distributions and the limited number of observations in the data set

could have contributed to the shaping of geometric inefficiencies (Betancourt, 2017).

It is possible that the instability that prevented consistent solving and HMC exploration of AWB

under SOC50 could be traced to the forward Michaelis-Menten formulation of decomposition

and uptake kinetics used in the present version of the AWB model. We initialized the system

with a small DOC density lower than that of MIC at 0.1 mgCg−1 soil. Since DOC was in the

denominator of these decomposition and uptake expressions, those expressions could become

larger than tolerable for the system in certain parameter regimes.

Some suggestions for the reparameterization of AWB to improve model stability have been pro-

posed that could reduce or even eliminate divergent transitions by facilitating a smoother and

steadier parameter space conducive for HMC exploration. One intermediate possibility would be

to modify AWB to use reverse Michaelis-Menten kinetics, which would replace the DOC term in

the denominators of the decomposition and uptake expressions with the larger MIC term. The
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use of reverse instead of Michaelis-Menten dynamics has been used to stabilize and constrain

other SBMs (Sulman et al., 2014; Wieder, Grandy, Kallenbach, Taylor, et al., 2015). A more ex-

tensive reformulation involves the replacement of Michaelis-Menten expressions with equilibrium

chemistry approximation (ECA) kinetics, which would increase the number of denominator terms

in decomposition expressions for further stability. ECA equations have been shown to be more

consistent in behavior and robust to parameter regime variation than their Michaelis-Menten

counterparts, and they thus have been encouraged as a wholesale replacement for Michaelis-

Menten formulations (Tang, 2015; B. Wang and Allison, 2019). These reparameterizations

should be implemented and examined in future work that involves sampling and computation of

AWB posteriors.

3.7 Outlook and conclusions

Recent SBM comparisons have been unable to demonstrate the superiority of one model over

another because the uncertainty boundaries of the data were not sufficient for distinguishing model

outcomes (Sulman et al., 2018; Wieder, Boehnert, et al., 2014; Wieder, Grandy, Kallenbach,

Taylor, et al., 2015; Wieder et al., 2018). Similar to these previous studies, our results indicate that

more data is needed to constrain and differentiate between model posterior predictive distributions.

Conditional on the meta-analysis data set, CON demonstrates superior quantitative goodness-

of-fit over AWB, but we are not confident that the relative model parsimony of CON and other

linear first-order models makes them universally more suitable for predictive use.

Consequently, future SBM comparisons would benefit from additional data collection efforts

sourced from long-term ecological research experiments to globally verify the strengths and lim-

itations of linear versus nonlinear SBMs, including CON and AWB, in Earth system modeling.

The limited number of longitudinal soil warming studies presents a challenge for facilitating site-

specific model comparisons. We addressed this issue by using meta-analysis data to aggregate
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warming responses across sites, but this approach does not provide site-specific parameters. Ad-

ditional data from ongoing and future field warming studies in the vein of the Harvard Forest and

Tropical Responses to Altered Climate experiments that demonstrate more varied flux dynamics

over time than the meta-analysis data set will be of critical importance for model testing (Melillo

et al., 2017; Wood et al., 2019). Model parameters could also be better constrained through

the use of multivariate data sets, for example microbial biomass dynamics in addition to soil

respiration.

Our approach can be expanded to compare the predictive accuracies of linear microbial-implicit

models to those of recently developed nonlinear microbial-explicit SBMs that are much larger than

AWB, such as CORPSE (Sulman et al., 2014) and MIMICS (Wieder, Boehnert, et al., 2014).

Such comparisons will help broadly determine if inclusion of more detailed microbial dynamics in

models offers predictive advantages that can overcome the overfitting burdens associated with an

increase in parameter count. With the appropriate data sets, our approach can also be applied to

consider the predictive performance of SBMs that describe the cycling of nitrogen (N), phosphorus

(P), and other limiting nutrients in addition to C dynamics. Models that represent N and P

mineralization have yet to see extensive head-to-head statistical benchmarking against C-only

models with respect to predictive use (Manzoni and Porporato, 2009). With models growing ever

larger in size and specificity, there is a need to verify whether detailed representation of microbial

processes and the cycling of limiting nutrients are worth the increase in variable, parameter, and

equation counts. After all, “the tendency of more recent models towards more sophisticated (and

generally more mathematically complex) approaches is not always paralleled by improved model

performance or ability to interpret observed patterns” (Manzoni and Porporato, 2009).

The data assimilation and posterior sampling of complex models in future work comes with com-

puting performance challenges. Markov chain Monte Carlo algorithms are effective for exploring

multidimensional parameter space but are limited by temporal and computational expense, par-

ticularly when it comes to fitting nonlinear differential equation models (Calderhead et al., 2009;
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Nemeth and Fearnhead, 2021). Time per Markov chain iteration drastically increases with num-

ber of parameters and data points. In fact, the present speed limitations of the family of HMC

algorithms make it necessary to use a hybrid approach utilizing Monte Carlo and deep learning

algorithms for parameter estimation at a global scale; Monte Carlo fitting is used to constrain pa-

rameter estimates at a site-based scale before those estimates are tuned globally by deep learning

using spatial information derived from satellite maps (Tao et al., 2020). However, Monte Carlo

algorithms are still the optimal methods for posterior computation (Duan et al., 2018) and are

necessary for Bayesian model comparisons conditional on site-based data. Consequently, recent

Monte Carlo algorithm innovations and developments that offer theoretical speed improvements

by trading thorough posterior sampling for numerical efficiency have been encouraging and are

ripe to be tested in future SBM comparisons involving more complex models and larger data

sets. These developments include stochastic gradient Monte Carlo sampling methods, a class

of techniques in which a posterior is approximated by fitting to a small subset of data at each

iteration rather than estimated through exhaustive sampling (Ma et al., 2015), and Gaussian

process acceleration, in which a smooth distribution of likely solutions for a differential equation

system is specified and sampled in place of explicitly solving for the state variables during every

Markov chain iteration (Calderhead et al., 2009; Dondelinger et al., 2013; Y. Wang and Barber,

2014).

Alongside advances in Monte Carlo algorithms, additional developments in Bayesian cross-validation

and information criteria measures are also available for practical trialing in soil biogeochemical

data assimilation. Gelman et al. (2019) have proposed a stable Bayesian counterpart of frequentist

R2 defined as “the variance of the predicted values divided by the variance of predicted values plus

the expected variance of the errors” that allows for more intuitive and direct comparison to R2. A

Bayesian R2 distribution provides a signal about the absolute rather than relative goodness-of-fit

of an associated posterior predictive distribution to the data. Bürkner et al. (2020) have proposed

a leave-future-out (LFO) cross-validation metric which is formulated to estimate relative model

predictive accuracy for hypothetical time series data occurring after existing experiment obser-
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vations. LFO and LOO are computed similarly, and LOO can also be used for time series data,

as we demonstrated in this study. However, the algorithmic differences between LFO and LOO

make them better suited for different goals. LOO does not inform about the quality of model fits

for hypothetical samples collected after final reported measurements and is more appropriate for

estimating out-of-sample model predictive accuracy for hypothetical data samples taken between

the interval of observed measurement times (Vehtari et al., 2017).

The development of our formalized, statistically rigorous approach for model comparison and

evaluation is a critical step toward the goal of projecting global SOC levels and soil emissions

throughout the 21st century. Our initial results indicate promise in continued refinement and

expansion of our approach to evaluate the predictive performance of linear and nonlinear SBMs.

The future integration of updated Markov chain algorithms and Bayesian predictive accuracy

metrics into our framework will expand the ability to efficiently and thoroughly compare differential

equation models, even if they vary widely in structure and complexity.
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Figure 3.4: The 95% probability density credible areas for model parameters corresponding to pre-
warming steady- state SOC = 100 mgCg−1 soil, DOC = 0.2 mgCg−1 soil, MIC = 2 mgCg−1 soil,
and (for AWB) ENZ = 0.1 mgCg−1 soil. Yellow shaded regions represent the 80% credible areas
and vertical purple lines indicate distribution mean. (a) CON activation energy parameters EaS
, EaD , and EaM ; (b) CON C pool partition fraction parameters aDS, aSD, aM , and aMS;
(c) AWB activation energy parameters EaV , EaV U , EaK , and EaKU ; (d) AWB parameters
Vref, EC,ref, and aMS. Vref is the SOC Vmax at the reference temperature 283.15 K; EC,ref is
the carbon use efficiency fraction at the reference temperature; and, like its CON counterpart,
the AWB aMS parameter is the fraction parameter representing the proportion of dead microbial
biomass C transferred to the SOC pool.
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Figure 3.5: Goodness-of-fit metrics plotted against initial steady-state SOC for AWB and CON
models for (a) LOO, (b) WAIC cross validation, (c) LPML, and (d) R2 values. Pre-perturbation
steady-state MIC, DOC, and ENZ (for AWB) are held constant as pre-perturbation SOC is varied.
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CHAPTER 4

A framework for variational inference and

data assimilation of soil biogeochemical

models using state space approximations and

normalizing flows

4.1 Introduction

Soil biogeochemical models (SBMs) are differential equation systems that represent dynamics of

organic matter transfer between soil pools, including the soil organic (SOC), dissolved organic

(DOC), and microbial biomass carbon (MBC) pools. The state variables of SBMs typically are

densities or masses of elements in those pools (Manzoni and Porporato, 2009), and heterotrophic

soil CO2 emissions can be estimated from those state values and microbial parameters (Allison

et al., 2010). As soil microbe communities influencing organic mass transfer dynamics evolve

and shift under the selection pressures of terrestrial warming, SBMs have become an important

tool for soil scientists and biogeochemists to quantify changes in soil system activity and predict
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future heterotrophic soil respiration levels (Saifuddin et al., 2021; Sulman et al., 2018).

SBMs offer falsifiability of their dynamics through their depiction of biological soil processes as

interpretable mathematical equations governed by model parameters θ. However, the formulation

of statistically sound frameworks to assess the dynamical validity and predictive accuracy of SBMs

remains an open problem in soil biogeochemistry (Bradford et al., 2021; Georgiou et al., 2021;

Luo et al., 2016; Raczka et al., 2021; Xie et al., 2020). One approach for assessing SBM utility

involves comparing models by their ability to assimilate soil observation data with suitable θ

values, assuming that models that can more accurately describe the past will also be better at

predicting the future (Bradford et al., 2021; Wieder, Boehnert, et al., 2014). Past SBM fit

evaluations have ranged from visual juxtapositions of manually calibrated model outputs against

empirical observations (Sulman et al., 2014; Wieder, Grandy, Kallenbach, Taylor, et al., 2015)

to quantitative frequentist comparisons involving correlation coefficients and root-mean-square

errors (Todd-Brown et al., 2014; Todd-Brown et al., 2013; Wieder, Boehnert, et al., 2014).

In an effort to account for uncertainty in θ values and data observations and encode expert

domain beliefs, other comparisons have involved the use of Bayesian Markov chain Monte Carlo

(MCMC) inference methods and goodness-of-fit metrics with some success (Hararuk and Luo,

2014; Hararuk et al., 2014; J. Li et al., 2019; Saifuddin et al., 2021; S. Wang et al., 2022; Xie

et al., 2020).

MCMC transition sampling methods, such as the Gibbs (Geman and Geman, 1987) and No-U-

Turn (NUTS; Hoffman and Gelman, 2014) samplers deployed in widely-used probabilistic pro-

gramming platforms like JAGS (Plummer, 2003), Stan (Carpenter et al., 2017), and PyMC (Sal-

vatier et al., 2016), are powerful algorithms for inference, but their relative computational cost

presently limits their ability to scale for use on model comparisons involving more complex SBM

systems conditioned on larger data sets spanning decades (Kucukelbir et al., 2017). Stochastic

gradient optimization variational inference (VI) is an alternative approach to Bayesian inference

and model-fitting that trades asymptotic exactness and the ability to estimate non-parametric
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posterior distributions for increased computational efficiency and simplicity (Blei et al., 2017). It

does so by reframing Bayesian inference from a transition sampling problem to an optimization

objective of maximizing a metric called the evidence lower bound (ELBO), which corresponds

to minimizing the discrepancy between an approximate parametric posterior and true posterior

distribution (Salimans et al., 2015).

VI on differential equation models benefits from the use of stochastic differential equation (SDE)

over ordinary differential equation (ODE) systems. SDE noise provides a means of adjusting and

correcting for proposals of system initial conditions and underlying dynamics that are inconsistent

with the true data-generating process sourcing the data observations (Särkkä and Solin, 2019;

Whitaker, 2016; Wiqvist et al., 2021). Additionally, noise-driven fluctuation and variation in state

trajectories can account for outlier data measurements during inference to reduce optimization

pressures that can drive rigid deterministic models into unstable θ regimes. SDE noise thereby

improves inference flexibility, stability, and efficiency through the acommodation and mitigation

of discrepancies between model outputs and data generation or observation. Furthermore, SDEs

offer a more realistic and accurate representation of the stochasticity that is inherent to biological

processes across all scales (Abs et al., 2020; Browning et al., 2020; Golightly and Wilkinson,

2011). The ability to effectively fit SDEs is an advantage of VI over many established MCMC

methods; off-the-shelf MCMC implementations are frequently not efficient for confronting the

noisy likelihood estimates of SDEs (Chen et al., 2014; Fuchs, 2013; Golightly and Wilkinson,

2010).

With the goal of applying VI to SBMs in mind, we formulated SDE versions of the linear deter-

ministic “conventional” (CON) SBM system (Allison et al., 2010; J. Li et al., 2014) to establish

an SCON family of models and leverage the versatility of stochastic optimization. As is the case

for CON, SCON models have three state variables representing SOC, DOC, and MBC densities

in a soil system. We parameterized two SCON variants, “constant diffusion” SCON (SCON-C)

and “state-scaling diffusion” SCON (SCON-SS). Diffusion coefficients are model parameters that
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govern the noise dynamics of an SDE system. In SCON-C, diffusion, or noise, was set to be

independent of time and states, while in SCON-SS, noise was made to depend on and scale with

state values.

Figure 4.1: In our study, we use normalizing flows to approximate SCON soil biogeochemical
model solution trajectories x over time t. The flow operates in a generative direction, mapping
a simpler base distribution to a more complex one representing SCON output.

We used a class of methods called normalizing flows to approximate SCON models in our in-

ference approach. In simple terms, flows can be thought of as one or more layers of random

variable mappings that transform an initial base probability distribution to a new distribution

(Papamakarios et al., 2021). When we deploy flows to transform a simpler probability density

into a more complex one (Figure 4.1), as we do in our study, it is classified as a generative

normalizing flow (Kobyzev et al., 2020). The flow approximation refashions SCON from an SDE

that depicts state variable dynamics dx
dt in continuous time to a probabilistic state space model

that specifies distributions of state measurements yt noisily observed from underlying states xt in

discrete time (Särkkä and Solin, 2019).

The replacement of differential equation solver integration with state space models to approximate

dynamical systems offers substantial computational efficiency gains in inference (Ryder et al.,

2018; Särkkä and Solin, 2019). At each inference iteration or epoch, rather than sequentially

computing state trajectories x one time step at a time with solvers including Euler, Runge-Kutta,

and Adams’ schemes, as was demonstrated in studies like Xie et al. (2020), we can instead

simultaneously sample multiple x in one vectorized draw from a flow-transformed state space

distribution object. This increased efficiency allows us to more capably assimilate SBMs with
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time series data sets spanning longer periods under computing resource limitations, especially

when highly parallelizable graphical processing units (GPUs) can be leveraged.

Drawing from the methodologies of previous work that test various inference approaches (Go-

lightly and Wilkinson, 2006; Ryder et al., 2021; Ryder et al., 2018; Whitaker et al., 2017), our

study demonstrates functional stochastic VI of flow-approximated SBMs conditioned on soil ob-

servations data y that includes various soil pool and respiration measurements. To support the

notion that our VI approach is operational, we show that it can fit model output to y sourced

from a known data-generating process and estimate model θ posteriors in line with the true θ

values used by that process.

Hence, to begin our study workflow, we generated synthetic y consisting of SOC, DOC, and

MBC state and heterotrophic CO2 respiration rate observations corresponding to SCON-C and

SCON-SS data-generating processes. The processes used “true” θ values randomly sampled from

constrained data-generating distributions that were chosen to produce faster and more dramatic

SOC decay dynamics reminiscent of organic matter decomposition at soil surface, which contrasts

with the slower and deeper soil decomposition depicted in J. Li et al. (2014) and Xie et al. (2020).

Faster decay provided our inference approach with substantive dynamical information in shorter

time series to operate and optimize on. We then conditioned our state space model VI on those

synthetic y for estimation of approximate posterior densities q(θ) that were compared with prior

densities p(θ). Priors were made to be equivalent to our data-generating distributions.

Ultimately, we found that our VI approach allowed us to reasonably fit y. When possible, our fits

were checked against solutions from a Kalman smoother algorithm, and we observed that the flow

fits were mostly consistent with the Kalman solutions. Crucially, we were also able to recover

some of the true θ values used by our data-generating processes against model identifiability

limitations that could not be resolved by the extent of information contained in our synthetic

data. Model identifiability can be summarized as the ability to update prior beliefs about θ and

align model to true θ based on available data. Our identifiability issues related to the presence of
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ambiguous SCON equation terms involving the multiplication of more than two parameters. Our

work offers insights and suggestions for improving the identification of θ, which is of interest for

experimentalists and biogeochemists who are interested in building effective data sets for SBM

inference.

4.2 Materials and Methods

4.2.1 Inference workflow overview

The general steps constituting our study’s SBM data assimilation workflow are outlined in Figure

4.2. We established SCON-C and SCON-SS to serve as known data-generating processes whose

true θ values can be compared with the inferred posteriors to test our flow VI method. Discrepan-

cies between the true θ and posterior means inform on the effectiveness of our selected inference

algorithm. Differences between the priors and posterior densities further indicate algorithm effi-

cacy and additionally point to the informativeness of the data y for identifying and constraining

posteriors.

