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ABSTRACT 

The calculation of the electron velocity distribution in a slightly 

io.nized gas with (wb T)
2» 1 is discussed, including a detailed treatment of 

inelastic processes. The derived equations apply whenever the gas density - -ng, the gas -flow velocity, E, and B are spacially uniform and constant in - -time, the component of E parallel to B is negligible, and E is much less than 

B (in Gaussian units). The equations are suitable for numerical computation 

of the electron energy distribution and drift velocity in the reference frame 
_.. -in which E is negligible and the gas flow is perpendicular to B so that the elec-

tron velocity distribution is nearly isotropic. When the rms molecular speed 

in this frame is much smaller than the rms electron speed, the equations can 

be greatly simplified; although the results are not new, this derivation clari­

fies their physical interpretation and limitations. 

With simplified equations, the electron-energy distribution, drift 

velocity, ionization rate, and diffusion tensor in cold stationary Hz gas are 
6 7 

calculated for cE/B between 4 X 10 and 6 X 10 em/ sec. Whereas the electron-

energy distribution depends only on cE/B, the other quantities also have 

simple dependences upon ng and wb. In view of the large uncertainty in impor­

tant collision cross sections, the agreement with recent experimental results 

is reasonably good. 
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IN HYDROGEN WITH CROSSED ELECTRIC AND STRONG ,, 
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Gary A. Pearson and Wulf B. Kunkel 

Lawrence Radiation Laboratory 
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I. INTR00UC1.UQN 

If a sufficiently small density·of free electrons is introduced into 

a cold gas, the motion of the electrons is controlled by the external fields and 

by collisions with the gas molecules. The electron distribution function can 

then be determined by solving the -Boltzmann equation. The "usual" method of 

solution consists of expanding the distribution function in spherical harmonics 

in velocity space and evaluating the collision terms in the reference frame in 

which the gas is at rest, which we call the gas frame. The method is useful 

when the drift speed of the electrons relative to the gas is small in comparison 

with the rms electron speed. An important parameter is the ratio• of the elec- · 

tron- cyclotron frequency wb to the electron- collision frequency 1/T. [In H 2 gas, 

wb T ~ 3 B(kG)/ p(mm Hg). J 
When wb T << 1, the effects of the magnetic field can be ignored or 

treated as a small perturbation. This ca.se has been extensively studied, both 

experimentally and theoretically. The usual method of solution is adequate 
II 1i • . 1 until the phenomenon of so-called runaway electrons becomes Important. 

When wb T » 1, the problem is complicated unless the electric field - ' -E and the magnetic field B are mutually perpendicular, spacially uniform, and 

constant in time withE<< B (in Gaussian units). Under these conditions the 

electron motion in the applied fields is simple and only the effects of relatively 

infrequent collisions need to be evaluated. In this case--which is discussed in 

this paper- -we can consider any nonrelati vis tic electron drift speed in the gas 

frame since the problem of runaway electrons cannot appear. The usual method 

of solution is not adequate when the drift speed is high. 

We find it useful to consider the distribution function in a reference 

-+ - ..... / 2 frame moving with velocity vd = cEXB B relative to the gas frame, which we 

call the drift frame and in which the electric field vanishes. In the drift frame, 
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a free electron follows a helical trajectory in which its speed and energy are 

constant, while in the gas frame, its speed, kinetic energy,- and potential 

energy oscillate in time. 

The effects of elastic collisions- -which are often the most prob­

able- -are most easily discus sed in the drift frame, where there is no electric 

field but there is a wind of gas molecules with relatively high kinetic energy. 

The collisions produce diffusion of the electrons perpendicular to the magnetic 

field and reduce the diffusion along the magnetic field. Intuitively, it seems 

that elastic collisions tend to heat the electrons until their mean energy is 

near that of the gas molecules and tend to spread the electron-energy distri­

bution until it resembles a Maxwellian distribution. Notice that in the drift 

£ram~ the electrons gain energy from the molecules, while in the gas frcime 

they gain epergy by moving through the electric field. 

We use the term inelastic collisions to include all but elastic, 

electron attachment, and ionizing collisions. Inelastic processes have effects 

similar to those of elastic collisions, but their most important effect is to in­

crease or decrease the energy of the electrons involved. 

Ionization and electron attachment processes also have similar 

effects, but their primary effect is to alter the number of free electrons. 

The usual method of solution is outlined in Sec. II. We then develop 

a method of solution in the drift frame that is useful whenever all speeds in­

volved are nonrelativistic. Although the resulting equations are relatively 

complicated, only simple physical concepts- -like those discus sed above- .:.are 

used. 

The results of numerical computations of the electron-energy 

di sfribution, drift speed, diffusion tensor', and ionization rate- in hydrogen gas 
6 . 7 

with v d between 4 X l 0 em/ sec and 6 X 10 em/ sec are given in Sec. III. 
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11. METHODS OF SOLUTION OF THE BOLTZMANN EQUATION 

On the basis of the discussion in the introduction we make the 

following explicit assumptions: 

(a) The electric and magnetic fields are mutually perpendicular, 

spacially uniform, and constant in time. 

(b) The distribution function of the ga·s moleculesis.spaeially uni­

form arid constant in time. 

(c) The magnetic field and ng, the number of gas molecules per 

unit volume, are such that wb T >> l. 

(d) The gas density ng is so much greater than the electron and 

ion densities that only collisions of electrons with such molecules are impor­

tant. 

(e) All speeds involved are nonrelativistic. 
.... -+ 

Because of (d) and (e), the electron-distribution function F(r, v, t) 

satisfies the Boltzmann equation 

aF -+ -· + \7' vF + Y'v· 
at [- m~ (E + '£c X B)F] - ( ° F) - 0 at call -

(II -1) 

where only collisions with neutral molecules rinist be included. When ioniza­

tion of the gas molecules by electron impact is not the only important process 

producing free electrons, additional source terms must be included in Eq. (Il-l). 

We do not discuss such terms here. 

Because of (a) and (b), we can avoid considering the spacial de-
-+ .... -+ 

pendence either by assuming that F(r, v, t) is independent of r or by integrat-
-+ -+ 

ing Eq. (II-1) over a volume on whose surface F(r, v, t) vanishes. The latter 

interpretation permits the treatment of electron avalanches. 
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'A.. The "Usual" M h d E . . S et o ; xpanswn 1n pherical Harmonics 

in the Gas Frame 

-Equation (Il-l) is often solved by expanding F(v, t) m spherical 

harmonics in velocity space. 
2

• 
3 

It is usua~ly assumed that the expansion 

converges rapidly, so that only the first two terms are needed. The expansion 

then takes the form 

-F(;, t) = F
0

(v, t) + ~ · E\ (v, t). (II- 2) 

Substituting Eq. (II- 2) into Eq. (Il-l) and equating the coefficients of each 

spherical harmonic to zero, we obtain the two coupled equations 

and 

e ------
Bt 3mv2 

e 
m 

Bv 

e 
me 

-- :o 

(II- 3) 

(II- 4) 

It is found that the spherical harmonic expansion converges well when the 

electron speed vis high compared with the electron drift speed in the refer­

ence .frame being used. The collision terms in Eq. (II-3) and.Eq. (II-4) ar.e 

simplest when the gas rest frame is used. Often when elastic collisions are 

much more probable than any other, the rms electron speed is much higher 

than the electron drift speed in the gas frame, so the spherical harmonic .ex­

pansion converges well in the gas frame for all but a negligible fraction of the 

electrons. 

Allis
2 

and Holstein
3 

have derived the collision terms in Eqs. (II-3) 

and (II-4) in the gas frame by assuming that elastic collisions are much more 

probable than any other. They find 

vel F 
m 1' 

where vel is the elastic momentum-transfer collision frequency as defined 
m 

in Appendix A. If we choose E = E ay and B = B az, so V"d = (cE/B)ax, (II-4). 

becomes 

':e' 
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(II- 5) 

oF1 E oF0 y e el ------wF +v F =0 
ot m ov b lx m ly 

(II- 6) 

(II- 7) 

Notice that Eq. (II-7) simply implies that Flz damps to zero because of colli­

~ions. 

It is clear that near equilibrium, the time -derivative terms in 

Eqs. (II-5) and (II-6) can be neglected. Solving for Flx and Fly' we find 

and 
el v (v) 
m 

el 2 -1 
r ( ] where y(v) = ll + cy~v)) 

Using these results, we can write Eq. (II-3) as 

a.F0 (v, t) _ (' oF0 ) -2::-, 
ot · ot · J J 

(II- 8) 

(II-9) 

(II-10) 

where, using the collision terms derived by Allis and Holstein, we have 

(
a F 0 ) = 
ot el 

a. [ 2 el aFO(v, t)J -a v v (v)'y(v) ---=-a--v m v 

m a ~ 3 el . j-+ --
2 

- v vm (v:)F
0

(v, t) 
Mv av-

(II-11) 
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for elastic collisions; 

2 1/2 

( 
oF o ) . I 2 1 I 2l ( v + a . ) 
- = vJ f(v +a.) ' J 

. ot j L J J v 
(II- 12) 

for inelastic processes; and 

(II-13) 

for ionization collisions. In these formulas vJ(v) is the collision freq~ency 

for process j, n. is the number of electrons leaving each collision, and 
0 J 

PJ{v; vr) is their distribution of speed v for specified incident speed v 1
• It is 

clear from Eq. (II -13) that for electron attachment we have · 

(II-14) 

The physical interpretation of Eqs. (II-12), (II-13), and (II-14) is 

clear. However, Eq. (II-11) has some interesting features. The first term, 

which arises from the second term in Eq. (II-3), can be written as 

where 

1. e., as a diffusion in velocity space. It is interesting to note that in the 

large wb 'T limit where 'Y(v) can be replaced by unity, the diffusion coefficient 

D(v) has the same form as that found in elementary kinetic theory with the 

mean free path merely replaced by vd. This result can be qualitatively under­

stood on the basis of a random-walk description of diffusion. Although the 

above derivation of this term is valid only near the steady state solution, we 

show in Appendix D that for large wb 'T no such restriction is necessary. 

