
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Scalable and Expressive Spatial Analysis and Modeling

Permalink
https://escholarship.org/uc/item/44k729p1

Author
Kang, Yunfan

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/44k729p1
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Scalable and Expressive Spatial Analysis and Modeling

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Yunfan Kang

September 2023

Dissertation Committee:

Prof. Amr Magdy, Chairperson
Prof. Ahmed Eldawy
Prof. Jiasi Chen
Prof. Vagelis Hristidis



Copyright by
Yunfan Kang

2023



The Dissertation of Yunfan Kang is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First and foremost, I would like to express my gratitude to my advisor, Professor

Amr Magdy. I would not have been here without him. Professor Magdy has always been

supportive and devoted. His passion twards research and education and insightful thinking

guide me to broaden my eye sight towards scientific research sharpens my ability in problem

solving. He spends hours and hours to revise my manuscript for each single submission and

I learned a lot about story telling and academic writing through in this rewarding process.

It is still a myth for me about when Professor Magdy would go to bed or take a break

becasue he seems always available for me.

I sincerely thank my parents Prof. Qinma Kang and Mrs. Xiangling Kang. They

show me how knowledge can change one’s life and have been my role model since I was a

child. My father is my first teacher in computer science and I still feel proud that I still

draw inspiration from his reacher in my most recent work. My mother is the person who

cares about me the most and I greatly appreciate her effort and life wisdom.

I would also thank my dissertation committee members, Prof. Ahmed Eldawy,

Prof. Jiasi Chen, Prof. Vagelis Hristidis as well as Prof. Ran Wei who served as the

committee member for my qualifying exam. Your insightful and encouraging advices have

made my works solid in every espect.

I want to thank Professor Sergio Rey for the support and the insightful discussions

in spatial analysis and regionalization. I really admire his profound knowledge in spatial

data science and well as his passion towards tech and life. I hope I could be like him when

I am old.

iv



In addition, I would like to thank my labmates Yongyi Liu, Abdulaziz Almaslukh,

Hussah Alrashid, and Laila Abdelhafeez. Thank you all for your help and indepensible

contribution to our works. I would also thank the aluminis of UCR Geospatial Science

Center for the great kindness and research insights. Let’s go to the bar when we meet

again.

Last but not least, I would express my great gratude to all the coauthrs for my

paper. Chapter 3 of this dissertation is published in ICDE 2022. Chapter 5 is published in

SIGSPATIAL 2019. Chapter 6 is published in ICDEW 2020.

I could not have completed this dissertation without the great help with all these

great people aforementioned above and not mentioned.

v



To my parents for all the support.

vi



ABSTRACT OF THE DISSERTATION

Scalable and Expressive Spatial Analysis and Modeling

by

Yunfan Kang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2023

Prof. Amr Magdy, Chairperson

Spatial data analysis plays a crucial role in understanding the complex dynamics of

our world across various fields including geography, urban planning, environmental science,

and transportation. As spatial data becomes more intricate due to the advances in geospatial

technologies, there is an urgent need for more efficient and expressive tools and techniques

for its analysis and modeling. This dissertation addresses this demand, presenting a series

of interconnected research contributions that have enhanced the landscape of spatial data

analysis.

Firstly, the dissertation introduces the open-source Python Library Pyneapple.

Pyneapple encapsulates 3 modules of algorithms for regionalization problems, machine

learning techniques, and group-by queries, providing a platform for scalable and expressive

spatial data analysis. Secondly, among the components of the Pynapple, we highlight the

algorithms for solving the Expressive Max-p regions (EMP) problem and the Spatial Net-

work Hotspot Detection (SNHD). EMP is a key component of the regionalization module

of Pyneapple. It expands the traditional max-p regions problem by supporting multiple
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constraints with SQL aggregates and range operators, which allows for more precise and en-

riched spatial analysis. SNHD illustrates how to identify statistically robust spatial hotspots

efficiently and effectively, contributing to various practical fields, including transportation

analysis and crime detection. Subsequently, it introduces ”CleanUpOurworld”, a compre-

hensive and interactive database for visualizing global litter data. This tool illuminates the

global litter problem by making spatial data accessible and easy to understand at various

spatial scales. Last but not least, the dissertation presents ”HiDAM”, a novel, research-

friendly data model for high-definition maps that offers detailed and nuanced analysis of

both on-road and off-road spatial data.

Collectively, these works embody a significant stride in spatial data analysis, of-

fering a more nuanced understanding of complex spatial data and its practical applications.

By developing more advanced tools and extending the existing techniques, this dissertation

presents meaningful and impactful contributions to the field of spatial data analysis.
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Chapter 1

Introduction

The power of understanding and interpreting the world around us through spatial

data has been a transformative force across a variety of disciplines. As we increasingly

transite into a data-centric era, the significance of spatial data analysis, a multidimen-

sional perspective that provides valuable insights into the geographic context of data, is

indisputable [1–3]. With applications spanning fields as diverse as pathology [4–7], urban

planning [8–10], transportation [11,12], and many others, spatial data analysis serves as the

bedrock upon which critical decisions are made and policies are formulated [13–15].

The world we inhabit is not merely a flat plane but a complex matrix of intercon-

nected physical and social systems. Our cities, environments, and transportation networks

all function within the paradigm of space. The characteristics of these systems and their in-

terrelationships are intrinsically geographical, underpinning the importance of spatial data.

Therefore, understanding these entities necessitates the analysis of spatial data, an endeavor

that is as vast as it is intricate.
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Spatial analysis is not only becoming more prevalent, but it is also increasing in

complexity, caused by the increasing data volume and the diversity of analysis tasks. On one

hand, the increasing availability of digitalized spatial data, such as the data collected from

geo-enabled personal devices and social networks, opens new opportunities for applications.

On the other hand, emerging new technologies have also spawned new concepts and brought

imagination into reality. The location of the criminals can be determined through big spatial

data analysis and hotspot detection. Smart cities and autonomous vehicles can potentially

bring convenience to everyone. However, the tools and techniques available for spatial data

analysis often lag behind the scale and complexity of the data. Existing methods can fall

short when applied to the rich, diverse, and large-scale spatial datasets now available. This

highlights an urgent need for the development and enhancement of more sophisticated tools

to handle, analyze, and visualize spatial data.

This dissertation delves into the above-mentioned challenge, outlining my research

contributions in the realm of spatial data analysis. In the journey of research that unfolds

in the pages that follow, we present an array of pivotal contributions: from an open-source

library optimized for scalable and expressive spatial data analysis to innovative extensions

of analytic techniques that enrich regionalization constraints. We also introduce a sub-

stantial performance improvement in hotspot detection on spatial networks, delve into the

intricate task of integrating and visualizing global litter data, and lay the groundwork for

high-definition data models tailored for advanced applications. Cumulatively, these ele-

ments form a cohesive narrative, illustrating how state-of-the-art advancements in spatial

data analysis can not only yield meaningful insights into our complex world but also drive
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informed decision-making in addressing today’s pressing challenges. This introductory chap-

ter serves to briefly underline the critical importance of spatial data and the opportunities

we observe in spatial analysis, setting the stage and providing the overarching motivation

for the entire dissertation.

1.1 Spatial Data and Spatial Analysis

As we enter the era of information, data has become an indefensible component

of our personal life and society. Spatial data, one of the most accessible yet diverse data

types, describes the distribution and attributes of phenomena that are related to a location

on the surface of the earth or in a certain type of coordinate [16,17]. It provides us the basis

for understanding the world around us in a geographic context and empowers applications

that we could not even imagine before [18, 19]. The usage of spatial data ranges from the

notification about a local weather altert that we receive on our phones to the data-driven

decision-making of the countries. Spatial data is so important that the White House defines

the National Spatial Data Infrastructure, which is described as ”the technology, policies,

standards, human resources, and related activities necessary to acquire, process, distribute,

use, maintain, and preserve spatial data” [20] to improve the coordination and use of spatial

data.

Spatial data are formal representations of geographic features. The geographic

features are usually abstracted as points, lines, and polygons. Points represent certain events

or points of interest, such as the location of crime cases and the location of restaurants.

Lines connect the points in a specific order and can carry spatial properties, such as road
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segments and power lines. Polygons are composed of enclosed lines and usually depict the

boundary of a region, such as the boundary of a state. As a result of the complexity of the

spatial data, specialized techniques are designed to store and handle these data efficiently,

such as geographical information systems (GIS) [21], spatial databases [22], and spatial

indices [23].

Spatial analysis is one of the key components of GIS systems and lays the foun-

dation for utilizing spatial data [24]. It has attracted the attention of both computer

science [25, 26] and social science researchers [2, 27, 28]. Originating from the map that

is used to analyze the 1854 Broad Street cholera outbreak by Dr. John Snow [4], spatial

analysis has gone far beyond mapping and epidemiology. Nowadays, spatial analysis allows

for a deeper understanding of spatial phenomena by examining the distribution, patterns,

and relationships between spatial data. As summarized by Dr. Luc Anselin [29], the spatial

analysis aims to answer four fundamental questions:

1. Where do things happen

2. Why do they happen there

3. How do they affect other things and how does the context affect them

4. Where should things be located

To address these questions, spatial analysis has gone a long way to develop numerous ways

to visualize, discover, and explain the patterns behind the phenomena and make use of the

patterns for further optimization, regression, and prediction.
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1.2 Scalability and Expressiveness: Limitation and Oppor-

tunities for Spatial Analysis

Spatial analysis is still an exciting area that is under active development [30].

Not only are we facing more difficult analysis problems as the available data volume grows

exponentially, but new questions that come with new phenomena and applications. In

this dissertation, we discuss our efforts in addressing the two important aspects of spatial

analysis techniques: scalability and expressiveness.

Scalability, in the context of spatial data analysis, refers to the capability to effi-

ciently handle an ever-increasing volume of spatial data. Over recent decades, the amount of

spatial data has grown exponentially, putting considerable strain on existing algorithms and

tools by pushing them to their operational limits. This growth is further exacerbated by the

widespread use of smartphones, which not only generate a wealth of real-time geographic

data but also encourage greater public participation in the creation and application of such

data. Daily activities such as commuting, traveling, and social media interaction generate

immense volumes of geotagged data, challenging the scalability of current data processing

and storage techniques. Moreover, the real-time analysis of large geospatial datasets can be

a matter of life or death during disasters, underscoring the urgent need for scalable solutions.

Further complexity arises with location-based services like Uber and Google Maps, which

demand real-time processing of massive spatial datasets to maintain responsiveness. Social

networks also stand to benefit from scalable spatial analysis techniques that can handle

real-time recommendations or anomaly detection, given the constant stream of geospatial

data on these platforms. Therefore, enhancing the scalability of spatial analysis tools is not
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merely a technical concern; it carries significant societal implications. Improved scalability

can elevate the quality of life for individuals and communities by enabling more effective

emergency response, enriching user experience, and facilitating the smooth operation of

essential daily services.