True SCON-C and SCON-SS θ were sampled from data-generating distributions truncated be-

tween lower and upper support bounds to ensure that data-generating processes would remain in

parameter regimes with faster state decay corresponding to soil surface decomposition occurring

on the order of thousands of hours, rather than tens or hundreds of thousands. This allows us

to generate shorter data sets y that enable reduced computational loads and faster turnaround

times for testing our inference algorithm while retaining dynamical richness that can inform the

algorithm to estimate more certain posteriors. We used logit-normal distributions to handle trun-

cation in our data-generating, prior, and posterior distributions, which we will describe in section

4.2.3. Our inference priors matched our data-generating distributions.

73



Choose SDE system to 
output state trajectories !.

Choose observation data 
set " for conditioning fits.

Assign priors # $ and initial 
condition distributions #(!!).

Choose stochastic inference 
method to estimate 
likelihood, ℒ($| ").

Estimate posterior density 
#($, ! | ") to compare to 
priors #($) and evaluate 

posterior predictive 
distribution # *" ").

Approximate SDE 
system with SSM.

d"
d+

["!, "", … , "#]

Wrangle, clean, and 
impute data if needed.

MM-DD-YYYY-HH

YYYY—MM-DD-HH

Figure 4.2: A workflow diagram summarizing the steps involved in our study’s stochastic vari-
ational Bayesian framework. Our workflow efficiently conducts inference and data assimilation
on stochastic differential equation (SDE) soil biogeochemical models (SBMs) with their approx-
imation into state space models (SSMs). Our modular workflow is designed to serve as a basis
for building future soil biogeochemical model inferences, as the “black box” inference method
used can be modified or substituted. Our “black box” inference method of choice was stochastic
gradient descent mean-field variational inference. Within the nodes of the diagram, blue lines and
shading correspond to prior means and distributions, while orange lines and shading correspond to
posterior means and distributions. Orange dots represent observations upon which the inference
is conditioned.

Synthetic data y were observed and processed from our data-generating SDE solution trajectories.

We parameterized our SCON models based in time units of hours, so observations were collected

every 5 hours by default. State space approximation of SDE output, which we will describe in

section 4.2.4, requires regular time series discretization (Kalman, 1960), so in an empirical setting,

all existing, imputed, or missing observations must coincide with discrete time steps of the state

space model in our approach and cannot transpire in between. Different SDE approximation

methods would be needed for irregular time discretization.

We selected mean-field stochastic VI as our black box inference method for its mathematical
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simplicity and efficiency. Mean-field inference makes the simplifying assumption that model pa-

rameters are independently distributed. This aligns with our synthetic data-generating processes,

in which our true θ values are sampled from independent logit-normal distributions. VI frames

Bayesian inference as an optimization goal of finding the set of mean-field posterior distributions

that best describes y. The optimization process takes place over a number of training iterations

in which θ values are sampled at each iteration and the likelihood of the resultant model output

conditioned on y and θ is evaluated in fulfillment of the objective of the VI algorithm to locate θ

corresponding to higher model likelihood. We present an overview of our VI implementation and

key algorithm steps in section 4.2.5.

We used normalizing flows to approximate SCON-C and SCON-SS from continuous-time SDEs

to time-discretized state space models. These state space approximations then served as our

bases for VI optimization. A brief treatment on state space models is given in section 4.2.4. Flow

state space approximation increased the computational efficiency of sampling SCON solution

trajectories (also referred to as latent variables, states, or paths in machine learning literature)

such that multiple trajectories would be simultaneously collected from a flow distribution object

rather than sequentially simulated from a differential equation solver at each training iteration.

The flow is assembled through deep neural network layers that transform simpler random input

into more complex approximated SCON output. The constituent pieces of the machine learning

architecture underlying our flow are detailed in section 4.2.6.

Per equations (4.3) and (4.4), SCON-C is a completely linear SDE. Consequently, SCON-C flow-

approximated x and its fit of y can be visually benchmarked against output from an instance

of the Kalman smoother algorithm summarized in section 4.2.7. Given a known data-generating

process and observation error, a Kalman smoother exactly solves the true mean latent path x of

the SDE data-generating process sourcing y. We successfully compared SCON-C flow x to the

true x solution computed by the smoother, which we describe in section 4.3.1. The smoother

algorithm cannot resolve the non-linear diffusion depicted in equation (4.5), so SCON-SS flow
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output could not be validated in the same manner.

4.2.2 SCON SDE parameterization and data generation

SDE system equations are frequently written with the state value derivatives dx on the left-hand

side, and consist of a drift coefficient vector, frequently notated as α, and a diffusion coefficient

matrix, notated as β, on the right-hand side. For biological SDE models, a square-root diffusion

structure is frequently used such that these systems follow the form

dxt = α(xt, t, θ)dt+
√
β(xt, t, θ)dWt (4.1)

where dWt denotes a continuous stochastic Wiener process. Evolution of SDE trajectories x

across a simulation duration T in time increments dt can be interpreted as a series of small

steps whose values are independently drawn from a normal distribution with mean α(xt, t)dt and

variance β(xt, t)dt (Särkkä and Solin, 2019).

Like the CON model introduced in Allison et al. (2010), SCON has three state dimensions made

up of soil organic C (SOC), dissolved organic C (DOC), and microbial biomass C (MBC) densities.

We notate total state dimensions with D, so D = 3 for all systems in the SCON family. SOC,

DOC, and MBC are respectively notated in the system equations as S, D, and M . Thus, xt, the

solutions of the continuous SCON system at time t, expand to the vector,

xt =


St

Dt

Mt

 (4.2)

and observations of the system yt are similarly three-dimensional.

We established two SCON versions for inference and data generation use, SCON-C and SCON-SS.
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SCON-C and SCON-SS share the same underlying α drift vector, equivalent to the deterministic

CON dynamics and following the form:


dS

dD

dM

 =


IS + aDS · kD ·D + aM · aMSC · kM ·M − kS · S

ID + aSD · kS · S + aM · (1− aMSC) · kM ·M − (uM + kD) ·D

uM ·D − kM ·M

 dt+ β0.5


dWS

dWD

dWM


(4.3)

where β now refers to the diffusion matrix component of the SDE and the WS, WD, and WM

elements of the Wiener process vector represent random draws from the distribution N (0,
√

dt).

For simplification purposes, the β diffusion matrices of both systems were made to be diagonal

only and free of covariance diffusion terms. SCON-C diffusion dynamics are given by

β =


cS 0 0

0 cD 0

0 0 cM

 (4.4)

while SCON-SS diffusion dynamics are

β =


sS · S 0 0

0 sD ·D 0

0 0 sM ·M

 (4.5)

Thus, SCON-C diffusion noise is additive, meaning it is independent of the values of states S,

D, and M , and also stationary, meaning that is not a function of t. Meanwhile, SCON-SS noise

is multiplicative, meaning it is dependent on the states. As such, SCON-C is linear in drift and

diffusion, while SCON-SS is linear in drift but non-linear in diffusion.

IS and ID respectively represent the exogenous input of C mass in units of mgCg−1 soil h−1 into
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the SOC and DOC soil pools from litter decay and can be modeled as constants or functions. We

used sinusoidal litter input functions with annual periods that assumed litterfall peaking through

late summer and early fall in a pattern resembling those observed in tropical forest ecosystems

Giweta, 2020. The functions are given by

IS,t = 0.001 + 0.0005 · sin
(

2π

365 · 24t
)

(4.6a)

ID,t = 0.0001 + 0.00005 · sin
(

2π

365 · 24t
)

(4.6b)

As was previously instituted for CON (Allison et al., 2010; J. Li et al., 2014), the SCON linear first-

order decay parameters ki∈{S,D,M} remain dependent on temperature. Temperature sensitivity

of the ki∈{S,D,M} linear first-order decay parameters is enforced by a function derived from the

original Arrhenius equation (Arrhenius, 1889),

ki,t = ki, ref exp

[
−Eaki

R

(
1

tempt

− 1

tempref

)]
(4.7)

where R is the ideal gas constant 8.314 JK−1mol−1 and tempref specifies a “reference” equilibrium

temperature which we set at 283 K.

Through changing values of ki∈{S,D,M}, SCON systems respond to day-night and seasonal tem-

perature cycles through the composite sinusoid forcing function,

tempt = tempref +
5t

80 · 365 · 24 + 10 · sin
(
2π

24
t

)
+ 10 · sin

(
2π

365 · 24t
)

(4.8)

The function assumes a gradual linear increase in mean soil surface temperature by 5 °C over 80

years from the start of the simulation, in line with the upper bound of mean surface temperature

increases predicted in emissions scenarios by 2100 (O’Neill et al., 2017).

SDE systems rarely admit tractable analytic solutions. To sample state trajectories accurately
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approximating SCON-C and SCON-SS dynamics and construct our synthetic time series data

y, we used the long-established and reliable Euler-Maruyama SDE solver (Maruyama, 1955) to

numerically integrate solution paths x corresponding to θ randomly sampled from logit-normal

distributions. Our solver step size was set to dt = 0.1 hour. We note that we recover the exact

SCON-C and SCON-SS processes in continuous time as dt is decreased to 0.

If inference involved conditioning with CO2 observations in y in addition to state measurements,

model CO2 respiration rate would be computed from the time-corresponding x state values with

the equation

CO2, t = (1− aSD) · kS, t · St + (1− aDS) · kD, t ·Dt + (1− aM) · kM, t ·Mt (4.9)

where CO2, t is in units of µg g−1 soil h−1. We then sliced x and CO2 time series at some regular

interval, i.e. every 1 hour or 5 hours, and normally sampled about the sliced values with an

observation error vector σobs in the manner of

yt ∼ N (xt, ηobs) (4.10)

to arrive at y. We lower bounded y such that y ∈ R≥0 to preclude nonsense negative state

measurements. We used constant ηobs that was 10% of the overall state mean such that

ηobs = 0.1⊙


S̄

D̄

M̄

 (4.11)

where ⊙ indicates elementwise multiplication. This corresponds to an empirical scenario where

measurement instruments and processes introduce a stable level of observation noise. CO2 was

similarly observed with noise standard deviation that was 10% of the overall CO2 mean across

the total time span in the sampling of y including CO2.
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θ Biogeochemical interpretation Target hyperparameters Units
uM MBC uptake rate L N (0.0016, 0.0004, 0, 1) mgCg−1 Ch−1

aDS DOC to SOC transfer fraction L N (0.5, 0.125, 0, 1) NA
aSD SOC to DOC transfer fraction L N (0.5, 0.125, 0, 1) NA
aM MBC to organic C transfer fraction L N (0.5, 0.125, 0, 1) NA

aMSC MBC to SOC transfer fraction L N (0.5, 0.125, 0, 1) NA
kS, ref SOC decomposition rate L N (0.0005, 0.000125, 0, 0.1) mgCmg−1 Ch−1

kD, ref DOC decomposition rate L N (0.0008, 0.0002, 0, 0.1) mgCmg−1 Ch−1

kM, ref MBC decomposition rate L N (0.0007, 0.000175, 0, 0.1) mgCmg−1 Ch−1

EaS SOC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

EaD DOC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

EaM MBC decomposition activation energy L N (20, 5, 5, 80) kJmol−1

cS SCON-C SOC β constant L N (0.1, 0.025, 0, 0.1) mgCg−1 soil
cD SCON-C DOC β constant L N (0.002, 0.0005, 0, 0.1) mgCg−1 soil
cM SCON-C MBC β constant L N (0.002, 0.0005, 0, 0.1) mgCg−1 soil
sS SCON-SS SOC β factor L N (0.0005, 0.000125, 0, 0.1) NA
sD SCON-SS DOC β factor L N (0.0005, 0.000125, 0, 0.1) NA
sM SCON-SS MBC β factor L N (0.0005, 0.000125, 0, 0.1) NA

Table 4.1: List of SCON-C and SCON-SS θ and their corresponding marginal data-generating
and informed prior hyperparameters. The marginal densities are formatted as L N (µ, σ, a, b),
where µ and σ are the desired target density mean and standard deviation and a and b are the
truncated distribution support lower and upper bounds.

We generated and conditioned inferences on synthetic y of up to 5000 hours in total timespan T .

Data-generating θ distribution hyperparameters were chosen to produce stable and informative

state dynamics in a shorter span of time and minimize the memory footprint of the data set under

available computing resources. We used elevated ki, ref means compared to previous literature

values (Allison et al., 2010; J. Li et al., 2014; Xie et al., 2020). Sampled θ values and T scale are

thereby reminiscent of an organic decay process occurring at the soil surface, rather than a slower

subterranean decomposition. θ data-generating distribution hyperparameters, equivalent to the

prior distribution p(θ) hyperparameters, along with the biogeochemical interpretations associated

with each θ, are detailed in Table 4.1.
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4.2.3 The generalized univariate logit-normal distribution

We used a univariate logit-normal distribution family for our data-generating, informed prior

p(θ), and mean-field variational posterior q(θ|y) probability density functions. To avoid being

restricted to the standard [0, 1] distribution support that the logit-normal density is typically

associated with in statistics, we defined a generalized form of the family whose supports could

be enclosed between an arbitrary positive [a, b], where a, b ∈ R≥0 and b > a. Generalized logit-

normal distributions provide similar utility to truncated normal distributions used previously in

SBM inference projects for constraining θ values to finite supports (Xie et al., 2020), but are

more stable for backpropagation, as the inverse cumulative distribution function of the truncated

normal distribution has inherent stability issues close to support boundaries.

We notate logit-normal distribution parameters in order of desired “target” mean µ, standard

deviation σ, support lower bound a, and upper bound b akin to

θ ∼ L N (µ, σ, a, b) (4.12)

Via passage through a sigmoid function, logit-normal distributions are transformed from normal

distributions N (µ̌, σ̌), where µ̌ and σ̌ are respectively the “parent” mean and standard deviation

distribution parameters:

θ̌ ∼ N (µ̌, σ̌) (4.13)

θmid =
1

1 + exp(−θ̌)
(4.14)

θ = (b− a) · θmid + a (4.15)

The logit-normal distribution has no closed form probability density function and its probability

moments are not analytically resolvable, so no formula can be deduced that allows us to make
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random variable transformations between logit-normal and normal distributions. Hence, to arrive

at a particular logit-normal density with target µ and σ in each VI optimization iteration to

sample from, we must first numerically solve for the parent µ̌ and σ̌ of a normal distribution that

corresponds to the desired logit-normal properties following the transformations from equations

(4.13) to (4.15). We can do this with root-finding algorithms like the bisection method that

search for an appropriate µ̌ in the truncated support interval between a and b and σ̌ within a

provided range of tolerated standard deviation values (Daunizeau, 2017).

4.2.4 State space model approximation of the SDE

Instead of optimizing SCON θ via an iterative SDE solver, we optimized time-discretized state

space models approximating the SCON-C and SCON-SS SDEs. State space models describe the

distribution of a discrete sequence of observations y sourced from discrete latent states x. They

can take the general form

xt ∼ p(xt|xt−1, θ) (4.16)

yt ∼ p(yt|xt, θ) (4.17)

Equation (4.16) indicates that the transition from xt−1 to xt occurs at a probability density of

p(xt|xt−1, θ) and that subsequent states of a state space model depend on previous ones, thus

indicating that x constitutes a Markov chain. Equation (4.17) specifies that yt is observed from

xt at a density of p(yt|xt, θ). An initial state x0 must be nominated to compute x and it can be

set as a constant, or informed as a density, p(x0), which we do in our case.

The state space model θ are the same model parameters as in the SDE counterpart. When

accounting for the SDE α drift and β diffusion dynamics, xt, the latent states of the state space
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model at time t can be written as

xt = xt−1 + α(xt−1, θ)∆t+ ϵt
√

β(xt−1, θ)∆t (4.18)

with the same α and β as in (4.1). ϵt is a random noise vector of length D independently

sampled via ϵt ∼ N (0, ID). ID is an identity matrix with number of diagonal elements equal to

D. ∆t is the state space model time step, not to be confused with SDE solver time step dt. We

used ∆t = 1.0 hour for our state space model approximations in contrast to the aforementioned

dt = 0.1 for Euler-Maruyama solving of our data generating processes.

There is overlap between SDEs and state space models. Both depict the evolution of state values

in a series of steps where future values depend on past ones. Both require the specification of

initial conditions x0 to compute state trajectories.

However, SDEs and state space models treat time differently. A key distinction that makes state

space model approximation helpful for inference efficiency is that ∆t can be made relatively large

versus SDE solver dt. This is helpful for common biological inference and data assimilation situ-

ations where y is sparsely observed due to the expense and difficulty of collecting measurements.

Differential equation systems are instead typically numerically integrated and like state space

models, are solved in discrete steps, as only smooth analytic solutions can only be obtained from

the simplest systems. But, the differential equation integration procedures still assume that states

are evolving in continuous time. The integrating solvers almost always require relatively small

integration time steps dt that are as close to 0 as possible; the solvers tend to fail at higher dt.

The divergent handling of time in state space models and SDEs renders them more apt for

different objectives. State space models are better suited for estimating observations over long

T , whereas SDEs are required for precise analyses of accurately simulated system dynamics. With

their differing but related purposes, we can ultimately use state space models to represent discrete
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observations from continuous SDEs.

4.2.5 VI optimization

Under a Bayesian statistics framework, the goal of statistical inference broadly consists of esti-

mation of the θ posterior density function for some model, p(θ|y), conditioned on some data set

y via Bayes’ rule,

p(θ|y) = p(y|θ)p(θ)
p(y)

(4.19)

p(y|θ), also notated as ℓ(θ|y), is the likelihood function, which indicates model goodness-of-

fit across various values of individual parameters comprising θ. p(θ) is the prior probability

representing beliefs about θ uncertainty. p(y) is the probability density of the observed data.