The second term of Eq. (II -11) accounts for the effects of molec­

ular recoil. The third term accounts for the temperature T of the gas; notice 

that it has the same form as the first term. It is also interesting to note that 

(oF 0/ot)el from Eq. (II-ll)_vanishes when.---·-----

(II-15) 
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When v d :: 0, this reduces to the expected result 

In the large wb T limit, Eq. (II-15) becomes 

3 mv2 Mvd 3 
r ( l~ 2 )] exp l- 2 -2- 2 + 2 k T 

Thus, in this limit, elastic collisions always tend to heat the electrons until 

their mean energy is Mv d 
2/2 + 3kT /2- -the mean energy of the gas molecules 

in the drift frame-kand to spread their energy distribution until it is a Maxwellian 

distribution. This result is completely independent of the differential cross 

section for elastic scattering~ 

Once F
0

(v, t) is known from solving Eq. (II-10), most quantities of 

interest can be calculated. 

The drift velocity of the electrons in the gas frame is given by 

--+ 1}3 -+- -+ vD(t) = n d vF(v, t)v with n = d vF(v, t) . f 3 -+ 

By introducing Eq. (II-2) we find 

4TI J 3-+ vD(t) =- v F
1 

(v, t)dv 
3n 

with 

We now introduce Eqs. (II-8) and (II-9) and integrate by parts to get 

4TIV J [ 3 ] vD = __ d FO(v, t) (J v -y(v) dy , 
x 3n ov 

(II- 16) 

and 

r r 3 el J 
-4TivdJ oLv -y(v)vm(v) 

vD = F
0

(v, t) dv 
y 3nwb av (II-17) 

In the large wbT limit Eq. (II-16) becomes vDx = vd. 

vDy = -v d(v~/wb) in the large wbT limit. 

If ve1(v) 1s a constant, m 
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A consideration of spacial gradients also leads to the diffusion 
2 

tensor 

where 

! DT Dl 0 \ 
\ --+ 

\:~ 
D= DT 0 

0 
D\\ 

I 
1 ' ' ' 

4TIJv~(v) 4 
DT = -

2 
y(v)v F

0
(v)dv , 

3n w 
b 

4TT ( 1 4 
Dj_ = -

3 
j ;::;- )'(v)v F0 (v)dv , 

. n b . 

47TJ l 4 Dll = -
3 1 · y(v)v .F0 (v)dv 

. n ve (v)· . m , , 

which are also simplified in the large wb T limit. 

B. The Method of Solving in the Drift Frame 

1. Motivation for the Approach 

We know that in the large wb T limit the drift velocity in the gas 
' _.. 

frame is approx1mately v d' It is clear that, as v d is· increased, inelastic and 

ionizing collisions become more important and that they hold the mean energy 

of the electrons down. Thus, at high v d' a large fraction of the' electrons in 

the distribution will not satisfy the conditions that make the 11 usual 11 method 

appropriate. However, if we instead expand the electron-velocity distribution 

in spherical harmonics in the drift frame, where the apparent drift speed is 

small, the expansion should converge rapidly for most of the electrons in the 

distribution. This reasoning can be clarified by the following extreme example. 

Suppose there are no collisions and that all the electrons are at rest in the 

drift frame. Then the spherical harrnonic expansion in the drift frame requires 

only one term while that in the gas harne-converges very slowly. Notice that 

there is no time independent distribution whose expansion converges well in 

the gas frame but not in tli'e drift frame. When the Boltzmann equation is 
..... 

applied in the drift frame, E = 0 so that Eq. (II-3) becomes 

.. 
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of(e, t) =L:(of) 
at . at 

J . 
J 

(II~ 19) 

where f{e, t) is the distribution of electron energy e as measured in the drift 

frame. With the assumption that wb 7 »1 the collision term in Eq. (II-3) has 

been written as a sum over the various collision processes j between the elec­

trons and the gas molecules. 

Notice that Eq. (II-19) is general and need not be based on an 

expansion in spherical harmonics. In other words, because in the drift frame 

the energy of each electron remains constant between collisions, the only con­

tribution to of{e, t)/ot comes from the collisions themselves. The problem is 

thus reduced to evaluating the collision terms. in the presence of the gas ''windn 

of speed v d' The form of these terms becomes rather complicated, but this 

method is useful because the velocity distribution at large wb 7 is expected to 

be nearly isotropic in the drift frame for any nonrelativistic value of v d' 

2. The Collision Terms 

We will evaluate the collision terms with the assumption that the 

molecules are at rest in the gas frame. Throughout this discussion the symbol 

v will denote the electron speed in the gas frame and e = m v2 
/2 will be the 

electron energy in the drift frame. 

The collision terms for each collision process j can be written in 

the form 

(:!)o J c)(<;<')£(<', t)d<'- Nj(<)f(<,t) 

J 

(II-2 0) 

which has the interpretation that electrons are removed from the energy dis­

tribution at a rate proportional to the mean-collision-frequency function Nj{e) 

and are inserted into the energy distribution by the first term in a manner 

determined by the energy-scatter function Gj{e;.e '). 

The mean-collision-frequency function Nj(e) is defined as the mean 

collision frequency for process j by electrons of energy e, and it is given by 

(II- 21) 
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where P(v; E) is the probability distribution 6£ the speed v of the electrons with 

energy E, and vJ(v) is the collision frequency for process j. (For the notation 

and nomenclature on cross sections and collision frequencies see Appendix A; 

for that on probability distributions see the first page of Appendix B. 

The energy-scatter function Gj(e; E 1 ) is defined such that. 

GJ(E; E1 )f(E 1
, t) is the rate at which electrons are inserted into the energy dis­

tribution atE by collisions of process j in which the incident electrons have 

energy E1
• If n. electrons leave each collision of process j, the general prpp-

. J 
erties of GJ(E; E1

) are 

and Gj ( E; E 1 ) ::::_ 0. The exact nature of this function depends upon the type of. 

collisions process involved. 

For electron attachment processes, we haven. = 0, so GJ(E; E1
) = 0. 

J· 
For elastic and inelastic processes, we haven. ,; l, so the edects 

J . . . . . 
of collisions are completely determined by a differential eros s section a~(e; v) 

and by the discrete energy transfer E. = (m/Z)u. associated with the change in 
J J 

the internal state of the molecule (which is zero for elastic collisions). We 

here assume that the differential eros s section is independent of the azimuthal 

angle of scattering, since although the strong fields could introduce a slight 

asymmetry, the quantitative effect is not known and should be very smalL A 

little thought shows that we may write 

(II-22) 

where PJ(e; v', 8, E ') is the probability distribution of the final energy of the 

electrons with incident speed v' that are deflected by an angle e, P(v'; E ') is ),· 

the probabi!it_y distr)bution_of_the_incident_speed_v~,_and.[znng sine V 1 ~(e; V
1)l 

is the rate. at which electrons of incident speed v' are deflected by 8. The s.. 

function Pj(e;v', e, E1
) depends only on the collision kinematics and is given to 

lowest order in m/M by Eq. (B -14) of the Appendix B. If the scattering is 

isotropic, the angular integration in Eq. (II-22) is trivial and yields 



.. 
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(II-23} 

2 2 2/ . 2 
where coslf! = (v' + vd - V' ) 2vdV', E1 = mV' /2, andthe limits are given 

in Appendix B. The result is particularly simple if molecular recoil is neg­

lected by assuming m/M = 0; in this case the limits are given by the "triangle" 

inequalities \V'- vdj ~ v' ~ V' + vd and jv- vd\ ::_ (:'
2

- aj)
1
/

2
::. V + vd, where 

E = mV
2
/2. For elastic and inelastic processes, GJ(E; E1

) is nonzero only within 

a finite range of E about E 1 
- E .. 

J 
For ionization processes where n .:::_ 2, the effects of collisions are 

characterized by n., the discrete energy transfer E., the cross section ~(v}, 
J 0 J 

and the distribution of angle and speed IJ(e, v; v') of the resulting electrons as 

discussed in Appendix A. As above, one can write 

(II-24} 

where P(E; v', v, e, E) is the probability distribution of the energy E of the 

electrons ejected at speed v and angle e from collisions in which the incident 

electron speed is v'; it is given by Eq. (B-8} in Appendix B. If the scattering 

is isotropic, the angular integration of Eq. (II-24} yields 

(II-25) 

. Tl 

where Pj(v; v'} = 2rrl sine Ij(e, v; v'} de. For ionization processes Gj(E;E') 

is nonzero for E from zero up to about E1 -E .. 
J 
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3. The Assumed Form of P(v; e) 

The theory outlined above 1s complete except for a. specification 

of the function P{v; e), which depends only upon the angular distribution of 

the velocities in the drift frame of the electrons of energy e. In the large wb 'T 

limit, the most general angular distribution of interest is independent of the 
. -azimuthal angle about B and is an even function of cos s where s is the polar -angle measured from B. This is true because for large wb 'T the electrons -follow their trajectories through many revolutions about B between collisions 

and the infrequent collisions tend to produce a random distribution of phases. 