Expressiveness, on the other hand, refers to the ability of a model or algorithm to

accommodate various constraints, spatial relationships, and attributes. As society evolves

and new challenges emerge, the expressiveness of existing spatial analysis techniques is

put to the test. Take, for example, the advent of autonomous driving vehicles, a cor-

nerstone of smart city initiatives. These vehicles require exceptionally expressive high-

definition map models to facilitate complex functions like precise lane-level navigation and

self-localization. Yet, most current map data, designed primarily for human interpretation

rather than machine-to-machine interactions, lacks the granularity and detail to support

these advanced functions. Similarly, emerging problems, such as the COVID-19 pandemic,

underscore the need for algorithms with greater expressiveness. The spread of the virus is af-

fected by a myriad of factors, ranging from population density and transportation networks

to social practices. Algorithms with higher levels of expressiveness can help policymakers

better understand the complexities of such problems, enabling more effective and targeted

interventions. Traditional algorithms, like the max-p regions used for regional aggregation,

often fall short in this context. They typically allow for just a single constraint with a sum

aggregation and a lower-bound threshold, limiting their utility for complex, multi-faceted

issues like pandemic management. In light of these challenges, the importance of designing

spatial analysis algorithms with expressiveness in mind cannot be overstated. As the realm
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of spatial problems continues to expand and evolve, so too must the capabilities of the

models and algorithms we use to solve them. By doing so, we can adapt to new trends and

more effectively tackle the complex spatial problems that society faces today.

1.3 Thesis Outline

In this dissertation, we present our effort to address the scalability and expressive

issues in multiple aspects of spatial analysis. We first present Pyneapple in Chapter 2, the

library for scalable and expressive spatial analysis algorithms that aims to build the bridge

between social scientists and big spatial data analysis. Chapter 3 presents the expressive

max-p regions problem and the heuristic algorithm under the Regionalization module of

Pyneapple that solves this problem efficiently and effectively. Chapter 4 illustrates the

scalable method for detecting statistically robust hotspots on spatial networks, which is

a core component of the machine learning algorithms in Pyneapple. We then present

CleanUpOurWorld in Chapter 5, which is a database for improving the scalability of aggre-

gating and visualization of large-scale litter datasets. In Chapter 6, HiDaM is proposed to

give an expressive and research-friendly data model for high-definition map data. Finally,

we conclude the dissertation and discuss the future directions of the proposed works.
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Chapter 2

Scalable and Expressive Spatial

Analysis Library

2.1 Introduction

Spatial analysis has become an indispensable tool in various social science stud-

ies [1–3]. It enables social scientists to conduct complex analyses on diverse socioeconomic

phenomena [31] and plays a vital role in everyday applications and policy making. For

example, when the White House Council on Environmental Quality launched version 1.0

of the Climate and Economic Justice Screening Tool, the National Academies of Sciences,

Engineering, and Medicine established a committee to analyze how environmental health

and geospatial data can further improve the screening tool [32]. Spatial analysis is also

one of the core functionalities of geographic information systems (GIS), with the ArcGIS

Spatial Analyst extension being used by thousands of organizations every day.
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Despite the benefits social scientists gain from spatial analysis techniques, particu-

larly with the increased availability of big geospatial data, several emerging problems remain

unsolved due to the limited scalability and expressiveness of existing tools and techniques.

For example, state-of-the-art regionalization algorithm max-p-regions (MP-regions), pro-

vided in the PySAL library and ArcGIS, can take 3-10s of minutes to process a dataset

with approximately 3K areas, depending on the threshold value. Consequently, real-world

applications are limited to relatively small datasets, ranging from tens of areas [33–35] to

only a few hundred [36–40]. Such severe scalability limitations prevent the existing MP-

regions formulation from supporting a wide variety of user-defined constraints that enable

users to express flexible regionalization queries for diverse applications. Additionally, ex-

isting MP-regions formulation allows a single user-defined threshold lower bounded on one

attribute, e.g., total region population ≥ 100K. However, many analysis tasks cannot be ad-

dressed with a single constraint involving a simple threshold. For instance, studies indicate

that the COVID-19 virus transmission patterns are closely related to prosperity and labor

mobility [6]. Therefore, queries incorporating multiple constraints cannot be expressed

using the traditional MP-regions formulation due to its limited support for user-defined

constraints.

Besides regionalization, similar scalability and expressiveness challenges are faced

by social scientists in other families of queries, such as learning-based spatial analysis and

counting-based statistics that group spatial objects by certain spatial constraints. Therefore,

improving the scalability and expressiveness of the spatial analysis techniques would benefit

the existing applications and unlocks more potential for social scientists.
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This chapter presents Pyneapple, an open-source library for scalable and expres-

sive spatial analysis, currently under active development with more features being added.

Pyneapple summarizes our research works, such as the expressive max-p regionalization

problem in Chapter 3 and the spatial network hotspot detection problem in Chapter 4. To

demonstrate the capability of Pyneapple, we design front-end applications so that the users

can interact with the library by specifying a potential use case through interactively se-

lecting the constraints and intuitively obtaining the corresponding visualized results. With

the assistance of the GPT-3.5 model, our frontend application even allows the users to talk

directly with the system and the query interpretation and processing can be handled by the

backend automatically. In addition, we also provide interactive Jupyter Notebooks for both

Python and Java users, which interactively demonstrate how the APIs can be invoked and

the superiority of our algorithms when compared with the existing methods. A brief yet

comprehensive overlook of the Pyneapple library is given in Section 2.2 and we introduce

the potential use cases of Pyneapple in Section 2.3.

2.2 Pyneapple Overview

This section introduces Pyneapple library and its components. An overview of

Pyneapple is given in Figure 2.1. Pyneapple comprises three main modules: regionalization

queries, machine learning (ML) assisted analysis, and group-by aggregation queries. Each

module offers well-documented Python and Java APIs to be seamlessly integrated with

the data science ecosystem. The remaining of this section introduces the modules and the

algorithms they contain.

10



Regionalization

Expressive P-regions

Scalable Max-P-Regions

Expressive Max-P-Regions

Pyneapple

Frontend Application

!"#$%"&'()*&+,'$Notebooks

Machine Learning

Augmented GWR

Spatial Network Hotspots

Group-By Aggregation

Group-By Point

Group-By Line

API Python / Java API

Figure 2.1: Pyneapple Overview

2.2.1 Spatial Regionalization

Spatial regionalization is the process of grouping a set of spatial areas into spatially

contiguous and homogeneous regions. This module contains three algorithms: the scalable

p-regions with user-defined constraints (PRUC) [41], the scalable MP-regions algorithm

(SMP) [42], and the expressive MP-regions algorithm (EMP) [43].

The p-regions problem is similar to the clustering problems, such as k-means,

where the users need to specify the number of regions and an optimization objective. The

PRUC problem [41] generalizes the p-regions problem to support an additional user-defined

constraint, such as the minimum population of each region. The Global Search with Local

Optimization algorithm is designed to solve PRUC, boasting a 100× speed increase, and

supports 4× larger datasets than the state-of-the-art algorithms.

Different from the p-regions problem, the MP-regions problem asks the users to

give a constraint on an attribute with a lower bound threshold, such as the minimum total
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population, to meaningfully define the spatial scale of the regions instead of specifying the

number of regions. This is widely used to automatically discover the spatial scale when the

social scientist cannot manually specify the number of regions p, e.g., p=50 that is used

for state-level phenomena is very different from p=3000 that is appropriate for county-

level phenomena in USA. However, scalability issues hinder its use with a large number

of geographical units [39, 44, 45]. To address this, SMP [42] optimizes the region-building

strategy by tuning the randomized area selection, achieving a 97% reduction in query time

and supporting datasets that are an order of magnitude larger than the state-of-the-art

approaches. In addition to the scalability issue, the MP-regions formulation is also lacking

in expressiveness because it only supports one constraint with a lower-bound threshold. In

order to support a broader range of complex analysis tasks, EMP [43] is proposed and

adopts the five SQL aggregation operators and supports multiple constraints in a single

query. Each constraint can be specified with a range operator, which can also represent

lower bounds and upper bounds. A two-phase greedy algorithm is implemented to solve the

novel EMP formulation and demonstrates great scalability when processing datasets that

are larger than the ones used in the existing literature. Detailed discussion about the EMP

problem and the corresponding algorithm is presented in Chapter 3.

2.2.2 ML-Assisted Spatial Analysis

The machine learning (ML) assisted spatial analysis consists of two algorithms:

Augmented Geographically Weighted Regression (A-GWR) [46] and ML-assisted local hotspot

detection.
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A-GWR surpasses the limitations of Geographically Weighted Regression (GWR)

in terms of scalability and expressiveness by employing Stateless Multilescale GWR (S-

MGWR), which allows MGWR to efficiently train different data features in parallel to influ-

ence different spatial scales with independent spheres of influence. A-GWR enables variants

of GWR to utilize parallelized black-box optimizations to determine optimal parameters. In

addition, A-GWR boots expressiveness through incorporating versatile general-purpose ML

models to achieve better flexibility and a huge performance boost. Compared to GWR and

MGWR, A-GWR achieves higher accuracy, expressiveness, and is up to 14.4 times faster.

The second module aims to improve the scalability of the existing local hotspot

detection on spatial networks [47]. Existing clustering methods are criticized for lack-

ing statistical significance, while statistical methods suffer from serious scalability issues.

To avoid false positives and produce statistically robust results, we adopt the local net-

work K-function (LocalNK), a variant of the well-known Ripley’s K-function [48] in the

network space. The state-of-the-art LocalNK methods [49,50] struggle with scalability and

cannot determine the scale of the hotspots without brute force enumeration. To efficiently

enumerate all potential hotspot subnetworks, we propose a prune-and-refine with proof

of correctness and completeness. To determine whether the enumerated subnetworks are

hotspots or not, we design novel network local exploration strategies and graph embedding

techniques that exploit the potential of machine learning classifiers and deep graph neural

networks. In addition, the optimized modules for preprocessing are also included in Pyneap-

ple for effective map matching and dataset compression. With multiple modules that cover

the whole procedure, the hotspot detection model efficiently processes raw data from the
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network and events, returning all statistically robust hotspots. Further details about local

hotspot detection on spatial networks are available in Chapter 4.

2.2.3 Group-By Queries

Grouping spatial units, such as points and line segments, are widely used in differ-

ent spatial analysis operations, e.g., polygonization or counting-based spatial statistics. The

point group-by query is a composition of the fundamental spatial range query using sets

of polygons. Answering such queries with real datasets that contain hundreds of millions

of data points and real polygons with millions of points on the perimeters is highly ineffi-

cient. The query latency can easily escalate to hours of processing on a dozen CPUs in those

cases. Our Spatial GroupBy Polygon Aggregate Counting (SGPAC)module [51,52]

is designed to integrate seamlessly with mainstream spatial data management systems, pro-

viding highly-parallelized processing capabilities for spatial point group-by queries, reducing

query latency by up to an order of magnitude compared to existing competitors. The line

group-by query discovers planner spatial polygons out of large datasets of line segments,

such as large-scale road networks. Our Distributed Doubly-Connected Edge List

(DDCEL) module [53] provides the first parallelized algorithm to build DCEL data struc-

ture efficiently at a large scale to discover planner polygons from scattered line segments.