The prior density p(θ) can be specified in an informed fashion, as we did in our workflow with

distributions that matched our known data-generating distributions, or with less certainty in the

absence of empirical information or domain experience. In most cases, p(y|θ) is not obtainable

in closed analytic form and has to be numerically estimated with methods including Monte Carlo

sampling and Laplace approximation (Reid, 2015). Additionally, p(y), sometimes known as the

marginal evidence, tends to be unresolvable (Gelman et al., 2013; McElreath, 2020). Thus, we

take advantage of the proportionality relationship based on (4.19),

p(θ|y) ∝ p(y|θ)p(θ) = p(y, θ) (4.20)

to estimate p(θ|y) and practically conduct inference.

For Bayesian inference on state space models, we additionally need to account for the transition

and observation densities generalized in equations (4.16) and (4.17), which influence the θ pos-

terior. Estimation of the posterior of θ in state space model inference must occur along with
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estimation of the posterior of x, whether in a joint or marginal fashion, in a case such as ours

where the transition and observation distributions are not known. We opted for joint estimation.

The joint posterior density of θ and x is notated as p(θ, x|y). We arrive at an expression for

p(θ, x|y) by substituting (4.16) and (4.17) into (4.20):

p(θ, x|y) ∝ p(y, θ, x) (4.21)

= p(y|θ, x)p(θ, x) (4.22)

= p(y|θ, x)p(θ)p(x|θ) (4.23)

= p(θ)
∏
i∈N

p(yi|xi, θ)
T∏
t=1

p(xt|xt−1, θ) (4.24)

T denotes the final discretized integer time index of x. Since we set state space model ∆t = 1.0

hour, our final time index matches total synthetic experiment hours and T can signify both. We

also use T to represent the set of x state space model discretization indices not including the

initial state at t = 0. We can then adopt a T ⊆ T to indicate the set of y observation time

indices not including an initial observation at t = 0, which is required in our VI procedure. The

total number of x discretizations is N = T + 1 when including the t = 0 index. N = {0} ∪ T

notates the full set of y indices.

In stochastic VI on state space models, we optimize a parametric density q(θ, x) to match the

true joint posterior p(θ, x|y) as closely as possible. Per the probability chain rule, q(θ, x) expands

to,

q(θ, x) = q(x|θ)q(θ) (4.25)

The density functions we select for our marginalized q(θ) and q(x|θ) are known as our variational

families. As mentioned in section 4.2.3, we chose a mean-field logit-normal variational family for
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q(θ) that assumed independent univariate distributions per θ such that

q(θ) = q(θ1, θ2, . . . , θP) =
P∏

j=1

qj(θj) (4.26)

where P is the total number of individual SBM θ and P = 14 for SCON-C and SCON-SS (Table

S1). We chose a class of normalizing flow called a neural moving average flow in Ryder et al.

(2021) for our q(x|θ) variational family, which we will describe subsequently in section 4.2.6.

We can index individual representatives of our joint variational family by the properties and

hyperparameters of the distribution symbolized in aggregate by ϕ(θ,x) such that an instance of

q(θ, x) is notated as q(θ, x;ϕ(θ,x)). q(θ, x;ϕ(θ,x)) can be decomposed into q(θ;ϕθ)q(x|θ;ϕx)

since ϕ(θ,x) = (ϕθ, ϕx). ϕ are termed variational parameters, as they represent the distribution

settings that can be varied and tuned to adjust the approximation. For neural network models like

flows, variational parameters would include the hidden neural network parameters and weights.

A particular distribution can be referred to by its variational parameter index in shorthand.

Our VI framework seeks a set of variational parameters ϕ that minimizes discrepancies between

q(θ, x;ϕ(θ,x)) and p(θ, x|y), the approximate and true posteriors. One measure of distance be-

tween distributions customarily employed in statistics and machine learning literature is called the

Kullback-Leibler (KL) divergence, notated as DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)] (Joyce, 2011; Kull-

back and Leibler, 1951; Perez-Cruz, 2008). Targeting the KL divergence for minimization, our

optimization objective can then be mathematically stated as,

q(θ, x;ϕ∗
(θ,x)) = argminq(θ,x;ϕ(θ,x))

(DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]) (4.27)

where ϕ∗
(θ,x) indexes the set of variational parameters that corresponds to the idealized global KL

divergence minimum. After several omitted steps that can be referenced in greater detail from
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Blei et al. (2017), we proceed from (4.27) to

DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)] = Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))]− Eq(θ,x;ϕ(θ,x))[log p(y|θ, x)]

(4.28)

= Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))]− Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)] + log p(y) (4.29)

where the expectations E subscripted with q(θ, x;ϕ(θ,x)) are taken with respect to the density

q(θ, x;ϕ(θ,x)).

Reviewing the notion that p(y) and in turn, the log marginal evidence, are typically unavailable

(R. Christensen et al., 2010), we then rely on a reduced and rearranged expression that constitutes

the ELBO function, notated as L,

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)]− Eq(θ,x;ϕ(θ,x))[log q(θ, x;ϕ(θ,x))] (4.30)

= Eq(θ,x;ϕ(θ,x))[log p(y, θ, x)− log q(θ, x;ϕ(θ,x))] (4.31)

= Eq(θ,x;ϕ(θ,x)) ⟨log p(y, θ, x)− log[q(x|θ;ϕx)q(θ;ϕθ)]⟩ (4.32)

= Eq(θ,x;ϕ(θ,x)) ⟨log p(y, θ, x)− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (4.33)

Substituting in (4.24) for p(y, θ, x) results in

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log
[
p(θ)

∏
i∈N

p(yi|xi, θ)
T∏
t=1

p(xt|xt−1, θ)

]

− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (4.34)

which, recalling that the set of total y indices N = {0} ∪ T, expands into

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log p(θ) + log p(y0|x0, θ) +
∑
i∈T

log p(yi|xi, θ) +
T∑
t=1

log p(xt|xt−1, θ)

− log q(x|θ;ϕx)− log q(θ;ϕθ)⟩ (4.35)
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We will decompose the marginal variational log-density of x, log q(x|θ;ϕx), in more granular

detail when we describe the architecture of the neural moving average flow in section 4.2.6.

The ELBO function is called as such because it is the lower bound of the log marginal evidence:

log p(y) = L[ϕ(θ,x)] +DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)] (4.36)

≥ L[ϕ(θ,x)] (4.37)

Maximizing L[ϕ(θ,x)], or minimizing the negative ELBO −L, as we need to do in machine learning

libraries like PyTorch that implement gradient descent rather than ascent, is commensurate to

minimizing DKL[q(θ, x;ϕ(θ,x))||p(θ, x|y)]. Hence, L[ϕ(θ,x)] is our optimization objective function.

For pithier description of the ELBO gradient, ∇L, used to update ϕ(θ,x) via automatic differen-

tiation, we set log p(y, θ, x) − log q(θ, x;ϕ(θ,x)) in (4.31) equal to R(θ, x, y, ϕ), where R is a

log-density ratio function. This reduces the ELBO equation to

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))

[
R(θ, x, y, ϕ(θ,x))

]
(4.38)

and the ELBO gradient is

∇L[ϕ(θ,x)] = ∇ϕ

〈
Eq(θ,x;ϕ(θ,x))

[
R(θ, x, y, ϕ(θ,x))

]〉
(4.39)

= ∇ϕ

[∫
θ

∫
x

q(θ, x;ϕ(θ,x))R(θ, x, y, ϕ(θ,x))dxdθ
]

(4.40)

=

∫
θ

∫
x

∇ϕ

[
q(θ, x;ϕ(θ,x))R(θ, x, y, ϕ(θ,x))

]
dxdθ (4.41)

which decomposes to

∇L[ϕ(θ,x))] =

∫
θ

∫
x

q(θ, x;ϕ(θ,x))∇ϕ

[
R(θ, x, y, ϕ(θ,x))

]
dxdθ

+

∫
θ

∫
x

R(θ, x, y, ϕ(θ,x))∇ϕ

[
q(θ, x;ϕ(θ,x))

]
dxdθ (4.42)
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Note that the gradients ∇ϕ are taken with respect to the variational parameters. This presents

a complication, as examining the second term of (4.42), we are left with the situation that

∇ϕ

[
q(θ, x;ϕ(θ,x))

]
is by and large unavailable, as q can be sampled from, but is usually not

analytically differentiable. Our joint variational family q is no exception to that pattern; our

marginal mean-field q(θ;ϕθ) has the straightforward analytic form given in (4.26), but use of

the neural moving average flow as the variational family for q(x|θ;ϕx) precludes the overall joint

density q(θ, x;ϕ(θ,x)) from having an orderly closed form.

To ultimately compute the gradient of an expectation as in (4.39) in numerical fashion, we thereby

turn to the reparameterization trick set forth in Salimans and Knowles (2013) and Kingma and

Welling (2014). The reparameterization trick involves setting (θ, x) as an output of an invertible,

deterministic, and differentiable function g(z, ϕ(θ,x)), where z is a random vector sampled from

some fixed density q(z). This enables us to tractably take a gradient of a simpler fixed distribution

whose probability density function is easier to differentiate and not dependent on the variational

parameters ϕ (Ruiz et al., 2016).

In our case, z elements are sampled from standard normal distributions and undergo invertible

transformations to proceed to x. θ is still directly sampled from its mean-field logit-normal family

described in section 4.2.5 as part of the operations of g. Hence, L can be estimated with each

VI training iteration with Monte Carlo sampling of z and θ entries starting with the steps

z(s) ∼ N (0, IN) (4.43)

θ(s), x(s) = g(z(s), ϕ(θ,x)) (4.44)

where IN is an identity matrix with number of diagonal entries matching the total x discretization

indices N . The superscript (s) indexes an individual draw from a distribution. We can then re-

frame (4.39) from an analytically intractable gradient of an expectation to a numerically assessable
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expectation of a gradient with

∇L[ϕ(θ,x)] = ∇ϕ

〈
Eq(z)

[
R(θ, x, y, ϕ(θ,x))

]〉
(4.45)

= Eq(z)

[
∇ϕ

〈
R(θ, x, y, ϕ(θ,x))

〉]
(4.46)

≈ 1

S
S∑

s=1

∇ϕ

〈
R(θ(s), x(s), y, ϕ(θ,x))

〉
(4.47)

̂∇L[ϕ(θ,x)] =
1

S
S∑

s=1

∇ϕ

〈
R

[
g(z(s), ϕ(θ,x)), y, ϕ(θ,x))

]〉
(4.48)

S denotes the total number of independent θ and z samples drawn per training iteration.

̂∇L[ϕ(θ,x)] specifies the Monte Carlo estimate of ∇L[ϕ(θ,x)].

4.2.6 Masked neural moving average flow architecture

Delineating a normalizing flow more formally than in section 4.1, a general flow is a chain of

bijections, or invertible transformation functions mapping an object in a set one-to-one to an

object in another set. Flows can be decomposed into

x = g(z) = gM ◦ gM−1 ◦ · · · ◦ gm ◦ · · · ◦ g1(z) (4.49)

where ◦ notates function composition operations and M marks the total number of bijections.

In the generative direction, our flow takes us from a random object z to a random object x

corresponding to a set of approximated SCON state trajectories.

A generative flow is constructed such that computation of log q(x|θ;ϕx) in (4.35) is available to

facilitate the optimization of q(x|θ;ϕx). The log-density of x is available through the change of
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variables formula:

log q(x) =
T∑
t=1

φ(zt)− log |det J | (4.50)

log q(x) =
T∑
t=1

φ(zt)− log
M∏

m=1

|det Jm| (4.51)

log q(x) =
T∑
t=1

φ(zt)−
M∑

m=1

log |det Jm| (4.52)

where J is the Jacobian matrix of the overall transformation and Jm is the Jacobian of bijection

gm with respect to the intermediate transformed variable gm−1 ◦ gm−2 ◦ · · · ◦ g1(z). We use φ(zt)

to indicate the log-density of each element of z, zt. We establish that z here is equivalent to

the z introduced in section 4.2.5, so each φ(zt) is then a unit standard normal log-density in our

framework. We notate the density function of z with q(z). Since q(z) is the starting distribution

before transformations are layered, it is also termed the base distribution.

The particular flow we implemented as the marginal variational family for q(x|θ) was patterned

after the original neural moving average flow introduced in Ryder et al. (2021). Neural moving

average flows include affine bijections (Dinh et al., 2015; Dinh et al., 2017; Kingma et al., 2016;

Papamakarios et al., 2017) among the functions constituting g in which an xout is transformed

from an xin in the general form of

xout = µ+ σ ⊙ xin (4.53)

where ⊙ represents elementwise multiplication to denote that µ, σ, and xin can be matrices

and vectors in addition to scalars, though our explicit situation involves scalars. µ and σ are

respectively known as shift and scale values of the bijection and it is required that σ ∈ R+.

Cumulative µ and σ values of a flow are usually implemented as trained outputs of a neural

network and are super- and subscripted to identify the transformation layer and input elements

they correspond to. They are notated as such by convention and not to be confused with the
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similarly notated target logit-normal mean and standard deviation parameters in section 4.2.3.

These linear affine transformations are basic in structure and consequently are individually not

so expressive, or able to flexibly transition a base distribution into substantially different distri-

butions of varying complexity. However, when layered repeatedly and stacked, their cumulative

expressivity increases and with sufficient layers, composite affine functions can come to embody

any distribution that is log-concave and bookended by declining density tails (Lee et al., 2021),

which represents a large swath of probability distributions.

Neural moving average flows are specifically distinguished from other flows containing affine

layers through their execution of affine bijections with 1-dimensional convolutional neural networks

(CNNs). To apply 1-dimensional CNNs rather than 2-dimensional CNNs, we note that for systems

with D > 1, like SCON family instances, we must begin with z in a 1-dimensional “melted” form

that is D · T elements in length before reshaping the final transformed x to a D × T matrix

matching the SDE solution structure demonstrated in (4.2) following the conclusion of g. Thus,

in equations (4.43) and (4.52), we replace T with D · T in our implementation.

Through masking, in which inputs to the convolution patch are zeroed out through multiplication

by weights, the flow is imbued with an autoregression property in which the σi and µi values

producing an ith element of an output vector x does not depend and convolve on any element

zj≥i in the base input vector. This autoregression is critical for the intent of arranging the

computation of
∑M

m=1 log |det Jm| in (4.52) to be manageable. The autoregression ensures that

J is a diagonal matrix whose non-zero elements are the σ scale parameters underlying the overall

transformation, which simplifies calculation of det J and log q(x) to

log q(x) =
T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

log σm
t (4.54)

where σm
t is the shift parameter of the bijection producing the tth term of the mth affine layer

output of length T .
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Figure 4.3b portrays a schematic of the autoregressive convolutions and affine bijections used in

our specific neural moving average flow implementation. The operations occur within residual

blocks, component pieces of deep learning networks consisting of organizations of layers oriented

toward the mitigation of training and approximation error that can otherwise snowball with greater

network depth. Residual blocks do this with the use of skip connections, which preserve and carry

over output from previous layers to serve as input to subsequent layers and in doing so prevent

noisy degradation of information cascading through the network (He et al., 2016).

In each residual block, we perform two masked 1-dimensional convolutions, Convolution A and

Convolution B, that each have a kernel length of 3 elements and a stride length of 1. To enshrine

autoregressiveness of the flow, Convolution A applies a kernel masked as [1, 0, 0] that outputs a

shift and scale value pair. The Convolution A operation and associated affine bijection can be

generally expressed as

(µi, σi) = fA
i (x

in
i−1) (4.55)

xout
i = µi + σi · xin

i (4.56)

where µi, σi, xin
i , and xout

i are scalar elements of vectors and fA
i is the Convolution A operation.

The subsequent Convolution B involves a single stride kernel masked as [1, 1, 0] and it can be

expressed together with its associated bijection as

(µi, σi) = fB
i (x

in
i−1, x

in
i ) (4.57)

xout
i = µi + σi · xin

i (4.58)

Combined, the two convolutions in sequence have a total receptive field length of 2.

To be able to produce the µ and σ parameters associated with the affine transformation of vector

endpoint elements under autoregressive alignment, both convolutions require zero padding, in

which zero elements are added to either end of the vector. As can be gleaned from Figure 4.3b,
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without zero padding, the kernels producing (µmid
1 , σmid

1 ) and (µout
1 , σout

1 ) would lack 1 element

to convolve on, and the kernels sourcing (µmid
N , σmid

N ) and (µout
N , σout

N ) would by overhang their

vectors by 1. A zero pad of length 1 was thereby sufficient for our purposes.

Simplified from our actual implementation and not pictured in Figure 4.3b is our expansion of

input into many channels, which are duplicates of the input vector that are stacked on top of

each other in a matrix. At each convolution stage, the same kernel is applied in parallel across

all the channels. Enlarging channel depth broadens the space of neural network weight values

constituting fA
i and fB

i that can be explored per training iteration. We set the number of channels

at 96 for both convolutions and did not experiment further with channel depth. Also not pictured

in Figure 4.3b, but implied in Figure 4.3a, is the injection of auxiliary features extracted from

y and observation indices N in the form of vectors stacked on top of the input channels to

inform training of the neural network weights associated with the shift and scale values. Further

elaboration on the incorporation of auxiliary information is available in the supplement of Ryder

et al. (2021).

In the overall flow procedure, the convolutions and affine bijections in the affine residual block

are linked with other transformations that we organize into repeatable sets of layers. The order

of transformations for each layer set is outlined in Figure 4.3a. Preceding the affine blocks are

order-reversing permutations, in which element order of a vector input is flipped such that a vector

[xin
1 , x

in
2 , ..., x

in
N ] becomes [xout

1 , xout
2 , ..., xout

N ] = [xin
N , x

in
N−1, ..., x

in
1 ]. Order-reversing permutations

are a method of extending the expressivity and stability of a flow by enabling more complex

dependency structures while preserving flow autoregression (Papamakarios et al., 2021). We

found that adding order reversals allowed us to modestly boost our ELBO learning rates. The

permutations can be seamlessly interspersed between other transformations since their absolute

Jacobian determinant is valued at 1, so they do not affect the computation of log q(x).