Such a distribution can be expanded in the even Legendre polynomials of cos s, 
and P(v; e) is then given by Eq. (B-5) in Appendix B. 

We expect the electron velocity distribution to be nearly isotropic 

in the drift frame. In fact, it is difficult to imagine a process by which the 

velocity distribution will become very anisotropic. Thus, the expansion in 

Legendre polynomials will converge quite rapidly. We assume that using 

P(v; e) = v/2vd V for 

where 
2 

e =mY /2 (II-26) 

which from Eq. (B- 5) is exact for an isotropic velocity distribution in .the drift 

frame, will give a good approximation to the correct physical results. As is 

illustrated below, this assumption is not always as stringent as assuming that 

the velocity distribution is isotropic in the drift frame. 

Any process-- such as ionization- -that produces electrons approxi­

mately at rest in the lab frame will enhance the angular distribution for ~ near 

rr(2 and e near mvd 2/2. To illustrate the quantitative effect we can evaluate 

GJ(e; e') explicitly for e 1 = mvd2/2 by neglecting molecular recoil in Eq. (II-23) 

and assuming either 0' el(v) or ve1(v) is equal to a constant. The results for 

an isotropic velocity distribution, a velocity distribution proportional to sin
2 g, 

and a velocity distribution containing only s = rr/2 are compared in Fig. l. We 

see that even in the latter case--the largest possible anisotropy--the assump­

tion of usingEq. (II-26) is reasonably good. 
.. 
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Fig. l. The elastic energy- scatter function for E
1 

:;; mv d 
2
/2 calculated 

assuming the electron-velocity distribution in the drift frame 
(l) is isotropic, 

2 
(2) is weighted by sin s, and 
(3) contains only s -= Tr/2. 
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C. Discussion of the Theory 

1. General Discussion 

Because it is based only on the assumption of using Eq. (II-26), 

the theory outlined in the previous section is useful at all nonrelativistic 

values of vd in the large wb T limit. (In Sec. II-A we showed that the "large 

wb T 11 limit is reached when {wb T) 
2 

» 1. ) In Section D of the Appendix we show 

that for electrons whose energies are large compared with mvd 
2
/2 and for 

which elastic collisions are much more probable than any other, the results 

of this method of solution agree with those of the "usual" method as presented 

in Sec. II-A. Whenever most of the electrons in the distribution satisfy these 

conditions, the "usual" method of solution should be used because of its sim-

plicity. 

Notice that w.e have not attempted to include the effect of a com­

ponent of E parallel to B. The criterion for validity of the theory being dis­

cussed is probably that [:E · 'BiwbT<< j:Ex'BI, in the gas frame. 

When vd is so large that the method outlined in Section li-B must 

be used, the angular dependences of the scattering processes, which are needed 

in evaluating Eqs. (II-22) and {II-24), will often be unknown. In this case it is 

useful to assume the scattering is isotropic and to use Eqs. (II-23) and (II-25), 

but we must determine the proper collision frequencies to use .. 

In ionization processes it is clear that the collision frequency 

should be used in Eq. {II-25), since this will give the correct rate of produc­

tion of free electrons. 

From Eq. (C-2) in Appendix C the rate of energy gain per elec­

tron of energy e by elastic or inelastic process j is 

{II-27) 

where the subscript m denotes momentum transfer and where IJ (e) is a .. 
m 

factor of order unity. For elastic collisions, this result shows that the elastic 

momentum-transfer collision frequency should be used in evaluating GJ(e; e') ~ 

from Eq. {II-23) and NJ(e) from Eq. (II-21). For an inelastic process where 

~ej I »mvd 
2
/2 the corresponding collision frequency should be used, and if 

lej I<< mvd 2/2 the corresponding momentum-transfer collision frequency should 

be used. When I eji :::::: mvd 
2
/2 and the collision frequency differs considerably 
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from the momentum-transfer collision frequency, the choice is not so easy. 

Often when'JEj) :::: mvd
2
/2 or IEjl << mvd

2
' the collision process can be ignored 

m comparison with elastic collisions. 

We notice also from Eq. (II-27) that whenever the "usual" approach 

cannot be used, the term involving e/(Mvd 2/2) can be ignored. This implies 

that the effects of molecular recoil can be neglected in Eq. (II-23) by setting 

m/M = 0; the result is very much simpler than the general equation (II-22). 

Consideration of differential cross sections for elastic scattering 

with various angular dependences shows that the use of the elastic momentum­

transfer collision frequency in Eqs. (II-21} and (II-23) gives approximately the 

correct rate of energy "spreading" by elastic collisions. Since in the lab frame -this energy spreading corresponds to diffusion along E, this conclusion is also 

suggested by the fact that in the usual method the diffusion tensor depends only 

upon the elastic momentum-transfer collision frequency. 

2. The Most Useful Solution 

Our basic equation (II- 5) can be written symbolically as 

of(e, t) p ( ' )f( i )d i n XE e;vd e,t E at = g ' (II-28) 

where, for a particular gas, X (e, e'; vd) is a kernel that depends only on vd. We 

know physically that any initial electron-energy distribution will evolve until 

it can be written as 

f(e, t) = Cef3tfQ(e) (II-29) 

where JD(E) is normalized as}o(e)de = 1, and where f3 and C are constants. Sub­

stitution above yields the eigenvalue equation 

(II-30) 

which determines the eigenvalue f3/ng and the energy distribution fQ{e), both of 

which clearly depend only upon vd. The eigenfunction fQ(e) of interest is every­

where nonnegative. Once it is known, most quantities of interest can be cal­

culated. 

The constant f3 gives the rate of production of free electrons. The 

quantity that is usually measured experimentally is the Townsend coefficient a, 

which in the absence of electron attachment is defined as a = f3/vE, ·where vE 
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-+ 
is the drift speed of the electrons in the direction of -E in the gas frame.. This 

drift speed is 

vE =j0 (e)vE(e)de (II-31) 

where vE(e) is obtained for large WbT by summing Eq. (C-4) over all processes 

j, and where vE(e) depends upon the collision frequencies for ioniz'ation and 

attachment processes and upon the total momentum-transfer collision frequency. 

for large wb T the order of magnitude of vE is vd/ (wb T), and vEB/ ng depends 

only on vd, so we see thata./B depends only upon vd. (For small WbT it is well 

known that the electron energy distribution and a./ng depend only on E/ng.) 

3. Extended Applications 

From the method of solutio'n we have developed; it is clear that 

op.ly the speed of the gas molecules in'the drift frame is important in deter­

mining the electron energy distribution. Because of this, we can also use our 

equations when the gas molecules have a distribution of velocities in the gas 

£:tame. If the distribution of molecular speed U in the drift frame is H(U), 

wherefo
00 

H{U)dU = l, then our basic equation (II-28) is simply generalized to 

Bf(~t t) = ng _f;(<', t)d<'l~ X(<, <'; U)H(U)dU . (II-32) 

For example, if the molecular velocity distribution is isotropic in the gas 

frame, where the distribution of molecular speeds is h(u) w~th 1. O.oo h(u)du = l, 

we have 

H(U) ~JP(U; u)h(u)du = 2~d ~U~::; h~) du (II-33) 

as follows from changing the notation in Eq. (II-26). Notice that these formulas 

can. also be used when vd = 0; in this case the presence of the magnetic field is 

not important. 

At least to a good approximation, the drift speed in the drift frame 

is given by Eq. (II -31), even when the gas has a finite uutemperature. 1u 

When E >> mvd 2 , so that the simplified form of X (e, E
1

; v d) as derived 

in Appendix D can be used, the entire dependence of X (E, E '; vd) upon vd appears 

r 
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in the factor vd 2 in Eq. (D-6) for elastic collisions. In this case the integral 

over U in Eq. (II-32) simply replaces vd 2 in Eq. (D-6) by the mean square 

speed of the molecules in the drift frame. From Eq. (II-33} this is vd 2 + (u2), 

which slightly generalizes the result of the "usual" method as given in Eq. 

(II-11). 

Since, if the gas is to remain 'Rslightly" ionized, (M/2) (u2) must 

be small in comparison with the ionization energy of the gas, there actually 

is no case of physical interest where the simplified form of X (e, E1 ; vd} cannot 

be used and where (u2) cannot be neglected . 
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III. NUMERICAL COMPUTATION OF THE IONIZATION RATE 
IN HYDROGEN GAS 

' At the time these computations were dc:m'e, the detailed theory as 

presented in Part II was not complete. The computational procedure, which 

was designed only to give an estimate of the ionization rate, will appear crude 

in comparison with this theory. However, as will become evident, the cross 

sections are so poorly known that a more detailed numerical computation would 

be unwarranted at the present time anyway. While the theory is useful at all 

nonrelativistic values of vd' we use simplified forms for the collision terms 

that are only valid for vd below 6 X l 0 
7 

em/ sec or, equivalently, for mvd 2/2 

below l eV. 