DCEL is widely used to support fundamental spatial operations, such as spatial overlay for

multi-layer datasets.
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2.3 Pyneapple Use Cases

Pyneapple provide various user interfaces for different groups of target users. Users

will interact with the Pyneapple library through user-friendly web applications and Jupyter

Notebooks, illustrating the ease of use and interactive nature of the toolkit. Through the

interactive web UI, users are able to visualize the results, explore different parameter set-

tings, and gain a deep understanding of the potential applications of Pyneapple in various

domains. After gaining experience with the vivid and interactive use cases, users will be

confident in the capabilities of Pyneapple to address complex spatial analysis tasks and

appreciate the potential impact it can have on real-world decision-making processes. Fol-

lowing this, Pyneapple encourages the users to make use of the APIs in Python and Java

by providing example notebooks to prove that algorithms included in Pyneapple can be

seamlessly integrated into their existing workflow.

2.3.1 Use Case 1: Interactive Querying and Visualization

To demonstrate its capabilities and present the core functionality of Pyneapple to

users with varying technical backgrounds in a straightforward way, we have developed an

intuitive and user-friendly frontend that offers a straightforward web UI. Users can easily

issue queries by selecting datasets and composing constraints by interacting with drop-

down menus and sliders. For example, Figure 2.2 showcases the UI for the regionalization

algorithms. Let’s assume a user is interested in exploring the employment situation in Los

Angeles. By clicking the Browse button, the shapefile of the census tracts of Los Angeles

is loaded and visualized in the left panel. Simultaneously, the contiguity matrices are
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Figure 2.2: Frontend UI for Regionalization Queries

computed at the back end so that the user can select how he wants to define the connectivity

of the regions. After specifying the attribute names and the aggregation methods, the

slide bars are initialized, allowing users to set the range for each constraint intuitively.

Upon pressing the Query button, the query is sent to the backend, and the corresponding

regionalization algorithm (in this case, the EMP module) performs the regionalization and

returns the region labels. The regions are then automatically colored, and the users can

interact with the visualization to view the detailed attribute values by clicking on the

regions. For use cases whose scalability is greatly improved by Pynepple, such as the SMP,

hotspot detection, and the group-by queries, we also include the APIs of the state-of-the-art

implementations. The frontend application also provides an option to turn on the side-by-

side comparison with statistics to illustrate the superiority and the correctness of Pyneapple

algorithms. This example use case highlights the potential of Pyneapple in making spatial
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analysis more accessible and efficient for various users, emphasizing its ability to handle

large-scale problems and produce accurate results.

2.3.2 Use Case 2: Building Applications

Pyneapple provides Application Programming Interfaces (APIs) with two levels

of detail to cater to different user needs. For social scientists working primarily in the

Python environment, Pyneapple encapsulates all low-level implementations as black boxes

and exposes just the essential functions as plug-and-use modules. Although several modules

are originally implemented in Java or rely on Java libraries, Pyneapple encapsulates all Java

APIs and provides Python APIs that comply with the specifications of the existing libraries

and systems.

To demonstrate the simplicity of Pyneapple Python APIs, we carefully design

Jupyter Notebooks for each of the modules [54]. Each notebook contains detailed guidance

and examples to walk the user through the life cycles of algorithms in Pyneapple. To get

started, we show that social scientists can simply install the Pyneapple Python package

through pip. Detailed All dependencies, including the JDK and the configuration of the

Java environment, can be configured by the script and the users will not be aware of the

Java-Python bridge. For demonstrating the usage of Pyneapple Python APIs, we adopt

familiar, classic, or popular use cases that social scientists can relate to in order to demon-

strate how the APIs of the existing techniques can be replaced with Pyneapple APIs that

accept the same input and produce compatible output within the original computation

workflow. Comparisons between Pyneapple APIs and original APIs, along with correspond-

ing visualizations, are shown to highlight Pyneapple’s superiority in terms of efficiency and
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result quality. Through this example, we show users that their work is painlessly improved

with Pyneapple APIs while gaining huge benefits in scalability and expressiveness.

Java-based APIs with modularity design and detailed documentation are also pro-

vided to exploit better the potential of the Pyneapple algorithms. To demonstrate this,

we design another set of notebooks with the help of IJava kernel. These Java notebooks

demonstrate the low-level APIs in great detail so that the developers may customize in-

dividual steps to adapt the algorithms to new problems or perform fine-tuning as needed.

For instance, users can modify the original contiguity functions in the regionalization mod-

ule to define adjacency differently, considering two remote areas as neighbors to produce

non-contiguous regions. Once this step is modified, the audiences can track the impact on

the remaining module, such as the spatial partition behavior of the SMP algorithm or the

multi-constraint construction phase of the EMP algorithm. Moreover, users will also have

full access to the logs of the parallel computations, such as the usage of Spark in the group-

by queries. With access to context and logs, they can fine-tune configurations and receive

feedback on performance changes after reaching the breakpoint. This level of customization

and control ensures that developers can fully harness the power of the Pyneapple library to

tackle a wide range of spatial analysis challenges.

2.3.3 Use Case 3: Natural Language Querying

To further expand the use cases of Pyneapple and extend its interactivity, we

introduce a middle layer powered by GPT-3.5 APIs to enable the audiences to interact

with the system using natural language. This innovative approach allows users to either
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Figure 2.3: Query by Talking to the System

speak their query or type it in as text, making the process more user-friendly and intuitive.

For example, a user may say, ”I want to know the number of tweets posted in California

last year”, as shown in Figure 2.3 The recorded audio is then processed by the large-v2-

whisper model to generate text. With the help of the text-davinci-003 model, the AI-driven

system would recognize the query, identify the required dataset and parameters to invoke

the corresponding function, and execute the necessary steps to visualize the results on the

frontend. The user can modify the query to get a more desirable result or issue another

query by simply continuing the discussion.
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Chapter 3

Max-P Regionalization with

Enriched Constraints

3.1 Introduction

Regionalization is the process of clustering a set of areas into spatially contiguous

and homogeneous regions. Unlike traditional clustering of multi-dimensional points, the

basic units in regionalization are spatial polygons that are grouped based on both attribute

values and adjacency in space. Regionalization is widely used in numerous applications such

as epidemic analysis [6], service delivery systems [55], water quality assessment [56], weather

temperature classification [57], rainfall erosivity estimation [58], health data analysis [59],

spatial crowdsourcing [60, 61], and constituency allocation [62]. Identifying regions is a

computational and conceptual challenge. One of the fundamental challenges is determining

the spatial scale of the studied phenomena. For example, snowing is spatially correlated
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at the level of multiple states, e.g., the USA midwest states, while temperature is spatially

correlated at a county level. Most regionalization routines require the number of regions,

p, as an input parameter, e.g., in the USA, p = 50 is a state level and p = 3000 is a county

level. This puts the burden of determining the spatial scale on the data analysts, forcing

them to analyze multiple p values, which increases the computational cost and limits the

query expressiveness.

The latest regionalization formulation, called the max-p-regions problem (or MP-

regions), has addressed the scale problem [63] and become popular in different applica-

tions, including urban spatial structures [36], measuring intra-urban poverty [37], popu-

lation growth analysis [33], crime analysis [38], regional inequality analysis [34], spatial

uncertainty [64], and neighborhood delineation [40]. With the observation that researchers

usually know a condition that a region must satisfy to be suitable for the analysis, the

MP-regions automatically discovers the maximum number of regions that satisfy a given

user-defined constraint instead of forcing users to input p. However, the MP-regions problem

has several limitations in both scalability and expressiveness. Currently, the state-of-the-art

algorithms take 3-60 mins to process a dataset with ∼3k areas, depending on the threshold

value. As a result, existing real applications, listed above, use relatively small data, rang-

ing from tens of areas [33–35] to only a few hundred [36–38,40,64]. It is explicitly stated

in [64] that to use the MP-regions algorithms “one must be willing to reduce the number of

geographic units of analysis.” Such severe scalability limitations prevent the existing MP-

regions formulation from supporting a wide variety of user-defined constraints that enable

users to express flexible regionalization queries for various applications.
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Existing MP-regions formulation allows a single user-defined threshold lower bound

on one attribute, e.g., total region population ≥ 100K. However, many analysis tasks cannot

be catered with a single constraint that involves a simple threshold. In many real appli-

cations, it is common to have multiple constraints with different aggregate functions. For

example, studies show that the COVID-19 virus transmission pattern is closely related to

prosperity and labor mobility [6]. In order to make region-specific recommendations for pre-

venting the virus spread, policymakers can issue a query to identify reasonably populated re-

gions with a total population ≥ 200000, an average monthly income between $3000 to $5000,

and public transportation passengers ≥ 10000. Another example is studying the changes

in population requires considering multiple factors that influence the phenomenon [33] with

different aggregation functions such as the minimum population of each area, the maxi-

mum school drop-out rate, the average age of the population, and total unemployment. A

third example is the patrol sector partition problem [35] that aims to consider the number

of calls and the workload balance. These example applications significantly benefit from

enriching the expressiveness of MP-regions queries that will enable exploring different sce-

narios and expanding analysis capabilities. Currently, such advanced regionalization queries

cannot be expressed using the existing MP-regions formulation due to its limited support

for user-defined constraints, limiting its full potential in many real applications.

This chapter introduces the enriched MP-regions problem (EMP) that addresses

the existing MP-regions limitations, the third algorithm included in the Regionalization

module of the Pyneapple library. EMP enables users to analyze one to two orders of mag-

nitude larger datasets than the currently supported ones. Furthermore, EMP enriches
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user-defined constraints with three novel features: (1) EMP provides an enriched set of

aggregates that contains three families of aggregate functions, namely, extrema aggregates,

centrality aggregates, and counting aggregates. The three families of aggregates are inspired

by the standard SQL aggregate functions from which we adopt minimum and maximum

as extrema aggregates, average as a centrality aggregate, and summation and count as

counting aggregates. (2) EMP allows using a range comparison operator that expresses all

possible comparisons, less-than-or-equal (≤), larger-than-or-equal (≥), and range compar-

ison. This enables users to set both lower and upper bounds for their constraints instead

of only lower bounds in existing formulations. (3) EMP supports multiple constraints in-

stead of a single constraint. The EMP formulation addresses the limitation of the existing

MP-regions formulation and reveals the full potential for regionalization queries in different

applications.