Differing from the neural moving average flow of Ryder et al. (2021), our flow follows affine

blocks with batch renormalization transformations. Batch renormalization is a simple extension
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of batch normalization, which is a means of normalizing and regularizing our variational samples

such that our optimization is less influenced by random fluctuations in neural network weights and

sample characteristics from one training iteration to the next (Ioffe and Szegedy, 2015). Similar

in intent but not operation to permutations, batch normalization and renormalization are applied

to bolster algorithm stability and flexibility with increasing layer depth. They empirically allow VI

algorithms to tolerate higher learning rates (Bjorck et al., 2018), poor initialization of variational

parameters ϕ (Zhu et al., 2020), and erratic base distribution z(s) draws.

Batch normalization and renormalization overlap in the following steps that compute a batch

mean µS and batch standard deviation σS from input xin samples, not to be confused with the

affine bijection and logit-normal µ and σ:

µS =
1

S
S∑

s=1

xin
s (4.59)

σS =

√√√√ε+
1

S
S∑

s=1

(xin
s − µS)2 (4.60)

where ε is a small constant added for stability. µS and σS are involved in computation of the

optimization objective—again, L[ϕ(θ,x)] for our purposes—during the model training phase. They

also update a lagging running average µR and running mean σR that are less sensitive to change.

µR and σR are used after training of the model—the joint variational family q(θ, x;ϕ(θ,x)) in this

setting—has been halted to estimate the objective metric at the testing stage.

In the testing phase, batch renormalization and normalization are equivalent in transforming input

to output:

xmid =
xin − µR

σR
(4.61)

xout = γ · xmid +Υ (4.62)
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The collection of γm
t and Υm

t parameters in each flow layer set are learned neural network outputs.

Batch renormalization diverges from batch normalization during training with the steps

r =
σS

σR
(4.63)

d =
µS − µR

σR
(4.64)

xmid =
xin − µS

σS
· r + d (4.65)

xout = γ · xmid +Υ (4.66)

where r and d are variable correction factors. r and d are intended to limit the divergence between

batch and running sample characteristics. r is clipped between the interval [1/rmax, rmax], where

rmax is gradually increased to 3 over the course of inference, and d is clipped between the interval

[−dmax, dmax], where dmax is gradually increased to 5. These intervals were established based on

guidelines from previous empirical work (Ioffe, 2017). Batch normalization is a special case of

batch renormalization where r = 1 and d = 0.

Batch renormalization’s changes more tightly correlate the batch and running sample charac-

teristics and have been documented to minimize discrepancy between train and test objectives

(Ioffe, 2017). We observed this with our ELBO results, where consistent gaps remained between

the train and test L[ϕ(θ,x)] until we swapped batch normalization for renormalization. Batch

renormalization also improves training on low batch sizes (Ioffe, 2017; Summers and Dinneen,

2020), and in our position where variational path samples were limited by GPU video memory

constraints, renormalization was helpful for decreasing the total number of training iterations we

needed for algorithm convergence.

With batch (re)normalization layers, log q(x) accrues log determinant Jacobian summation terms

corresponding to those transformations and develops from (4.54) to become, in the training
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phase,

log q(x) =
T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log rmt − log γm
t + log σm

S,t
]

(4.67)

or in the testing phase,

log q(x) =
T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log γm
t + log σm

R,t

]
(4.68)

where we now take M to mark the total number of layer sets rather than layers as we did

before in (4.54). This assumes that each layer set always includes 1 single affine block and 1

batch renormalization layer. Substituting (4.67) or (4.68) into (4.35) for log q(x|θ;ϕx) leads

respectively to our fully decomposed train or test L[ϕ(θ,x)] calculation unless an optional single

softplus transformation is used to ensure constraint of flow output to R≥0. In that case, the

resulting train log q(x) is

log q(x) =
T∑
t=1

φ(zt)−
M∑

m=1

T∑
t=1

[
log σm

t − log rmt − log γm
t + log σm

S,t
]

−
T∑
t=1

log(−e−xt + 1) (4.69)

where x is our terminally transformed random variable following softplus constraint. Setting

λt = φ(zt)− log(−e−xt + 1)−
M∑

m=1

(
log σm

t − log rmt − log γm
t + log σm

S,t
)

(4.70)

log q(x) =
T∑
t=1

λt (4.71)

our fully decomposed train L[ϕ(θ,x)] calculation that we use in each iteration of VI optimization
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(Algorithm 4.1) then consolidates from (4.35) into

L[ϕ(θ,x)] = Eq(θ,x;ϕ(θ,x))⟨log p(θ) + log p(y0|x0, θ)− log q(θ;ϕθ)

+
∑
i∈T

log p(yi|xi, θ) +
T∑
t=1

[log p(xt|xt−1, θ)− λt]⟩ (4.72)

with softplus flow termination. The test ELBO equation is equivalent except for use of a different

λt assignment that lacks the log rmt term and swaps σm
S,t for σm

R,t.

Algorithm 4.1 Synopsis of the operations occuring in each iteration of our soil biogeochemical
state space model VI framework

Define q(θ;ϕθ) and q(x|θ;ϕx);
Initialize (ϕθ, ϕx);
N ← total desired training iterations;
for i← 1 to N do

for s← 1 to S do
Draw θ(s) ∼ q(θ;ϕθ);
Draw x(s) ∼ q(x|θ;ϕx) transformed from z(s);

end for
Compute L[ϕ(θ,x)] (or −L[ϕ(θ,x)] for gradient descent) as per (4.72);
Compute the gradient ̂∇L[ϕ(θ,x)] from (4.48) with automatic differentiation;
Update variational parameters ϕ(θ,x) based on the gradient;

end for
return q(θ, x;ϕ(θ,x)) corresponding to the L[ϕ(θ,x)] value at N ;

We note that it is not required for the total permutation layers, affine blocks, and batch renormal-

ization layers constituting a neural moving average flow architecture to match in count; we can

choose to omit certain layers in a layer set. To slightly reduce the neural network size, we would

frequently use 1 less batch renormalization layer than total affine blocks or permutation layers,

omitting batch renormalization in the first layer set since we empirically observed little qualitative

difference in visual fit quality between running with 3, 4, or 5 batch renormalizations. If the

numbers of affine blocks and batch renormalization layers do not match, then the log Jacobian

determinant summations in (4.67) to (4.70) need to be adjusted accordingly.

It is apparent that each layer set of our neural moving average flow corresponds to a matrix of
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hidden parameters, including affine and batch renormalization parameters, of dimensions [T, h],

where h is the count of hidden parameters per layer set. Thus, when conditioning on long, dense T

data that is complex in such a manner that would require many layer sets for flow representation,

we note that a different choice of marginal variational family for q(x|θ) aside from the neural

moving average flow may be appropriate for minimizing computational expense.

4.2.7 Kalman smoother validation

When a state space model is linear in drift and its diffusion is stationary and additive, as is the

state space model approximation of SCON-C, the posterior density p(x|y) can be determined

analytically and precisely in closed form with the Kalman smoother algorithm, provided the al-

gorithm is fed the true θ and observation noise (Kalman, 1960; Rauch et al., 1965). Flow VI in

contrast can only numerically estimate p(x|y) through a variational approximation, but has the

critical advantage of being capable of functioning without exact knowledge of θ given uninformed

prior distributions and is able to estimate the joint density p(x, θ|y) via variational approxima-

tions. Thus, comparing a Kalman-derived true p(x|y) to a post-optimization q(x|θ;ϕx) can be a

revealing means of benchmarking flow approximation performance and accuracy before applying

an architecture with confidence to approximation, optimization, and θ inference of models like

SCON-SS that cannot be resolved by the smoother.

The Kalman smoother procedure is a two part process consisting of a forward pass followed by

a backward pass. The forward pass computes a “filtering” posterior p(xt|y0:t), which notates

the posterior of xt given observations up to the time indexed by t, going forward in time from

t = {0, . . . , T}. The backward pass computes a “smoothing” posterior p(xt|y), which notates the

posterior of xt given all observations, going backward in time from t = {T, . . . , 0}. Reconciling

the “filtering” and “smoothing” posteriors produces the true p(x|y). A comprehensive explication

of Kalman smoothing is available in Särkkä (2013).
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4.2.8 Flow neural network training tuning choices

We settled on using 5 layer sets of permutation, affine, and batch renormalization layers for

our neural moving average flow. This offered qualitatively superior fits over flow architectures

with lower layer set counts. For inferences of duration T = 5000 with ∆t = 1.0 with 5 layers,

maximum training batch size S at 16 GB of VRAM was 31, so we set S = 31. For T = 1000,

we used S = 150, though use of smaller S also appeared functional. For T = 5000 inferences

we used 120000 non-warmup ELBO training iterations. For T = 1000 inferences we used 60000

non-warmup ELBO training iterations.

With respect to gradient optimizers including AdaMax (Kingma and Ba, 2015), which was the

particular optimizer we selected to carry out gradient descent, the learning rate is a hyperpa-

rameter that scales the objective gradient and in doing so regulates the extent to which neural

network weights can updated with each training iteration. The learning rate can be adjusted over

the course of training based on a schedule. It is frequently decayed over the course of training

to promote convergence of our objective function toward a maximum (for gradient ascent) or

minimum (for gradient descent) (You et al., 2019). We chose a step decline schedule for learning

rate decay. For our T = 5000 inferences, we started with a pre-decay ELBO learning rate of

1× 10−2 and decayed it by a factor of 0.6 every 10000 iterations. For our T = 1000 inferences,

we started with a pre-decay learning rate of 4×10−3 and decayed it by a factor of 0.6 every 5000

iterations.

We employed training warmup, in which we began optimization with a phase of low learning rate

at 1 × 10−6 before increasing the rate to its initial pre-decay levels. As has been demonstrated

previously (Goyal et al., 2017), we found warmup allowed us to use higher pre-decay learning

rates, experience more stable ELBO loss trajectories, and converge to lower average ELBO values

over training (Figure 4.4). We found 5000 warmup iterations to be sufficient for those purposes.
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4.2.9 Software and hardware

With respect to the computational software and hardware powering the inference operations, our

DGP and inference code was developed for a Python 3.9.7 environment distributed by Anaconda

(“Anaconda Software Distribution”, 2020) and used the Numpy 1.20.3 (Harris et al., 2020) and

PyTorch 1.10.2 (Paszke et al., 2019) software libraries. PyTorch 1.10.2 was compiled with the

Nvidia CUDA 10.2 toolkit. The inferences were run on one Nvidia Tesla V100 GPU at a time

updated to CUDA version 11.4.0 with a maximum of 16 GB of video random access memory and

two Intel Xeon Gold 6148 CPU cores clocked at 2.40 GHz on the University of California, Irvine

HPC3 cluster. Our flow VI framework code modules, data-generating notebooks, and synthetic

data are available via the address https://doi.org/10.5281/zenodo.6836049.

The deterministic CON p(θ|y) posteriors compared with flow VI q(θ;ϕθ) in Figure 4.7 were

estimated using Stan’s NUTS algorithm, which is an extension of the Hamiltonian Monte Carlo

inference algorithm (Hoffman and Gelman, 2014). Application of Hamiltonian Monte Carlo for

data assimilation and inference of SBMs is further described in Xie et al. (2020) and intuition

behind the algorithm can be found in Betancourt (2017). The Stan inference was conducted on

a 2017 Intel MacBook Pro in an R 4.0.4 environment using Stan 2.29.1 (Carpenter et al., 2017)

through the CmdStanR interface (Gabry and Češnovar, 2021). The NUTS simulation ran with

2 chains of 1000 warmup iterations and 5000 sampling iterations each. In our experience, 1000

warmup iterations were sufficient for locating the bulk of the posterior density.

4.3 Results

We generated synthetic y of various lengths, dimensions (i.e. whether CO2 observations were

included in addition to state information), and regular observation densities (i.e. whether we

observed measurements from our SCON family data generating processes every 1 or 5 hours).
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We explored the validity of our state space model VI approach for data assimilation and posterior

identification of model θ with inferences conditioned on those y. Below, our results suggest

the neural moving average flow framework was functional for approximating the SCON family of

SDE systems as state space models, fitting y, constraining posteriors, and recovering some true

θ values. We also demonstrate subsequently that stochastic gradient optimization in our case

was more stable, efficient, and capable at θ identification than an MCMC procedure involving

deterministic ODE models adapted from Xie et al. (2020) conditioned on the same y.

4.3.1 Flow-approximated SCON-C converges to fit synthetic data

Following optimization, an SCON-C state space model approximated by our neural moving average

flow implementation reasonably assimilated a T = 5000 hour y produced by an SCON-C data-

generating process that included CO2 observations (Figure 4.5a). The relatively flat −L[ϕ(θ,x)]

trajectory steadily hovering between −1550 and −1600 in the latter half of variational training

iterations indicates that our flow VI algorithm converged to a local ELBO minimum (Figure 4.6).

The mean of the marginal posterior density of latent states q(x|θ;ϕx) was estimated from 250

x samples drawn from the joint variational density after ELBO training. The mean latent SOC,

DOC, and MBC paths and state-derived CO2 measurements corresponding to the SCON-C flow

sit centrally between the y data points and observation noise across the entire time series (Figure

4.5a). The latent means are able to adhere to many of the sharp peaks and valleys in the dynamics

of the data and the flow CO2 mean was able to reproduce the rapid oscillatory behavior of the

observed CO2 time series.

Upon closer qualitative inspection and comparison to the true latent distribution computed by

a Kalman smoother (Figure 4.5b), we note the presence of visual discrepancies between the

Kalman and flow means and 95% q(x) diffusion distribution intervals. Firstly, the extent of SOC

diffusion noise is substantially underestimated by the flow, which is line with documentation in
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literature that a mean-field VI approach tends to underestimate posterior uncertainty compared

to more complex full-rank approaches (Kucukelbir et al., 2017). For the other two states, DOC

and MBC, the extent of diffusion noise is more consistent to that which is observed in the Kalman

output, but the flow DOC and MBC densities and means appear noisier and more uneven than

the Kalman means.

Still, the flow encouragingly is generally congruous with the true Kalman solution in dynamics.

The flow means fall entirely within the bounds of the 95% Kalman diffusion interval from t = 0

to 500 as can be seen in Figure 4.5b and we observed for this particular optimization that they

almost always remain within those Kalman diffusion bounds through the rest of the time series.

Also, we see that the CO2 mean and distribution calculated from the 250 SCON-C state space

model x draws closely matches their Kalman counterparts. The ability of the flow to align with

the Kalman smoother in latent state densities improves our confidence in the ability of the neural

moving average flow to approximate systems that are non-linear in diffusion, like SCON-SS.

4.3.2 SCON-C flow VI marginal θ posteriors indicate appropriate

optimization

Beyond fitting data, we needed to ascertain that proper posterior optimization was occurring for

confidence in inference algorithm function. In our setting, we would expect our posterior densities

to at least always be as informed and certain about θ values as our prior densities, not less. With

a mean-field logit-normal variational family for q(θ;ϕθ), evidence of suitable optimization would

come in the form of marginal posterior densities being narrower than priors to indicate greater

certainty after the introduction of information from y along with posterior means separating from

prior means and approaching the true θ used by the data-generating process.

Figure 4.7 indicates that valid posterior optimization indeed occurred in our SCON-C state space

model inference to support the notion that our flow VI framework was functional. Almost all the
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marginal posterior densities narrowed compared to the priors with the information learned from

y by the algorithm. Moreover, many of the marginal q(θ;ϕθ) means drifted closer to the true θ,

including the means of uM , aSD, and kS, ref.

We contrasted the flow VI parametric q(θ;ϕθ) posterior densities to the non-parametric p(θ|y)

posterior densities estimated with an SBM inference framework conditioned on the same T =

5000 SCON-C y that was previously applied in Xie et al. (2020). This prior framework involves

Stan’s NUTS algorithm and can only infer θ of deterministic models, so the CON system that

the SCON family was parameterized from served as the basis for inference in this approach. With

the flexibility and stability afforded by the ability of stochastic optimization to adjust for poor

initial condition proposals, noisy state path fluctuations, and outlier observations, the flow VI

framework expectedly outperformed the deterministic NUTS workflow. The flow VI marginal

q(θ;ϕθ) densities were all-around better informed and identified, exemplified by the subplots

corresponding to the uM , aSD, aM , kS, ref, kD, ref, EaS, and EaM θ (Figure 4.7). Moreover,

some NUTS posterior densities, including those corresponding to the aMSC , aM , and EaS θ,

consolidated near their lower or upper support bounds, which points to the deterministic model

inference method compensating for its lack of versatility with more extreme θ proposals.

Scrutiny of the posterior for the transfer fraction parameter aMSC brings the issue of θ identifi-

ability limitations to our attention. We see that the SCON-C flow VI marginal aMSC posterior

density barely budged from the aMSC p(θ) density post-optimization (Figure 4.7). For good

posterior identifiability, the aMSC posterior should both narrow substantially to signal reduced

uncertainty and shift its density peak toward the true aMSC value.
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4.3.3 Flow VI can effectively assimilate both full and reduced SCON-

SS state space approximations

After visually demonstrating the ability of the flow VI framework to optimize q(θ, x;ϕ(θ,x)) through

the fitting of the approximated SCON-C state space model to synthetic SCON-C y and the

informing and identification of some marginal q(θ;ϕθ) densities, we proceeded to test if the flow

VI approach could similarly function with a moderately more complex model in SCON-SS that is

non-linear in diffusion.

