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ABSTRACT

The calculation of the electron velocity distribution in a slightly
io.nized gas with (wb'T)2>> 1 is discussed, including a detailed treatment of
inelastic processes. The derived equations apply whenever the gas density
Ng» the gas-flow velocity, E, and B are spacially uniform and constant in
time, the component of E parallel to B is negligible, and E is much less than
B (in Gaussian units). The equations are suitable for numerical computation
of the electron energy distribution and drift velocity in the reference frame
in which E is negligible and the gas flow is perpendicular to B so that the elec-
tron velocity distribution is nearly isotropic. When the rms molecular speed
in this frame is much smaller than the rms electron speed, the equations can
be greatly simplified; although the results are not new, this derivation clari-
fies their physical interpretation and limitations.

With simplified equations, the electron-energy distribution, drift
velocity, ionization rate, and diffusion tensor in cold stationary H, gas are
calculated for cE/B between 4 X 106 and 6X lO7 cm/sec. Whereas the electron-
energy distribution depends only on cE/B, the other quantities also have
simple dependences upon ng and W, - In view of the large uncertainty in impor-
tant collision cross sections, the agreement with recent experimental results

is reasonably good.
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ELECTRON-ENERGY DISTRIBUTIONS AND IONIZATION RATES
 IN HYDROGEN WITH CROSSED ELECTRIC AND STRONG
MAGNETIC FIELDS

Gary A. Pearson and Wulf B. Kunkel

Lawrence Radiation Laboratory
‘University of California
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September 5, 1962

I. INTRODUCTION

If a sufficiently small ‘vde‘nsityr‘of free electrons is introduced into - -
a cold gas, the motion of the electrons is controlled by the external fields and -
by collisions with the gas molecules. - The electron distribution function can
then be determined by solving the Boltzmann equation. The "usual’ method of
solution consists of expanding the distribution function in spherical harmonics
in velocity space and evaluating the collision terms in the reference frame'in
which the gas is at rest,  which we call the gas frame. The method is useful -
when the drift speed.of the electrons relative to the gas is small in comparison
with the rms electron speed. An important parameter is the ratio of the elec-~
tron-cyclotron frequency wy to the electron-collision frequency 1/7. [In H2 gas,
w 7= 3 B(kG)/p(mm Hg). |

b :
When w, 7<<1, the effects of the magnetic field can be ignored or

treated as a small ];ert-»urbationﬂ This case has been extensively studied, both
experimentally and theoretically. The usual method of solution is adequate-
until the phenomenon of so-called '"runaway'' electrons becomes important.

When w7 >>1, the problem is complicated unless the electric field
— > —
E and the magnetic field B are mutually perpendicular, spacially uniform, and-
constant in time with E << B (in Gaussian units). Under these conditions the
electron motion in the applied fields is simple and only the effects of relatively
infrequent collisions need to be evaluated. In this case--which is discussed in
this paper--we can consider any nonrelativistic electron drift speed in the gas
frame since the problem of runaway electrons cannot appear. The usual method
of solution is not adequate when the drift speed is high.

We find it useful to consider the distribution function in a reference

frame moving with velocity 3d: CEX%/BZ relative to the gas frame, which we

call the drift frame and in which the electric field vanishes. In the drift frame,
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a free electron follows a helical trajectory in which its speed and energy are
constant, while in the gas frame, its speed, Akinetic;energ’y,' and potential
energy oscillate in time. - ' .

The effects of elastic collisions--which are often the most prob-
able--are most easily discussed in the drift frame, where there is no electric W«
field but there is a wind of gas molecules With relatively high kinetic energy.
The coll/isions produce diffusion of the electrons perpendicular to the magnetic
field and reduce the diffusion along the magnetic field. Intuitively, it seems
that elastic collisions tend to heat the electrons until their mean energy is
near that of the gas molecules and tend to spread the electron-energy distri-
bution until it resembles a Maxwellian distribution. Notice that in the drift
frame the electrons gain energy from the molecules, while in the gas frame
they gain energy by moving through the electric field.

We use the term inelastic collisions to include all but elastic,
electron attachment, and ionizing collisions. Inelastic processes have effects
. 8imilar to those of elastic collisions, but their most important effect is to 'in~
crease or decrease the energy of the electrons involved.

Ionization and electron attachment processes also have similar
effects, but their primary effect is to alter the number of free electrons.

, The usual method of solution is outlined in Sec.II. We then develop

a method of solution in the drift frame that is useful whenever all sﬁeed’s in-
volved are nonrelativistic. Although the resulting equations are felatively
complicated, only simple physical concepts--like those discussed above--are
used. ' '
‘ ' .. The results of numerical computations of the electron-energy
distribution, drift speed, diffusion tensor, and ionization rate in hydrogen gas

with v4 between 4 X 106vcm/sec and 6X lO7 cm/sec are given in Sec. IIL
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II. METHODS OF SOLUTION OF THE BOLTZMANN EQUATION
On the basis of the discussibon in the introduction we make the
following explicit assumptions: » ‘ |
(a) The e.lectric and magnetic fiélds are mutually pérpendicu_lar,
spacially ﬁniform, and constant in time. _
(b) The distribution function of the gas mblecules’:is,spa‘cially .ilni-
form and constant in time. |

(c) The magnetic field and n_, the number of gas molecules per

g’
unit volume, are such that wb”r >1.

(d} The gas density n_ is so much greater than the electron and

g

ion densities that only collisions of electrons with such molecules are impor-
tant.

(e) All speeds involved are nonrelativistic.

e

Because of {d) and (e), the electron-distribution function F(Z\_;, t)

satisfies the Boltzmann equation

OF | 9.TF + vy [- S (E+
ot L m

o) _
9t |coll

ol<d

X E)F] -( (II-1)
where only collisions with neutral molecules must be included. When ioniza-
tion of the gas molecules by electron impact is not the only important process
producing free electrons, additional source terms must be included in Eq. (II-1).
We do not discuss such terms here.

Because of (a) and (b), we can avoid considering the spacial de-
pendence either by assuming that F(F, \7, t) is independent of T or by integrat-
ing Eq. (II-1) over a volume on whose surface F(;, \7, t) vanishes. The latter

interpretation permits the treatment of electron avalanches.
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A. The ”Usual" Method; Expansion in Spherical Harmonics .

in the Gas Frame

Equation (II-1) is often solved by expanding F(\_;, t) in sphericél
harmonics in velocity space.z’ 3 It is usually assumed that the expansion
converges rapidly, so that only the first two terms are needed. The expansion

then takes the form

-

F(v, t):.FO(v, t)+%-F

1(v, t). : (I1-2)

Substituting Eq. (II-2) into Eq. (II-1) and equating the coefficients of each

spherical harmonic to zero, we obtain the two coupled equations

OF, . A(vEE)
_8_9_ e g.___ 1V H?_F_ } -0, ' (1I-3)
_ t 3mv2‘- ov L ot coll o
and 1 - & B_O0_ e BxEF . B_E) =0 ‘ (I1-4)
' ot m Ov ¢ 1 9t Jeoll

It is found that the spherical harmonic expansion converges well when the
electron speed v is high compared with the electron drift speed in the refer-
ence frame being used. The collision terms in Eg. (II-3) and.Eq.- (II-4) are
simplest when the gas rest frame is used. Often when elastic collisions are
much more probable than any other, the rms electron speed is much higher |
than the electron drift speed in the gas frame, so the spherical harmonic ex-
pansion converges well in the gas’ frame for all but-a negligible fraction of the
electrons. , , - T : o ‘

Allis2 and Holstein3 have derived the collision terms in Eqs. (1I-3)
and (II-4) in the gas frame by assuming that elastic collisions are much more
probable than any other. They find

e e - ) 1
(B_F_ _elE
9t coll 1 m =l

where vreé is the elastic momentum-transfer collision frequency as defined

in Appendix A. If we choose E = an and B = Bﬁz, SO Vd = (CE/B)QX, (11-4)

becomes
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BFI'X ) :
e _
" + waly + valx =0 : | (I1-5)
oF OF
ly eE o el -
9t = m  8v uble * valy =0 (.H'é)
oF . _
R (11-7)
at m 1z .

Notice that Eq. (II-7) simply implies that Flz damps to zero because of colli-

sions.

It is clear that near equilibrium, the time-derivative terms in

Egs. (II-5) and (II-6) can be neglected. Solving for le and Fly’ we find
o v
1 2 -1
F = -v.y( o n s (11-8)
1x = “VgY v) 5o Where v(v) = oy -
and - '
velv) | '
F,_=- F _ . (I-9)
ly wy Ix i
Using these results, we can write Eq. (II-3) as
OF '(V,t) foF '
0 y2, | (II-10)
at 5\ 9t Jj , ,

where, using the collision terms derived by Allis and Holstein_, we have
OF. _ 8F (v, )

_0 -4 9 v S (v)ylv) ———
ot el 3V2 dv m v
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for elastic collisions;

_ 1/2
JF, . (v +a.) : .
_O0) =) [(V2+a.)l/2]: A MO P V) tl- WVF (v, t)  (II-12)
‘ , J v 0 J 0
8t Iy L J J

for inelastic processes; and

) BRI} _,’1./'](v')vp PJ(V; vOF (v, t)dv' - VJ(V)F (v, t) o (II-13)
1.0t j ve | 0 0 S

I

for ionization collisions. In these formulas v'(v) is the collision freqdency

for process j, nj' is the number of electrons leaving each collision, and = -
PJ(v;v') is their distribution of speed v for specified incident speed v'. It is

clear from Eq. (II-13) that for electron attachmernt we have -

OF, ‘ ,
(—— =V (VF, (v, 1) (LI-14)
at R 0 . ) :
J v . v « .
The physical interpretation of Eqgs. (II-12), (II-13), and (II-14) is
clear. However, Eq. (II-11) has some interesting features. The first term,

which arises from the second term in Eq. (II-3), can be written as

vy o2 el
Vi '[D(V)VVFO(V, t)} , where D(v) = vy vfn(v)y(v)/3 )
i.e., as a diffusion in velocity space. It is interesting to note that in the

large w 7 limit where y(v) can be replace'd by unity,I the diffusion coefficient

D(v) ha: the same form as that found in elementary kinetic theory with the
mean free path merely replaced by vy This result can be quélitatively under -
stood on the basis of a random-walk description.of diffusion. Although the
above derivation of this term is valid only near the steady state solution, we

show in Appendix D that for large w, T no such restriction is necessary.

b

The second term of Eq. (II-11) accounts for the effects of molec-
ular recoil. The third term accounts for the temperature T of the gas; notice
that it has the same form as the first term. It is also interesting to note that

(BFO/Bt)'el from Eq. (II-11) vanishes when ___ __  _____ . ____

, . 3m vdv 1
F.(v) < exp (— [ . (II-15)
0 M yv)v,2 4 3kT/M

J Ya
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When & = 0, this reduces to the expected result
2
Fo(v) x exp [—(mv /2)/kT} .