The EMP problem is an NP-hard problem (see Section 3.4), so finding an optimal

solution is intractable. We formulated the EMP as a mathematical optimization problem

using mixed-integer programming (MIP) problem [65] and solved it with the world’s fastest

MIP solver Gurobi [66]. The optimizer takes 33.86s to find an optimal solution for 9 areas,

10 hours for 16 areas, and is not able to return a feasible solution for 25 areas after 110

hours of execution [67]. This clearly shows the infeasibility of finding an exact solution

for hundreds or thousands of areas in a reasonable runtime. However, even finding an

approximate solution faces two main challenges. First, the newly introduced constraints are

non-monotonic. Therefore, adding or removing areas to and from a certain region does not

provide any guarantee of satisfying or violating these constraints. This requires exhaustive
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exploration for the whole search space to find the solution, which is intractable with such an

NP-hard problem. Second, while satisfying multiple non-monotonic constraints, a region

can easily become overlarge. Having oversized regions reduces the number of regions p,

which contradicts the objective of maximizing p.

To address these challenges, we introduce FaCT , a three-phase algorithm to solve

the EMP problem. The first phase derives theoretical bounds to verify the feasibility of

finding a solution given the user-defined constraints. In addition, in the case of infeasibility,

it enables the user to potentially alter input data to satisfy the constraints. This provides

great flexibility to tune either data or query parameters adaptively and enables rich ex-

ploratory analysis capabilities for a wide variety of datasets. The second phase constructs a

feasible solution that satisfies the input constraints while maximizing the number of regions

p. The phase is divided into three independent steps with the following features: (a) Each

step is carefully designed to exploit the mathematical properties of one type of constraint

to maximize the p to its theoretical upper bound. (b) The input and output of each step

are designed exquisitely to reduce the search space for the following steps and mitigate the

conflicts introduced by the different mathematical properties of different constraints. (c)

The steps are independent of each other, enabling FaCT to construct feasible solutions

progressively and handle any arbitrary combinations of constraint types effectively and effi-

ciently. (d) The algorithm provides multiple parameter tuning options so that the users can

choose the best aggregate strategy according to the use case and the characteristic of the

dataset. (e) The algorithm supports datasets with multiple connected components, while

the MP-regions formulation supports only a single connected component. The third phase
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of FaCT performs a local search adapting the Tabu search [68] and swaps areas between

regions to improve the overall heterogeneity of the regions.

Our experimental evaluation demonstrates the effectiveness of FaCT on real

datasets. We evaluate the impact of different threshold ranges, different combinations of

constraints, and the scalability to process datasets. Our contributions are summarized as

follows:

• We define an enriched max-p regions problem (EMP) that reveals the full potential

of max-p regionalization.

• We prove the NP-hardness of the EMP problem.

• We propose FaCT ; a three-phase greedy algorithm that provides approximate solu-

tions for the EMP problem.

• We perform an extensive experimental evaluation that shows the effectiveness of our

techniques on real datasets.

The rest of this chapter is organized as follows. Section 3.2 presents the related

work. Section 3.3 defines the problem and Section 3.4 proves its NP-hardness. Our pro-

posed solution is detailed in Section 3.5, and its time and space complexity are analyzed in

Section 3.6. Section 3.7 shows the experimental evaluations and Section 3.8 concludes the

chapter.

25



3.2 Related Work

The regionalization problem originates from the demand for aggregating homoge-

neous regions in the analytical tasks performed by social scientists and statisticians [69].

Regionalization is referred to by different names, including region building [70], conditional

clustering [71], clustering with relational constraints [69], contiguity-constrained cluster-

ing [72], constrained classification [73], maximum split clustering under connectivity con-

straints [74], and p-regions problem [75] that is used in a variety of applications such as

detecting functional regions [76,77], network-constrained urban management [78], and par-

titioning compact regions [79–81]. The max-p-regions problem (MP-regions) [63] has been

introduced to eliminate the requirement for inputting the number of regions in advance. It

aggregates areas into a maximum number of regions so that each region satisfies a single

user-defined constraint with a summation aggregate, e.g., total population ≥ 20K. Existing

variants [33, 82, 83] use the road network-based connectivity as an additional spatial con-

straint to aggregate regions or use multiple attributes to impose the constraint. However,

all existing variants still support only a single constraint of one type as the MP-regions

problem.

Existing regionalization techniques that perform multi-criteria districting [33, 35,

84–86] use multi-objective optimization to partition the space based on multiple attributes.

These techniques still put the burden of determining the spatial scale, i.e., the number

of output regions, on the user. They also allow the user to define a single constraint

on one of the attributes, limiting the query expressiveness. Our EMP problem addresses

these limitations. It enables users to define multiple constraints on different attributes to
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provide flexible and expressive queries. In addition, it inherits the automatic discovery of

the appropriate number of regions from the MP-regions and eliminates the spatial scale

problem.

We classify the popular approaches to tackle the NP-hard rationalization problems

into two main categories. The first category is the clustering methods [87, 88] with two

phases. The first phase clusters the centroids of polygons using a traditional clustering

algorithm. The second phase then imposes the spatial connectivity constraint to ensure that

each region is geographically connected. The second category adopts a two-phase contiguity-

constrained heuristic optimization approach [63,83,89–91]. The set of spatial areas is usually

represented by a graph that encodes the spatial contiguity relationships. With the spatial

contiguity constraint imposed explicitly, a feasible initial solution is constructed in the first

phase and then optimized using heuristic or mixed-heuristic search methods in the second

phase. The construction methods include tree partition [89,92] and greedy aggregation [63,

82,90,91]. The heuristic search phase optimizes the objective function to improve the region

homogeneity [89, 90, 92] or geographical compactness [90] without violating the contiguity

constraint.

Our work follows the second category of contiguity-constrained heuristic optimiza-

tion search. We consider multiple constraints with different aggregate functions that do not

exist in the literature, so none of the existing methods can obtain a feasible solution that

satisfies our enriched constraints.
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3.3 Problem Definition

This section formally defines the enriched max-p regions (EMP) problem. Let

A = {a1, a2, ..., an} denote the set of areas. Each area ai is defined by four attributes:

ai=(i,bi,Si,di), where i is the area identifier, bi is an arbitrary spatial polygon that defines the

area’s spatial boundaries, Si is a set of spatially extensive attributes and di is a dissimilarity

attribute. The dissimilarity attribute di is used in computing output regions’ heterogeneity.

The rest of the section presents basic definitions, then defines the EMP problem formally.

Definition 3.3.1 (User-defined Constraint). A user-defined constraint c is a condition that

is defined as “l ≤ f(s) ≤ u” or “f(s) ∈ [l, u]”. c is identified with a 4-tuple: (f ,s,l,u), where

f is an aggregate function, s is a spatially extensive attribute, l ∈ [−∞,∞) is a number that

represents a lower bound, and u ∈ (−∞,∞] is a number that represents an upper bound.

EMP allows f to be MIN, MAX, AVG, SUM, or COUNT that compute minimum,

maximum, average, summation, and count aggregates, respectively, with the same semantic

as the SQL standards. The attribute s is a spatially extensive attribute whose value is

divided over the smaller areas when the area is fragmented. For example, the population

value of a state is divided over its cities, so the population is a spatially extensive attribute.

This is the opposite to spatially intensive attributes, such as temperature, that are not

divided when the spatial area is fragmented. Examples of s include the population, labor

force, and households in each area. When l = −∞, the range has an open-ended lower

bound and the constraint becomes f(s) ≤ u. Similarly, when u =∞, it becomes f(s) ≥ l.

Definition 3.3.2 (Region). A region R is a set of g areas: R = {a1, a2, ..., ag}, such that:

(1) g ≥ 1, i.e., R contains at least one area. (2) Areas in R are spatially contiguous,
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i.e., ∀ ai, aj ∈ R, ∃ a sequence of areas (ak,...,al) s.t. both (ai, ak) and (al, aj) are spatial

neighbors, and every two consecutive areas in the sequence are spatial neighbors.

Definition 3.3.3 (Heterogeneity). Heterogeneity H(P ) of a set of regions P is defined as:

H(P ) =
∑
∀R∈P

∑
∀ai,aj∈R

|di − dj | (3.1)

This definition of H is popular in the MP-regions literature, so it is recognized by

social sciences experts as a primary measure for region heterogeneity. However, our work

can support alternative definitions, such as improving spatial compactness or balancing

multiple criteria. The reason is that our second phase, which is based on Tabu search as

discussed in Section 3.5, can deal with different optimization functions.

EMP Problem. The EMP problem is defined as follows:

Input: Given: (1) A set of n areas: A = {a1, a2, ..., an}. (2) A set of user-defined

constraints C = {c1, c2, ..., cm}.

Output: (1) A set of regions P = {R1, R2, ..., Rp}, where 1 ≤ p ≤ n and each

region Ri satisfies the below EMP constraints and objectives. (2) A set U0 = A−
⋃p

i=1Ri,

i.e., U0 contains all areas that are not assigned to any feasible region Ri, ∀1 ≤ i ≤ p. Areas

in U0 may not be spatially contiguous.

EMP Constraints:

• Ri ∩Rj = ∅, ∀Ri, Rj ∈ P ∧ i ̸= j

• Ri satisfies all constraints cj ∈ C,

. ∀ 1 ≤ i ≤ p, 1 ≤ j ≤ m
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Objectives:

• Maximizing the number of regions p.

• Minimizing regions’ overall heterogeneity H(P ).

EMP has two objectives. In case they contradict during building the output re-

gions, the first objective (maximizing the number of regions) is favored over the second

one (minimizing regions’ heterogeneity). This allows users to obtain the maximum number

of desirable regions without providing the number of regions as an input, as favored by

the domain experts [63], which addresses a major limitation in the previous regionaliza-

tion problems. The second objective uses a dissimilarity attribute that is not necessarily a

spatial attribute. For example, social scientists produce regions that are homogeneous in

average income level.

Comparing the EMP problem with the original MP-regions problem [63], there are

two major differences that are introduced by the enriched user-defined constraints. First,

the enriched constraints are not always monotonic. Assuming that all spatially extensive

attribute values are positive, adding an area to a region or removing an area from a region

in MP-regions guarantees a monotone change towards satisfying the constraint threshold.

This is not the case for the EMP problem due to allowing AVG, MIN, and MAX constraints.

In addition, the EMP problem allows upper-bounded threshold ranges, so adding areas to

a region without additional validation leads to violating the SUM and COUNT constraints’

upper bounds. Second, the EMP problem allows unassigned areas, U0, to exist in the

final area partition, contrary to the MP-regions problem. This provides flexibility to satisfy

multiple constraints of different types, especially MIN and MAX constraints that commonly
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cause invalid areas, as discussed in the following sections. Allowing unassigned areas enables

constraints such as MIN and MAX to serve as filters to filter out areas with undesired

properties, which introduces more tolerance and enables richer exploration capabilities to

regionalization queries.