Reviewing the fact that the SCON-SS state space model diffusion is not stationary or additive, it

was no longer possible for us to validate SCON-SS q(x|θ;ϕx) estimated from post-optimization x

samples against a true p(x|y) determined by a Kalman smoother. Nonetheless, we observed that

flow VI was able to optimize q(θ, x;ϕ(θ,x)) adequately enough to fit the approximated SCON-

SS state space model q(x|θ;ϕx) means to T = 5000 y generated by an SCON-SS SDE. As

was the case for the SCON-C flow, the mean latent SOC, DOC, and MBC trajectories of the

trained SCON-SS flow traced a central route through the observed state values and diffusion noise

(Figure 4.8). The trajectories were able to follow the peaks and valleys of the state dynamics

recorded in y, and the flow CO2 mean derived from the sampled states tightly replicated the y

CO2 oscillations.

SCON-SS q(θ;ϕθ) posterior densities were consistent with proper optimization from information

learned in y. Juxtaposed with priors p(θ), marginal q(θ;ϕθ) densities mostly narrowed and did

not move drastically away from their corresponding true θ to inhibit identifiability (Figure 4.9).

There were clear exceptions for the state-scaling diffusion θ posteriors due to reasonable flow

neural network approximation error that prompts an overestimate of diffusion noise and, again,

for the aMSC posterior. The modest shift of some θ posterior means away from the true θ is

counterbalanced by movement of other related θ, like in the circumstance of the EaD posterior

mean being counterbalanced by EaM to satisfy equation (4.9).
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For one more test to corroborate proper functioning of our flow VI framework, we established

a reduced SCON-SS model with all θ fixed in value except for the ki∈S,D,M, ref linear decay and

state-scaling β diffusion parameters. Mirroring above procedures, a synthetic T = 5000 y was

produced by a reduced SCON-SS data-generating process to condition an SCON-SS state space

model optimization. For an appropriately behaving inference algorithm, we would expect that

removing degrees of freedom should bolster θ identifiability.

We verified that identifiability was indeed clarified and improved in the remaining drift θ (Figure

4.10). The marginal kS, ref q(θ;ϕθ) posterior density was tightly constrained right about the true

kS, ref value. The kD, ref and kM, ref posterior means did not align exactly with their true θ, but

unambiguously offset each other in a manner that plainly fulfilled (4.3) and (4.9).

We were unable to fix the state-scaling diffusion θ without breaking the flow VI framework, as

it became apparent that the algorithm needed to maintain the ability to overestimate diffusion

noise to work. This makes intuitive sense as the flow neural network approximation process will

always come with some amount of noisy approximation error that adds to the base diffusion of

the unapproximated system. The algorithm can no longer work if the flow diffusion noise needs

to be fixed at about the same level as it is in the unapproximated system, as it leaves no room for

the approximation error to overflow into. So, with the diffusion θ left unfixed during VI training,

the algorithm once more overestimated their q(θ;ϕθ) means, but this is not a cause for concern

since the discrepancy can be explained by neural network approximation error.

4.3.4 Increasing information in y alters SCON posterior certainty

and identifiability

The preceding results all involved y that had CO2 respiration observations included. Inference

conditioned on just state observations is also possible and in our experience was able to fit the

data well, but it was much less effective for constraining posteriors and identifying θ (Figure
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4.11). Without CO2 information, marginal q(θ;ϕθ) posterior densities tended to be wider and

less informed and density means were frequently farther away from true θ, as exemplified by

panels corresponding to the aSD and EaS SCON-C θ in Figure 4.11.

We separately observed that increasing the amount of information in y by lengthening duration

T of the time series greatly benefitted posterior identifiability (Figure 4.12). Alternatively, θ

identifiability was boosted without elongating T by bolstering observation density. Individually,

the two actions trade off between improvements. In comparison to densifying observations across

T = 1000 such that the set of observation indices N matches the set of state space model

discretization indices N , extending T to 5000 more tightly constrained q(θ;ϕθ) posterior densities

for all θ and concentrated aSD, kS, ref, kD, ref, EaS, and EaM posterior means closer to the true

θ.

However, increasing observation density for T = 1000 data had the benefit of further constraining

posterior densities without also enlarging the divergence in identification of the true SCON-C β

diffusion θ, cS, cD, and cM by the means of their corresponding q(θ;ϕθ) densities. The enlarged

divergence and uncertainty of the diffusion θ in the T = 5000 hour inference compared to the T

= 1000 inferences is not unexpected. Cumulative approximation error of state space x trajectories

compounds for the flow with greater T in a manner typical to approximation methods. Larger

accrued approximation error then corresponds to estimation of greater diffusion noise during

inference.

4.4 Discussion

We developed a stochastic SBM data assimilation and inference framework that is a versatile,

stable, and computationally efficient alternative to MCMC approaches assimilating deterministic

ODE systems, especially when GPU hardware is available. The framework involves approximation
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of SBMs as state space models whose state trajectories can be sampled at reduced computational

and temporal cost in comparison to SDEs.

In our demonstration, we carried out state space model approximation with a class of normaliz-

ing flows called neural moving average flows that successively transition random variables from

simpler to more complex distributions with the stacking of neural network layers. We applied

this framework to fit approximated representatives of the SCON family of SBMs to synthetic

data. Conditioning with synthetic rather than empirical data allowed us to visualize discrepancies

between estimated posterior densities, data-generating densities, and true θ values used by the

data-generating process for an assessment of framework performance.

Flow-approximated SCON-C state trajectories were able to effectively track state and CO2 obser-

vations after variational optimization and graphically align with the true latent state distributions

determined by a Kalman smoother. Following Kalman validation of our SCON-C inference, we

then successfully assimilated synthetic observations and estimated posteriors with SCON-SS,

which is non-linear in diffusion and modestly more complex than SCON-C.

4.4.1 More data promotes model θ identifiability and constraining

of posteriors

In terms of implications for experimental work focused on producing data sets suitable for SBM

inference and data assimilation, we firstly recommend that CO2 respiration measurements be

collected and included in y. CO2 information is highly beneficial for informing the posteriors of

SBMs like SCON for which CO2 efflux equations have been established (Figure 4.11). Additionally,

the collection of supplemental measurements, such as radiolabeled C densities linked to SBM pool

transfer fraction θ, should further constrain and identify θ posteriors. Our results indicate that

just the CO2 and state observations were not enough to effectively identify the marginal posterior

of the SCON MBC-to-SOC transfer θ, aMSC (Figure 4.7, 4.9, 4.11, 4.12).
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With respect to aMSC posterior identifiability or lack thereof, inspection of the SCON system drift

in (4.3) and CO2 efflux rate equation in (4.9) suggests that the consistent lack of identifiability is

not the consequence of a general algorithm issue but instead stems from a dearth of information

in y to further constrain the marginal aMSC q(θ;ϕθ) density. The aMSC parameter appears in two

terms of (4.3) that are each the product of four elements, the aM ·aMSC ·kM ·M term in the dS

equation denoting C mass transfer from the MBC to SOC soil pool and the aM ·(1−aMSC)·kM ·M

term in the dD equation denoting C transfer from the MBC to DOC soil pool. The posterior

densities of the aM and kM θ in those terms appear in (4.9) and are accordingly better constrained

and identified with CO2 measurements in y. This is not the case for aMSC , which is not present

in (4.9). Informing of aMSC can thereby only occur through the state measurements in y, and

as only one element in the drift product terms, aMSC can take many values between its [0, 1]

support bounds without greatly affecting the products.

Furthermore, our results suggests that raising both study time or data collection frequency would

improve posterior estimation accuracy and identifiability in our framework (Figure 4.12). But,

under budget and personnel limitations, empiricists creating inference data sets should prioritize

one or the other depending on the specific SBMs targeted for data assimilation and their research

objectives. For model comparison of naive stochastic SBM parameterizations where the con-

ceived diffusion θ are less biologically meaningful, accumulating approximation error is less of a

concern and prioritizing the maximization of T would be reasonable. In scenarios involving SBMs

parameterized with more biogeochemically sophisticated β matrices where accurate estimation of

system diffusion θ takes precedence and falsification of specific dynamics is the goal, it would be

more important to minimize approximation error with denser observations.
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4.4.2 Future work and research directions

Having demonstrated functional flow VI on more compact synthetic data sets, we highlight some

engineering expansions and modifications to our existing framework that would facilitate efficient

SBM inferences conditioned on empirical data sourced from long-term ecological (LTER) experi-

ments like those documented in Melillo et al. (2017) and Wood et al. (2019). Efficiently scaling

to these data sets is a key priority to assimilate them into SBMs on the scale of hours rather

than weeks, as experienced in Xie et al. (2020), for statistically rigorous head-to-head model

comparison and selection.

The T of data sets sourced from LTER experiments can be on the order of 100,000 to 200,000

hours, much larger than the peak T = 5000 hour timespan we explored in our study. With

the ability of our framework to leverage GPU hardware, our T = 5000 inferences typically ran

between one to two days to ensure convergence, but even more limiting than time were GPU

memory thresholds preventing adequate variational sample sizes with T much longer than 5000.

A way forward for conditioning inferences on y with longer T is to avoid simulating state space

model x for the entire T at each training iteration, and this can be done in stochastic gradient

optimization with the leveraging of the mini-batching technique. Under a mini-batching scheme,

a y is partitioned into smaller subsections yτi during training, where τ merely distinguishes a

subsection from the entire sequence and i ∈ B where B ∈ N is the set of integers counting

total subsections in natural order. In each training iteration, a yτi can then be randomly selected

for likelihood evaluation such that the SBM only needs to simulate an xτi subsection for cal-

culation of the optimization objective. Mini-batching is targeted for future incorporation in our

framework, having been demonstrated in recent flow-related machine learning literature including

Papamakarios et al. (2021) and Ryder et al. (2021).

LTER data sets tend to have constituent observation vectors whose elements greatly vary in

information density and measurement intervals due in part to the varying physical practicality
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associated with the sampling and measurement of different observations. Hence, it would also be

helpful to engineer our flow to handle irregular and “ragged” observations. Moreover, alterations

can be made to the flow network architecture to enable more efficient conditioning on SBM θ

values and allow for feature extraction from additional auxiliary information, such as the time

elapsed between observations.

Beyond flow engineering and architecture, other relevant research priorities include the study

of less naive SCON treatments for inference use. SCON family representatives that explicitly

and mechanistically model system diffusion as a function of the underlying system reaction stoi-

chiometry can be formulated (Fuchs, 2013; Golightly and Wilkinson, 2011) and the stability and

predictive accuracy associated with different diffusion covariance structures can be compared.

Moreover, stochastic parameterizations of SBMs that simulate mass transfer with Michaelis-

Menten dynamics and would be non-linear in drift should be investigated so that their predictive

accuracy can be compared to those of linear drift models under our VI framework. This would

go toward an existing priority in biogeochemistry to examine whether explicit representation of

enzyme catalysis in SBMs improves model performance (J. Li et al., 2014; J. Li et al., 2019;

Sulman et al., 2014; Wieder, Grandy, Kallenbach, Taylor, et al., 2015; Xie et al., 2020).

Application of our VI approach to head-to-head model comparison and selection begets a need

for incorporation of goodness-of-fit quantification into our framework. MCMC has access to

metrics like the widely application information criterion (Vehtari et al., 2017), leave-one-out

cross-validation, and leave-future-out cross-validation (Bürkner et al., 2020) for Bayesian pre-

dictive accuracy quantification, but with their established formulations, these metrics cannot be

computed under a VI procedure without prohibitive computational expense (Dao et al., 2022).

The development of Bayesian goodness-of-fit metrics for VI is still an open area (Giordano et al.,

2018; Yao et al., 2018), but there has been recent work adapting cross-validation for VI that is

promising for integration with a state space model inference pipeline (Dao et al., 2022; Dhaka

et al., 2020).
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4.4.3 Conclusion

Going forward, we recommend that inference approaches involving state space model approxima-

tion of stochastic SBMs be used in future biogeochemical data assimilation, fitting, and model

comparison research in pursuit of superior computational stability, flexibility, and efficiency. SDE

systems are far more robust than ODE systems at accommodating prior density, initial condi-

tion, and model structure proposals that are inconsistent with the true data generating process

(Whitaker, 2016; Wiqvist et al., 2021). Then, state space approximation greatly reduces the

burden of sampling SDE model state trajectories for likelihood evaluation. Rather than integrat-

ing an SDE solver S times at great computational cost with each algorithm training iteration,

we can efficiently sample S paths from the variational approximation in one pass. Additionally,

the discrete nature of state space models integrates well with likelihood estimation conditioned

on sparsely observed data sets from long term ecological research where fine-grained knowledge

of continuous state dynamics of a model are not necessary or useful for the inference algorithm.

State space model discretization can be handled much more coarsely, which facilitates more

efficient scaling to larger T .

Many of the steps of our data assimilation framework are common to those of other Bayesian

inference approaches and hence, a wealth of options exist for modification of this approximated

SBM inference framework depending on computational resources and desired posterior estimation

accuracy. Different non-variational black box inference methods that are compatible with state

space approximation of SDEs can be substituted, such as sequential Monte Carlo algorithms

(Golightly and Kypraios, 2018), stochastic gradient Hamiltonian Monte Carlo (Chen et al., 2014),

stochastic gradient langevin dynamics (Brosse et al., 2018), and stochastic gradient Markov chain

Monte Carlo (Aicher et al., 2019; Nemeth and Fearnhead, 2021).

Resesarchers using variational Bayesian methods for their black box can opt for q(θ) variational

approximations that are more complex than mean-field representation. These include full-rank
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multivariate logit-normal families in which θ are not assumed to be independent and covariance

is established. The full-rank modeling of covariance mitigates underestimation of q(θ) uncer-

tainty, which is prevalent in mean-field inference, to correspond to wider marginal q(θ) densities

(Kucukelbir et al., 2017; Sujono et al., 2022).

Additionally, when memory availability inhibits the establishment of larger neural networks to

train affine shift and scale values for long T or when another method is known to be faster

and more convenient for approximating a particular SBM class, different variational families can

be used in place of neural moving average flows for representation and optimization of q(x|θ).

These include multivariate normal distributions with specialized covariance structures (Archer

et al., 2015), automatic differention VI (Kucukelbir et al., 2017) with Gauss-Markov distributions

(Sujono et al., 2022), neural stochastic differential equations (Jia and Benson, 2019; X. Li et al.,

2020; Tzen and Raginsky, 2019), and recurrent neural networks (Krishnan et al., 2017; Ryder

et al., 2018), among others. Thus, our framework is flexible and can be repurposed as needed

for assimilation of different SBMs or Earth system models that vary in complexity and simulation

requirements.
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(b)

(a)

Figure 4.3: Architecture blueprint of the neural moving average flow used as the marginal varia-
tional family for q(x|θ). (a) outlines the sequence of layers and operations. The affine block is a
residual block in which the autoregressive convolution operations that distinguish neural moving
average flows occur. (b) illustrates the two bijections, Convolution A and Convolution B, that
link three hypothetical layers xin, xmid, and xout together in each instance of an affine layer in
our particular flow. Convolution A applies a [1, 0, 0] mask, while Convolution B applies a [1, 1, 0]
mask. The example affine µ and σ parameters are indexed by superscripts and subscripts respec-
tively identifying the layer and element they are associated with.
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Figure 4.4: Comparison of −L trajectories from the latter halves of T = 5000 hour SCON-C
flow trainings without (blue) and with (orange) warmup indicates that warmup helps stabilize
training and speed up convergence. The trajectory corresponding to warmup displays much less
prominent instability spiking and has flattened more quickly in contrast to the that of the no
warmup counterpart.
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(b)

(a)

Figure 4.5: Marginal posterior q(x|θ;ϕx) soil pool state means (orange lines) of the SCON-C state
space model approximated by the neural moving average flow following VI optimization. The
means are estimated from 250 x samples drawn from the optimized joint density q(θ, x;ϕ(θ,x)).
The states are in units of mgCg−1 soil. In (a), the trajectories of flow-approximated state means
are compared to the synthetic observations an SCON-C T = 5000 hour y backgrounded by the
95% interval of the observation noise (blue dots over blue shading). In (b), we zoom into a
subset of the above plot from t = 0 to 500 hour and additionally compare the state means and
95% interval of the diffusion distribution of the optimized model to the true posterior means and
95% diffusion noise computed by a Kalman smoother with knowledge of the true θ values.
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Figure 4.6: Comparison of −L trajectories from the latter halves of T = 5000 hour SCON-C
flow trainings without (blue) and with (orange) warmup indicates that warmup helps stabilize
training and speed up convergence. The trajectory corresponding to warmup displays much less
prominent instability spiking and has flattened more quickly in contrast to the that of the no
warmup counterpart.
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Figure 4.7: SCON-C state space model marginal q(θ;ϕθ) posterior densities following flow VI
optimization (orange) compared to mean-field prior p(θ) densities (blue) and non-parametric
CON ODE marginal p(θ|y) posterior densities estimated with Stan’s NUTS algorithm (green).
Flow VI and NUTS were conditioned on the same T = 5000 hour y generated by an SCON-C
SDE. The true θ values sampled during data generation are marked by vertical dashed gray lines.
Being a deterministic ODE system, CON does not have β diffusion θ, so subplots portraying the
marginal q(θ;ϕθ) densities for the SCON-C state space model cS, cD, and cM θ were not included
in this figure due to a lack of comparison.
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Figure 4.9: Full SCON-SS state space model marginal q(θ;ϕθ) posterior densities (orange) con-
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Figure 4.11: Approximate SCON-C state space model marginal q(θ;ϕθ) posterior densities con-
ditioned with (orange) and without (green) CO2 information in y produced by the same SCON-C
data-generating process compared to mean-field prior densities p(θ) (blue). The true θ values
sampled during data generation are marked by vertical dashed gray lines.
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Figure 4.12: Approximate SCON-C state space model marginal q(θ;ϕθ) posterior densities condi-
tioned with T = 1000 data observed every 5 hours (blue), T = 5000 data observed every 5 hours
(orange), and T = 1000 data observed every hour (green). All three y share the same SCON-C
data-generating process and include CO2 information. The true θ values sampled during data
generation are marked by vertical dashed gray lines.
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CHAPTER 5

Black-box data assimilation of a nonlinear soil

biogeochemical model with a continuous-time

variational inference scheme using

mini-batching

5.1 Introduction

5.1.1 Motivation for a separate SBM inference approach

With an ever expanding array of soil biogeochemical models (SBMs) and model variants being

proposed in biogeochemistry literature (Luo et al., 2016; Manzoni and Porporato, 2009), and in

particular, a surge in the development of nonlinear “microbial-explicit” models starting in the past

decade (Wieder, Allison, et al., 2015), we are driven to expand our toolkit of SBM inference frame-

works that can effectively assimilate these models to data. Rigorous Bayesian data assimilation

facilitates informative validation, stress testing, and benchmarking of these SBMs conditioned on
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available data sets. Without reliable validation efforts, it is difficult to assess whether the more

heterogeneous and granularized representation of soil microbes in microbial-explicit SBMs like

the Microbial-Mineral Carbon Stabilization (MIMICS; Wieder, Grandy, Kallenbach, and Bonan,

2014; Wieder, Grandy, Kallenbach, Taylor, et al., 2015) and Carbon, Organisms, Rhizosphere,

and Protection in the Soil Environment (CORPSE; Sulman et al., 2014) models bolsters mecha-

nistic and predictive accuracy to an extent that merits the computational cost of nonlinear and

potentially stiff, unstable dynamics.