In the large w,_7 limit, Eq. (II-15) becomes

b

i 2\ fimv 2
v
FO(V) « exp |;_ 31 mv d 3

2 + 2 kT
2\ 72 2 2

Thus, in this limit, elastic collisions always tend to heat the electrons until

their mean energy is MvdZ/Z + 3kT/2--the mean energy of the gas molecules

in the drift frame-and to spread their energy distribution until it is a Maxwellian

distribution. This result is completely independent of the differential cross
section for elastic scattering:

Once FO(V,t) is known from solving Eq. (1I-10), most quantities of
interest can be calculated.

The drift velocity of the electrons in the gas frame is given by

fd3vF(x7, t) .

1

G’D(t) = %jd3vF(\7, t)v with n

By introducing Eq. (1I-2) we find

1]

) = 2" [3F (v, t)av  with  n 4wa (v, hvidy
3n 1 0

We now introduce Eqgs. (II-8) and (II-9) and integrate by parts to get

4mv 3., |
__ d a[v, .Y(.V)J
VDX = 3n fFO(V, t) TV—— dV » (II 16)
and
—4Trvd f’ 8{v3y(v)vi(v)]
v = F.(v,t) dv . (I1-17)
Dy 3no.>b 0 ov

In the large w7 limit Eq. (II-16) becomes Vbox = V4 If vi(v) is a constant,

~ el . L
VDy = -vd(vm/wb) in the large wb'r limit.
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A consideration of spacial gradients also leads to the diffusion

tensor .
| \
/ Dp D 0
D = -D_L DT 0 , /
0 0 Dl‘-
where |
el,.
am [V™) 4
D, = -
T " 35 —z yiv)v FO(V)dV ,
b
_4n( 1 4 ,
DL_QJ'Z)EY(V)V FO(V)dv , : (II-18)

4 1 4_ :
|| %f vely YV Folvidv
el ,

which are also simplified in the large w, T limit.

B. The Method of Solving in the Drift Frame'

1. Motivation for the Approach

We know that in the large w, T limit the drift velocity in the gas
frame is approximately ;)d' It is clear that, as \# is increased, inelastic and
ionizing collisions become more important and that they hold the mean energy
of the electrons down. Thus, at high v a large fraction of the electrons in
the distribution will not satisfy the conditions that make the ''usual' method
appropriate. However, if we instead expand the electron-velocity distribution
in spherical harmonics in the drift frame, where the apparent drift speed is
small, the expansion should converge rapidly for most of the electrons in the
distribution. This reasoning can be clarified by the following extreme example.
Suppose there are no collisions and that all the electrons are at rest in the
drift frame. Then the spherical harmonic expansion in the drift frame requires
" only one term while that in the gas frame convérges very slowly. Notice that
there is no time independent distribution whose expansion converges well in
the gas frame but not in the drift frame. - When the Boltzmann equation is

applied in the drift frame,. E =0 so that Eq. (II-3) becomes
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af (e, t) Z , (E1-19)

‘where f{e, t) is the distribution of electron energy ¢ as measured in the drift
frame. With the assumption that w, T >>1 the collision term in-Eq. (II-3) has
been written as a sum over the various collision processes j between the elec-
trons and the gas molecules. |

Notice that Eq. (II-19) is geﬁeral and need not be based on an
expansion in spherical harmonics. In other words, because in the drift frame
the energy of each electron remains constant between collisions, the only con-
tribution to 9f(e,t)/0t comes from the collisions themselves. The problem is
thus reduced to.evaluating the collision terms.in the presence of the gas ''wind''
of speed vy The form of these terms becomes rather complicated, but this
method is useful because the velocity distribution at large w, T is expected to
be nearly isotropic in the drift frame for any nonrelativistic value of vy

2. The Collision Terms

We will evaluate the collision terms with the assumption that the
molecules are at rest in the gas frame. Th:'roughout this discussion the symbol
v will denote the electron speed in the gas frame and ¢ = mVZ/Z. will be the
electron energy in the drift frame.

The collision terms for each collision proéess j can be written in
the form

~

of :j G‘j(e;e")f(e', t)de' - Nj(e)f(e,t) , (II-20)

ot
J
which has the interpretation that electrons are removed from the energy dis-
tribution at a rate proportional to the mean-collision-frequency function Nj(e)
and are inserted into the energy distribution by the first term in a manner
determined by the energy-scatter function GJ(e e').
The mean-collision-frequency function Nj(e) is defined as the mean

collision frequency for process j by electrons of energy €, and it is given by

Nj(e) =fvj(V)P(v; ¢ )dv : (I1-21)
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where P(v; ¢) is the probability distribution ef the speed v of the electrons with
energy ¢, and vj(v) is the collision frequency forprocess j- (For the notation
and nomenclature on cross sections and collision frequencies see Appendix A;
for that on probability distributions see the first page of Appendix B. )
The energy-scatter function Gj(e; ¢') is defined such that = .

Gj(_e; ¢')f(e',t) is the rate at which electrons are inserted into the energy dis-
tribution at e. by collisions of process j in which the incident electrons have
energy ¢'. If n. electrons leave each collision of process j, the general prop-

erties of G)(e;¢') are
jG‘](e;e')ck = anJ(e’)

and'Gj(e‘ e') > 0. The exact nature of this functlon depends upon the type of
collisions process involved. v
For electron attachment processes, ‘we have nj =0, so GJ(E € ) = 0.
For elastic and inelastic processes, we have nJ = 1, so the effects
of collisions are completely determined by a differential cross sectlon 06(6 v)
and by the discrete energy transfer EJ = (m/2) aJ associated with the change in
the 1nternal state of the molecule (Wthh is zero for elastlc COlllSlOnS) We
here assume that the differential cross section is independent of the ammuthal
angle of scattering, since although the strong fields could introduce a sllght_
asymmetry, the quantitative effect is not known and should be vefy small. A

little thought shows that we may write

: 0 .
GJ(e;e') dev“f do P(v'; e-')[ZTrng sin 6 v' O‘é](O;v'):\--
0 .
XPesv', 0, ¢') C(11-22)

where Pj(e; v', 0, ¢') is the probability distribution of the final energy of the .
electrons w1th incident” speed v' that are deflected by an angle 8, P(v'; ¢') is
the probability distribution_of_the_incident_speed v.!,_and [Znng sinfv' O“] 6;v )}
is the' rate at which electrons of incident speed v' are deflected by 9. The
function Pj(e;v', 0, ¢') depends only on the collision kinematics and is given to
lowest order in m/M by Eq. (B-14) of the Appendix B. If the scattering is

isotropic, the angular integration in Eq. (II-22) is trivial and yields
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. S i : / 27-1/2
GJ(G' e') = 1 ;’I VJ(V) 1 - Zmv! cosy +;m_v' /
’ 2mv, [(v'2 _a‘)l/Z Mv 4 \Mvd
d ] \
X P(v'; ¢')dv' (I11-23)
— |2 2 IZ R | 12 : : : :
where cosy = (v' + S v )/ZVdV , el = mV /2, and the limits are given

in Appendix B. The result is particularly simple if molecular recoil is neg-

lected by assuming m/M = 0; in this case the limits are given by the "triangle"
inequalities IV' - vdl <v'< V' + vy and IV - Vdi < (V'2 - u..)l/2 <V + AL where
| = = ‘

€ = rnVZ./Z. For elastic and inelastic processes, GJ(e; ¢') is nonzero only within

a finite range of ¢ about ¢' - €

For ionization processes where n > 2, the effects of collisions are
characterized by nJ., the discrete energy transfer €50 the cross section 0%(v),
and the distribution of angle and speed (6, v;v') of the resulting electrons as

discussed in Appendix A. As above, one can write

- - . .
Gle: ') = nj Jiidv'] dej;lv P(v'; e')[ZTTng sin 6 v'od (v")I)(8, v;:v')} (I1-24)
7/ 0

X Ple; v, v, 8, ¢€)

where Ple; v', v, 0, ¢) is the probability distribution of the energy ¢ of the
electrons ejected at speed v and angle 8 from collisions in which the incident
electron speed is v'; it is given by Eq. (B-8) in Appendix B. If the scattering

is isotropic, the angular integration of Eq. (II-24) yields

Vitv ~V+v
j 5 d "{ < V(v pi
Gle: ') = —3 av' | YY) Py v)P(v'; ¢'dv, (I1-25)
vad (< | v
IV "‘le J‘V"le