3.4 NP-hardness of EMP

This section proves the NP-hardness of the EMP problem. The NP-hardness

of the EMP problem follows the results that the MP-regions problem is NP-hard [63, 93,

94]. The MP-regions problem takes as input: (1) a set of spatially contiguous areas A =

{a1, a2, ..., an}. Each area ai is associated with an identifier i, a spatial polygon bi, a

spatially extensive attribute si and a dissimilarity attribute di, (2) a threshold value t. For

the purpose of the proof, we solve both the MP-regions and the EMP problem as decision

problems with a fixed p = k.

Theorem 1. The EMP problem is NP-hard.

Proof. Let X = (A, t) be an instance of the MP-regions problem. We construct an instance

Y = (A′, C) of the EMP problem as follows: (1) For each area ai ∈ X.A, add to Y.A′ an

area a′i = {i, bi, S′
i, di}, S′

i = {si}. (2) Let C = {(SUM,S′[0], t,∞)}. (3) Let the number

of regions p equal k. This reduction is of polynomial time of O(n) where n is the number

of areas in A. Therefore, an algorithm that decides on the instance Y of the EMP problem

decides on the instance X of the MP-regions problem as well. As the MP-regions problem

is NP-hard, then the EMP problem is NP-hard, and the proof is complete.
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3.5 Proposed Solution

This section presents FaCT , a three-phase algorithm that finds a feasible solution

for an instance of the EMP problem with low overall heterogeneity. The first phase is

a feasibility phase that verifies the existence of any feasible solution given the user-

defined constraints. The second phase is a construction phase that constructs a feasible

initial solution with the maximum number of regions p while satisfying all user-defined

constraints. This phase represents the major contribution of this algorithm. It balances

two challenging objectives: satisfying multiple non-monotonic user-defined constraints and

producing a maximum number of spatially contiguous regions. The third phase is a local

search phase that improves the initial solution of the construction phase in terms of the

heterogeneity score. The following sections detail each phase.

3.5.1 Feasibility Phase

The EMP problem deals with arbitrary combinations of constraints on different

attributes. The goal of the feasibility phase is to signal the user at an early stage for: (1) the

infeasibility of finding a solution for the given set of constraints on the given dataset, and

(2) the possibility of removing some areas to satisfy the given constraints.

The fact that our algorithm can detect and filter out invalid areas for all con-

straints, including non-monotonic constraints, gives it major practical advantages when

employing multiple constraints. The algorithm is not only able to give users a heads-up on

the infeasibility of their constraints, but also users can choose to remove input areas that
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cause such infeasibility automatically. This gives data analysts great flexibility to analyze

a wide variety of datasets and constraints.

Given a set of user-defined constraints C =

{(MIN, smin, lmin, umin), (MAX, smax, lmax, umax), (AV G, savg, lavg, uavg), (SUM, ssum, lsum, usum),

(COUNT, scount, lcount, ucount)}, we check the feasibility of applying each type of constraint

as follows:

(1) For AVG constraints, we compute the average value AVG(savg) of attribute

savg over all areas. If AV G(savg) < lavg or AV G(savg) > uavg, we infer that there exists no

partition where all regions satisfy the AVG constraint without removing any area. This is

justified by Theorem 3 below.

Theorem 2. If ∃P = {R1, R2, ..., Rp} so that every region Ri ∈ P satisfies c =

(AV G, savg, lavg, uavg) and P contains all areas in a set A, then the average value AV G(savg)

of savg over all areas of A satisfies c, i.e., lavg ≤ AV G(savg) ≤ uavg.

Proof. If p = 1, i.e., P = {A}, the proposition is trivially true. If p > 1, as all regions in P

satisfy c, we have:

lavg ≤ Ri.AV G(savg) ≤ uavg,∀i, 1 ≤ i ≤ p (3.2)

where Ri.AV G(savg) represents the average value of attribute savg over areas in region Ri.

Let |Ri| denote the number of areas in region Ri. As P contains all areas, we have:

p∑
i=1

|Ri|= n (3.3)
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Also, by definition:

AV G(savg)× n =

p∑
i=1

(|Ri|×Ri.AV G) (3.4)

AV G(savg) =

∑p
i=1(|Ri|×Ri.AV G)

n

≤
∑p

i=1|Ri|uavg
n

= uavg

(3.5)

AV G(savg) =

∑p
i=1(|Ri|×Ri.AV G)

n

≥
∑p

i=1|Ri|lavg
n

= lavg

(3.6)

Equations 3.5 and 3.6 =⇒ lavg ≤ AV G(savg) ≤ uavg.

Hence, the Theorem 2 is true, and the proof is complete.

Theorem 3. For an area set A and an AVG constraint c = (AV G, savg, lavg, uavg), if the

average value of savg over A, AV G(savg), does not satisfy c, i.e., AV G(savg) < lavg or

AV G(savg) > uavg, then ∄P = {R1, R2, ..., Rp} such that P partitions all areas in A and

Ri ∈ P satisfies c, ∀1 ≤ i ≤ p.

Theorem 3 is proved by proving its contrapositive Theorem 2.

(2) For MIN constraints, we compute the minimum and maximum values over

all areas for attribute smin, MIN(smin) and MAX(smin), respectively. Two different cases

could cause infeasibility: (a) If MAX(smin) < lmin or MIN(smin) > umin, then there is no

area that satisfies the MIN constraint and no valid regions can be constructed, so there is

no feasible solution. (b) If MIN(smin) < lmin < MAX(smin), all areas with smin < lmin

are invalid areas that cannot be part of any valid region, so they must be filtered out to
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build a feasible solution. Therefore, there is room to find a feasible solution after removing

invalid areas.

(3) Similarly for MAX constraints, there are two cases of infeasibility: (a)

If MIN(smax) > umax or MAX(smax) < lmax, there is no area that satisfies the MAX

constraint, and there is no feasible solution. (b) Areas with smax > umax are invalid areas

that must be filtered out to find a solution.

(4) For SUM constraints, we compute the minimum and summation of all areas

for ssum, MIN(ssum) and SUM(ssum), respectively. There are three cases of infeasibility:

(a) If MIN(ssum) > usum, no region can have ssum within the range. (b) If SUM(ssum) <

lsum, even the trivial region containing all areas cannot have ssum within the range. (c) Areas

with ssum > usum are invalid and must be removed.

(5) For COUNT constraints, if the number of areas n < lcount, there is no

feasible solution as a region containing all areas cannot meet the lower bound lcount.

The feasibility phase iterates through the area set and computes the needed at-

tribute aggregates for all constraints in a single pass. This pass is enough to filter out

invalid areas, that have smin < lmin, smax > umax, or ssum > usum, to eliminate potential

invalid regions. However, the feasibility pass is not enough to filter out invalid areas for the

AVG constraint. This is performed during the following construction phase while imposing

AVG constraints. All invalid areas are filtered out from A, added to the set U0, and they

are not considered in any further processing. The remaining areas in set A are passed to

the following phases.
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3.5.2 Construction Phase

The construction phase greedily constructs a feasible solution that: (a) satisfies

all user-defined constraints, (b) maximizes the number of regions p, and (c) minimizes the

number of unassigned areas. This phase faces the challenges of simultaneously satisfying

multiple non-monotonic constraints while preventing building oversized regions that contra-

dict maximizing p. To address these challenges, the construction phase satisfies each family

of user-defined constraints in a separate step, and each step handles different constraints in

isolation. By this, we gain several benefits towards addressing the challenges. First, each

step focuses on one type of optimization, making it an easier problem to solve. Second,

dividing the logic into consecutive steps provides flexibility to handle queries with any ar-

bitrary subset of different constraints (as discussed in Section 3.5.4). Third, the order of

steps makes use of the mathematical properties of different aggregate functions to increase

the probability of producing a feasible solution. MIN, MAX, and SUM constraints are used

as filters to oust invalid areas and provide seed areas for the following steps. Then, AVG

constraint, which is the most challenging to satisfy, takes the seed areas and grows as many

regions as possible. The last step performs only necessary modifications to satisfy any vi-

olated SUM and COUNT constraints, which are easier to satisfy due to the monotonicity

of SUM and COUNT aggregate functions. Fourth, separated steps facilitate maximizing

the value of p, as detailed later, without violating the constraints that have been satisfied

previously. Consequently, our construction phase produces an initial partitioning for the

space with a near-optimal p value that is fed to the following phase to minimize the regions’

heterogeneity. Although reducing the overall heterogeneity score is an objective for the final
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solution, this phase is not primarily designed to minimize heterogeneity, which is optimized

in the following phase.

The construction phase executes multiple iterations. Each iteration produces a

feasible partition, and we maintain the partition with the highest p value. Each iteration

is divided into three steps. The first step satisfies extrema constraints (MIN and MAX

constraints), the second step satisfies centrality constraints (AVG constraints), and the

third step satisfies counting constraints (SUM and COUNT constraints). We detail each

step below. The area set in Figure 3.1a is used as a running example to illustrate different

steps of the construction. For simplicity and without loss of generality, we assume that all

constraints are imposed on the same attribute s.

Step 1: Filtering and Seeding. The first step satisfies extrema constraints, i.e.,

MIN and MAX constraints. These two constraints have two functionalities: (a) filtering

out the invalid areas, and (b) specifying the set of seed areas. Invalid areas are

excluded during the feasibility phase (Section 3.5.1). We select seed areas as the areas that

meet lower and upper bound values of one of MIN or MAX constraints. For instance, for two

constraints c1 = (MIN, s1, l1, u1) and c2 = (MAX, s2, l2, u2), any area with l1 ≤ s1 ≤ u1

or l2 ≤ s2 ≤ u2 is a valid seed area. This rule is generalizable to any number of MIN and

MAX constraints.

This step provides three levels of optimizations through choosing a seed area that

satisfies the bounds of only one constraint. First, it finds seed areas for any arbitrary com-

bination of MIN/MAX constraints. For constraints that are imposed on different attributes

or have disjoint upper and lower bounds, there is no single area that satisfies all of them.
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So, considering each constraint in isolation from others provides flexibility to find seeds for

any query. Second, the number of seed areas is an upper bound for the number of regions p

as each feasible region must contain at least one seed area for each constraint. So, using a

maximum number of seed areas and growing the regions based on them contributes to the

objective of maximizing p. Third, it enables piggybacking the seed areas selection on the

invalid areas filtration during the feasibility phase. While checking the validity of an area,

the algorithm checks the seeding conditions and mark seed areas.

Example: Figure 3.1b illustrates the result of Step 1 for the example area set in Figure 3.1a.

The extrema constraints are set as {(MIN, s, 2, 4), (MAX, s, 6, 7)}. Areas a1, a8, and a9

are moved to set U0 because their attribute values are below 2 or above 7. The remaining

areas after filtering are shown in Figure 3.1b. Area a2, a3, and a4 are selected as seed

areas for the MIN constraint and area a6 and a7 are selected as seed areas for the MAX

constraint, as shown in Figure 3.1b.