As discussed in the introduction, each collision process has one 

or two primary effects and several secondary effects upon the electron energy 

distribution. We will treat only the primary effects, which are as follows: 

elastic collisions cause heating of the electrons: a:nd spreading of the electron­

energy distribution, inelastic collisions remove energy from the electrons, 

and ionization removes energy from the electrons and increases the total 

number of free electrons. In hydrogen, electron attachment can be neglected. 

Among the inelastic collision processes we will include electronic excitation, 

vibrational excitation, and dissociation processes, but we will consider values 

of vd large enough so that the effects of rotational excitation are unimportant 

(see Sec. III-A). Notice that the 11 spreading" effect of elastic collisions is 

very important in filling out the "tail" of the energy distribution and thus in 

determining the ionization rate. 

A. The Collision Terms Used 

We will now discuss the cross sections and the approximations 

used 1n evaluating the collision terms of our basic equation 

af(E, t) 

at -I(~) . at . 
J J 

l. For Inelastic Collisions 

(III -1) 

The collision frequencies vJ(e) and energy transfers E. given in 
J 

Fig. 2 are used in the formula 

( af) " - = VJ ( E + E • ) f ( E + E . , ,at. J J 
J 

(III- 2) 

r 
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Fig. 2. Collision frequencies vJ and energy transfers E. used in the 
numerical computations. J 



-20- UCRL-10366 

This corresponds to the first term of an expansion in powers of vd as given 

by Eq. (D-5) in Appendix D, and it has a clear physical interpretation. This 

approximation is good when e » (m/2)vd 2 , so for 1/2 mv d 2 below 1 eV, it is 

good for most of the electrons, particularly those that contribute to ionization. 

The collision frequencies for rotational excitation shown in Fig. 2 

correspond to the cross sections determined from swarm data by Frost and 
4 

Phelps. The collision frequencies and energy transfers are so small that 

the effects of rotational excitation can be neglected for values of vd above 

3 X 1 0 
6 

em/sec. 

Figure 2 shows the collision frequency for excitation of the first 

excited vibrational state of H 2 by electron impact, essentially as found by 

Frost and Phelps. 
4 

It is consistent with the experimental results of Rami en 5 

and Schultz, 
6 

but it disagrees with all theoretical computations, including that 

of Chen and Magee. 
7 

The experimental results by Schultz indicate that the 

excitation of higher vibrational states can be ignored. The vibrational excita­

tion of D 2 has not been investigated. 

The collision frequency for molecular dissociation shown in Fig. 2 

was determined from the theor~tical results of Edelstein. 
8 

We must recog­

nize 'that using this collision frequency with e. = l 0 eV cannot account for the 
. ' J 

effects of molecular dissociation exactly, since the energy loss in exciting 
3 + 

the 1 2: state can vary from about 8.8 eV to about 15 eV. An ene.rgy loss of 
fL 

about l 0 eV is the most probable, and Edelstein assumed that ej = l 0 eV in 

calculating the given cross section. This cross section exhibits the 19 anoma,­

lous11 threshold(behavior observed in some beam experiments, 9 and its mag­

nitude is consistent with swarm experiments by Poole, 9 and by Corrigan and 
10 

von Engel. 
11 

by Schultz 

The odd peaked behavior also agrees roughly with observations 

and by Kruithof and Ornstein.
12 

Although the excitation of higher 

triplet states also leads to dissociation, for our purpose we can consider this 

simply as electronic excitation. 

The cross sections for the excitation of various electronic states 

are almost completely unknown. For this reason, the effects of all but the 

1
3

2:+ state have been combined into the collision frequency shown in Fig. 2. 
fL 

The shape of this collision frequency was modelled after that of helium, and 

the magnitude was adjusted to agree roughly with the swarm data of Corrigan 

d E 1 l O 1 d b G . k" 13 
an von nge . The computationa procedure suggeste y ryz1ns 1, 

which has had considerable success in predicting other cross sections, gives 
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a collision frequency that is an order of magnitude larger than the one shown 

in Fig. 2. Because this collision frequency is so uncertain, a variable multi­

plicative factor is introduced. 

2. For Ionizing Collisions 

Only single -ionization collisions to the ground state of H
2
+ are 

included. The collision frequency vion(E) given by Figs. 2 and 3 is used with 

E. = 15.4 eV in the formula 
J 

(
of ) - -
ot. ion 

(III-3) 

where Pion (E; E1
) is the probability distribution of energy E of the electrons 

leaving ionizing collisions in which the incident electrons have energy E1
• This 

formula is the first term of an expansion in powers of vd as given by Eq. (D-7) 

in Appendix D; thus the discussion of the validity of Eq. (III-2) also applies to 

Eq. (III-3 ). 

The collision frequency for ionization shown in Figs. 2 and 3 is 

essentially that of Tate and Smith. 
14 

The distribution Pion(e; E 1 ) has not been studied in hydrogen. For 

a single-ionization process we know that Pion(E; e') is zero 

d h 1 .1 pion( ') pion( 1 ') an t at neg ecting reco1 , e; E = E - E. - E; E • 
J 

we assume that 

1 =-,-­
E -E. 

J 

for 0 < E < e 1 
E. 
J 

unl e S S 0 < E < E 1 
- E . 

J 
In using Eq. (III-3) 

i.e., that the distribution of E is uniform. Theoretical results of applying the 

Born approximation to helium and to atomic hydrogen indicate that this assump­

tion is quite reasonable fore' below about 40 to 50 eV. With this assumption 

Eq. (III-3) becomes 

ion 
v (e)f(e, t) (III-4) 

3. For Elastic Collisions 

Because the angular distribution of the scattered electrons is 

poorly known, we use 
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Fig. 3. Collision frequencies used in the numerical computations: 
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(III- 5) 

where 

Ge1(e; e') 1 fel (v') [1 -
4 2yr m 

mvd . 

~, ... 1.'. 

J
-1/2 +( mv_' )2 . . dv' 

Mv0 . 
(III-6) 

and 

(III.., 7) 

as was suggested in Section II-C. In Eq. (III-6), ei =:(m/ 2)V'
2

, and the limits 

are given by IV' - vd / ~ v 1 ~ V' + vd and by Eq. (B -18). 

The elastic momentum-transfer collision frequency used is given 

in Fig. 3. 
4 

Below 7 eV, the results of Frost and Phelps are used. At higher 

energies the cross section for elastic scattering was obtained by subtracting 

the inelastic and ionization eros s sections from the total cross section found 

by Normand.
15 

The values of the elastic momentum transfer cross section at 
16 

30, 50, and 100 eV we calculated using angular distributions measured by Webb, 

and the values at 10, 20, and 30 eV we calculated from the results in helium 
. ' 17 

at 20, 30, and 50 eV as suggested by Bullard and Massey. It is clear that 

the elastic momentum-transfer collision frequency shown is uncertain at high 

energies. This collision frequency was taken as zero above 143 eV as a con­

venient way of iimiting the range of energy over which the energy distribution 

must be calculated. 

To simplify the equations even further, the integration in Eq. (III-6) 

was done explicitly by assuming that, over each individual region of integra.-' 
/ 

tion, <J~ is effectively constant if e' < 3 eV, or v~ is effectively constant. lf 

~; 1 > 3 e V. The same procedure was used in explicitly evaluating Eq. (III-7 ). 

It is easy to verify that this gives about the correct rate of energy spreading, 

but, in retrospect, it turns out that this assumption does not give the correct 

rate of heating of the electrons. 
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For energies below about 11 eV, this procedure gives the rate of 

energy gain from elastic collisions to within about 15% of that given by Eq. 

(II-27). The error changes sign at several energies so the error introduced 

in the overall heating of the electrons by elastic collisions is much less than 

15%. 

For energies above 11 eV, this procedure gives a rate of energy 

gain from elastic collisions that is considerably higher than that given by 

Eq. (II-27), but for these energies the energy gain from elastic collisions is 

unimportant in comparison with the energy loss from inelastic collisions and 

ionization unless 1/2 mvd2 is large in the sense of Eq. (C-3). 
18 

If 1/2 mvd2 

is large, our treatment of inelastic collisions and ionization gives too large 

an energy loss since in Eq. (C-2) we have accounted only for the term involv­

ing e.. Thus we have two errors which tend to cancel. To investigate how 
J 

well they cancel, it is necessary to estimate the momentum-transfer collision 

frequencies for inelastic collisions and ionization. These estimates indicate 

that our procedure gives an overall rate of energy gain that is too high in 

comparison with that given by Eq .. (C-3). The largest fractional error occurs 

at about 25 e V and is of the order of i:nvd 2 /3e V, but the error introduced into 

the overall energy balance is much smaller. 

We conclude that while our treatment of the collision terms is 

somewhat crude, the errors introduced appear to be smaller than: the uncer..: 

tainty in the collision frequencies. While all of the collision frequencies are 

somewhat in doubt, the collision frequency for electronic excitation is most 

uncertain. 

B. The Computational Procedure 

We are interested in finding the electron-energy distribution f
0

(E) 

and the ionization rate f3as determined by the eigenvalue equation (II-30). 