. : Tl' . .
where Pl(v; v') = Z-nf sin6 I’(6, v; v') d9. For ionization processes Glese)
0

is nonzero for ¢ from zero up to about ¢' - I3
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3. The Assumed Form of P(v; ¢)

The theory outlined above is complete except for a specification

bf the function P(v; €), which depends onlyAupon the ahgﬁlar distribution of

the velocities in the drift f{rame of the electrons of energy e. In the large w7
limit, the most general angular distribution of interest is independent of the
azimuthal angle about B and is an even function of cos § where § is .the polar
angle measgred frqm B. This is true because for large w T the electrons
follow their trajectories through many revolutions about B between collisions
and tlﬁe infrequ’eht éollisions tend to produce a random distribution df phases.
Such a distribution can be expanded in the even Legendre polynomiéls‘of cos g,
aﬁd P(V; €) i's then given by Eq. (B-5) in Appendix B. |

- We expect the electron 'velocity distribution to be nearly isotropic
in the drift frame. In fact, it is difficult to imagine a vp‘rocéss b.y which the )
velocity distribution Wiil become very anisotropic. Thus, the expansion in
Legendre polynomials‘will converge quite I;apidly. Wé assume that using'

]5 v< V+ Vg o

P(v; €) = v/ZvdV for IV - vy

where € = mVZ/Z , (II-26)

which from Eq. (B-5) is exact for an isotropic velocity distribution in the drift
frame, will give a good approximation to the correct physical results. As is
illustrated. below, this assumption is not always as stringent as assuming that
the velocity distribution is isotropic in the drift frame. _

» Any process——such as ionization--that produces electrons approxi-
rhately at rest in the lab frame will enhance the angular distribution for § near
ﬂ/Z and € near mvdZ/Z. To illustrate the quantitative effect we can evaluate
Gle; €") explicitly for €' = mvdZ/Z by neglecting molecular recoil in Eq. (II1-23)
and assuming either O’el(v) or vel(v.) is equal to a constant. The results for
an isotropic velocity distribution, a velocity distribution proporticnal to sin2 &,
and a velocity distribution containing only § = m/2 are compared in Fig. 1. We
see that even in the latter case--the largest possible anisotropy--the assump-

tion of using Eq. (II-26) is reasonably good.



-13- UCRL-10366

% (e, 12 mv )

| | ! |
0 | 2 3 4 5 6 7 8 9

With vV ?r! =constant

(b)

c®le, 172 mvg?)

MU-28037

Fig. 1. The elastic energy-scatter function for ¢' = mv 2/2 calculated
assuming the electron-velocity distribution in the drift frame
(1) is isotropic, >
(2) is weighted by sin™ §, and
(3) contains only § = /2.
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C. Discussion of the Theory

1. General Discussion

Because it is based only on the assumption of using Eq. (II-26),
the theory outlined in the previous section is useful at all nonrelativistic
values of v, in the large w,_7 limit. (In Sec. II-A we showed that the '"large

d b
w, 7" limit is reached when (wb )2>>l ) In Section D of the Appendix we show

tl’?at for electrons whose energles are large compared with mv, /2 and for
which elastic collisions are much more probable than any other, the results
of this method of solution agree with those of the "usual'' method as presented
in Sec. II-A. Whenever most of the electrons in the distribution satisfy these
conditions, the "usual" method of solution should be used because of its sim-
plicity.

Notice that we have not attempted to include the effect of a com-
ponent of E parallel to B. The criterion for validity of the theory being dis-
cussed is probably that {]_E) . E’\wb7‘<< IEXEI, in the gas frame.

When vy is so large that the method outlined in Section II-B must
be used, the angular dependences of the scattering processes, which are needed
in evaluating Eqgs. (II-22) and (II-24), will often be unknown. In this case it is
useful to assume the scattering is isotropic and to use Eqs. (II-23) and (II-25),
but we must determine the pbroper collision frequencies to use.

In ionization processes it is clear that the collision frequency
should be used in Eq. (II-25), since this will give the correct rate of produc-
tion of free electrons.

From Eq. (C-2) in Appendix C the rate of energy gain per elec-

tron of energy € by elastic or inelastic process j is

Wi(e) = NJ_(e)mv,? Kl (¢) - __E_Z_W - N‘j(e)ej , (I1-27)

Mvd /ZJ

where the subscript m denotes momentum transfer and where Kin(e) is a

factor of order unity. For elastic collisions, this result shows that the elastic

momentum-transfer collision frequency should be used in evaluating Gj(e; €')

from Eq. (II-23) and Nj( ) from Eq. (II-21}). For an inelastic process where

[ ]>>rnvd /2 the corresponding collision frequency should be used, and if
I<< mvdZ/Z the correspondlng momentum-transfer collision frequency should

be used. When’ JI ® mvy /2 and the collision frequency differs considerably
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from the momentum-transfer collision frequency, the choice is not so easy.
Often when‘,ej] = mvdZ/Z or IE_]" << mvz, the collision process can be ignored
in comparison with elastic collisions.

We notice also from Eq. (II-27) that whenever the "usual' approach
cannot be used, the term involving e/(MvdZ/Z) can be ignored. This implies
that the effects of molecular recoil can be neglected in Eq. (II-23) by setting
m/M = 0; the result is very much simpler than the general equation (II—ZZ).

Consideration of differential cross sections for elastic scattering
with various angular dependences shows that the use of the élastic momentum-
transfer collision frequency in Egs. (II-21) and (II-23) gives approximately the
correct rate of energy '"spreading' by elastic collisions. Since in the lab frame
this energy spreading corresponds to diffusion along E, this conclusion is also
suggested by the fact that in the usual method the diffusion tensor depends only
upon the elastic momentum-transfer collision frequency.

2. The Most Useful Solution

Our basic equation (II-5) can be written symbolically as

9f(e, t) _ ', g
—ar T ngﬁ(e, € ,vd)f(e , t)de' (I1-28)

where, for a particular gas, X (e, e';vd) is a kernel that depends only on Vd. We
know physically that any initial electron-energy distribution will evolve until

it can be written as
e, 1) = CePl () (11-29)

where fO(e) is normalized as %(e)de = 1, and where B and C are constants. Sub-

stitution above yields the eigenvalue equation

— 7. -
(B/ng)t)(€) ~fx(e,e svy)f(ede (I1-30)
which determines the eigenvalue ﬁ/ng and the energy distribution fo(e), both of
which clearly depend only upon vy The eigenfunction fo(e) of interest is every-

where nonnegative. Once it is known, most quantities of interest can be cal-
culated. |

The constant B gives the rate of production of free electrons. The
quantity that is usually measured experimentally is the Townsend coefficient a,

which in the absence of electron attachment is defined as a = ﬁ/vE, ‘where VE
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is the drift speed of the electrons in the direction of -E in the gas frame. This

drift speed is

VE :[fo(‘e)vE(e)de , : (II-31)

where VE(e) is obtained for large wy T by summing Eq. {(C-4) over all processes
J,» and where VE(e) depends upon the collision frequencies for ionization and -
attachment processes and upon the total momentum-transfer collision fre‘quencya

for large W, T the order of magnitude of Vg is vd/(wb'r); and VEB/ng depends

only on vys 80 we see that a/B depends only upon vy (For small wb'T" it is well

known that the electron energy distribution and u/ng depend only on E/ng. )
3. Extended Applications ’

From the method of solution we have developed; it is clear that
oply the speed of the gas rﬁolecules in 'the drift frame is important in deter-
rﬂining the electron energy distribution. Because of this, we can also use our
efjuations when the gas m;Jlecules have a distribution of velocities in the. gas
frame. If the distribution of molecular speed U in the drift frame is H{U),
where‘/;)ooH(U)dU = I, then our basic equation (II—2>8) is simply generalized to

[ce]

Bfle, 1) _ n j;(e‘, t)de?f X (e, €'; UYH(U)dU . (II-32)
ot 8 0 '

For example, if the molecular velocity distribution is isotropic in the gas
) i <00 ‘
frame, where the distribution of molecular speeds is h{u) withj hi{u)du = 1,
we have ' 0
. Utv
\ ; u | Yhw 1-33)
H(U) = [ P(U; u)h(u)du = 5 ‘ —- du (11-33)
v v ‘ : ,
v

as follows from changing the notation in Eq. (II—Zé). Notice that these formulas

can also be used when v, = 0; in this case the presence of the magnetic field is

d

not important. ‘
At least to a good approximation, the drift speed in the drift frame
is given by Eq. (1I-31), even when the gas has a finite "temperature."

When ¢ > mv,?,
in Appendix D can be used, the entire dependence of ¥ (€, €'; Vd) upon v, appears

so that the simplified form of ¥ (e, €'; Vd) as derived
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in the factor v 2 in Eq. (D-6) for elastic collisions. In this case the integral

d
over U in Eq. (II-32) simply replaces vdz_ in Eq. {(D-6) by the mean square
speed of the molecules in the drift frame. From Eq. (II-33) this is vd2+ <u2>y
which slightly generalizes the result of the "usual' method as given in Eq.

(I1-11). :
Since, if the gas is to remain "'slightly' ionized, (M/2) <u2> must
be small in comparison with the ionization energy of the gas, there actually

is no case of physical interest where the simplified form of x{¢, ¢'; v,} cannot

d
be used and where(u2> cannot be neglected.
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III. NUMERICAL COMPUTATION OF THE IONIZATION RATE
IN HYDROGEN GAS '

At the time these computations were done, the detailed t€}1eofy as
presented in Part Il was not complete, The computational procedure, which
was designed only to give an estimate of the ionization rate, will appear crude
in comparison with this theory. However, as will become evident, the cross
sections are so poorly known that a more detailed numerical computation would
be unwarranted at the present time anyway. While the theory is usefulv at all

nonrelativistic values of v,, we use simplified forms for the collision terms

that are only valid for vy ’Selow 6><107 cm/sec or, equj.valently, for mvdZ/Z
below 1 eV.