Complexity analysis. All operations of the feasibility phase and Step 1 of the

construction phase are performed in one pass over the n areas. Each area is validated

against all MIN, MAX, and SUM constraints to be classified as either invalid, valid, or seed

area. The time complexity is O(m×n), where m is the number of constraints and typically

m << n.

Remark 1. The time complexity of the feasibility phase and the Filtering and Seeding is

O(m× n).

Step 2: Region Growing. The second step grows regions that satisfy the AVG

constraint c = (AV G, s, l, u), without violating the MIN/MAX constraints. This step is
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(b) Area filtration and seed area selection

Figure 3.1: Step 1: Filtering and Seeding

divided into three substeps. The first substep initializes a set of regions. The second

substep assigns the unassigned areas to the regions. The third substep combines regions to

ensure each region satisfies all constraints. We detail each substep below.

Substep 2.1 utilizes the set of seed areas, called seeds, from Step 1 to initialize a set

of initial regions. Areas in seeds already satisfy at least one of the MIN/MAX constraints,

so they must be included in any valid region. The algorithm iterates over seeds and classifies

all seed areas into three subsets based on their AVG attribute value s: unassigned avg,

unassigned low, and unassigned high. unassigned avg contains areas that satisfy the

condition l ≤ s ≤ u. unassigned low contains seed areas that satisfy s < l, i.e., s value

is lower than c’s lower bound. Similarly, unassigned high contains seed areas with s > u.

Only areas in unassigned avg satisfy c and are used in region initialization directly. As we

want to maximize the number of output regions p, we make each area in unassigned avg a

separate region, and all new regions are added to a region list P . Then, we merge areas in
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unassigned low and unassigned high with their spatial neighbors to compose regions that

satisfy c. Algorithm 1 gives the merging procedure.

Algorithm 1 initiates each unassigned area as a temporary region R (Lines 4 to 6).

While R does not satisfy the constraint c’s bounds, the algorithm tries to add a neighbor

area an that moves R’s overall average of attribute s towards c’s range (Lines 16 to 21).

Once R satisfies c, it is added to the region list P (Lines 10 to 12). If R’s neighbors are

exhausted and cannot form a valid region, the whole procedure is reverted, and areas of R

remain unassigned.

Substep 2.2 tries to assign all remaining unassigned areas, either seed areas or

regular areas. Similar to classifying seeds areas in Substep 2.1, all areas that are not in seeds

set are added to either unassigned avg set, unassigned low set, or unassigned high set,

depending on their s value. There are two rounds for assigning the remaining unassigned

areas. In the first round, we try to add the unassigned areas to their neighbor regions. All

areas in unassigned avg can be safely added to any of its neighbor regions as it is guaranteed

not to introduce a violation of c. For each area in unassigned low and unassigned high,

we must check if adding it to the neighbor region violates c. The second round tries to

assign the areas in unassigned high and unassigned low by merging the regions. Given

an unassigned area a, the algorithm tries to merge one of a’s neighbor regions R and

R’s neighbor region with a and checks if c is satisfied for the newly merged region. The

merging process terminates when all a’s neighbors cannot absorb it or a merge limit, i.e., the

number of allowed merge trials, is reached. The merge limit is set to prevent the formation

of oversized regions and control the runtime.
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(b) Substep 2.2: Area Assignment

Figure 3.2: Step 2: Region Growing - Substep 2.1 & 2.2-Round 1

Substep 2.3 combines neighbor regions to ensure that all regions satisfy all MIN

and MAX constraints. Because areas that form seeds are selected by a single MIN or MAX

constraint, regions that are aggregated based on a single seed area are guaranteed to satisfy

only one of those constraints. To ensure each region satisfies all constraints, the algorithm

iterates over the region list P and merges the region that does not satisfy every constraint

with one of its neighbor regions that satisfy other constraints. The iteration stops when all

regions in the P satisfy MIN and MAX constraints, i.e., each region contains at least one

seed area for each MIN/MAX constraint. This substep does not affect satisfying the AVG

constraint c because merging two regions that already satisfy c produces a region that still

satisfies it. Thus, after Step 2 concludes, all regions in the region list P satisfy all the MIN,

MAX, and AVG constraints.

Example: Figure 3.2 shows an example of Substep 2.1 and Substep 2.2. Given c =

(AV G, s, 4, 5), in Substep 2.1, only seed area a4 is added to unassigned avg and initialized
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(b) Region merging and Assigning a2.

Figure 3.3: Step 2: Region Growing - Substep 2.2 - Round 2
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(b) Case 2

Figure 3.4: Step 2: Region Growing - Substep 2.3

as a new region Rred (Figure 3.2a). a2 and a3 are added to unassigned low and a6 and a7

are added to unassigned high. The average of a2.s2 and a6.s6 is 4, and they are combined

to form the region Rblue. Similarly, a3 and a7 form the region Rgreen with average value 5.

So, Substep 2.2 initializes three regions as depicted in Figure 3.2a. Then, in Substep 2.2,

the remaining unassigned area a5 is assigned to its neighbor region Rblue as depicted in

Figure 3.2b.
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Example: Figure 3.3 provides an example for Round 2 of Substep 2.2. In contrast to

the example in Figure 3.2, the unassigned area a2 cannot be added to its neighbor region

Rblue = {a3, a6} directly. Adding a2 to Rblue generates a region with an average s value

equals 3.67, which is smaller than 4 and violates the constraint c = (AV G, s, 4, 5). Instead,

the algorithm forms a temporary region Rred = {a3, a4, a5, a6} by merging Rblue and its

neighbor region Rgreen = {a4, a5}, as shown in Figure 3.3b. Rred accepts a2 and the

average value is 4.4, which satisfies the constraint c.

Example: Figure 3.4 gives an example of Substep 2.3 for the example region partition

in Figure 3.2b. Rred = {a4} contains only the MIN seed area; hence it does not satisfy

the MAX constraint. Because both neighbor regions Rblue = {a2, a5, a6} and Rgreen =

{a3, a7} satisfy the MAX constraint, Rred can be combined with either region to form a

region satisfying all constraints. The results are depicted in Figure 3.4a and Figure 3.4b,

respectively.

Complexity analysis. The Substep 2.1 and the first round of the Substep 2.2

iterate through all seed areas and each takes O(n) time. The second round of the Substep 2.2

iterates through the unassigned area set for multiple iterations. In each iteration, at least

one area is removed from the unassigned area set or otherwise no update is made and the

loop breaks. The number of unassigned areas is ≤ n, hence the worst-case total number of

operations is
∑n

i=1 i = O(n2). The merge operations are bounded by a constant number

and each operation takes constant time to update the attribute values and append the area

list. Substep 2.3 iterates through all regions once, thus taking maximum of O(n) time.

Thus, Step 2 time complexity is O(n) +O(n) +O(n2) +O(n) = O(n2).
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Remark 2. The time complexity of Region Growing is O(n2).

Step 3: Monotonic Adjustments. Step 3 satisfies SUM and COUNT con-

straints while maintaining the constraints that have been satisfied in the previous steps.

The SUM constraint is used in the MP-regions problem, hence we build this step based on

the MP-regions construction algorithms [95]. However, because regions are initialized for

the MIN, MAX, and AVG constraints, adjustments are needed on both area level and region

level to satisfy the counting constraints. Because SUM and COUNT constraints are mono-

tonic, areas are added to regions that fall under the lower bound or removed from regions

that go above the upper bound to make every region valid. We iterate over constructed

regions. For each region that violates one of the SUM or COUNT constraints, the algorithm

first tries to swap areas with neighbor regions without violating the other constraints. The

spatial contiguity of the region is validated by ensuring that the donor region still forms a

single connected component after swapping. After no updates can be made by swapping

areas, the algorithm tries to merge regions below the lower bounds or remove areas from

regions above the upper bounds. When no changes can be made, the infeasible regions are

removed, and the partition is considered finalized for the construction phase.

Example: With the input shown in Figure 3.4a and the example constraints c4 =

(SUM, s, 12,∞) and c5 = (COUNT, s,−∞, 4), the region Rgreen = {a3, a7} does not sat-

isfy c4. The boundary area with the neighbor region Rblue = {a1, a4, a5, a6} is a4. Area a4

is swapped from Rblue to Rgreen after ensuring that both regions still satisfy all the other

constraints, and Rblue is spatially continuous and still above the lower bound of c4. The
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result is depicted in Figure 3.4b. After swapping, the receiver region Rgreen = {a4, a5, a7}

satisfies all the constraints, so the swapping attempts are terminated.

Complexity analysis. Each area is swapped at most once because the region

that becomes feasible after the swap keeps the area to remain valid. Each swap updates

and validates all attributes of both the donor and receiver regions, which takes O(2m)

operations. Checking donor region connectivity is O(n) in the worst case. As a result, the

time complexity of swapping is O((2m+n)×n) = O(n2). The area removal of regions that

exceed the upper bounds and removing infeasible regions take one O(n) pass each. Thus,

the overall time complexity is O(n2) +O(n) +O(n) = O(n2).

Remark 3. The time complexity of Monotonic Adjustments is O(n2).

3.5.3 Local Search Phase

The partition with the largest number of regions p is forwarded from the construc-

tion phase to the local search phase to optimize the overall regions’ heterogeneity. The

local search phase uses the Tabu search algorithm [68], a meta-heuristic search algorithm,

to minimize the overall heterogeneity.

In brief, the Tabu search algorithm keeps moving areas among neighbor regions

without violating the user-defined constraints in any region. Starting from the feasible

partition constructed in the construction phase, the Tabu search algorithm moves to the

best neighboring partition. Moving to a solution that has worse total heterogeneity is

allowed to escape from the local optimal solution. The made moves are stored in a tabu

list, with a fixed tabu tenure, and the reverse moves are forbidden to prevent cycles. When
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a move leads to a partition better than the best partition so far, the algorithm chooses this

move even if the tabu list prohibits it. The algorithm stops when no better move can be

made in a specified number of steps, and the best partition found is returned as the final

result. This phase does not change the number of regions p. Instead, it still produces p

regions but with better overall heterogeneity.

Complexity analysis. The Tabu search is an incomplete algorithm, so we derive

a complexity approximation based on the parameters and the problem-specific neighborhood

computation. Tabu search performs n iterations without heterogeneity improvement and

the counter resets on improvement, so the total number of iterations is O(αn) in the worst

case, where α is the number of moves that beat the existing optimal heterogeneity score.

In each iteration, we update the valid moves using a region connectivity check for each

boundary area in the region updated by the previous move, which takes O(n × n) time in

the worst case. A move attempt takes O(n) to compute the pair-wise dissimilarity in the

worst case. So, the overall time complexity is O(αn× (n2+n)) = O(αn3). Experimentally,

the moves that improve heterogeneity happen at an early stage of the local search, causing

the total number of iterations much smaller than 2n.

Remark 4. The time complexity of the Local Search phase is O(αn3), where α is the number

of valid moves that improve the heterogeneity over the existing optimum.