Holstein
3 

has used physical arguments to show that the eigenfunction f
0

{E) of 

interest has the largest eigenvalue f3/ng. This suggests that the Rayleigh•Ritz 

procedure could be used, particularly to find the eigenvalue [3/ng, but·we will 

use a more physical approach. 

It is clear that Eq. (II-30) can also be solved by putting an electron­

energy distribution: into Eq. (II-28) and calculating its time evolution until it 

q.pproaches the form of Eq. (II-29). The resulting iteration procedure consists 

of calculating a change in f(E, t) from 
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(III -8) 

and adding this to f(e, t) to obtain f(e, t + 6t). The eigenfunction f
0

(e) is_ ob­

tained by normalizing f(e, t) after enough iterations have been made so that 

6f(e, t) and f(e, t) have the same dependence on e. All quantities of interest, 

including the eigenvalue {3/ng, can be calculated from f
0

(e). This iteration 

procedure wa.s used in the numerical computations. 

It is clear physically that if 6t is chosen small enough, the above 

procedure will converge to the correct eigenfunction. However, to minimize 

the number of iterations needed, 6t must be chosen as large as possible. It 

was sometimes found that if 6t was chosen larger than T, ·the collision time 

for an electron, the iteration method converged to the wrong eigenfunction. 

This problem could probably have been eliminated by restricting f(e, t) to be 

nonnegative. 

To estimate the time required for the energy distribution to ap­

proach the solution (II-29), we notice from Eq. (II-27) that the average energy 

gain per elastic collision is of the order of mvd2 . The time required is thus 
-; 2 -of the order of ( e mvd )T, where e is the final mean energy of the electrons. - . Because the electron drift speed along -E in the lab frame is of the order of 

vd/(wb T), this time corresponds to the electrons drifting along -E by a distance 

of the order of e/eE, as also follows from energy considerations alone. These 

estimates were verified by the numerical. computations. 

The procedure outlined above was used to compute f
0

(e) numeri­

cally for various values of vd in hydrogen gas. In evaluating the collision 

terms found in the previous section, only the integral in Eq. (III- 5) for elastic 

collisions was difficult. The region of.e' for wh_ich Ge
1

(e; e') exists for a given 

value of e was divided into ten equal intervals,. and the integral was evaluated . 

by using a straight-line approximation to Ge
1

(e; e 1 ) f (e', t) in each of .these inter­

vals. The energy distribution f
0

{e) was calculated at 204 values of E between 

0 and 17 0 e V; the spacing of these points varied from 0. 005 e V for e < 0.1 e V 

to 2.5 eV forE >70 eV. On an IBM 7090 computer, each iteration took less 

than 2 sec, and the number of iterations required for adequate convergence 

varied from 40 for the highest value of vd to 650 for the lowest. 
' : . 

Once f
0

(e) is known, the other quantities of interest are easily cal-

culated: The eigenvalue {3/ng is given by 
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(III- 9) 

The mean energy of the electrons in the drift frame 1s 

(III-10} 

and from __ Eq. (B-2), the mean kinetic energy of the electrons in the lab frame 

is e + '1/2 mvd 2 The components of the diffusion tensor are calculated from 

D = ~JJ___ ef
0

(e)de = 
..L. 3rri wb 

(III-11) 

·and 

which just correspond to Eq. (II-13) and are thus only valid when the 11usualur 

method of solving the Boltzmann equation is valid. 

To calculate the Townsend coefficient a we must evaluate vE from 

Eq. (11- 31 ). However, the momentum-transfer collision frequencies for the 

inelastic and ionization processes are not know~. For this reason Eq. (II- 31) 

was evaluated first by assuming that the momentum-transfer collision fre­

quencies equal the corresponding collision frequencies and then by assuming 

that only forward scattering occurs so that these momentum-transfer collision 

frequencies have their minimum possible values. 

C. Results and Comparison with Experiment 

Some of the computed results can be compared directly with recent 

. 1 lt. b B . 19 ' 20 
exper1menta re su s y ernste1n. 

The calculated values of ~/ng are shown by curve (l) of Fig. 4,­

and the calculated values of BvE/n vd are shown by curve ( 1) of Fig. 5 in com-
g . 

parison with the experimental results. The cross-hatched area of Fig. 5 
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Fig. 4. Calculated values of the ionization rate (3 in H
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collision frequency for electronic excitation shown in Fig. 2 
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Fig. 5. The electron drift speed v in the drift frame. The collision 
frequency for electronic excrration shown in Fig. 2 was 
multiplied by unity for curve ( l) and by 4. 7 for curve (2). 
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indicates the uncertainty introduced by our lack of knowledge of the momentum­

transfer collision frequencies for inelastic and ionization processes. The 

results in Fig. -5 depend mostly on the elastic momentum-transfer collision 

frequency, which we have noted is somewhat uncertain. 

The values of a/B calculated from curves ( 1) of Figs. 4 and 5 are 

shown by curve ( 1) of Fig. 6 in comparison with Bernstein's experimental . . 
results. The values agree within a factor of 2 to 6, which is not bad for an 

initial attempt. The experimental values- are considered to be more accurate 

than the calculated ones, because of the rather large uncertainties in the cross 

sections used. 

To obtain better agreement with the experimental v<l;lues of a/B, 

the collision frequency for electronic excitation was increased to 4. 7 times 

'that shown in Fig. 2. The results are shown by curves (2) in Figs. 4, 5, and 

6. We see that the calculated results are useful in extrapolating~the·.experi­

mental values of a/B to h'igher and lower values of vd and in extrapolating the 

experimental va~ues of vEB/vdng to higher vd. 

Some typical examples of the calculated energy distributions are 

shown in Figs. 7, 8, and 9 in comparison with Maxwellian distributions with 

the same mean energy. We see that the calculated distributions resemble the 

Maxwellian distributions fairly closely except far out in the "tail'' where the 

calculated distributions are much smaller than the Max-wellian distributions. 

The· calculated and experimental values of ngD II are compared in 

Fig. 10. Using this experimental data and that shown in Fig. 5 and using an 

analysis based on Maxwellian energy distributions, Bernstein
19 

deduced that 

the elastic momentum-transfer collision frequency is 10 to 20% higher than 

that shown in Fig. 3 for energies of 0.3 to 4.0 eV. Such an assumption would 

improve the agreement between the calculated and experimental results in 

Figs. 5 and 10. From the same analy:s'i:s, Bernstein deduced the mean energy 

of the electrons, which is compared with the calculated values in Fig. 11. 

From Eq. (III-11) we see that BD[ 1 is proportional to the mean 

energy as given in Fig. 11. The calculated values of B
2
DT/ng are ~hown in 

Fig. 12. 

The experimental results for D
2 

gas shown in Figs. 5, 10, and 11 

differ considerably from those for H
2

. As has been pointed out, the vibrational 

excitation of D
2 

by electron impact has not been investigated. To account for 

the magnitude of the difference in the experimental results for D
2 

and H
2

, one 
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Fig. 7. The electrgn-energy distribution in Hz calculated with 
vd::: 5.93Xl0 em/sec (so mvd2jz = 0.01 eV) and using the 
collision frequency for electronic excitation, shown in Fig. 2, 
multiplied by 4. 7. The Maxwellian distri"Jution shown has 
the same mean energy, which is indicated by the vertical 
dashed line. The inserted drawing (b) shows the "tail" of the 
distribution on a logarithmic scale. 
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Fig. 8. The electron-energy distribution in H
2 

calculated with 
vd = l.88Xl07 em/sec (so mvd2jz = 0.1 eV) and using the 
collision frequency for electronic excitation, shown in Fig. 2, 
multiplied by 4. 7. The Maxwellian distribution shown has the 
same mean energy, which is indicated by the vertical dashed 
line. The inserted drawing (b) shows the "tail" of the 
distribution on a logarithmic scale. 
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9. The electron-energy distribution in H
2 

calculated with 
vd = 5.14X 107 em/sec (so mvd2/z = 0.75 eV) and using the 
collision frequency for electronic excitation, shown in Fig. 2, 
multiplied by 4. 7. The Maxwellian distribution shown has the 
same mean energy, which is indicated by the vertical dashed 
line. The inserted drawing (b) shows the "tail'' of the 
distribution on a logarithmic scale. 
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Calculated for 
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Fig. 10. The coefficient of diffusion along the magnetic field. The 
collision frequency for electronic excitation as shown in Fig. 2 
was multiplied by unity for curve ( l) and by 4. 7 for curve {2). 
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Fig. 11. The mean energy of the e1ectrons in the gas frame. The 
collision frequency for. electronic excitationshown in Fig. 2 
was multiplied by unity for curve ( l) and by 4. 7 for curve (2). 
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Fig. 12. The coefficient for diffusion across the magnetic field. 
The collision frequency for electronic excitation shown in 

. Fig. 2 was multiplied by unity for curye ( 1) and by 4. 7 for 
curve (2). 
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must assume that the energy los's to vibrational excitation in D
2 

is only about 

1/4 of that in H
2

. Above about vd = 10 
7 = em/ sec, the results in H

2 
and D

2 
should be about the same. 

21 
Engelhardt and Phelps are currently doing numerical computa.-_ 

tions to find cross sections for electronic excitation and dissociation that will 

fit the swarm data. Using these results and those of Frost and Phelps, they 
' ' 

are also doing calculations to compare with Bernstein's experimental results. 