As discussed in the introduction, each col.iision process has one
or two primary effects and several secondary effects upon the electron energy
distribution. We will treat only the primary effects, which are as follows:
elastic collisions cause heating of the electroms: and. spreading of the electron-
energy distribution, inelastic collisions remove energy from the electrons,
and ionization removes energy from the electrons and increases the total
number of free electrons. In hydrogen, electron attachment can be neglected.
Among the inelastic collision processes we will include electronic excitation,
vibrational excitation, and dissociation processes, but we will consider values
of vy large enough so that the effects of rotational excitation are unimportant
(see Sec. III-A). Notice that the ""spreading' effect of elastic collisions is
very important in filling out the ''tail'’ of the energy distribution and thus in
determining the ionization rate.

A. The Collision Terms Used

We will now discuss the cross sections and the approximations

used in evaluating the collision terms of our basic equation
of(e, t) _<(of (I1I-1)
ot _JZ(at) '

1. For Inelastic Collisions

The collision frequencies v‘](e) and energy transfers ej given in

Fig. 2 are used in the formula

(%)J = vj(e + ej)f(e + Ej’ t) - ‘vj(e)f(e, t) . (I11I-2)
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Ionization
(€j=154 eV)

Dissociation (€j=10eV)
<
—Electronic exc.

\W

Vibrational exc.
hbua

MU.28028

J

Fig. 2. Collision frequencies v° and energy transfers ej used in the

numerical computations.
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This corresponds to the first term of an expansion in powers of vy s given
by Eq. (D-5) in Appendix D, and it has a clear physical interpretation. This
> .

approximation is good when ¢ > (m/2) so for 1/2 rnvd2 below 1 eV, it is

v
good for most of the electrons, particuiarly those that contribute to ionization.

The collision frequencies for rotational excitation shown in Fig. 2
correspond to the cross sections determined from swarm data by Frost and -
Phelps.4 ‘The collision frequencies and energy transfers are so small that
the effects of rotational excitation can be neglected for values of vy above
?>><106 cm/sec. _ .

Figure 2 shows the collision frequency for excitation of the first
excited vibrational state of H, by electron impact, essentially as found by
Frost and Phelps.4 It is consistent with the experimental results of Ramien5
and Schultz,_6 but it disagrees with all theoretical computations, including that
of Chen and Magee.7 The experimental results by Schultz indicate that the
excitation of higher vibrational states can be ignored. The vibrational excita-
tion of D2 has not been investigated. |

The collision frequency for molecular dissociation shown in Fig. 2
was determined from the theoretical results of Edelsteina8 We must fecog—
nize?»‘g}»;éﬁf'using this coilision frequency with Ej =10 eV cannot aécéﬁnt for the
effects of molecular dissociation exactly, since the energy loss in exciting
the 132: state can vary from about 8.8 eV to about 15 eV. An er‘lergy loss of
about lOeV is the most probable, and Edelstein assumed that Ej =10 eV in
calculating the given cross section. This cross section exhibits the "anoma-
lous" threshold(behavior observed in some beam experirnents,9 and its mag-

9

nitude is consistent with swarm experiments by Poole,” and by Corrigan and

von Engel.lo The odd peaked behavior also agrees roughly with observations

by Sc:hultz11 and by Kruithof and Orns’cein.12 Although the excitation of higher
triplet states also leads to dissociation, for our purpose we can consider this
simply as electronic excitation.

The cross sections for the excitation of various electronic states
are almost completely unknown. For this reason, the effects of all but the
13Z+ state have been combined into the collision frequency shown in Fig. 2.
The shape of this collision frequency was médelled after that of helium, and
the magnitude was adjusted to agree roughly with the swarm data of Corrigan
and von Engel.lo The computational procedure suggested by Gryzinski,

which has had considerable success in predicting other cross sections, gives
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a collision frequency that is an order of magnitude larger than the one shown
in Fig. 2. Because this collision frequency is so uncertain, a variable multi-
plicative factor is introduced.

2. For lonizing Collisions

Only single-ionization collisions to the ground state of H2+ are

included. The collision frequency vi°"(e) given by Figs. 2 and 3 is used with
ej = 15.4 eV in the formula

(95 = 2 WIOBEN (e, PO e )de !t - vIOT(e)t(e, 1) (111-3)

at

ion

where Pion (e;€') is the probability distribution of energy ¢ of the electrons
leaving ionizing collisions in which the incident electrons have energy ¢'. This
formula is the first term of an expansion in powers of vy as given by Eq. (D-7)
in Appendix D; thus the discussion of the validity of Eq. (III-2) also applies to
Eq. (I1II-3). '

The collision frequency for ionization shown in Figs. 2 and 3 is
essentially that of Tate and Smith. 14 '

The distribution Pion(e; €') has not been studied in hydrogen. For
a single-ionization process we know that .Pion(e; Gv) is zero unless Oi € _<_ e - Ej
and that neglecting recoil, Plon(e; ') = Plon(el - ej - e;¢"). In using Eq. (III-3)

we assume that

P%e; ') = for 0<e<ée -e
c €=

i. e., that the distribution of € is uniform. Theoretical results of applying the
Born approximation to helium and to atomic hydrogen indicate that this assump-

tion is quite reasonable for €' below about 40 to 50 eV. With this assumption

Eq. (III-3) becomes

VIO ) (e, t) (111-4)

3. For Elastic Collisions

Because the angular distribution of the scattered electrons is

poorly known, we use
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Fig. 3. Collision frequencies used in the numerical computations:
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) :
A1 - 6 e ete, ae - N, 1) (11-5)
ot |, m ' '

where
G e ey = — L v |1 - 2 Py 2o v

4mv ZV' m Mv 2
£l | a
ey
of ) dv C(111-6)
Mv.
a
and
‘ V+v
Ne(e) = vl av ' (I11-7)
ZVdV
|V—vdl

as was suggested in Section II-C. In Eq. (III-6), €' ={(m/ Z)V'Z, and the limits
are given by |V' - v, | < v' <V'+ v and by Eq. (B-18).

The elastic momentum-transfer collision frequency used is given
in Fig. 3. Below 7 eV, the results of Frost and P’hélps4 are used. At higher
energies the cross section for elastic scattering was obtained by subtracting
the inelastic and ionization cross sections from the total cross section found
by Norrnand.l'5 The values of the elastic momentum transfer cross section at
30, 50,and 100 eV we calcﬁlated using angular distributions measured by Webb,1
and the values at 10, 20, and 30 eV we calculated from the results in helium
at 20, 30, and 50 eV as suggested by Bullard and Massey.17 It is clear that
the elastic momentum-~transfer collision frequency shown is uncertain at high
energies. This collision frequency was taken as zero above 143 eV as a con-
venient way of limiting the range of energy over which the eher_gy distribution
must be calculated.

To simplify'the equations even further, the integration in Eq. (I1I-6)
was done explicitly by assuming that, over each individual region of integr/a.—'
tion, O";i is effectively constant if ¢! < 3 eV, or vfli is effectively constant if
¢' >3 eV. The same procedure was used in explicitly evaluating Eq. (1II-7).
It is easy to verify that this giVes about the correct rate of energy spreading,
but, in retrospect, it turns out that this as's‘umption does not give the correct

rate of heating of the electrons.

6
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For energies below about 11 eV, this procedure gives the rate of
energy gain from elastic collisions to within about 15% of that given by Eq.
(II-27). The error changes sign at several energies so the error introduced
in the overall heating of the electrons by elastic collisions is much less than
15%.

For energieS'abd{Ie 11 eV, this procedure givés a rate of energy
gain from elastic collisions that is considerably higher than that given by
Eq. (II-27), but for these energies the energy gain from elastic collisions is
unimportant in comparison with: the energy loss from inelastic collisions and
ionization unless 1/2 Invd‘2 is la:rgve in the sense of Eq. {(C-3). 18 If 1/2 rnvd2
is large, our treatment of inelastic collisions and ionization gives too large
an energy loss since in Eq. (C-2) we have accounted only for the term involv-
ing ej. Thus we have two errors which tend to cancel. . To inve_sjtigate how
well they cancel, it is necessary to estimate the momentum-transfer collision
frequencies for inelastic collisions and ionization. These estimates indicate
that our procedure gives an overall rate of energy gain that is too high in
comparison with that given by Eq. .(C-3). The largest fractional error occurs
at about 25 eV and is of the order of 'ranZ/SeV, but the error introduced into
the overall energy balance is much smaller.

. We conclude that while our treatment of the collision terms is
somewhat crude, the errors introduced appear to be smaller than the uncer-
tainty in the collision frequencies. While all of the collision frequencies are
somewhat in doubt, the collision frequency for electronic excitationis most

uncertain.

- B. The Computational Procedure

We are interested in finding the el‘ecﬁrOn-en’ei‘gy distribution fo(e)
dnd the ionization rate B as determined by the eigenvalue equation (1I-30). -
I—Iols‘cein3 has used physical arguments-to show that the eigenfunction fo(e) of
interest-has the largest eigenvalue [3/ng° This suggests that the Rayleigh-Ritz
procedure could be used, particularly to find the eigenvalué 'B/n'g, but-we will
use a more physical approach.