3.5.4 Handling Arbitrary Sets of Constraints

Our discussion so far assumes the incoming query contains all types of constraints.

However, it is common to have a subset of these constraints. For example, a query could
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have only one AVG constraint, or one MIN constraint and one COUNT constraint. This

section discusses how the FaCT algorithm handles queries with an arbitrary subset of

constraints.

The FaCT algorithm handles absent constraints as they exist with an infinite range

(−∞,∞), which affects both the feasibility and the construction phases. If a MIN/MAX

constraint type is absent, the feasibility phase does not remove any invalid areas under

MIN/MAX, and Step 1 of the construction phase selects all areas as the seed areas. If

the AVG constraint is missing, the Region Growing step adds all areas in seeds to unas-

signed avg and then initializes single-area regions. Areas not in seeds are then added to

unassigned avg and merged to neighbor regions iteratively. If SUM/COUNT constraints

are absent, Step 3 of the construction phase is omitted. Therefore, designing the FaCT

algorithm with independent steps enables it to effectively handle queries with any subset of

constraints.

3.6 Complexity Analysis

This section analyzes the time and space complexity of the FaCT algorithm.

According to Remarks 1, 2, and 3 in Section 3.5.2, the time complexity of the feasibility and

the three steps of the construction phases are O(n), O(n2), and O(n2), respectively. Thus,

the total time complexity of both phases is O(n2). According to Remark 4 in Section 3.5.3,

the time complexity of the Local Search phase is O(αn3). This gives the overall worst-case

time complexity of FaCT as O(αn3), where α is the total number of moves that improves

the existing optimal heterogeneity in the local search process.
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For space complexity, the area set takes O(m×n) space to store the n areas, each

associated with m attributes assuming there are m constraints. The space complexity for

the seed area selection is O(n). The Region Growing step stores temporary regions with

O(n) areas. After the region initialization, each region is stored with m attributes and

an area set. The regions are disjoint, so the space taken by the region list is bounded by

O(m×n). The Monotonic Adjustments step and the Local Search phase update the region

list in place and does not require additional space. Thus, the overall space complexity is

O(m× n).

3.7 Experiment evaluation

This section presents an extensive experimental evaluation of our proposed work to

address the EMP problem. The code and data for reproducing the results presented in this

section are publicly available [96]. The rest of the section introduces the experimental setup

(Section 3.7.1), studies the impact of different constraints types and threshold ranges on the

performance (Section 3.7.2), shows the scalability of the FaCT algorithm (Section 3.7.3),

and summarizes the experimental results (Section 3.7.4).

3.7.1 Experimental Setup

EMP is a novel problem in the literature, so there is no direct competitor to

compare our techniques against. In addition, due to the major enrichment EMP introduces

to the MP-regions problem, existing techniques that address MP-regions problem cannot

be trivially extended and adopted as baselines to solve the EMP problem. Therefore, our
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experiments focus on evaluating the performance and effectiveness of our proposed work.

We also study the impact of different combinations of enriched constraints.

Evaluation datasets. We use nine real datasets that represent the census tracts

of the USA, outlined as follows: (1) the Los Angeles City (denoted as LACity) that in-

cludes 1012 areas, (2) the Los Angeles County (denoted as LACounty) that includes 2344

areas, (3) Southern California (denoted as SCA) as identified by the Southern California

Association of Governments (SCAG) [97] that includes 3947 areas, (4) the State of Cal-

ifornia (denoted as CA) that includes 8049 areas, and (5) Five multi-state datasets with

∼10k to ∼50k areas, as detailed in Table 3.1. Our default dataset is LACounty. Typical

evaluation datasets in the existing literature have between 300-3000 areas [63, 95], so our

default dataset size is comparable to the largest datasets in the literature. All datasets

are joined with real attributes from 2010 US census data about facts in each census tract.

All datasets share the same three spatial extensive attributes as shown in Table 3.2, one

per constraint type, and the dissimilarity attribute is HOUSEHOLDS. POP16UP attribute

represents the population with age sixteen or above. EMPLOYED attribute refers to the

employed population. TOTALPOP is the total population. HOUSEHOLDS is the number

of households in each area, and it is used to measure region heterogeneity.

The evaluation attributes are selected based on factors that influence the popula-

tion growth rate [33], which makes the partitions obtained through the experiments useful

for studying population growth. The shapefiles of the census tracts and the attribute tables

are provided by the US Census Bureau [98] and SCAG [99] and joined using the QGIS

software [100].
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All experiments are based on Java 14 implementations using an Intel Xeon W-

2123(3.60 GHz) and 20GB RAM allocated under Windows 10. We use three performance

measures: the runtime for both construction and local search phases, the answer set size p,

and improvement in regions’ heterogeneity, defined as the ratio of the absolute difference

between the heterogeneity score before and after the local search phase to the heterogeneity

score before the local search. Our parameters include threshold range and dataset size. Un-

less mentioned otherwise, the default dataset is LACounty, area pickup criteria are random,

the AVG merge limit is three, the length of the tabu list equals ten, and the maximum

number of moves without improvement for Tabu search equals the dataset size. The default

threshold ranges and attributes are shown in Table 3.2 for each constraint type. For space

limitation and similarity of results on aggregates of the same type, we present results for

one aggregate function in each constraint type.

3.7.2 Impact of Constraints Types

This section studies the impact of different sets of constraints on regionalization

performance. Sets of constraints vary in terms of: (1) set size, i.e., number of constraints,

(2) types of constraints, and (3) threshold ranges. Sections 3.7.2, 3.7.2 and 3.7.2 evaluate sets

that include MIN, AVG, and SUM constraints, respectively. MIN constraints are denoted

as M, combinations of MIN and AVG constraints are denoted as MA, combinations of MIN

and SUM constraints are denoted as MS, combinations of MIN, AVG, and SUM constraints

are denoted as MAS. Time of local search is denoted as Tabu.

50



MIN Constraint

This section evaluates regionalization queries with MIN constraints, c =

(MIN, s, l, u), in combination with other constraint types. MIN and MAX constraints

perform two roles: filtering invalid areas and selecting seed areas, and both depend on the

range threshold [l, u]. Hence, we explore three cases: (a) ranges with l = −∞, which show

the impact of u values on seed area selection, (b) ranges with u = ∞, which show the

impact of l values on invalid area filtration, and (c) ranges with bounded values of l and u

that show their simultaneous impact.

Ranges with l = −∞. Figure 3.5 shows the runtime of the construction phase

and Tabu search. The runtime highly depends on the types of constraints. Table 3.3 gives

the number of regions p for different constraints combinations. In all cases, the single MIN

constraint, M, produces the maximum of regions p that is bounded by the number of seed

areas. The p value increases with the increase of the upper bound u. As u increases,

the number of seed areas increases and it takes fewer iterations to partition the areas into

regions, so the runtime decreases in Figure 3.5. When the other constraints are added,

the regions in the final result contain more than one seed area, so p decreases. With

more seed areas, the initialized region becomes smaller and the SUM constraint takes more

operations to satisfy. This causes the runtime of MS and MAS to increase by a small amount

although the time for MIN and AVG actually decreases. Increasing u leads to increasing

the heterogeneity improvement from 6.96% at u = 2k to 40.2% at u = 5k due to higher p.
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Figure 3.5: Runtime for MIN with l =∞
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Figure 3.6: Runtime for MIN with u =∞
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(b) Varying range midpoints

Figure 3.7: Runtime for MIN with bounded l and u

Ranges with u = ∞. Table 3.3 shows the p values and Figure 3.6 gives the

construction time and local search time for different constraint combinations. As we increase

the lower bound l, more invalid areas are filtered out, while typically the remaining areas

are scattered. As a result, the p value decreases, and hence runtime decreases significantly

due to the lower number of regions. The heterogeneity score improvement reduces as l

increases with up to 17.6% due to decreasing p that narrows the search space of the local

search.
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Ranges with bounded l and u. We explore bounded ranges that vary the range

length while fixing the range midpoint. Table 3.3 gives the p values and Figure 3.7a shows

the runtime. When the range length increases, the p value increases because fewer areas are

filtered out and more regions are initialized. As a result, both total and construction time

increase due to larger search space. However, there is no clear trend for the Tabu search

time.

For a range with a fixed length and shifted midpoint to a higher value, both

construction time and local search time decrease, as shown in Figure 3.7b. For larger

values, the area set is chopped into small connected components but the number of seed

areas is relatively stable. As a result, Steps 2 and 3 of the construction phase terminate

faster and reduce runtime. The p value depends on the correlation between attributes of

MIN and AVG constraints. If they are not correlated, then the p value strictly decreases for

larger midpoint values. When they are correlated, p might increase or decrease, depending

on the correlation. In all cases, the heterogeneity improvement increases when p increases,

by up to 11.3% in this case.

AVG Constraint

The average aggregate function is non-monotonic. Satisfying the constraint can

be computationally heavy with certain ranges. To illustrate this, we explore two cases: (a)

ranges with fixed length and changing midpoints, and (b) ranges with a fixed midpoint but

varying lengths.
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Figure 3.9: Impact different AVG range midpoints
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Figure 3.10: Impact different AVG range lengths

Ranges with fixed range length. In this experiment, the length of the AVG

range is fixed to be 2k and the midpoint shifts from 1k to 4.5k, with the step size = 0.5k. We

focus on the performance of the AVG constraint to exclude the impact of other constraints.

Figure 3.8 shows the distribution of the AVG attribute value of the areas in the default

dataset, which is a positively skewed distribution. The AVG attribute values of most of the

areas are below 4k, but there are several outliers with values up to 6149. Figure 3.8a shows

the p value and the number of unassigned areas (UA) for each range while Figure 3.8b

gives the runtime. When the midpoint is set to be 1k to 2.5k, about half of the areas lie

within the given range and it is also relatively easy to combine areas whose value is outside

the range. As a result, the number of unassigned areas is reduced to 0 when the midpoint
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increases to 2k and 2.5k but the runtime is below 3.2s. The ranges are also flexible for the

Tabu search phase, with the heterogeneity score improved by up to 30.1%. When the range

is set to be 3k±1k, more than half of the areas lie below l but it is possible to combine them

with one of the outliers whose attribute value is well above the upper bound. In addition,

as an area is assigned, the newly formed region may lead to the possibility of assigning the

neighbor areas. Hence the enclave assignment process continues for multiple iterations until

no further update can be made. As a result, it takes a much longer time, but the percentage

of unassigned areas is reduced significantly to 9%. When the midpoint is further increased

to above 3.5k, it is too hard for the algorithm to form feasible regions as almost all areas

fall below the lower bound of the range. As a result, most areas remain unassigned and

the construction time becomes much shorter as the algorithm quickly finds that no further

changes can be made. When the midpoint is above 3k, there are limited feasible moves for

the Tabu search because the AVG constraint is too tight. As a result, the Tabu search time

is negligible and the heterogeneity improvements are below 0.4%.