In incremental fulfillment of this inference framework development goal, we implemented a vari-

ational inference (VI) algorithm in the preceding chapter to assimilate variants of the stochastic

conventional (SCON) SBM family with data. This algorithm involves establishment of a varia-

tional distribution of SBM parameters θ and model latent states x̂, q(θ, x̂), to estimate the true

posterior p(θ, x̂|y). We selected the so-called neural moving average flow for our marginal q(x̂|θ)

variational family and a mean-field logit-normal variational family for our marginal q(θ). The

variational distribution is characterized by its variational parameters, ϕ(θ,x̂). We index a particular

variational distribution by its corresponding ϕ as q(θ, x̂;ϕ(θ,x̂)). Over the course of VI, ϕ is tuned

to maximize the evidence lower bound (ELBO) objective, L(ϕ), in gradient descent (or minimize

−L(ϕ) in gradient descent), which is commensurate with reducing the gap between q(θ, x̂) and

p(θ, x̂|y).

The efficiency gains are sourced from use of the neural moving average flow. Flow approximation

shifts the SBM from a continuous-time dynamical system to a probabilistic discrete-time state

space model. In doing so, it absolves the computational expense of solving SBMs sequentially

from one time step to the next in each training iteration. Multiple latent state trajectories can

be sampled in a single parallelized pass (rather than a sequential process) from the variational

distribution constituting the state space model for likelihood evaluation. This parallelization

renders the algorithm well-positioned to harness graphical processing unit (GPU) architecture for

computation.
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Flow approximation does come with trade-offs though, as we observed firsthand. For one, with

flows being constituted by neural network layers, large approximation error can accumulate with

increased layer depth intended to make the flow more flexible and expressive. Additionally, the

number of neural network weights parameterizing the flow scales with the total system simulation

time, T , such that inferences conditioned on larger T may correspond to a video random access

memory burden that is not compatible under GPU resource limitations. Randomly poor initializa-

tion or training draws in the neural network weights can furthermore contribute to inference-killing

gradient explosions and approximated system state instability.

A combination of these issues came to a head when we tried to calibrate a particular flow-

approximated nonlinear microbial-explicit SBM to synthetic data sampled from the corresponding

continuous-time stochastic differential equation (SDE) system. This SBM is called the “state-

scaling” stochastic Allison-Wallenstein-Bradford equilibrium chemistry approximation (SAWB-

ECA-SS) model. It has four state variables corresponding to soil organic carbon (SOC), dissolved

organic carbon (DOC), microbial biomass carbon (MBC), and extracellular enzyme biomass car-

bon (EEC) pool densities. We will describe the model more extensively in section 5.2.1. Using the

same neural moving flow architecture detailed in 4.2.6, even with drastic reductions in optimizer

learning rate, we experienced premature termination of approximated SAWB-ECA-SS training

due to the appearance of nan and inf elements in the optimization gradient, ELBO objective,

or state path sample tensors.

As we empirically found the neural moving average flow functional for approximation of linear

SCON in the last chapter and we encountered simulation hindrances for the original AWB model

stemming from state derivative blow-ups in incompatible parameter regimes over the course of

our work for Chapter 3 (Xie et al., 2020), our suspicion was that the neural moving average

architecture in its existing form could not numerically tolerate the instability and occasionally

rapidly changing derivatives of the non-linear carbon (C) transfer dynamics in SAWB-ECA-SS.

This suspicion is reinforced by the fact that other nonlinear SBMs like MIMICS have also been
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noted to become numerically unstable in certain parameter regimes (Buchkowski et al., 2017; Shi

et al., 2018).

5.1.2 Application of a continuous-time SDE optimization scheme

Moderate modifications in the hyperparameters and sequencing of the architecture layers were not

sufficient to realize SAWB-ECA-SS flow approximation. Hence, we sought alternative inference

approaches. X. Li et al. (2020), Peluchetti and Favaro (2021), and Tzen and Raginsky (2019)

outline some elegant options for the approximation of dynamical systems into state space models

with neural SDEs instead of flows. Analogous to flows, neural SDEs can transform one probability

density to another. But, rather than doing so over discrete decomposable bijection layers, as in

(4.49), the transformation is carried out by another continuous SDE system selected to return an

evolved desired output based on random variable input. In theory, neural SDEs seem preferable

to flows due to the potential for mitigation of memory costs. Whereas the number of variational

parameters ϕ parameterizing a neural SDE stays constant following the SDE’s formulation, in-

creasing flow layer depth for expressiveness accordingly swells the number of ϕ parameterizing

all the bijections. However, in practice, the mathematical elegance of neural SDEs has not yet

been demonstrated to correspond to consequentially better compute speed or transformation

expressiveness over discrete approximations (Xu et al., 2022). Neural SDE implementation also

comes with a separate set of challenges under active research, such as transformation SDE choice,

complexity, and stability.

Consequently, we considered a simpler option. What about returning to direct inference on the

continuous-time dynamical system similar to the Chapter 3 approach, except this time with a

non-deterministic SDE and an algorithm more tolerant of noisy likelihoods in VI? In this manner,

we could attempt to navigate rapid, “stiff” nonlinear dynamical variation and avert state instability

with small solver step sizes under our control.
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Of course, solver use in data assimilation, especially with small step sizes lower than discrete

model discretizations, recalls persistent issues of compute expense and speed issues. Fortunately,

Ryder and Prangle (n.d.) introduces a new GPU-compatible continuous-time VI (CTVI) algorithm

that attenuates those numerical burdens by incorporating a prevalent machine learning technique

called mini-batching into the ELBO gradient optimization process. We quote from the previous

chapter for a simplified description of mini-batching: “[under] a mini-batching scheme, a y is

partitioned into smaller subsections yτi during training, where τ merely distinguishes a subsection

from the entire sequence and i ∈ B where B ∈ N is the set of integers counting total subsections

in natural order. In each training iteration, a yτi can then be randomly selected for likelihood

evaluation such that the SBM only needs to simulate a [latent x̂τi] subsection for calculation of

the optimization objective.” We subsequently apply CTVI in a black-box fashion to assimilate

an untrained SAWB-ECA-SS system with synthetic data from a known SAWB-ECA-SS data-

generating process and demonstrate the method’s functionality for fitting states and recovering

parameter values. In doing so, we establish CTVI as a viable choice of inference algorithm in SBM

validation frameworks against baseline results obtained from the established No-U-Turn sampler

(NUTS) algorithm. Along the way, we test the sensitivity of CTVI to solver step size settings

and the availability of CO2 respiration information in conditioning data.

5.2 Methods

5.2.1 The SAWB-ECA-SS model

The SAWB-ECA-SS SBM is extended from the original Allison-Wallenstein-Bradford (AWB) or-

dinary differential equation (ODE) model introduced in Allison et al. (2010) and has the same
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number of states D as AWB, with D = 4. Its drift dynamics obey



dS

dD

dM

dE


=



IS + aMSA · rM ·M − VDE·E·S
KDE+E+S

ID + (1− aMSA) · rM ·M + VDE·E·S
KDE+E+S

+ rL · E − VUE·M ·D
KUE+M+D

uQ · VUE·M ·D
KUE+M+D

− (rM + rE) ·M

rE ·M − rL · E


dt+ β0.5



dWS

dWD

dWM

dWE


(5.1)

where S, D, M , and E are further abbreviations of the SOC, DOC, MBC, and EEC state pools.

The AWB ODE was formulated with standard Michaelis-Menten kinetics for its nonlinear mass

transfer functions following the form of f(A,B) = Vmax·A·B
KM+B

, where A and B are biochemical

reactant molecules with A as the enzyme and B as the substrate (Allison et al., 2010; J. Li

et al., 2014). In our stochastic extension, we swapped standard Michaelis-Menten for equilibrium

chemistry approximation (ECA) kinetics where f(A,B) = Vmax·A·B
KM+A+B

due to purported numerical

stability boosts assumed from the increase of the denominator by the extra addition term (Tang,

2015; Tang and Riley, 2013).

Following what was introduced in equation (4.5) of section 4.2.2, the naive “state-scaling” diffusion

dynamics of SAWB-ECA-SS obey

β =



sS · S 0 0 0

0 sD ·D 0 0

0 0 sM ·M 0

0 0 0 sE · E


(5.2)

which can be written more compactly as β = diag (s⊙ x), where diag is the vector diagonal-

ization function, ⊙ is the Hadamard elementwise multiplication operator, s = [sS, sD, sM , sE],

and x = [S, D, M, E].
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SAWB-ECA-SS element Description Units
IS Exogenous input to SOC pool mgCg−1 soil h−1

ID Exogenous input to DOC pool mgCg−1 soil h−1

uQ, ref AWB MBC uptake C use efficiency NA
Q AWB CUE temperature sensitivity slope °C−1

aMSA AWB MBC to SOC transfer fraction NA
KDE SOC decomposition Michaelis constant mgCg−1 soil
KUE MBC uptake Michaelis constant mgCg−1 soil
VDE, ref SOC decomposition maximum rate h−1

VUE, ref MBC uptake maximum rate h−1

EaVDE SOC decomposition activation energy kJmol−1

EaVUE MBC uptake activation energy kJmol−1

rM MBC death rate h−1

rE EEC production rate h−1

rL EEC destruction rate h−1

sSOC SOC noise scale factor NA
sDOC DOC noise scale factor NA
sMBC MBC noise scale factor NA
sEEC EEC noise scale factor NA

Table 5.1: List of SAWB-ECA-SS equation elements and their associated biogeochemical or
mathematical descriptions and units.

The non-state elements appearing in SAWB-ECA-SS equation terms, their corresponding biogeo-

chemical or mathematical interpretations, and units are listed in Table 5.1. We specified 16 of

these 18 elements to be Bayesian random variable model parameters θ whose values are realized

through sampling in our synthetic data-generating process. These parameters in turn served as

our targets of inference in our CTVI validation experiments. The exogenous pool inputs IS and

ID are not model parameters or constants in this case, but time-dependent function returns. The

θ data-generating distribution supports are subsequently detailed in section 5.2.2.

We defined VDE, ref and VUE, ref to output non-reference VDE and VUE through Arrhenius relation-

ships associated with Ea energy of activation θ such that the nonlinear mass transfer functions

remained sensitive to external environmental influence to hue to biological realism. VDE and VUE
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are given by

Vi∈{DE,UE} = Vi, ref exp

[
−Eai

R

(
1

tempt

− 1

tempref

)]
(5.3)

where R is the ideal gas constant 8.314 JK−1mol−1, and tempref specifies the “reference” equi-

librium temperature which we set at 283 K. As in J. Li et al. (2014) and Xie et al. (2020), uQ

was defined to linearly vary from its reference value based on temperature through

uQ = uQ, ref −Q · (temp− tempref) (5.4)

In contrast to the deterministic AWB model defined in J. Li et al. (2014), we did not establish

temperature dependency for the Michaelis constants for this version of SAWB-ECA-SS, KDE

and KUE. Since Davidson et al. (2012) found that modeling temperature sensitivity for Michaelis

constants in addition to Michaelis-Menten reaction Vmax parameters did not substantially improve

fits to enzyme assay data sets, we opted for a more parsimonious SBM without K energy of

activation θ to reduce overfitting potential.

CO2 respiration of SAWB-ECA-SS at a given time is defined as a function output dependent

on the model states at the corresponding time, Dt and Mt, and θ, KUE and evolved VUE,t

(itself a function of t, EaUE, and the reference temperature due to its Arrehenius temperature

dependence). The function is

CO2, t = (1− uQ, t) ·
VUE, t ·Mt ·Dt

KUE +Mt +Dt

(5.5)

with CO2 taking units of µg g−1 soil h−1.
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5.2.2 Synthetic data generation

To assess the validity of CTVI, we mirror the overall approach summarized in section 4.2.1 that

was previously used to test the flow-based inference method. First, we observe synthetic time

series data y from an SBM with known true θ simulated in continuous-time with a standard SDE

solver, like Euler-Maruyama (Maruyama, 1955). Then after assimilating an uncertain model to

said data using the algorithm under investigation, we are able to consider how well the algorithm

fits states and recovers θ. We can visualize the discrepancy between “truth” and estimates without

additional concerns and complications regarding proper empirical data collection, processing, and

normalization across disparate experiments.

This time, our y time series was sampled from one seed of an SAWB-ECA-SS SDE system run

for a time span T of 2000 hours. We chose 2000 since it was long enough to make mini-batching

worthwhile for performance reasons while not being too taxing for relatively recent CPUs from

the past decade to simulate. With the noted stability issues of the AWB family (Xie et al., 2020),

we could re-run SAWB-ECA-SS reasonably fast enough using different seeds and then filter for y

visually featuring state dynamics that were varied, not biologically absurd, and not too volatile.

We used mean-field independently distributed θ as in the prior chapter’s data generation for

simplicity. However, we used truncated normal (TN) distributions rather than the logit-normal

distributions depicted in 4.2.3 this time to handle biological bounding of θ values. To arrive

at our TN data-generating distributions, we picked “parent” mean µ̌, standard deviation σ̌, and

support bounds [a, b] requiring µ̌, σ̌ ∈ R+ and a, b ∈ R with b > a that modulated random

variable transformations from originating normal to TN densities. While the TN distribution

is disadvantaged versus the logit-normal in backpropagation stability, it has three ease-of-use

advantages including that:

• it has a closed-form probability density function enabling analytic transformations from a
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normal distribution,

• the TN location µ and scale σ tend to remain close to the pre-truncation µ̌ and σ̌ (with

enough distance designated between support bounds) so that post-transformation distribu-

tion parameters usually align with targeted specifications,

• and its probability density can be kept symmetric with equidistant truncation on each side

relative to the mean.

Refer to Burkardt (2014) for a treatise on TN that steps through the derivation of TN’s proba-

bility, cumulative, and inverse cumulative density functions from the standard normal probability

density function.

We selected data-generating densities corresponding to θ values we qualitatively found to produce

prominently varying dynamics and state changes across T for most random seeds. The distribution

µ̌ and supports are listed in Table 5.2. We set σ̌ = µ̌
4
. We chose low “state-scaling” noise levels,

as we found higher diffusion settings to correspond to rapid “crashing” of SAWB-ECA-SS states

toward 0 and drastically diverge from the drift-only dynamics. The system initial conditions x0

were sampled as x0 ∼ N (x̃0, 0.1·x̃0), where x̃0 = [2·Sss, 4·Dss, 2·Mss, 4·Ess] and the ss subscript

notates the steady state values of the matching drift-only, deterministic AWB-ECA ODE. We used

the deterministic steady state as a non-rigorous means of initializing the system sufficiently far

away from the actual stochastic steady state (i.e. stationary solution). The stationary solution

that accounts for the SDE noise structure is more difficult to compute. The deterministic steady

states were computed from the true θ using the analytic equilibrium equations of the AWB-ECA
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ODE that were resolved with the help of computer algebra software. They are

A := (−KDE · rL · (rE + rM) · (1 + uQ, ref) + rE · uQ, ref · (IS + ID)) · (ISrE · (−1 + uQ, ref)

− aMSA · ID · rM · uQ, ref + IS · rM · (−1 + uQ, ref − aMSA · uQ, ref)) (5.6)

B := (rE + rM) · (−1 + uQ, ref) · (ID · uQ, ref · (−aMSA · rL · rM + rE · VDE)

+ IS · (rE · rL · (−1 + uQ, ref) + rL · rM · (−1 + uQ, ref − aMSA) + rE · uQ, ref · VDE) (5.7)

Sss =
A

B
(5.8)

Dss = −
KUE · (rE + rM) · (−1 + uQ, ref)− uQ, ref · (IS + ID)

(−1 + uQ, ref) · (rE + rM − uQ, ref · VUE)
(5.9)

Mss =
uQ, ref · (IS + ID)

(1− uQ, ref) · (rE + rM)
(5.10)

Ess =
rE ·Mss

rL
=

rE · uQ · (IS + ID)
rL · (1− uQ, ref) · (rM + rE)

(5.11)

We used the deterministic steady state as a non-rigorous means of initializing the system suf-

ficiently far away from the actual stochastic steady state solutions, also known as the station-

ary solutions, as the stochastic steady state accounting for noise structure is more difficult to

compute. These initial condition values are biologically plausible for soil surface decomposition

processes (Xie et al., 2022). On the note of biological plausibility, we used the same litter input

and temperature sinusoids featured in equations (4.6) and (4.8) from section 4.2.2 that were

evocative of tropical biome conditions to respectively inject external C into the system and force

the Vi∈{DE,UE}, ref parameters.