Their results should be more accurate than ours, mainly because of the cross 

sections used. 
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IV. CONCLUSION 

The equations we have derived are suitable for calculating the 

electron energy distribution in the drift frame, where the electron v~locity 

distribution is expected to be nearly isotropic. The other quantities of inter­

est can also be calculated. When the rms molecular speed in this frame is 

very small in comparison with that of the electrons, the complicated equations 

can be greatly simplified; the resulting equations agree with those of the 

"usual" method of solving the Boltzmann equation by expanding the electron­

velocity distribution in spherical harmonics in the rest frame of the gas. 

From this approach we have gained insight into the physics and 

mathematics of the problem, particularly in regard to elastic collisions. 

Specifically, we have shown that in the drift frame: 

( l) Elastic collisions always tend to make the electron-energy 

distribution a Maxwellian distribution with mean energy equal to that of the 

gas molecules, which we denote bye. 

(2) For electrons with energies far belowC, the average energy 

gain per elastic collision is of order 2mC/lvL 

(3) Under certain conditions the effect of elastic collisions upon 

the electron-velocity distribution has the mathematical form of a diffusion in 

velocity space. 

(4) The mean guiding-center shift per collision in the direction 

of -E in the gas frame is of the order of vd/wb. 

Although the numerical computations for H
2 

gas were somewhat 

crude, a more accurate analysis would have been unwarranted because of the 

large uncertainty in some important cross sections. In view of this, we con­

sider the agreement of the calculated results with recent experimental results 

to be reasonably good. 
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APPENDICES 

A. Cross Sections of Interest and Their Properties 

In this appendix we establish the nomenclature and notation for the 

various cross sections of interest in the scattering of electrons from neutral 

molecules and for the corresponding collision frequencies. We are primarily 

interested in the effects of such collisions upon the electron energy distribu­

tion. 

Consider a general collision in which an electron with velocity -;• 

collides with a molecule at rest and n. electrons leave the collision with veloc­
. -+ J 

itiesv., wherei= 1, 2, ... n .. 
1 J 

For each collision process j there is a dis-

crete energy transfer E. = (m/2)a. associated with the change in the internal 
J J 

state of the molecule. We assume that on the average the distribution of the 

electrons leaving the collision is symmetric about the direction of -;r, and we 

e -+, -+ I I define cos . = (v · v.) v v .. 
1 1 1 . 

In each such process the cross section O"J(v') and the collision 

frequency )(v') = ngv'aj(v 1
) have a clear meaning, except perhaps in elastic 

scattering where forward scattering is identical to no scattering. The rate 

of transfer of momentum from the electrons to the molecules is determined 

by 

VJ (v 1
) (Vi - ~V. COS 8. >· = V 1 v:/n (v 1

) 
\ 1 1 J 

(A-1) 

which serves to define the momentum-transfer collision frequency 

for process J, where O"~(v') is _called the momentum-transfer cross section 

for the process. Notice that O"~(v') is well defined even for elastic collisions 

since forward scattering does not contribute. 

To illustrate the importance of these cross sections, we consider 

the rate of energy transfer from the electrons by process j. By eliminating 

the final velocity of the molecule from the equations of conservation of energy 

and momentum, we find 

1 2 2 -+ -+ 1 2/ v = ~v. + a. + m( ~v. - v ) M 
1 J 1 

" 2 ,2 or by expanding the last term and substituting LJV. = v 
1 

a. because m/M is 
J 



small, we get 

,2 
v 
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(A-2) 

to within terms of higher order in m/M, Using this result th~ rate of energy 

transfer from the electrons by process j is determined by 

. 2 
+ vJ(v')~ 

M 

( 1 ,2) -mv 2 .. 

(A-3) 

and is thus determined completely by the collision frequency and the momentum­

transfer collision frequency for the process, except in ionizing collisions where 

the last term contributes. Notice that the last term. involves quantities which 

are not easily measurable. 

In an electron-attachment process, n. = 0, so the summations in J . . . 
the above formulas vanish. Thus Eq. (A-1) implies vJ(v') = v~(v'.), Eq. ,(A-2) 

implies a. = v'
2

, and the rate of energy transfer from the electrons given by 
J . 2 

Eq. (A-3) reduces to vJ(v 1 )(mv' /2). 

In elastic or inela.stic processes, n, = 1. Thesetwo-body colli.::: 
J 

sions are characterized completely by a qiscrete. energy transfer e. (which is 
' j . J 

zero for elastic collisions) and a dif,ferential cross section a
8

(e; v'). The .. 

cross section is 

O'j(v') = 2rrfrraJ(e;v') sine dB . 

. 0 . 

(A-4) 

The mornentum-transfer cross section can be determined from Eq. (A-1) by 
. j({j ') ( ,2 1/2 . usmg a8 v; v and v = v - aj) from Eq. (A-2); the result 1s. 

(A-5) 

Notice that the last term in Eq. (A-3) vanishes for both elastic and' inelastic 
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processes and that the first term vanishes for elastic collisions. Both Eqs._ 
-· 

(A-3) and (A-5) reduce to the well-known results for elastic collisions. 

For ionization processes, nj ~ 2, and again there is a discrete 

energy transfer e.. The two quantities that are the most easily observed ex-
J . 

perimentally are the cross section aJ(v:1
) and the distribution in angle and 

speed of the electrons resulting, which we denote Ij($, v; v 1
) and which is 

normalized as 

(A-6) 

Using these quantitie.s, the momentum-transfer cross section evaluated from 

Eq. (A-1) is 

Notice that in principle the rate· of energy transfer from the electrons could 

be evaluated by using these same quantities, although Ij(e, v; v') will usually 

not be known sufficiently accurately. Usually Eq. (A-3) will give a more ac­

curate result even though the last term is not known: This is because the last 

two terms of Eq. (A-3) are usually small compared with the first term since 
' 

in ionization processes a.. is relatively large. At high energies where these 
J 

terms could contribute, there is experimental evidence that the angular dis-

tribution of the "scattered" electrons has a pronounced forward peak while 

that of the "ejected''' eleetronsis more nearly isotropic. This suggests that 

the third term of (A-3) is small compared with the second whenever either is 

important. 

By summing Eqs. (A-1) and (A-3) over all collision processes, we 

find that the rate of energy transfer from the electrons is determined by 

1 2m ( 1 1 2) · j i 
vm (v ) M z mv + r v (v )e j 

where the last term in Eq. (A-3) has been omitted, and that the rate of momen-
.. , I I . 

tum transfer frorri the electrons, is determined by v vm(v ). !he total momen-

tum transfer collision frequency vm (v') is just the sum of v~ (v') over all 

collision processes j. Notice that the total cross section, which is often 
. . 15 

measured in 'beam expenments, has not appeared in our formulas. 

, .. 
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B. Kinematic Functions in the c·ollision Terms ' 

In the derivations we make extensive use of probability distribu­

tions. The probability distribution of a real quantity a is -given by 

P(a) = 

where P(a < a
0

) is the probability that a is less than a
0

. With this definition, 

P(a) is normalized such that JP(a.) 'da = J; in such integrals the integration is 

over all values of a, although usually the integ-rand is nonzero only over a 

finite range of a. 

The probability distribution of a for a specified value of another 

parameter f3 is denoted P(a; f3). In this case 

where the above normalization is automatically obtained. 

If f3 is a monotonically increasing function of a, then we have 

and by differentiation we have 

P(a) = P(f3} :~~~ . oa 
. . ' f3=f3(a) 

where again P(a) is· properly nbrmalized. ·.The same formula is valid if f3 is 

a monotonically decreasing function of a. 

We adopt the convention that a probability distribution is nonzero 

only where the formula gives a positive, real result. For example, 

implies that P(a) vani'shes except _in ~he region 0 <a< l. 

l. Derivation of P(v; e) 

The equations of motion of a nonrelativistic electron in the gas 

frame with a homogeneous electric field E = E ay and a homogeneous magnetic 
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-+ 
field B = B az can be written in cartesian components as 

vx(t) = vd- V sins sin (wbt + )') 

v (t) = V sins cos (wbt + )') ' 
(B -1) 

y 

and v z (t) = v cos s ' with Q<s<TI 

where V, S, and )' are constants determined by the initial conditions, vd= cE/B 

is the EXB drift speed, and wb = eB/mc is the electron-cyclotron frequency. 

The electron energy in the drift frame is 

(B-2) 

and the electron speed in the gas frame is given by 

Consider a group of electrons with energy e. According to the 

discussion in Sec. II-B-3, the most general such group of interest has random 

phases and a distributioh of s which is symmetric about TI/2. For the purpose 

of finding the probability distribution of J = sin (wbt + )'), the distribution of 

phases may be normalized as 

for 

Since in this inter.val'J is a monotonically increasing function of wbt + y, we 

find 
2 -1/2; 

P(g) = ( 1 - J ) 1r ·. (B-4) 

From Eq. (B-3) we see that for specified values of e = mV
2 
/2 and£, vis a 

monotonic function of 'J· Thus we fi~d 



~ : . 
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. . ..... .~ ' : ~ l . .;,·. : ' -~ .; . 

The most general distribution. of £ thdt is syrnmetri~ about rr/2 can 

be written as 

~ . ..... i. . 