.. It is clear that Eq. (II-30) can also be solved by putting an electron-
energy distribution into Eq. (II-28) and calculating its time evolution until it
approaches the form of Eq. (II-29). The resulting iteration procedure consists

of calculating a change in f(e, t) from
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Af(e,jt):(ngAt)fX(e SV )i, e | (111-8)

and adding this to f(e¢, t) to obtain f(e, t + At) The eigenfunction £ ( €) is ob— .
tained by normalizing f(e, t) after enough iterations have been made 50 that
Af(e, t) and f(e, t}) have the same dependence on €. All quantities of interest,

including the eigenvalue B/n_, can be calculated from fo(e). This iteration

procedure was used in the nimerlcal computatlons ‘

It is clear physically that if At 1s chosen small enough the above
-procedure will converge to the correct eigenfunction. However, to minimize
the number of iterations needed, At must be chosen as large as possible. It
was sometimes found that if At was chosen larger than 7, the collision time
for an electron, the iteration method converged to the wrong eigenfunction.
This problem could probably have been eliminated by restricting f(e, t) to be
nonnegative. ‘ ‘

To estimate the time re(iuired for the energy distrlbution to ap-
proach the solution (1I-29), we notice from Eq. (II-27) that the average energy
gain per elastic collision is of the order of nnvd2 The time required is thus
of the order of ( /rn )'T where € is the final mean energy of the electrons.
Because the electron drlft speed along -E in the lab frame is of the order of
Vd/(wb'r), this time corresponds to the electrons drifting along -E by a distance
of the order of?/eE, as also follows from energy considerations alone. These
estimates were verified by the numerical computations.

The procedure outlined above was used to compute fo(e) numeri-
cally for various values of - Vg i in hydrogen gas. In evaluating the collision
terms found in the previous section, only the 1ntegral 1n Eq. (III-5) for elastic
collisions was difficult. The region of ¢' for which G° (e; ¢') exists for a given
value of ¢ was divided into ten equal intervals, and the integral was evaluated .
by using a straight-line approximation to Gel(e; €')f(e', t) in each of these inter-

vals. The energy distribution f (¢) was calculated at 204 values of ¢ between

(
0 and 170 eV; the spacing of the(s)e points varied from 0.005 eV for e < 0.1 eV
to 2.5 eV for e >70 e‘V. On an IIBIV\/I 7090 computer, each iteration took less
than 2 sec,. and the number of iterations require-d for adequate ébnverg_ence
varied from 40 for the hlghest value of v, to 650 for the lowest. |

d,
Once f €) is known the other quantltles of interest are ea31ly cal-

(
: 0
culated. The elgenvalue B/n is given by
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___E))_fo(e)de . | | | (I11-9)

The mean energy of the electrons in the drift frame is

€ :[e fo(e)de , ' ' (III-10)
and from Eq. (B-2), the mean kinetic energy of the electrons in the lab frame
ise +1/2 mvdz.' The components of the diffusion tensor are calculated from

v velie) :

: DT 3o —z - efo(e)de» ,
2 (1 o |
D = — [|— ef (€)de = s III-11
-and
D, == |- 11 efg(e)de
| 3m Jvele)

which just correspond to Eq. (II-13) and are thus ohly valid when the "usual"
method of solving the Boltzmann equation is valid. '

To calculate the Townsend coefficiént a we must evaluate Vi from
Eq. (II-31). However, the momentum-transfer collision frequencies for the
inelastic and ionization processes are not known. For this reason Eq. (1I-31)
-was evaluated first by assuming that the momentum-transfer collision fre-
‘quencies equal the corresponding collision frequencies and then by assuming
~that only forward scattering'occurs so that these momentum-transfer collision

frequencies have their minimum possible values.

C. Results and Comparison with Experiment

Some of the computed results can be compared directly with recent

experimental results by Bernstein. 19, 20

The calculated values of B/n are shown by curve (1) of Fig. 4,
and the calculated values of Bv /ngvd are shown by curve (1) of Fig. 5 in com-
parlson with the experimental results. The cross-hatched area of Fig. 5
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Fig. 4. Calculated values of the ionization rate B in H, gas using the
collision frequency for electronic excitation shown in Fig. 2
multiplied by unity for curve (1) and by 4.7 for curve (2).
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Fig. 5. The electron drift speed v in the drift frame. The collision

frequency for electronic exc%ation shown in Fig. 2 was

multiplied by unity for curve (1) and by 4.7 for curve (2).
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indicates the uncertainty introduced by our lack of knowledge of the momentum-
transfer collision frequencies for inelastic and ionization processes. The
results in Fig. 5 depend mostly on the elastic momentum-transfer collision
frequency, which we have noted is somewhat uncertain.

The values of a/B calculated from curves (1) of Figs. 4 and 5 are
shown by curve (1) of Fig. 6 in comparison with Befnstein's experimental
results. The Va;lues é.gi’ee within a factor of 2 to 6, .which is not bad for an
initial attempt. The experimental values.are considered to-be more-accurate
than the calculai:ed ones, because of the rather large uncertainties in the cross
sections used. |

To.obtain better agreement with the experimental values of a/B,
the collision frequency for electronic excitation was increased to 4.7 times
‘that shown in Fig. 2. The results are shown by curves (2) in Figs. 4, 5, and
6. We see that the calculated results are useful in e.xtrapdlati_ng:fthé'.'eé{pe'r-i-
mental values of a/B to h:igher and lower values of v and in extrapolating the

d

ng to higher vy

Some typical examples of the calculated energy distributions are

- experimental values of VEB/vd

shown in Fi_gs.l 7, 8, and 9 in comparison with Maxwellian distributions with
the 'safne‘rnean.energy. We see that the c'alcul.'ated distributions resemble the
Maxwellian distributions fairly closely excépt far out in the ''tail" where the
calculated distributions are much smaller than the Maxwellian distributions.
. The calculated and experimental values of _ngDH are compared.in
Fig. 10. Using this experimental data and that shown in Fig. 5 and using an
analysis based on Maxwellian_energy distributions, Berns’cein19 deduced that
the elastic mvomentum-transfer collision frequency is 10 to 20% higher than '
that éhown, in Fig. 3 for energies of 0.3 to 4.0 eV. Such an assumption would
irnpr-.ove the agreement. between the calculated anci experimerital results in
Figs. 5 and 10. From the same :analysis, Bernstein deduced the mean energy
of the ele'ctrons, which is compared with the calculated values in Fig. 11. |
- From Eq. (IlI-11) we see that B-DH is proportional to the mean
energy as givenin Fig. 11. The calculated values of B DT/ng are shown in
Fig. 12, ’ ‘ '
The experimental results for D.2 gas shown in Figs. 5, 10, and 11
X As has been pointed out, the vibrational
excitation of D2 by electron impact has not been investigated. To account for

differ considerably from those for H

the magnitude of the difference in the experimental results for D_ and HZ’ one

2
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Fig. 6. The ratio of the Townsend coefficient a to the magnetic field B
in H, gas. The collision frequency for electronic excitation .
shown in Fig. 2 was multiplied by unity for curve (1) and by
4.7 for curve (2).
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dashed line. The inserted drawing (b) shows the ''tail'' of the
distribution on a logarithmic scale. '
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Fig. 8. The electrgn-energy distribution in H, calculated with
v, o= 1.88X107 cm/sec (so mvdZ/Z = 0.1'eV) and using the
collision frequency for electronic excitation, shown in Fig. 2,
multiplied by 4.7. The Maxwellian distribution shown has the
same mean energy, which is indicated by the vertical dashed
line. The inserted drawing (b) shows the ''tail' of the
distribution on a logarithmic scale.
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Fig. 9. The electron-energy distribution in H, calculated with
vg = 5.14X 107 cm/sec (so mvdZ/Z = 0.75 eV) and using the
collision frequency for electronic excitation, shown in Fig. 2,
multiplied by 4.7. The Maxwellian distribution shown has the
same mean energy, which is indicated by the vertical dashed
line. The inserted drawing (b) shows the ''tail" of the
distribution on a logarithmic scale.
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Fig. 10. The coefficient of diffusion along the magnetic field. The
collision frequency for electronic excitation as shown in Fig. 2
was multiplied by unity for curve (1) and by 4.7 for curve (2).
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F‘ig. 11. The mean enéréif of: the electrons in the gas frame. The
collision frequency for electronic excitation shown in Fig. 2
was multiplied by unity for curve (1) and by 4.7 for curve (2).
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Fig. 12. The coefficient for diffusion across the magnetic field.
The collision frequency for electronic excitation shown in

- Fig. 2 was multiplied by unity for curve (1) and by 4.7 for
curve (2). . : : -
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must assume that the energy loss to vibrational excitation in .DZ is only about
1/4 of that in HZ' Above about vy = 107 = cm/Sec, the results in HZ and D2
should be about the same. . ,
Engelhardt and Phelps21 are currently doing numerical computa-.
tions to find cross sections for electronic exlcitation and_dissdciation that will
fit the swarm data. Using these'_ results and those of Frost and Phelps, they
are also.doing calcuiations to compare with Ber;’lstein"s e'xperimental results.
Their results should be more accurate than ours, mainlsr bevcaﬁ.s'é of the cross

sections used.

+
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Iv. CONCLUSION v

The equations we have derived are suitable for calculatiné the
electron energy distribution in the drift frame, where the electron- velécity
distribution is expected to be nearly isotropic. The other quantities of inter-
est can also be calculateci. When the rms molecular speed in this frame is
very small in compariéon with thét of the electrons, the complicated equations
can be greatly simplified; the resulting equations agreé with those of the
"usual" méthod of solving the Boltzmann equation by expanding the electron-
velocity distribution in spherical harmonics in the rest frame of the gas.