In addition to using truncated θ data-generating distributions, we also hard-bounded x̂ to be

greater than or equal to 1 × 10−5 to avoid 0 and negative values for biological realism in data

generation. With our choice of parameters and simulation time span, x rarely met the 1× 10−5

lower bound in practice. We took care to select a simulation corresponding to a random seed

that never encountered the lower bound.

y were densely and noisily observed from the true x every 10 hours with yt ∼ N (xt, ηobs), where
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SAWB-ECA-SS θ µ Support
uQ, ref 0.22 [0, 1]
Q 0.001 [0, 0.001]

aMSA 0.5 [0, 1]
KDE 1000 [0, 5000]
KUE 0.1 [0, 1]
VDE, ref 0.04 [0, 1]
VUE, ref 0.005 [0, 0.1]
EaVDE 40 [5, 80]
EaVUE 30 [5, 80]
rM 0.00016667 [0, 0.1]
rE 0.0002 [0, 0.1]
rL 0.0004 [0, 0.1]

sSOC 0.0001 [0, 0.1]
sDOC 0.0001 [0, 0.1]
sMBC 0.0001 [0, 0.1]
sEEC 0.0001 [0, 0.1]

Table 5.2: Corresponding data-generating density means and supports of of SAWB-ECA-SS θ.

ηobs is the noise standard deviation. If CO2 measurements were included in y (as they were by

default unless otherwise specified), CO2 was computed directly from the latent time-corresponding

x (not from the state observations in y) with equation (5.5) and then observed with the same

Gaussian noise pattern. The observation error was structured to resemble equation (4.11) in

section 4.2.2 with ηobs being 10% of the state and CO2 means across the data-generation time

span such that

ηobs = 0.1⊙



S̄

D̄

M̄

Ē

CO2


(5.12)
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5.2.3 Continuous-time variational inference model training proce-

dure

Training of an uncertain SAWB-ECA-SS model to attempt fitting of y sampled from the known

SAWB-ECA-SS data-generating process and recover the true underlying latent states and θ was

conducted with the aforementioned CTVI method. The algorithm will be more formally and

rigorously described in a forthcoming manuscript from Ryder and Prangle (n.d.). For now, we

loosely outline its steps in Algorithm 5.1 and generally treat it as a black box.

We review, modify, and introduce some more notation and information relevant to the algorithm

outline. We partition our observations and latent state trajectories y and X spanning T = 2000

into 5 evenly sized subsections that are T
5
= 400 hours in length. A particular subsection is then

subscripted with an index τb, where τ distinguishes any mini-batch from the full time series and

b ∈ B := {1 : 5}, where B is the set of natural number indices counting all the subsections.

Each subsection starts at t = (b− 1) · 400 and ends at t = b · 400. There is some intermediate

overlap between the end and start points, e.g. coverage of t = 400 is shared by the end of a

τ1 subsection and start of a τ2 subsection and coverage of t = 1600 is shared by τ4 and τ5

subsections.

Before touching touch upon the reason for the mini-batch time overlap, we make some further

notational distinctions. Whereas Xτb marks a distribution of true latent subtrajectories t-spanning

[(b− 1) · 400, b · 400], X̂τb indicates a distribution of subtrajectories for the model being trained.

x̂τb is then a sampled realization from the X̂τb distribution, q(x̂τb|θ;ϕx̂τb
). ϕx̂τb

denotes the

variational parameters that specifically influence the distribution of τb subtrajectories. In this

case, ϕx̂τb
parameterizes the sampling of initial conditions for subtrajectory integration by an

SDE solver from [(b− 1) · 400, b · 400]. Hence, we arrive at the reason for our end and start point

overlap; for the subsections located after τ1, information regarding the distribution of endpoints

of the immediately preceding subsection is used to set initial conditions and tune q(x̂τb|θ;ϕx̂τb
) in
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the gradient optimization step. With regard to solving of τ1 subsections, the CTVI algorithm was

established to learn a mean initial condition x̂0 at t0. For simplicity, we initialized optimization

with y0 as the preliminary x̂0 for x̂τ1 integration.

We integrate S = 32 samples from q(x̂τb|θ;ϕx̂τb
) in each training iteration. Of course, q(x̂τb|θ;ϕx̂τb

)

is conditional on a draw of θ from the approximate marginal q(θ;ϕθ). In contrast to the Chapter

4, we used a flexible non-parametric inverse autoregressive flow (IAF) for our posterior variational

family. We summarize IAFs here as a reversible sequence of discrete one-to-one random variable

transformations (i.e. bijections) that transforms one probability density to another. The bijec-

tions are parameterized by layers of hidden parameters ϕθ constituting a neural network. Refer

to Kingma et al. (2016) for a detailed exposition of IAFs. Our IAF transforms a basic standard

normal distribution into a more complex one, but it is also possible to operate an IAF in an

opposite direction going from complex to simpler. Our prior p(θ) was initialized as an uninformed

IAF with widely distributed ϕθ. Also in contrast to Chapter 4, in which the logit-normal pos-

terior variational family had two-sided truncation, the IAF was only bounded at one side with a

smooth softplus function to have a support of [0, ∞). As we will observe in section 5.3, one-sided

bounding was sufficient for constraint of θ.

For our SDE solver, we used a simple Euler-Maruyama scheme (Maruyama, 1955) due to its ease

of implementation and low memory cost that was sufficient for our purposes. We experimented

with using solver time step sizes of dt = 0.05 and dt = 0.2. While we did not require the use of

a more complex solver this time, we note that an advantage of the CTVI method is that we can

use arbitrary SDE solvers, including more elaborate schemes with superior error and convergence

guarantees, to tackle the inference of stiffer and more convoluted systems.

Over the course of our specified number of training iterations, the overall goal of our VI op-

timization process is to find the ϕ that best lowers the distance between the approximate and

true posteriors. This distance is indicated by the Kullback-Leibler (KL) divergence (Kullback and

Leibler, 1951). As encapsulated in section 4.2.5, minimization of the KL divergence is commen-
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surate to the minimization of the negative ELBO objective −L(ϕ) in stochastic gradient descent.

The complete expression for L(ϕ) will be provided in Ryder and Prangle (n.d.). For the time

being, Figure 5.1 indicates empirically that the ELBO objective was appropriate for functional

optimization. The ELBO gradient ∇̂L(ϕ) used to update ϕ in the gradient optimization step was

estimated with the assistance of the reparameterization trick.

We chose the Adam optimizer (Kingma and Ba, 2015) to handle stochastic gradient updates

with the optimizer learning rate annealed from 5 × 10−4 to 1 × 10−6 over more than 2.4 × 106

training iterations. Training was conducted on a single Nvidia GPU.

Algorithm 5.1 Synopsis of steps in each CTVI algorithm loop iteration. Notation detailed
throughout section 5.2.3.

Define q(θ, x;ϕ);
Initialize ϕ;
N ← total training iterations;
for i← 1 to N do

Uniformly sample subsection b from B := {1 : 5};
Draw θ ∼ q(θ;ϕθ);
for s← 1 to S = 32 do

Integrate x̂(s) ∼ q(x̂|θ;ϕx) with an SDE solver;
if y includes CO2 observations then

Compute ĈO2 from x̂ using equation (5.5);
end if

end for
Evaluate ∇̂L(ϕ) for stochastic gradient update of ϕ;

end for
return q(θ, x;ϕ) corresponding to the L[ϕ(θ,x)] value at N ;

5.2.4 Stan No-U-Turn sampler comparison

We compared CTVI marginal θ posterior estimates and state fits to results obtained from Markov

chain Monte Carlo (MCMC) inference of a deterministic AWB-ECA ODE system conditioned on

the same y. The comparison inference followed the “uni-batched” data assimilation framework

applied in Xie et al. (2020) and was conducted on a dual-core Intel Core i5 Kaby Lake central pro-
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cessing unit (CPU) using the NUTS engine implemented in Stan 2.29.1 (Carpenter et al., 2017)

via the CmdStanR interface (Gabry and Češnovar, 2021. For more detail about the NUTS pro-

cedure, refer to Hoffman and Gelman (2014) and Betancourt (2017). Simulation was conducted

on CPU rather than GPU because Stan’s GPU support is currently still limited in development.

The deterministic AWB-ECA dynamics match the SAWB-ECA-SS drift given in equation (5.1).

We used AWB-ECA in the comparison rather than SAWB-ECA-SS because Stan only has built-in

ODE solvers and no native SDE solver at the time of this writing. Also, we wanted to demonstrate

superiority of the SDE CTVI approach over the ODE-NUTS framework of Xie et al. (2020). We

opted for Stan’s implementation of the Cash-Karp scheme (Cash and Karp, 1990) as our choice

of ODE solver due to its reputation as a robust, memory-efficient integrator of nonlinear and

relatively stiff systems. For simplicity, we assumed the observed y0 as the initial condition x0 for

system integration starting from t0 = 0. Stan’s ODE solver implementation made it difficult for

us to flexibly vary and learn separate initial conditions, as the solver application programming

interface required definition of a fixed x0.

The AWB-ECA priors were defined as independent TN distributions mirroring the data-generating

distributions detailed in Table 5.2. We found that the mean-field NUTS posteriors required two-

sided truncation for biological constraints, as we had experienced in Xie et al. (2020); the posterior

supports matched those of the prior and data-generating densities.

With regard to NUTS configuration, we specified the collection of posterior samples across four

ergodic chains of 500 warmup iterations and 1250 sampling iterations each such that a maximum

of 4× 1250 = 5000 posterior samples were amassed per θ. Other NUTS engine prameters were

left at Stan’s defaults, except for the adapt_delta argument controlling the target average

acceptance probability. We increased adapt_delta to 0.95 from the CmdStanR version default

of 0.8 to prompt shorter jumps in θ proposals. In our experience with models from the AWB

family, longer jumps resulted in more frequent navigation into unstable θ regimes that produced

divergent transitions.
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5.3 Results

5.3.1 CTVI ELBO convergence

To check for suitable ELBO optimization and gradient descent behavior in the CTVI algorithm,

we visualized the negative ELBO trajectories of two CTVI runs conditioned on our synthetic

SAWB-ECA-SS y including CO2 observations (Figure 5.1). These two runs are distinguished by

their Euler-Maruyama integrator dt step size, with one maintaining dt = 0.05 and the other

dt = 0.2. The dt = 0.05 run took about three hours, while the dt = 0.2 run took about one

hour.

The gradual overall declines in the values and slope magnitudes of both −L curves with increasing

training iterations signals approach toward an approximate local minimum in the ELBO objective

and, by proxy, KL divergence. Though the dt = 0.05 trajectory appears to usually track a little

lower than its dt = 0.2 counterpart, the two curves ultimately display relatively little separation

in terminating value and overall shape over their courses.

5.3.2 Comparing the CTVI method to the ODE-NUTS approach

We visually and qualitatively compared the results of the dt = 0.05 time step SAWB-ECA-SS

CTVI optimization to those from the AWB-ECA ODE-NUTS assimilation starting with the state

fits to y (that included CO2 observations). In contrast to the three hours it took to run the

dt = 0.05 CTVI run, the AWB-ECA ODE-NUTS inference took about eight hours.

When viewing the complete simulation time span from t = 0 to t = 2000 (Figure 5.2), we observe

that the trajectory of the CTVI SOC posterior distribution and more easily visible posterior mean

aligns somewhat more closely with the synthetic y SOC observations and observation noise interval
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Figure 5.1: The −L trajectories of two CTVI runs conditioned on y—one operating with an
Euler-Maruyama SDE solver time step size of dt = 0.05 (blue) and the other with dt = 0.2
(orange)—traced over the course of the more than 2× 106 stochastic gradient descent iterations
for each run.

than the ODE-NUTS SOC posterior distribution and mean. The ODE-NUTS SOC posterior

distribution overshoots the observation noise interval throughout the entire time span and is not

able to adjust its trajectory from ODE solver initialization at y0. It is more difficult to distinguish

between the CTVI and ODE-NUTS state posteriors corresponding to DOC, MBC, and EEC,

which visually fit y similarly well. Likewise, with regard to CO2, drastic differences in fit quality

were not apparent, though the CTVI CO2 means were consistently better at staying within the

95% observation interval, such as at t = 100 (Figure 5.3) and t = 1840 (Figure 5.4). The

dt = 0.2 time step CTVI optimization state posteriors were not plotted, as they tracked too

closely with the dt = 0.05 results.

We additionally detect in Figure 5.2 increases in the uncertainty of the posterior DOC, MBC,
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Figure 5.2: Full view of the distributions of the SAWB-ECA-SS CTVI dt = 0.05 and AWB-ECA
ODE-NUTS x state fits to y from t = 0 to t = 2000. CO2 comparison is not pictured due to
poor visibility of points at this time window.

and EEC distributions for both CTVI and ODE-NUTS through the overall time span. This is

juxtaposed by a decrease in uncertainty for the SOC CTVI posterior. The changes in uncertainty

and state posterior variance are more clearly visible when comparing zoomed-in views of the

beginning (Figure 5.3) and end (Figure 5.4) of the time series.

We note that the dynamics of the CTVI trajectories appear quite smooth and deterministic

(Figures 5.2, 5.3, 5.4), which points to training toward low marginal state-scaling diffusion θ

means in the optimization of approximate q(θ). This is an accurate reflection of the true data-

generating state-scaling θ depicted in Table 5.2.

Before we proceed to describe our interpretations of figures contrasting marginal θ posteriors
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Figure 5.3: Zoomed view of the SAWB-ECA-SS CTVI and AWB-ECA ODE-NUTS x fits from
t = 0 to t = 250.

estimated by various approaches, we state for clarity that we judged the ability of posteriors to

“identify” true θ by the horizontal distances separating perceived posterior density peaks1 from

true θ values. We deemed that smaller distances indicated enhanced posterior identifiability. If

two posteriors harmonized their peaks over a true θ with similar precision, the tiebreaker for

identifiability was narrower and more certain posterior width. As the delineation of model θ

identifiability can be amorphous, we settled on a definition of identifiability that we thought was

reasonable and allowed for prompt visual assessment.

When contrasting the marginal SAWB-ECA-SS IAF-family posteriors estimated by CTVI and the
1Henceforth, we also use density “means” interchangeably with “peaks” ’ for shorthand, acknowledging that for

the non-parametric IAF-family densities, the peaks and means may be close to each other since the IAF-family
densities are predominantly Gaussian-shaped but not the exact same.
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Figure 5.4: Zoomed view of the SAWB-ECA-SS CTVI and AWB-ECA ODE-NUTS x fits from
t = 1750 to t = 2000.

marginal AWB-ECA posteriors sampled by NUTS, we saw that the CTVI-estimated posteriors

customarily displayed closer and more certain identification of the true θ (Figure 5.5). This is

especially apparent in the uQ, ref, Q, KDE, KUE, VDE, ref, VUE, ref, and EaVDE subplots, where the

CTVI posterior densities consolidated about means that precisely matched or were exceedingly

close to the true θ. Performance was also arguably better for CTVI in the aMSA, EaVUE , and

rM subplots, where the CTVI posterior means were not located on top the true θ, but were still

visibly closer.

The SAWB-ECA-SS IAF-family posterior densities never displayed extreme density consolidation

far above any true θ. On the other hand, two of the marginal AWB-ECA posteriors corresponding

to Q and rM in Figure 5.5 appeared massed and compressed against their respective upper and

144



lower support bounds.

5.3.3 Effect of CTVI SDE solver step size on CTVI-estimated θ

posteriors

When comparing marginal q(θ) densities approximated by CTVI using Euler-Maruyama SDE solver

step sizes of dt = 0.05 and dt = 0.2 (Figure 5.6), we found them to be similar in shape and

location. The dt = 0.05 and dt = 0.2 runs appear to randomly exchange slight advantages in θ

estimation accuracy and identification across the various subplots. Despite its greater numerical

computation expense, use of the lower step size did not correspond to consistent or clearly

organizable visual advantages in posterior location and certainty.

5.3.4 Effect of CO2 information exclusion from y on CTVI-estimated

θ posteriors

When comparing the marginal q(θ) densities of dt = 0.05 CTVI runs conditioned with and

without CO2 measurements in y (Figure 5.7), we observed that marginal posterior uncertainty

increased for some of the θ. uQ, ref, which is involved in the determination of SAWB-ECA-SS CO2

respiration as stated in equation (5.5), was one of the θ that saw marginal posterior widening

with CO2-knockout. Some posteriors θ not directly involved with CO2 computation also saw

substantial widening in VDE, ref, EaVDE , and EaVUE .

Posterior widening from CO2 exclusion was not unanimously observed across all θ. The “no CO2”

θ posteriors of KDE and rL surprisingly both narrowed and became more closely located to the

true θ to show improved θ identification. That being said, more marginal q(θ) still widened

(10) than narrowed (6) without CO2 information based on density peak heights, where higher

peaks indicate narrower and more constrained posteriors due to conservation of probability area.
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Moreover, the density narrowing did not necessarily correspond to more accurate θ identification;

the “no CO2” VUE, ref and rE q(θ) density peaks shifted further away from the truth. “No CO2”

density narrowing did coincide with the inching of peaks toward true θ in the KDE, rL, and rM

subplots. In the case of sDOC , the “no CO2” q(θ) widened and became more uncertain, but its

density peak and apparent mean became more accurately located.

5.4 Discussion

5.4.1 The CTVI algorithm appeared operational as a stochastic gra-

dient optimization approach

Considering the −L trajectories as diagnostic indicators, Figure 5.1 suggests that our imple-

mentation of the CTVI algorithm exhibits appropriate gradient descent behavior and is at least

somewhat operational for stochastic gradient optimization purposes. The decreases in −L value

and slope magnitudes suggests a successful approach in both dt = 0.05 and dt = 0.05 runs

toward ELBO convergence and triangulation of a ϕ regime that is at least a local minimum for

KL divergence.