. ::-: .... 

where q = cos£ and P
2

s (q) are ·the even Legendr~ polynomials. This form is 

· properly normalized since 

l rr sin £ d£ =, ~ 
0 ' 

and 

Using these results the desired function.P(v; E) is given by 

for jv vd\ < v< ·V+v . d 

2. Derivation of P(e; v', v, 8, e 1
) 

''•. · .... 

(B- 5) 

Denoting the velocity of the incident electron in the gas frame by 
-, -v and the velocity of a resulting electron by v, we define an angle such that 

cos l(J = vx'/v' with; 0 ~ l(J C. rr ... Fr()m Eq. (B-2) ;,.,,e:' see t11<~4 , 
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(B-6) 

where the energy o{ the incident electron is e 1 = mV12 /2. Referring to the 

spherical triangle, shown in the following sketch, and using a formula, from 

spherical 

;~/ ·"' yd. vd =·a . ""'~ X 

trigonometry, we find vx = v(cos e cos ljJ - sine sinljJ cos <j>). By using this re­

sult; Eq. (B~2) becomes 

2; ;··· 2 . 2 . e = mV 2 = (m 2)(v + vd)- rnvdy{cose ~osljJ- sine sinljJ cos<j>). (B-7) 

Since e is a monotonic function of cos <j>, we have 

P(e; v 1
, v, e, e1

) = P(cos<j>; .v1
, v, e, e1 )/(mvvd sine sinljJ) 

where, because we have assumed the scattering is independent of <j>, we argue 

as in deriving Eq. (B-4) and find 

P( ,+. .I e "). -1(1- cos2 rl-.)-l/2 
COS 't'; V , V, , E = 1T 't' 

By solving Eq. (B-7) for cos<j> and substituting above, we get 

( I e 1) -1/2; P e; v , v, , e = 2R mn , 

where 

R 4 2 2 . 2 e .. 2 "· (V2 2 2 2 . e··. "·)2 =- vd v s1n s1n 't' - - v - vd + vd v cos . cos 't' · (B-8) 
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and where P(e; v', v, e, E') is nonzero only when R __::: 0. To investigate this con­

dition we write 

where 

and 

2 
R = a cos· e + 2h cos e + c , 

2 2 
a = -4v v 

d . 

b 2 ,~, (V2 _ 2 2) =-vdvcos't' v -vd 

2 2 
c = 4v v 

d 
. 2 ,~, (V2 2 s1n 't' - - v -

Since a< 0, we haveR_::: 0 only when 

r 2 112] [ 2 112] L- b + ( b - a c ) . I a ~ co s e ~ ~ b .. ( b - a c) I a , 

(B ..:9) 

(B-10} 

2 
and b - ac > 0. The latter condition is easily shown to reduce to the "triangle" 

inequality 

which has an obvious kinematic interpretation. The limits on cos e from Eq. 

(B -1 0} are also kinematic and are easily shown to be between -1 and + 1. 

3. Derivation of Pj(e; v', e, e') for Elastic and Inelastic Processes 

For elastic and inelastic collisions, the quantities v 1
' v, and e are 

not independent but are related through the conservation of energy and momen­

tum. From (A-2) with n. = 1, this relationship is . J 

v'
2 

v
2 = a. + 2mv 1 (v 1 

-' v cos fJ)IM 
J 

(B-12} 

to within terms of higher order in miM; The above results are thus not in 

the most useful form for elastic or inelastic collisions. Using Eq. (B-2), we 
2 2 

have E
1 = mVn /2 = (ml2}(v 1 

- 2vdv 1 cos ljJ + vd2 ), and by subtracting this from 

Eq. (B-7) we find 

· + mvd cos<tJ; (v' - v cos 8) 

. + mvd v sine sin ljJ cos <P (B- 13) 
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In using this formula we will neglect m/M {but not mv 1/Mvd} compared with 

unity by using Eq. (B-12) in the first term and then using v = {v
12

- a..)
1

/
2 

J 
throughout. From this point on we will treat Eq. (B -13) with these sub stitu-

tions as an exact formula, keeping all terms involving m/M, and we will use 

( ,Z ) 1/Z 0 1 0 v = v - a.. s1mp y as notation. 
J 

Since this formula is as accurate as we 

desire, the resulting physics will be correspondingly accurate, although as 

will be pointed out, some of the intermediate formulas are not. 

With these substitutions, Eq. (B-13) can be used instead of Eq. 

(B- 7 ). Proceeding as before, we find that Eq. (B -8) is replaced by 

P j( r 0 E
1

) = 2R.-l/Z/mn E; V , , 
J 

(B-14) 

where 

Rj = 4vd zvz sin
2 

lj; sin2 0 - [v2 
- V 1 2 

+ a.j 

- 2(vd cosl\!- mv 1/M)(v 1
- v cosO) 

2 
, 

and where pJ(E; v', 0, E :) 1s nonzero only when R. > 0. As before, we write 
]-

where 

R. -· a 1 cos 2 0 + 2b 1 cosO+ c 
J 

l = -4v2 (v 2 sin2 lj; +A 2) a 
d 

b' = -2AvB 

i 2 2 . 2 lj; Bz c = 4vd v Sln -

and where A= vd cos tj; - mv'/M and B 

since a 1 
.::::_ 0, we have R. > 9 only when 

J-

= v2 
- v' 2 z 'A + a.. - v· . 

J 

[
-81 +(biz - a'c')l/Zl/a 1 < cos 0 < ~--b1 

- (b 1 z - a'c 1
}
1/ 2 /a' 

J - - L 

d h b iZ i 1 > 0 an w en - a c . The latter condition implies that 

(B -15) 

As before, 

(B -16) 

(B -17) 

.-



.. 
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Add .. . f 4 2 2 . 2 ·1• (B 2 A) 2 > h 1t1on o vd v s1n 't' + - v 0 to t is shows that 

oR. 
----"J- = -2a' + 2b' >o 
o(cose) 

cos e = -1 

. . r2 I t 
whenever b - a c > 0. 

Similarly, the addition of 4vd
2

v
2 sin~ l); + (B + 2vA)

2 2 0 shows 

that 

oR. 
= 2a' + 2b' < 0 

o(cos 8) 
cos e = 1 

t2 I I whenever b - a c > 0. 

These results show that the limits on cos e given by Eq. {B-16) 

b r2 I I ( ) are etween-land+lwheneverb -ac >0, sinceweseefromEq. B-14 

that R .. < 0 when cos8 =:H. 
J-

Substitution of B, A, cosl);, and v into Eq. (B-17) yields 

v'
4 

- 2v'
2 

[vd 2 + v 2 
+ aj + 2m(V'

2 
- V

2 )/M] + (V
2 

- vd 
2 

+ aj)
2 

+ 4a.jvd
2

- 4ma./vd2 - V'
2

)/M .::_ 0. (B-18) 

This quadratic inequality in v'
2 

can be solved for the limits on v'. The re-
I 

sults are just kinematic; for example, if molecular recoil is neglected, the 

limits are determined from the "triangle 11 inequality 

(B- 19) 

However, since for V >> vd these limits are quite narrow, the recoil terms 

must be retained, even though they are not correct because of the approxima­

tions made in using Eq. (B -13 ). As discus sed previously, the physical re­

sults will still be accurate. 
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C. Rate of Energy Gain and Drift Speed of the Electrons 

The derivations in this section will proceed in the spirit of Appen­

dix A, and the results found in that section will be used. 

1 . The Rate of Energy Gain 

From Eq. (B- 2) we see that the increase in the electron energy in 

the drift frame by a collision is 

L:E.- E1 = (m/2)(L:v. 2 - v'
2
)- mvd(L:v. v.x 1

) 
l l lX 

(C -1) 

where quantities referring to the incident electron are primed and the sums 

are over the n. outgoing electrons. 
J 

We now average Eq. (C-1) over every-

thing but v' for a particular collision process by using Eq. (A-3} to evaluate 

the first term and using Eq. (A-1) to write the average of vx' - !::v. as 
. . lX 

vx 1 vjn(v 1 )/vJ(v1
); the resulting energy gain per collision is 

[The last terrri in Eq. (A-3) was dropped; this means that the term involving 

m/M is somewhat incorrect for ionization processes.] We now obtain the 

rate of energy gain per electron of energy En: by process j by multiplying with 

)(v 1
) and then averaging over v' by multiplying by P(v 1

; E
1

) and integrating 

over vr. The result is 

(C-2) 

where Nj and N~ are mean collision frequency functions as defined in Sec. II­

C-2. Since the integral in the last term is of order NJ , the second term is . m 

significant only for ene,rgies .far grea~er than rnVd 2 and Ej' This term was 
.21 1 

thus evaluated by replacing the mean value of mv' 2 byE . We. also see that 

this term will almost never be significant for ionization processes, since 

these processes have relatively large values of E .. 
J 

,-
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To obtain the rate of energy gain per electron of energy.e 1 by all 

collision processes, we sum Eq. (C-2} over j and find 

W(e') = mvd 
2
fm{v 1

) P {vr; er)(vxu /vd)dv 1 
- Nrr!eJ)2eum/M 

+ rNj(<') [<nj - l)(mv//2)- 'j] (C- 3) 

Notice that only the collision frequencies for all but elastic processes and the 

total momentum-transfer collision frequency are important. 