From this approach we have gained insight into the physics and.
mathematics of the problem, particularly in regard to elastic collisions.
Specifically, we have shown that in the drift frame:

(1} Elastic collisions always tend to make the electron-energy
distribution a Maxwellian distribution with mean energy equal to that of the
gas molecules, which we denote by&.

(2) For electrons with energies far belowCP, the average energy
gain per elastic collision is of order 2m&/M.

{3) Under certain conditions the effect of elastic collisions upon
the electron-velocity distribution has the mathematical form of a diffusion in
velocity space.

(4) The mean guiding-center shift per collision in the direction
of -E in the gas frarﬁe is of the order of Vd/wb" | v

Although the numerical computations for HZ gas were somewhat
crude, a more accurate analysis would have been unwarranted because of the
large uncertainty in some important cross sections. In view of this, we con-

sider the agreement of the calculated results with recent experimental results

to be reasonably good.
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APPENDICES

A. Cross Sections of Interest and Their Properties

In this appendix we establish the nomenclature and notation for the
various cross sections of interest in the scattering of electrons from neutral
molecules and for the corresponding collision frequencies. We are primarily
interested in the effects of such collisions upon the electron energy distribu-
tion.

Consider a general collision in which an electron with velocity V'
collides with a molecule at rest and nj electrons leave the collision with veloc-
ities ::i’ where i =1, 2, ... nj. For each collision process j there is a dis-
crete energy transfer ej = (m/Z)aj associated with the change in the internal
state of the molecule. We assume that on the average the distribution of the
electrons leaving the collision is symmetric about the direction of ;', and we
define cos Gi: (3'-:/1)/v'vi. | _

In each such process the cross section O‘J(v') and the collision
frequency ;/j(v') = ngv'Oj(v') have a clear meaning, except perhaps in elastic
scattering where forward scattering is identical to norscattering. The rate
of transfer of momentum from the electrons to the molecules is determined
by :

vj(v')<v' - Zvi cos 9i>,. = v'vgn(v') , ’ (A-1)

J

which serves to define the momentum-transfer collision frequency

for process j, where O'I:jn(v') is called the momentum-transfer cross section
for the process. Notice that drjn(vt) is well defined even for elastic collisions
since forward scattering does not contribute.

To illustrate the importance of these cross sections, we consider
the rate of energy transfer from the electrons by process j. By eliminating
the final velocity of the molecule from the equations of conservation of energy
and momentum, we find

v'2 = Eviz + O.J. + m(Z;: —7;')2/M

or by expanding the last term and substituting Zviz = v'2 - aj because m/M is
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small, we getl
a, + = . > cosG E-ri Z Z
J M 1 M

(v
i>f

-G; (A-2)

. )—'

to within terms of higher order in m/M. Using tvhisr reeult the_ ra_te of energy

transfer from the electrons by process j is determined by

vj(v_')<_r_§1“ (V'z ~ Evlz)}] - Vj(Vi)Ej 1 Vl:jrl(vl) Zﬁm (lmv|2)

. 2
ANTEQ YT, e
i>0 1 . S

and is thus determined completely by the collision frequenc’y and the momentum-
transfer collision frequency for the process, except in ionizing collisions where
the last term: contributes. Notice that the last term involves quantities which
vare not easily measurable.

In an electron-attachment process, n. = 0, so the summations in
the above formulas vanish. Thus Eq. (A-1) implies vj(v,f') = vl;in(v',),'.Eq. (A-2)
implies aJ = v'z, and the rate of energy transfer from the electrons given by
~Eq. (A-3) reduces to v I (v )1 mv'Z/Z

-In elastlc or inelastic processes, nj = 1. These;two-body colli-
8ions are characterized completely by a discrete energy tran.sfer €. (which is

zero for elastic .collisions) and a diﬁferential cross section‘O'eJ(G;‘vl')._ The |

cross section is

Sty T | -
0Y(v') = Zﬂf- OG(G;V') sinf d6 . : o (A-4)

The momentum - transfer cross section can be.determined from Eq. (A-1) by

12 1/

using 09(9, v')yand v = (v from Eq. (A- 2) the result is,
ol (v') = Zﬂf_ O'é](e;v')esine i1 -{1--L |, cos6lag . (A-5)
v

Notice that the last term in Eq. (A‘—v3) va_h_ishes for both elastic and inelastic
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processes and that the first term vanishes for elastic collisions. Both Egs.
(A-3) and (A-5) reduce to the well-known results for elastic colliéiéﬁs. S
| - For ionization processes, nj_>_ 2, and again there is a discrete
energy transfer eJ.. The two quantitigs that are the most easily observed ex-
perimentally are the cross section GvJ(v?') and the distribution in angle and
speed of the electrons resulting, which we denote Ij(G, v; v') and which is

normalized as

anﬂ. a6 siri.@[dv 0o, viviy=1 . (A-6)
0 _ '

Using these quantities, the momentum-transfer cross section evaluated from

Eq. (A-1)is

. . : T .
,_GrJn(V') = oI (v") 2»TT[ do sin'Gde (s, v;_\_r')(l -y cos 6/v'y .
. : o '

Notice that in principle the rate of energy transfer from the electrons could
be evaluated by using these same quantities, although Ij(9, v; v') will-usually
not be known sufficiently accurately. Usually Eq. (A-3) will give a more ac-
curate result even though the last term is not known. This is because the last
two terms of Eq. (A-3) are usually small compared with the first term. since
in ionization processes aJ. is relatively lalrge., At high energies where these
terms could contribute, there is experimental evidence that the angular dis-

"scattered' electrons has a prono‘u'nyced forward peak while

tribution of the
that of the "ejected” electrons is more nearly isotropic. This suggests that
the third term of (A-3) is small compared with the second whenever either is
important. | _

By summing Eqgs. (A-1) and (A-3) over all collision processes, we
find that the rate of energy transfer from the electrons is determined by
1,2

~ mv +2'v‘j v')e.
2 J. ( )J

where the last term in:Eqg. (A-3) has been omitted, and that the rate of momen-
tum transfer from the electrons.is determined by V'vm(V'). 'I'he total momen-
tum transfer collision frequehcy vm(v') is just the sum . of v‘l],n(v“) over all
collision processes j. Notice that the total cross section, which is often

e . 15 .. - . : :
measured in beam experiments, has not appeared in our formulas.
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B. Kineratic Functions in the Collision Terms '

In the derivations we make extensive use of probability distribu-

tions. The probability distribution of a real quantity a is given by
9 P{a<a
da

)
P(a) = 0

0 a=a

where P(a< aO) is the probability that a is less than Q- With this definition,

P(a) is normalized such that [P(a)'da:= 1; in'such integrals the integration is

over all values of a, although usually the integrand is nonzero only over a
finite range of a.
The probability distribution of a for a specified value of another

parameter B is denoted P(a; B). In this case

P(cr):.:;fzp(a; B) P(p) dp

where the above normalization is automatically obtained. -

If B is a monotonically increasing function of a, then we have

)

Pla <ay) = P|B < Blag)
and by differentiation we have-
P(a) = P(B) |22
- T BsBla)

where again P(a) is'properly normalized. . The same formula is. valid if B is
a monotonically decreasing function of a. '
We adopt the convention that a probability' distribution is nonzero

only where the formula gives a positive, real result. For example,
Pla) = 2(m) (1 - X2 fora> 0.

implies that P{a) vanishes éxcept in the region 0 <a < I.

1. Derivation of P(v;¢€)

The equations of motion of a nonrelativistic electron in the gas

} = ~ .
frame with a homogeneous electric field E = E ay and a homogeneous magnetic
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field B = B 4, can be written in cartesian components as ‘
Vy(t) = vy - V sin€ sin (wbt +vy)

vy(t) = V sin§ cos (wbt +v) | B (B-1)

and v,(t) = V cos§ , with 0 < g <m ,
where V, &, and Yy are constants determined by the initial conditions, vy = cE/B
is the EXB drift speed, and w, = eB/mc is the eléctron—cyclotron frequency.:

b
The electron energy in the drift frame is

2 2 2 | _
e =mV~/2 =[m/2] {v (t) - ZVde(t) + vy J , B (B-2)
and the electron speed in the gas frame is given by

Vz(t) = V2 + vd2 - ZvdV sin £ sin (t.obt +v) - : (B-3)

Consider a group of electrons with energy ¢. According to the
discussion in Sec. II-B-3, the most géneral such group of inter.est has random
phases and a distributioh of § which is symmetric about m/2. For the purpose
of finding the probability distribution of 3 = sin (wbt + vy), the distribution of

phases may be normalized as

P(wbt +y)=1/m for -m/2 < (‘*’bt + y)iw/Z
Since in this inter‘v‘alg is a monotonically increasing function of'wb-t +v, we
find : RET ,
P = (1 -2,2)—1./2/‘rr.."-. | o (B-4)

From Eq. (B-3) we see that for specified values of € = mVZ/Z and £, vis a

monotonic function of 3 Thus we find

-1/2
P(v; £, ¢) = V{vd,?yz, S;inz;g - % (Vd_z +_Vv2 - VZ)Z] / /T
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The most general distribution of € thdt is symmetric about TT/Z can
be written as '

" P(Eie) = = sink 1+Z A (E)P (q)

s=1

1
2

2s
. properly normalized since

[ sin € d§ =2 ,
0 ‘

where q = cos §.and. P, (q) are-the even Legendrg polynomials. This form is

and
jo sinf P, (cos£)dt =0

Using these results the desired function P(v;¢) is given by

P(v;e) =f'P‘(§f"; £, )P (E; ¢)d
q
O [~}
v dq - )
U A o L+ Ag(e)P,o(q)
2mv'V (q Z;qZ)l/Z ' Z s zs
d -q 0 s=1
-0 : N
- Y agaf2af l+} S (B-5)
v V 2
d .
for ]V - d\ _<_V§ vV jljvd
2 2 2 22, 2.2 >
where o = 1= (Ve 4y ? - B/advE L S