That the dt = 0.05 run generally tracks at a lower −L than the dt = 0.2 run to signal that

reducing SDE solver step size allows the CTVI algorithm to minimize the KL divergence between

the approximate and true posteriors. This is expected, as the obvious consequence of dropping

solver step size is the reduction in global accumulation of state approximation error during the

integration of states through a mini-batch simulation time span (Maruyama, 1955). Improvement

of integration error of course mitigates a barrier to accurate approximation and recapitulation of

the true latent states by the untrained model.

However, given the large relative difference between 0.05 and 0.2, we were surprised that the
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−L trajectories tracked so closely with each other. It was our first sign that CTVI could tolerate

larger solver step sizes for valuable savings in compute time and cost without showing much

degradation in approximation accuracy.

5.4.2 SDE-CTVI compared agreeably with ODE-NUTS at fitting

states and identifying true θ

Even at a surface level, VI and NUTS deviate substantially in their assumptions and methodology

starting from the operations occuring in each of their iterations. VI approximates posterior densi-

ties by iteratively optimizing a predefined posterior family with an objective function, while NUTS,

as an MCMC method, handles approximation non-parametrically with the iterative appending of

samples to ergodic chains. With their drastic differences, no singular approach presently exists

to neatly and properly quantify their goodness-of-fit in a Bayesian mode that retains information

about goodness-of-fit distributions and uncertainty. As such, we compared the results of the

CTVI and ODE-NUTS approaches in a visual qualitative manner in this study to illustrate the

validity of the CTVI algorithm, leaving more quantitative comparisons for future work on Bayesian

goodness-of-fit metrics development.

Starting with the fit distributions in Figure 5.2, we see qualitative support for the validity and

effective function of the CTVI algorithm. The CTVI-optimized SAWB-ECA-SS state trajectory

distributions and means compare agreeably with the trends in the AWB-ECA trajectories learned

by Stan’s NUTS engine, which is trusted as a “gold standard” benchmark of reliability for com-

parison of unproven inference methods (Nemeth and Fearnhead, 2021). However, the CTVI run

was accomplished with substantially less temporal cost, only taking about 3 hours of wall-clock

computation with the leveraging of a GPU. The ODE-NUTS run took about 8 hours on a CPU.

The superiority of using a stochastic model inference approach that can flexibly adapt initial

conditions to fit noisy data randomized by data-generating and observation stochasticity is evident
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in the Figure 5.2 SOC panel. ODE-NUTS was unable to adjust from SOC outlier observations and

a high SOC initial condition assumed when using y0 as initial ODE values x0. Hence, ODE-NUTS

overshot the SOC trajectory over the large concentrations of the observation interval. The SDE-

CTVI framework was able to accommodate a preliminary proposal of initial conditions inconsistent

with the true latent data-generating process and settle its SOC trajectory more centrally within

the observation interval.

Both the ODE-NUTS and SDE-CTVI state trajectory distributions depict visibly increasing DOC,

MBC, and EEC posterior uncertainty at the end of the time series (Figure 5.3) in comparison

to the beginning (Figure 5.4). In contrast, we observe little change in state variance for the

ODE-NUTS SOC state trajectory, while we see a marked uncertainty decrease for SDE-CTVI

SOC. We feel that these observations could be explained in a straightforward manner by the

changing state magnitudes and dynamical system structures of SAWB-ECA-SS and AWB-ECA.

State variance sourced from θ posterior uncertainty and solver approximation error, which exists

in both deterministic and stochastic models, would naturally become easier to see at larger state

magnitudes. Indeed, in the fitting of y, the DOC, MBC, and EEC states of SAWB-ECA-SS and

AWB-ECA drastically increase many times over from their early values through the simulation

time span. Meanwhile, to account for the lack of palpable uncertainty change in AWB-ECA SOC,

we note that the SOC trajectories vary less dramatically with gradual decay by approximately half

of their starting values by the end of the simulation. The standout decrease in SAWB-ECA-

SS SOC posterior variance then can be attributed to the stochastic system’s “state-scaling” β

diffusion structure set forth in equation (5.2). The si∈{SOC,DOC,MBC,EEC} θ scale the extent

of diffusion noise along the state magnitudes such that a drop in SOC ensures a corresponding

decline in SAWB-ECA-SS SOC diffusion noise.

On the subject of noise dynamics, we see that the SAWB-ECA-SS trajectories qualitatively appear

fairly deterministic and look similar to the smooth curves of AWB-ECA. This reflects the low

true data-generating and CTVI-estimated si∈{SOC,DOC,MBC,EEC} state-scaling noise θ. Having
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observed SAWB-ECA-SS instability at higher θ levels as described in section 5.2.2, we took

abundant caution to reduce noise to a level that would, with certainty, prevent fluctuation of

SAWB-ECA-SS state values into the lower bound across T = 2000. Admittedly, too much

caution was potentially taken, as the low noise settings likely inhibited visual discrimination

between the SDE-CTVI and ODE-NUTS fit trajectories, especially for DOC, MBC, EEC, and

CO2. If synthetic y sampled from a noisier data-generating process were used, we hypothesize

that this would have demonstrated a clearer state-fitting advantage for the SDE-CTVI method. It

is also possible that higher noise y would have facilitated more obvious qualitative differentiation

between SAWB-ECA-SS state trajectories estimated using different Euler-Maruyama step sizes.

We did not plot the dt = 0.2 CTVI-estimated trajectories because they were essentially on top

of the dt = 0.05 results

Superiority of SDE-CTVI approach over the ODE-NUTS framework is more apparent when looking

at the comparison of marginal θ posteriors in Figure 5.5. With respect to the identification of

true θ, CTVI was able to precisely align SAWB-ECA-SS posterior density peaks with the truth

in arguably six cases, uQ, ref, KDE, KUE, VDE, ref, VUE, ref, and EaVDE . One could make a case

of effective CTVI-estimated SAWB-ECA-SS q(θ) mean alignment for Q as well. Meanwhile, for

the ODE-NUTS framework, good posterior peak alignment to true θ was only demonstrated

for KDE, VDE, ref, and rL. And for KDE and VDE, ref, the NUTS-estimated posteriors were still

surpassed by their CTVI-estimated counterparts in informed narrowing about the true θ. The

ODE-NUTS framework only qualitatively outperformed SDE-CTVI at θ identification in combined

posterior certainty and mean location evaluations in one subplot corresponding to Q. SDE-CTVI

was arguably superior head-to-head in θ identification and estimation accuracy in the other 11

subplots.

Though lacking two-sided truncation and being only bounded above 0, the marginal SAWB-ECA-

SS IAF-family posteriors never showed extreme density consolidation situated either too closely

against their lower bounds or too far away to the unbounded right of the true θ values. In contrast,
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two AWB-ECA posteriors, those of Q and rL, evinced compressed density consolidation against

support bounds in ODE-NUTS’ efforts to accommodate and compensate for noisy and outlier

observations in y with deterministic-only dynamics. Without tending to the ODE-NUTS inference

with two-sided truncation, it is likely that the Q and rL posteriors would have consolidated at

nonsense value ranges that could pull the rest of the system θ into biologically untenable regimes.

That θ truncation could be relaxed in this trial of the CTVI method is another indicator of the

algorithm’s superiority over the ODE-NUTS approach at tolerating stochastic data and identifying

true θ. These results suggest the potential applicability of CTVI to the data assimilation of SBMs

with even noisier empirical data sets.

5.4.3 CTVI SDE solver step size did not clearly improve posterior

identification of SAWB-ECA-SS θ

Having observed a lack of visual separation between the dt = 0.2 and dt = 0.05 CTVI-estimated

state trajectories, we wanted to discern if reduced integration approximation error sourced from

lower step sizes affected or benefitted posterior θ estimation and identification. SAWB-ECA-

SS was parameterized with a relatively high θ count (see Table 5.2) and its equations (5.1)

include terms that encompass multiple elements which can compensate for each other such as

aMSA · rM ·M . Because of the high model equifinality to go along with the possible randomness

of stochastic gradient descent, we thought it possible that dt = 0.2 and dt = 0.05 marginal q(θ)

would diverge in an informative manner.

Ultimately, no clear advantages in q(θ) approximation could be discerned for the dt = 0.05 run

despite its much heavier compute load (Figure 5.6). Indeed, we were hard-pressed to ascertain

any significant or consequential differences between the two posterior sets. The dt = 0.05 and

dt = 0.2 runs seemed to be similarly informed and constrained, randomly exchanging slight

advantages in q(θ) peak locations relative to true θ values across the subplots.
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It is possible that probabilistic accounting of model output uncertainty and inference on noisy and

randomly 2 inaccurately observed data places less stringent demands on solver accuracy. Relative

solver inaccuracy can be compensated by large enough observation and diffusion noise. And as is,

proposed SBM dynamics are thought to remain far off from faithful representation of empirical

data-generating mechanics (Bradford et al., 2016); we would expect the proposal of more more

truthful model mechanics be more critical for accurate θ estimation than modest differences

in solver accuracy. Following from this, we consider that the substitution of Euler-Maruyama

with more numerically complicated and compute-intensive SDE solvers that are theoretically

more accurate may not be useful if Euler-Maruyama suffices for managing system instability and

nonlinearity.

Of course, much more testing of CTVI with different models, data sets, and noise levels needs

to be carried out before robust conclusions about the implications of solver step size on CTVI

θ estimation can be made. Nonetheless, for future, we recommend experimenting with higher

solver step sizes in future SBM inferences using CTVI for greater compute efficiency on the basis

of the Figure 5.6 results.

5.4.4 CO2 information generally improves SAWB-ECA-SS θ identi-

fiability

The presence of CO2 observations in y were not as overwhelmingly informative for SAWB-ECA-SS

q(θ) estimation as it was for SCON in Chapter 4. CO2 knockout resulted in reduced posterior

constraint in seven of the nine SCON-C non-diffusion θ3 (Figure 4.11). In comparison, CO2 knock-

out widened and lessened uncertainty in six of the 12 SAWB-ECA-SS non-diffusion θ posteriors

(Figure 5.7).

2We emphasize “randomly” here because we could see a case where regular, systemic bias in data collection
such as consistent overmeasurement has a different effect favoring solver accuracy.

3We set discussion of the diffusion θ aside for now, as the flow VI approach was limited to persistent overes-
timation of diffusion θ due to neural network approximation error in its Xie et al. (2022) implementation.
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The diminished influence of CO2 measurements for calibrating SAWB-ECA-SS θ seems reasonable

given the number of θ involved in each system’s CO2 computation, six for SCON-C by equation

(4.9) and three for SAWB-ECA-SS by equation (5.5). Certainly, CO2 information still helped

more than it harmed, with 11 of the 16 SAWB-ECA-SS θ posteriors4 showing reduced distance of

peaks to true θ or tighter density consolidation about the truth for better identifiability with CO2

inclusion. Needless to say, we still recommend the inclusion of CO2 observations in y in the data

assimilation of any SBM for whom a CO2 respiration equation has been defined. Nonetheless,

it was surprising to observe that four of the 16 total “no CO2” θ posteriors corresponding to

KDE, rM , rL, and sDOC became arguably better identified. We attribute this to the interaction

between model equifinality and black-box randomness in PyTorch’s intricate Autograd automatic

differentiation engine (Paszke et al., 2019) that manages gradient computations.

5.4.5 Conclusions and future work

Through visualizations of ELBO trajectories (Figure 5.1), state fits (Figure 5.2), and approximate

posterior estimates (Figures 5.5, 5.6, and 5.7), results of this cursory study tentatively suggest

applicability of the CTVI algorithm as a viable technique for assimilating SBMs with soil pool and

CO2 efflux observations and estimating compatible SBM parameter values. The method shows

promise as a potential inference method option to be integrated into SBM testbed frameworks

(Wieder et al., 2018) that aim to validate, compare, and subsequently select models for further

refinement and development.

In light of the existence of methods that approximate SDEs into probabilitistic discrete state

space models to support vectorized latent trajectory sampling (Ryder et al., 2021; Sujono et

al., 2022), we harbor some reservations about the ability of the CTVI method relating to scale

to higher simulation time spans associated with long-term empirical soil warming experiments

(Melillo et al., 2017; Wood et al., 2019) due to the computational expense of sequential SDE
4We list the 11 here as uQ, ref, Q, aMSA, KUE, VDE, ref, VUE, ref, EaVDE , EaVUE , rE , sMBC , and sEEC .
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solvers. However, we note that the incorporation of mini-batching into CTVI helped address our

concerns. For a not insubstantial time span totaling T = 2000 hours, mini-batching respectively

facilitated encouraging wall-clock run times of about 1 and 3 hours for the dt = 0.05 and dt = 0.2

SAWB-ECA-SS inferences. The absence of a clear qualitative advantage in estimation accuracy

for the dt = 0.05 run over its dt = 0.2 counterpart (Figures 5.1 and 5.6) promotes the setting

of higher solver time steps as a supplemental means of maximizing CTVI efficiency.

We note in favor of the CTVI algorithm that the dt = 0.05 and dt = 0.2 inferences actually

required much shorter durations than the Chapter 4 SCON flow VI inferences, which tended

operate on the scale of days with a comparable amount of training iterations5. And in addition

to run times, two more points in favor of CTVI over flow VI in our experience are:

• that CTVI could navigate a nonlinear SBM (when flow VI could not) and

• that it was not guaranteed to overestimate diffusion θ due to accumulating approximation

error, as highlighted by a juxtaposition between Figures 4.9 and 5.6.

CTVI ought to be clearly preferenced over neural moving average flow VI (or at least the Chapter

4 flow VI implementation) if accurate estimation of diffusion θ is a research priority.

This results of this study evokes and connects to a number of other lines of inquiry, exploration,

and testing. We will subsequently mention a few those.

First, we stress that CTVI needs to be tested through inference conditioning on much noisier data

to have a better shot at teasing out potential effects of algorithm settings such as solver step

size. Use of noisier data may also induce more blatant and informative separation between CTVI-

estimated results and those estimated via the deterministic inference frameworks traditionally

used in biogeochemistry.
5Albeit, those flow VI inferences had to contend with a simulation time span of T = 5000.
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While we can sample synthetic data sets simulated with more diffusion and observation noise, the

Holy Grail objective is to be able to assess and juxtapose inference algorithms with a regularly

observed, multivariate data set that is dense enough in observations to sustain partitioning into

model training and testing portions. Ideally, this data could be sourced from a single experiment,

as mixing data from separate experiments, even if located nearby, could obfuscate and garble

empirical data-generating processes and distort inference results away from truth. Also, soil

measurements in this data set could ideally be associated with pool states of various SBMs with

few necessary transformations.

Attainment of such a Holy Grail of a data product obviously remains a distant work in progress

and would require a hefty and extended ask of temporal, financial, and personnel resources to

satisfy data collection, cleaning, and storage best practices. The cost and effort of systematic

soil data collection sources data scarcity issues in the field of biogeochemistry (Moulatlet et al.,

2017; Zuquim et al., 2019). Soil experiments running at sites like Harvard Forest (Melillo et al.,

2017) and the Luquillo Experimental Forest (Wood et al., 2019) are being designed and adjusted

as their funding and workforce allows to incremently address the demand for inference-ready data

products. This progress is propitious, as the construction of standard benchmarking data sets

and their integration into modular SBM testbeds enables rigorous and methodical A/B testing

of inference algorithms including CTVI to inform the toolbox of the biogeochemical modeler.

Next, we promote the trialing of CTVI to assimilate naive stochastic parameterizations of more

elaborate, higher state-dimensioned nonlinear SBMs such as CORPSE (Sulman et al., 2014) and

MIMICS (Wieder, Grandy, Kallenbach, and Bonan, 2014; Wieder, Grandy, Kallenbach, Taylor,

et al., 2015) starting with synthetic data to be able to identify discrepancies between algorithm re-

sults and latent data-generating processes with certainty. It could also be interesting to use CTVI,

along with other inference algorithms, to explore less naive, mechanistic stochastic conversions of

lower state-dimensioned nonlinear SBMs like AWB and the microbial enzyme-mediated decom-

position (MEND) system (G. Wang et al., 2013) that represent the underlying stoichiometry of
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the chemical reaction networks assumed by the models (Golightly and Wilkinson, 2011).

Finally, we encourage the continued development and standardization of goodness-of-fit metrics

for VI approximations that build on the work of Dhaka et al. (2020), Giordano et al. (2018),

and Yao et al. (2018). From this foundation, we see the emergence of diagnostics based on

Pareto-smoothed importance sampling (Vehtari et al., 2017) that can equitably contrast and

quantify goodness-of-fit and posterior approximation error of data assimilation results achieved

using MCMC and VI.
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Figure 5.5: SAWB-ECA-SS data-generating densities (blue) juxtaposed against mean-field SAWB-
ECA-SS approximate posterior q(θ) densities estimated by the CTVI method (orange) and mean-
field AWB-ECA p(θ|y) densities estimated by NUTS (green). SAWB-ECA-SS marginal approxi-
mate posteriors corresponding to the state-scaling diffusion θ have been omitted from this figure
due to a lack of deterministic AWB-ECA counterparts.
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Figure 5.6: SAWB-ECA-SS data-generating densities (blue) juxtaposed against mean-field SAWB-
ECA-SS approximate posterior q(θ) densities estimated using the CTVI algorithm with Euler-
Maruyama SDE solver step sizes of dt = 0.05 (orange) and dt = 0.2 (violet).
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Figure 5.7: SAWB-ECA-SS data-generating densities (blue) juxtaposed against mean-field SAWB-
ECA-SS approximate posterior q(θ) densities optimized using the CTVI algorithm with (orange)
and without (olive) CO2 information.
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