2. -The Drift Speed in the -E Direction 

From the equations of motion (B -1) the y position of an electron 

relative to that _of its guiding center Y is given by y - Y = (vd - vx)/wb .. Thus 

after a col.lision at y, the sum of the displacements of the guiding centers of 

the outgoing electrons relative to the position of the guiding center of the in­

cident electron is 

Z::(Y. - Y 1
) = {n.v 1 

- Z::v. )/wb 
i 1 J X i !X 

where we have used the notation of the last section. The drift speed in the 

drift frame of the electrons of energy e 1 due to collision process j is now 

found by using the negative of this expres sian in stead of Eq. (C -1) and pro­

ceeding as in the previous section. The result, which is exact in this case, 1s 

'Jl:<•') = =:Jr~(v') + (ni - I)) {v')] P(v'; •'Hvx~/vd)dv' (C-4) 

Electron-attachment collisions make no contribution s1nce n. = 0 and vln = ) , 
J 

as was shown in Sec A. For elastic and inelastic collisions, only the mom en-

tum-transfer collision frequency is important since n. = L 
J 

The drift speed produced by all collision processes is obtained by 

summing Eq. (C-4) over j. Notice that only the collision frequencies for ion­

ization and electron-attachment processes arid the total momentum-transfer 

collision frequency are important. 

3. Properties of the Integralfv{v) P {v; e}(vx/vd)dv 

Integrals of this form appear in Eqs. (C-2), (C-3), and (C-4). We 

now write the value of this integral as N(e) K (e), where N(e) is the mean collision 
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frequency function corresponding to the collision frequency v(v) and K(e) is. a 

factor of order unity. 

To investigate the nature of K(e), we may use P(v; e) as·giveri by ; 

Eq. (II-12), and we may use Eq. (B-2) to write v in terms of v. The result­
. X 

ing formula for K(e) can be evaluated if v(v) is known. For example, if v(v) 

is a constant, then K(e) = 1, and if v(v) is proportional to v, then 

and 

More useful formulas are found by carrying out the integrations by expanding 

the integrands in Taylor series about the larger of V or vd. The results are 

K(e) = 1 ~ V av(V) + o(vl) 
3v(V) a V y2 

if v > vd , (C- 5) 

and 

K(e) = if vd > V , 

where the symbol 0 denotes "order of magnitude. 11 In general, K(e) is greater 

than 1 when v(v) increases with v and is less than 1 when v(v) decreases as 

v 1ncreases. 

D. Comparison of the Two Methods of Solution 

We will now show that, with the assumptions that the electron 

speed is much greater than vd and that elastic collisions are much more prob­

able than any other, the results of our method of solution of the Boltzmann 

equation- agree with those of the "usual" method as given in Sec. II-A. To 

facilitate the comparison, we will introduce a distribution of speed V in the 

drift frame by defining f(e, t) = 4TIVg(V, t)/m, where e = mV
2 
/2. Our basic 

equations (II-19) and (II-20) then become 

ag(V, t) ="(.~) 
at L at ' 

j j 

(D-1) 
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and 

( :;), = ~ fcj(e; E
1
)V

12
g(V', t)dV

1 
- Nj(e)g(V, t) 

J 

(D-2) 

Becau.se we are considering V » vd' Nj(e) can be evaluated by expanding the 

integrand of Eq. (II-21) in a Taylor series about V. The result is 

Nj(e) = .)(v) +(vd )
2 

v cl [v)(v)] + · · · (D-3) 
v 6. av2 

which is just an expansion in the even powers of vd/V. The first term of Eq. 

(D-2) wil~ now be evaluated in a similar manner for each type of collision. 

For electron attachment collisions, the first term of Eq. (D-2) 1s 

zero, so to the lowest order in vd/V 

( ::) _' = _) (V)g(V, t) . 

J 

(D-4) 

For elastic and inelastic processes, we use Eq. (II-23) and neglect 

molecular recoil. By interchanging the order of integration we then find 

m (cj(e; e1)V 12g(V 1, t)dV' = --1-
V) 4v 2v 

d 

I 
;V +vd 
I 
I 

1
: V 1g(V 1, t)dV' 

I 
Jjvl -vdj~ 

where the limits were found by rearranging the "triangle" inequalities 

IV' - vd I _::. v 1 _::. V' + vd and IV - vd I _::. (v
12 

- aj) l/
2 ~ V + vd. The integral ov:er 

V' can be carried out as above by expanding the integrand in a Taylor series 

about v'. The result is 

rv'+vd 

~v'g(v', 2 \ I 
I 

vd a2 ! 
[v'g(v1, t)J V'g(V', t)dV1 = 2vd t) +- -- + 

6 8vl2 I 
I 

!I I I l' I 

/ V. -Vdi ) 
' 
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We can now do the remaining integral by expanding the integrand about 

(V
2 + a.) l/

2
. For inelastic collisions we keep only the term of lowest order 

J 
in vd/V and find 

(V2 + a.)l/2 

( :~ ). = ___ v_,J:___) [(v
2 + aj)

112
Jg[(v

2 + aj)
1

/
2

, t]- )(V)g{V, t) 

J 

{D- 5) 

For elastic collisions, aj = 0 so these terms cancel; the terms of order vd/V 

also vanish so the terms of order vd2 /V2 
must be retained. After a consider­

able amount of algebra, the result may be written as 

(D-6) 

For ionization processes we use Eq. {II-11) and interchange the 

order of integration as above to find 

As above, we carry out the integrals over V 1 and v, keeping only the lowest 

order of vd/V. The result is 

(D-7) 

As we expected, Eqs. (D-1), (D-4), .(D~ 5), and (D-7) agree with 

Eqs. {II-10), (II-14), {II-12), and (II-13) respectively of Sec. II-A. There­

sults for eLuitic collisions in Eqs. (D'-6) and (Il-11) also agree in the large 

wb T limit, except that in Eq. (D-6) molecular recoil and the finite temperature 

of the gas were neglected. The algebra of deriving the recoil term directly 

from this approach has not been carried out. The finite -temperature term is 

discussed in Sec. II-C-3 and the form of the recoil term can then be deduced 

from the fact that when vd = 0, (og/ot)el must vanish when 

g(V) ex: exp [ -(mv
2 
/2)/kT ]· 
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We now consider the drift speed of the electrons. From Eq. (II-31) 

we have, since we assume elastic collisions are the most probable, 

1 Jr . vd J el el v.D = - - f(e)v.E(e)de = - -.. - f(e)Nm(e)K (e)de 
y n wbn m 

where n = ]f(E)de. Changing to a distribution of speed as before and using 
el · el 

N (e) and K (e) to the lowest order in vd/V from Eqs. (D-3) and (C-5), these 
m m 

equations become 

(D-8) 

We see that this agrees with Eq. (II-17) of Sec .. II-A. 

We conclude that, in the large wb T limit, our approach contains 

all of the results of the "usual" method of solving the Boltzmann equation, 

although we have not discussed the diffusion tensor here. From our approach 

we see that the results given by the "usual" method are valid whenever the 

electron energy is high compared with mvd 
2
/2 (since only terms of order 

vd 
2 
/V

2 
have been neglected) and whenever all other collision frequencies can 

be neglected in comparison with the elastic momentum-transfer collision fre­

quency. Thus, in the large wb T limit, it does not appear necessary to assume 

the energy distribution is near the equilibrium distribution. 



F(r'", 
~ 

v, t) 

g(V, t) 

GJ (e; e 1 ) 

Ij(8,v;vu) 

K(e) 
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E. Partial List of Functions and Symbols 

Appearing Frequently in the Text 

Unit vector in the x direction. 

UCRL-10366 

Electron energy distribution in the drift frame. 

Normalized n steady- sta:te 11 electron energy distribution 

[Eq. (II-29)]. 

Electron distribution function in the gas frame. 

Distribution of electron speed in the drift frame 

[Appendix D]. 

Energy-scatter function for process J [Eq. (II-20)]. 

See Appendix A [Eq. (A-6)]. 

See Sec. 3 of Appendix C 

Gas density. 

Number of electrons leaving a collision of process j 

[Appendix A]. 

Nj(e) Mean-collision-frequency function for process j [Eq. (II-21)]. 

P(a.; f3, · · · ) Probability distribution of a. for specified f3, · · · 

v 

a. 
J 

i3 

-y(v) 

E 

E. 
J 

[Appendix B]. 

Electron velocity in the gas frame. 
...... -+ 2 

cE X B/B 
--> 

Drift speed along -E in the gas frame. 

Electron speed in the drift frame 

Rate of electron energy gain by process j [Sec 1 of Appendix C]. 

2e./m 
J 

Rate coefficient for production of free electrons 

[Eq. (II-29)]. 

[1 + (veljw )2rl 
m b 

Electron energy in the drift frame 

Inelastic energy transfer per collision of process J 

[Appendix A]. 

Angle of deflection. 

Collision frequency for process j [Appendix A]. 

Momentum-transfer collision frequency for process j 

[Appendix A]. 
--+ 

Angle between B and the electron velocity in the drift frame. 

") 



>-
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Cross section for collision process j [Appendix A]. 

Differential cross section for process j [Appendix A]. 

Mean free time between momentum:..transfer collisions. 

Azimuthal angle of scattering. 

cos- 1 (vx/v) with -rr/2 5_ lJ; 5_ rr/2 [Eq. (B-6)]. 
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