2. Derivation of P(e; v', v, 8, ¢')

Denoting the velocity of the incident electron in the gas frame by
V' and the velocity of a resulting electron by v, we define an angle such that ,

cosy = VX'/V w1th 0Ssy<Lm From Eq. (B-2) we see that .
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cos . = (V'Z + de - V'Z)/Zvdv' - (B-6)
where the energy of the incident electron is €' = mV'Z/Z‘.. .Referr‘ing to the

spherical triangle, shown in the following sketch, and using a formula‘from

spherical

v :_Vd/ Va = ax

trigonometry, we find v, =v(cos 6 cosy - sin8 siny cos $). By using this re-

sult;, Eq. (B~2) becomes

€ = m'VZ/Z_ = (m/?2)(v2" +. \‘/dz)’- mvdv(cosecostb - sin @ siny cos ¢). (B-7)

~ Since ¢ is a monotonic function of cos ¢, we have

P(e; v', v, 0, €') = Plcosd;.v', v, 8, e',)/(rnvvd'sinG sin )

where, because we have assumed the: scattering is independent of ¢, we argue

as in deriving Eq. (B-4) and find
P(:cos ¢; v", v,0,¢€") = n'l(l - coszcl>)_l’/2

By solving Eq. (B-7) for cos¢ and substituti‘ng’_ aibé;ve,:.'\i;/e get
P(e; v', v, 6, €') = ZR_l/Z/mTr ,

whgre

2 4 2v.v cos b cos 4))2" , - (B-8)

R = 4v ZVZ sinZG sir’r2 g - (V2 - V2‘- - vy 4

d.
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and where P(e; v', v, 0, ¢') is nonzero only when R>0. To investigaté this con-
dition we write o "

acos-29 + 2bcos B + ¢ ,

R =
where a= -4v 2v2 R
. d ]
b:I-ZvvcostlJ(VZ—vz-vz) , (B-9)
d d
and c = 4Vd2V2 sinZLIJ - (V2 vl oy 2)2
d
Since a < 0, we have R > 0 only when
' [—b + (b2 - éc)l/z]/a < cosf < [—b = (bzA - ac)l/z]/a , {(B-10)

and b2 - ac > 0. The latter condition is easily shown to reduce to the "triangle"

inequality

<v<V+ty “ (B-11)

- a

al
which has an obvious kinematic interpretation. The limits on cos 0 from Eq.

{(B-10) are also kinematic and are easily shown to be between -1 and +1.

3. Derivation of PJ(e; v', 0, €') for Elastic and Inelastic Processes

For elastic and inelastic collisions, the quantities v', v, and 6 are
not independent but are related through the conservation of energy and momen-
tum. From (A-2) with nj = 1, this relationship is

V'Z - v2 = aj + 2mv'(v' = v cos 6)/M - (B-12)

to within terms of higher order in m/M. The above results are thus not in
the most useful form for elastic or inelastic collisions. Using Eq. (B-2), we
have €' = mV”'Z/Z = (rn/Z)(v'2 - 2vdv' cosy + vdz), and by subtracting this from
Eq. (B-7) we find

; 2.)

¢ - = (m/2)(VE - V'Y = (m/2)(v2 - v'?)

' ;-i-'mvd cos (v - v cos8)

-+ mvdv-'sin O sind cos ¢ (B=- 13)
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In using this formula we will neglect m/M (but not mv‘/Mvd) compared with
unity by using Eq. (B-12) in the first term and then using v = (v?2 - (1.)1'/2
throughout. From this point on we will treat Eq. (B-13) with these sibsﬁitu—
tions as an exact formula, keeping all terms involving m’/M, and we will use
v = (v'2 - o..)l/2 simply as notation. Since this formula is as accurate as we
desire, the resulting physics will be correspondingly accurate; although as
will be pointed out, some of the intermediate formulas are not.

With these substitutions, Eq. (B-13) can be used instead of Eq.
(B-7). Proceeding as before, we find that Eq. (B-8) is replaced by

Ple; v', 6, ¢') = ZRj_l/Z/mTr , _ | . (B-14)

where

R, = 4vd2v2 sin? ¢ sin2 9 - [VZ - V'@

+ a.
J

1

- Z(Vd cos¥P - mv'/M)(v' - v cos 9)5 ,

-

and where pJ(E;\,‘, 0, ¢') is nonzero only when Rj_>. 0. As before, we write

R.=a' cos®0 +2b’ cosf + ¢

J
where
a' = —4:\/2(vd2 sin? ¢ + AZ)
b' = -2AVB (B-15)
ct = élvdzv2 sin? g - B‘2
. 2 (2 ;
and where A = vy cos ¢ - mv /M and B =V - Vo o+ aj - 2v'A. As before,

since a' < 0, we have Rj—> 0 only when

[H (b2 - a=c‘)1/zi/al < cost< b - o2 -2t/ 2ya (B-16)
<

and when b"2 - a‘c’ > 0. The latter condition implies that

4vd2v2 sin’ ¢ - B% + 4v2A% > 0. (B-17)
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Addition of élvdzv2 s’in2 b+ (B - ZVA)Z_? 0 to this shows that
R .
J

—— = -2a' + 2b' >0
9(cos 0) -

cosB = -1

' . 2
whenever b'" - a'c! >0.

Similarly, the addition of 4vd.2V,'-2 sinz' y + (B +.2vA)22 0 shows
that
oR. ‘
— =2a'+2bp' <0
d(cos B) -
cos @ =1

whenever b'v2 -a'e"> 0.

These results show that the limits on cos 6 given by Eq. (B-16)
~are between -1 and +1 whenever b'2 - a'c'_>0, since we see from Eq. (B-14)
that Rj,f_Owhen cos 8 = *]. |

Substitution of B, A, cos{y, and v into Eq. (B-17) yields

v'4 - ZV'Z[VdZ + V2 + o.j + ZIn(V'2 ‘—VZ)/M:i + (V2 - vd2 + c.1j)2
a.v’ 2 _v3y/Mm< ;
+ 4ajvd - 4maj(vd V'Y)y/M<0. (B-18)
This quadratic inequality in v'2 can be solved for the limits on v'. The re-

sults are just kinematic; for example, if molecular recoil is neglected, the

limits are determined from the ''triangle' inequality

,1V-—le_<_(v'2 —aj)l/zf_(V+vd) . (B-19)

However, since for V > Vd these limits are quite narrow, the recoil terms
must be retained, even though they are not correct because of the approxima-
tions made in using Eq. (B-13). As discussed previously, the physical re-

sults will still be accurate.
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C. Rate of Energy Gain and DI‘lft Speed of the Electrons

The derivations in this section will proceed in the Splrlt of Appen—
dix A, and the results found in that section will be used.

1. The Rate of Energy Gain

From Eq. (B-2) we see that the increase .in the electron energy in

the drift frame by a collision is

2

Zei - ¢ = (m/Z?(ZviZ -v'7) - mvd\zv - V;)
+ (nj - l)(mvdz/..?.) (C-1)

where quantities referring to the incident electron are primed and the sums
are over the n, outgoing electrons. We now average Eq. (C-1) over every-
thing but v' for a particular collision process by using Eq. {A-3} to evaluate
the first term and using Eq. (A-1) to write the average of VXF - Evix as -

x rn /v '); the resulting energy gain per collision is

<25. - €' Vr>j = (nj - l)(mvdZ/Z) +[v1‘,]n(v")/vj(vl")} [rnvdvxt

¢

- m /M] “EJ

[The last term iﬁ Eq. (A-3) was droppéd; this means that the term involving

m/M is somewhat incorrect _for ionization processes. ] We now obtain the

rate of énérgy gain per electron of enévgy ¢’ by process j by multiplying with
viv! )} and then averaglng over v’ by multlplylng by P{v' ,ey) and integrating

over v'. The result 1s
Wj‘—'j”m" 2/ : I (¢')2¢'m/M
(e') = NY(e )I.(nj - T}y, /2) - ¢ - Ny, fe')2e'm
. . Zr_] i (ol el t i (C 2
+ mvdjvm(v P{v ;e Mg /vd)dv -2)

where N‘j and Ngn are mean collision frequency functions as defined in Sec. 11-
C-2. Since the integral in the last term is of order Ni]rn’v the sefzond ter;h is
significant only for energies far greater than rnvd2 and e. T_his term was
thus evaluated by replacing the mean value of mv' /2 by ¢'. We also see that
this term will almost never be significant for ionization processes, since

these processes have relatively large values of Ej'



-51- UCRL-10366
To obtain the rate of energy gain per electron of energy.¢' by all

collision processes, we sum Eq. (C-2) over j and find

W(E!) = dez‘[\‘/m(Vi)P(VF« ei)(vxﬁ/vd)dvv _ Nn‘é‘l)z'enm/M
+ JZNj(e') {(nj - 1)(mvd2/2) - EJ} . (C-3)

Notice that only the collision frequencies for all but elastic processes and the
total momentum-transfer collision frequency are important.
2. The Drift Speed in the -E Direction

From the equations of motion (B-1) the y position of an electron

relative to that of its guiding center Y is givenby y - Y = (vd - VX)/o.)b. - Thus .
after a collision at y,.the sum of the displacements of the guiding centers of
the outgoing electrons relative to the position of the guiding center of the in-
cident electron is
Ty §

?(Yl - Y ) - (njVX - ?le)/wb
where we have used the notation of the last section. The drift speed in the
drift frame of the electrons of energy ¢' due to collision process j is now

found by using the negative of this expression instead of Eq. (C-1) and pro-

ceeding as in the previous section. The result, which is exact in this case, is

: v . S . .
_ V]%(ei) = Zu—i—f[vél(v“) + (nj - l)vJ (v')] P(v'; er)(vxﬂ./vd)dv" . | (C-4)

Electron-attachment collisions make no contribution since nj = 0 and Vf]n = v

as was shown in Sec. A. For elastic and inelastic collisions, only the momen-
tum-transfer collision frequency is important since nj = 1. '

The drift speed produced by all collision processes is obtained by’
summing Eq. (C-4) over j. Notice that only the collision frequencies for ion-
ization and electron-attachment processes and the total momentum-transfer

collision frequency are important.

3. Properties of the Integral[v(v) P (v; e)(vX/Vd)dv

Integrals of this form appear in Egs. (C-2), (C-3), and (C-4). We

now write the value of this integral as N{¢) K (¢), where N(e¢) isthe mean collision
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frequency function corresponding to the collision frequency v(v) and K(e) is a
factor of order unity.

To investigate the nature of K(e), we may use P(v; é) as‘give:n zby’ -
- Eq. (II-12), and we may use Eq. (B-2) to write v, in terms of V; The result-
ing formula for K(¢) can be evaluated if v(v) is known. For example, if v(v)
~is a constant, then K(¢) = 1, and if v(V)) is proportional to v, then
2

K(e) = 1+ (V° - Vd2/5)/(3V2 + v

2 P >
d) it Vv,

d

and
2/ 2,2 o2 2. . -
K(e)= 1+ (VE/vi(v® - v /5)/(3Vd2 +V) VS
More useful formulas are found by cérrying out the integrations by expanding

the integrands in Taylor series about the larger of V or vy The results are

1

9 v
3v(V) 8V ve
9 | V2 .
= 21 [V3v.(V) +0 —dz fV>v,, (C-5)
3vev(v) 9V v ‘
and
2 ov(v,) 4
K(e) =1+ —Y ®d+ov4 iy, >V,
3vdv(vd) KNy Vd'
where the symbol O denotes ''order of magnitude. " In general, K(e) is greater

than 1 when v(v) increases with v.and is less than 1 when v(v) decreases as

v increases.

D. Comparison of the Two Methods of Solution

We will now show that, with the assumptions that the e‘lé’ctron
speed is much greater than yd.and that elastic collisions are much more prob—_
‘able than any other, the results of our method of solution of the Boltzmann
equation agree with those of the "usual' method as given in Sec. II-A. To
facilitaté the comparison, we will introduce a distribution of speed V in the
drift frame by defining f(e, t) = 4wVg(V, t)/m, where ¢ = mVZ/Z. Our ba_sicu

equations (II-19) and (II-20) then become

dg(V,t) \ [og : 3
at —Z(at). ’ _ , <D.- Y
J J
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and

>

En
j

( 9 ) = %[G‘j(e;e')V'Zg(V‘, t)dv' - Nj(e)g(V, t) . (D-2)

Because we are considering V > v _, NJ(e) can be evaluated by expanding the

integrand of Eq. (II-21) in a Taylor series about V. The result is

. ) v. \2 2 ) ‘
N (e) = v (V) +{-2]: A [VV‘](V)} Foon (D-3)
VI 6 avt | \

which is just an.expansion in the even powers of vd/V. The first term of Eq.
(D-2) will now be evaluated in a similar manner for each type of collision.
For electron . attachment collisions, the first term of Eq. (D-2) is

zero, so to the lowest order in Vd/V

= (Vg(v,y) . (D-4)
. j )

|82
ot

For elastic and inelastic processes, we use Eq. (II-23) and neglect

molecular recoil. By interchanging the order of integration we then find

1/2
] o
S
m j 2 ] v J(V') ' 1 ! 1
= IGe; )V Tg(V', t)d V' = —2——-'-‘1/—2 Vig(Vv', t)dVv
A 4vd2V (v'“-q;)

1 av'v'v

s

- . ! )
{(\V-vd)zﬂlj]l/z J\v'—vd“?

where the limits were found by rearranging the "'triangle'' inequalities
2 1/2
[v' -vdliv"_<_V'+vd' and |V—Vd|_<_(v' /

V' can be carried out as above by expanding the integrand in a Taylor series

- aJ.) <V + vg. The integralover

about v'. The result is

vitv '
‘ d
r 2

a2

y ,
Vig(Vv', t)dv' = 2vd vig(v', t) + —2— [v'g(v', t)] + .-

av'e

N

/fiv‘:-vd? : L ‘
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We can now do the remaining integral by expanding the integrand about

(V2 + aj)l/z. For inelastic collisions we keep only the term of lowest order

in vvd/V and find

2 1/2
V™ +a.) .. - .
g ¢ itz 1/2} 2 1/2 j
5| = V. + a. (V™ + a. , t] -vi(V)g(v, t) . (D-5)
- ) I+ a) Pl vE r ey g -
For elastic collisions, a. = 0 so these terms cancel; the terms of order Vd/V

also vanish so the terms of order vd2/~_V2 must be retained. After a consider-
able amount of algebra, the result may be written as

2

Vv : : T
d 6 |2 elyy08(VLt) | ' D-6
3y2 oV ’_V Vm V) ERY T o (L . )

el
For ionizétion processes we use Eq. (II-11) and }inte»rchange the

order of integration as above to find

§
/V-i-vd , %V +Vd
m 2 o g dv j |
= GJ(e,e')V' g(V', t)dv'= J b= dv'v‘vJ(V')PJ(vY,V) PoVig(Vv', t)dv!
v 4Vd2V ] v i
, it
/\/jvd S v —vd§

As above, we carry out the integrals over V' and v, keeping only the lowest

order of vd/V. The result is

-

o JJdvpvgzv%v“)PJ(v;v¥>g(v‘, t) - v(Vig(v, ©) . - (P-T)

ot

j ve .
As we expected, Eqgs. (D-1), (D-4), (D-5), and (D-7) agree with
Egs. (1I-10), (11-14), (II-12), and (II-13) respectively of Sec. II—A. The re-
sults for elastic collisions in Eqs": (D-6) and (I1-11) also agree'in the large

w T limit, except that in Eq. (D-6) molecular recoil and the finite témperafure
of the gas were neglected. The algebra of deriving the recoil term directly
from this approach has not been carried out. The finite-temperature term is
discussed in Sec. 1I-C-3 and the form of the recoil term can then be deduced

from the fact that when Vd

g(V) < exp [-<m§2/z)/kr} .

=0, (ag/at)el must vanish when



-55- UCRL-10366

We now consider the drift speed of the electrons. From Eq. (II-31)
we have, since we assume elastic collisions are the most probable,

Y
= - %J £(e)vgp(€)de = - EB%H f(e)Nfﬁ(e)Krer{(E)de ;

VDY

where n =ff(e)de . Changing to a distribution of speed as before and using

Nfi(e) and Ki(e) to the lowest order in vd/v from Eqs. (D-3) and (C-5), these .

equations become

-4y 8 [3 el | 2
VDy: :3wbn g(V) v {V Vm(V)J d‘V o, with n =47 [ VTg(V)dV . (D"8_)

We see that this agrees with Eq. (II-17) of Sec. I1I-A.

. We conclude that, in the large w7 limit, our approach contains
all of the results of the '"'usual' method of solving the Boltzmann equation,
although we have not discussed the diffusion tensor here. From our approach
we see that the results given by the "usual” method are valid whenever the
electron energy is high compared with mvy /2 (since only terms of order

/V2 have been neglected) and Whenever all other collision frequencies can
be neglected in comparison with the elastic momentum-transfer collision fre-
quency. Thus, in the large w, T limit, it does not appear neceseary to assume

the energy distribution is near the equilibrium distribution.
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E. Partial List of Functions and Symbols

Appearing Frequently in the Text

Unit vector in the x dii‘ectionu 5
Electron energy distribution in the drift frame. )
Normalized “steady-stdate' electron energy distribution -
[Eq. (11-29)].
Electrén distribution function in the gas frame.
Distribution of electron speed in the drift framev
[Appendix D].
Energy-scatter function for process j [Eq. (1I-20)].
See Appendix A [Eq. (A-6)].
See Sec. 3 of Appendix C
Gas density.
Number of electrons leaving a collision of process jv
[Appendix A]. -

Mean-collision-frequency function for process j [Eq. (1I-21)].

Prob.'albility distribution of a for specified B, - - -
[Appendix B]. |
Electron velocity in the gas frame.
cE X E/B2
Drift speed aldng -E in the ga's frame.
Electron speed in the drift frame
Rate of electron energy gain by process j [Sec. 1 of Appendirx Ccl.
Zej/m
Rate coefficient for production of free electrons

[Eq. (11-29)].
[1+ (8w )?T

Electron energy in the drift frame

1

Inelastic energy transfer per collision of process j
[Appendix A]. |

Angle of deflection.

Collision frequency for process j [Appendix A].

Momentum-transfer collision frequency for process j
[Appendix A].

Angle between B and the electron velocity in the drift frame.
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Cross section for collision process j [Appendix A].
Differential cross section for process j [Apperidix Al
Mean free time between momentum=-transfer collisions.
Azimuthal angle of scattering. | |
cos™ (v /v) with -7/2 <y < /2 [Eq. (B-6)].
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10.

11.
12.
13.
14.
15.
16.
17.

18.

19.

20.
21.
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