Ranges with fixed midpoint. Based on the observation from the previous

experiment, we set the midpoint to be 3k, which is the most challenging setting for the

algorithm, and alter the length of the range. Combinations with the other constraints are

also included to demonstrate how the AVG constraint can bottleneck the performance in

special cases. The p values for different constraint combinations are given in Figure 3.9a

and the runtime is shown in Figure 3.11. The figures show increasing p values with longer

ranges, but the runtime depends on the range length. Different range lengths affect the

runtime significantly, while different constraint combinations with the same range have
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Figure 3.11: Runtime for AVG with differ-
ent range lengths
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Figure 3.12: Runtime for SUM with u =∞

much less impact on the construction time. This is because the runtime of the AVG step

dominates the total runtime of the construction phase. When the range is 3k ± 0.5k, the

range is so tight that the algorithm quickly finds no possible enclaves assignment, so the

AVG step terminates early. However, 60% of the areas remain unassigned, as shown in

Figure 3.9b. Similar to the previous experiment, the range 3k ± 1k is the most challenging

case and the runtime dominates the other constraints. However, the reduction in the number

of unassigned areas is also significant for all constraint combinations. When the range is

further enlarged, most of the areas lie within the range and it is much easier to assign the

enclaves without merging. Thus, the time is much shorter, and all areas are assigned as well.

The final heterogeneity score also reduces when the range is enlarged due to the reduction

in region sizes. The heterogeneity improvement increases to up to 21.8% because when the

range is enlarged, it becomes easier to find a valid move for the local search.
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SUM Constraint

SUM constraints are the only type of constraints that are used in existing state-

of-the-art solutions for the max-p regions (MP-regions) problem. We compare with them,

denoted as MP, using a single SUM constraint with an open upper bound, i.e.,[l,∞). Ta-

ble 3.4 shows the p values and Figures 3.12 and 3.13 give the runtime for different constraint

combinations with SUM aggregate. At u =∞, the p value decreases with increasing lower

bound l while runtime does not increase as much for both MP-regions and FaCT . Ac-

cording to Table 3.4, our FaCT algorithm gives comparable p value to MP-regions when

the constraints are set to be the same. The construction time is slightly higher due to the

overhead introduced by steps that validate the feasibility of the query and handle the other

constraints. However, due to shorter tabu search time, the overall runtime of EMP is less

than half of the runtime for the MP-regions when u = 30k or 40k. In addition, the FaCT

algorithm handles generic types of constraints, which are not supported by the competitor.

The heterogeneity score increases when l increases, by up to 72.6% for both MP-regions and

the single constraint S, 13.8% for MS, and less than 1% for AS and MAS due to the effect

of AVG constraint. Increasing the region’s size provides local search with more potential

moves, hence it better improves overall heterogeneity. For bounded threshold ranges, in

Table 3.4 and Figure 3.13, both p values and construction runtime decrease when the lower

bound l increases and the trend is similar to u = ∞. The heterogeneity score increases

by up to 30.4% for S, 6.9% for MS, 3.76% for AS, and 2.49% for MAS, with increasing

range length due to the larger region size. However, the unassigned areas could reach up

to 25.1% when u is bounded for MS, AS, and MAS. This is because areas are removed so
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changing range length
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Figure 3.14: Runtime varying datasets
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Figure 3.16: Runtime varying datasets for
AVG constraint with range 3k ± 1k

that each region does not exceed u. FaCT algorithm reports output statistics to users so

they are equipped with information about the impact of different threshold ranges on the

given dataset, and are able to tune query parameters insightfully.

3.7.3 FaCT Scalability

This section discusses the scalability of the FaCT algorithm. We run the algorithm

for different constraint combinations with the default threshold values on the nine evaluation
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datasets. The dataset size of the 50k dataset is 17 times the largest dataset used in the

existing literature of regionalization [63,95]. As the AVG constraint is identified as a clear

performance bottleneck when the range is set to be 3k ± 1k , our discussion contains two

parts. The first part shows the results for the constraint combinations with the AVG set to

be default range (Figure 3.14 and Figure 3.15) to show the scalability of FaCT in normal

cases, while in the second part we focus on constraint combinations including AVG with

range 3k ± 1k (Figure 3.16) to see how the computation of the AVG constraint scales in

extreme cases.

Figure 3.14 and 3.15 show that when the AVG constraint is not the bottleneck,

the runtime increases linearly with the input size for M and quadratically for the other

constraints. For all datasets, FaCT provides a very acceptable runtime for regionalization

applications.

Figure 3.16 shows that when the range of the AVG is set to be 3k ± 1k, AVG

constraints increase the construction time to a large extent.. For other datasets, the runtime

increases with increasing input size at a much higher rate than the previous experiment,

which implies less scalability advantage for AVG constraint. The construction runtime

does not strictly increase with increasing the input size. The construction time for the

SCA dataset is shorter than that for the LACounty dataset, except for AS and MAS. This

difference is caused by the merging procedure in the AVG constraint. Generally, more

areas are easier to aggregate in regions that satisfy the AVG constraint. In all cases, the

construction time scales much better than the Tabu time, and it still provides a solution

with almost the same quality.
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3.7.4 Summary Of Results

All experiments show that the FaCT algorithm can efficiently produce feasible

solutions of high quality in a few seconds for the vast majority of the cases. In addition,

the FaCT algorithm supports relatively large datasets that serve all existing applications.

When more areas are filtered or fewer seed areas are identified by the extrema constraints,

both p and the runtime tend to decrease. The behavior of the centrality constraint depends

on the range specified and the distribution of the attributes. However, it shows reasonable

performance in the vast majority of the cases. The counting constraints can formulate the

MP-regions problem as a sub-problem of EMP and gives comparable scalability and result

quality.

3.8 Conclusion

This chapter introduces an enriched max-p (EMP) regionalization problem that

extends the existing regionalization problems with SQL-inspired user-defined constraints.

The EMP problem clusters a set of spatial areas into homogeneous regions that satisfy

the user-defined constraints. The EMP problem enables enriched types of constraints that

support SQL-inspired aggregate functions, MIN, MAX, AVG, SUM, and COUNT, with

range operators. We prove the NP-hardness of the EMP problem. To tackle this problem,

we propose FaCT ; a three-phase algorithm that finds an approximate solution with a

maximum number of regions and minimum overall heterogeneity. The first phase checks

the feasibility of finding a solution given the input constraints. It also provides users with

insightful information to tune their input and enable flexible exploration for various datasets.
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The second phase constructs an initial solution, and the third phase further optimizes it

to provide a final solution. We have empirically demonstrated the capability of FaCT to

provide efficient and effective performance on various real datasets.

For future work, we explore multi-objective optimization methods and further

improve the algorithm performance through parallelization.
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3.9 Extension

Based on the EMP framework, we made two major extesnsion: the support for

the variance extension and the incremental update.

3.9.1 Varaince constraint

As one of the core statistical aggregate functions, variance measures the disper-

sion of the data and serves as an important reference in multiple fields. In regionaliztion

applications, variance aggregate can be adopted to define diverse or homogenious regions.

For example, by specifying a large variance target for natural resource distributions accross

different areas with in a region, researchers can obtain regions with various soil types, tem-

peratures, and rain fall distributions which can potentially accommodate a great variety

of species. In addition, variance in population with different cultural background also sug-

gests a more diverse society. More important, with the range operator that EMP supports,

researchers will be able to guide the tendency of the region in termes of heterogeneity to

observe more meaningful patterns.

Computation: The computation of the VAR constraint closely parallels the

three-step procedure of the AVG constraint. Both constraints are nonmonotonic, but they

exhibit a key distinction. The VAR constraint specifically manages the dispersion of regions.

Consequently, it’s challenging to directly determine if a region remains within the defined

range after the addition of an area or merging without particular computations. To address

this, we introduce two equations that enable efficient updates to a region’s variance attribute

and provide insights into the viability of area assignments or region mergers.
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For each region, we continuously update two sums: the sum of variance attribute

values
∑

s, and the sum of the squares of these values
∑

s2. The symbol
∑

here aggregates

the values for all areas within a given region. The region’s variance can be computed as:

V AR(Ri) =

∑
(sj − s̄)2

|Ri|

=

∑
(s2j − 2s̄sj + s̄2)

|Ri|

=

∑
s2

|Ri|
− 2s̄

∑
s

|Ri|
+
|Ri|s̄2

|Ri|

=

∑
s2

|Ri|
− 2s̄2 + s̄2

=

∑
s2

|Ri|
− (

∑
s

|Ri|
)2

(3.7)

By leveraging Equation 3.7, we can deduce the potential change in a region’s variance at-

tribute value upon the addition of an area by simply adjusting
∑

s and
∑

s2. Furthermore,

this allows us to identify the permissible range of variance attribute values for areas that

can be added to the region. If x symbolizes the variance attribute value of a potential area,

the variance post its addition is represented as V AR(R′
i), where |R′

i|= |Ri|+1.

V AR(R′
i) =

∑
s2 + x2

|Ri|+1
− (

∑
s+ x

|Ri|+1
)2

=

∑
s2 + x2 − (

∑
s+ x)2

|Ri|+1

|Ri|+1

=

|Ri|x2

|Ri|+1
− 2

∑
sx

|Ri|+1
+
∑

s2 − (
∑

s)2

|Ri|+1

|Ri|+1

(3.8)
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To make sure the new region satisfies the V AR constraint, we have:

l ≤ V AR(R′
i) ≤ u (3.9)

Using Equation 3.9, we can swiftly determine and store the acceptable variance attribute

value range for each region by finding the roots of the quadratic equations V AR(R′
i|= l and

V AR(R′
i) = u.

We then delve into three substeps for area verification and assignment: Substep

2.1V utilizes the seed areas, named seeds, from Step 1 to initialize potential regions. Every

area within seeds complies with at least one MIN/MAX constraint and must feature in

any legitimate region. If l ≤ 0, every seed initializes as a separate region, as any solo

area inherently has a variance of 0. For scenarios with l > 0, we iterate across seeds,

amalgamating seed areas with their neighbors to align the variance of the emerging region

closer to the range [l, r]. During this addition, seed areas that satisfy a given constraint

that the current temporary region does not are given preference. In all other instances,

non-seed areas are prioritized to maintain the number of potential regions. The algorithm

persists in adding neighboring areas until the temporary R meets the bounds of constraint

c. Following this, R is added to the region list P . Should the neighbors of R be insufficient

to form a valid region, the entire operation is reversed, leaving the areas of R unassigned.

Substeps 2.2V and 2.3V mirror the procedures of Substeps 2.2 and 2.3 for the

average constraint respectively. In Substep 2.2V, the algorithm iterates through areas yet

to be assigned, incorporating them into neighboring regions if their V AR attribute values

align with the neighboring region’s acceptable range. By Substep 2.3V, any region devoid
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of a seed area for every constraint is combined with its adjacent regions. However, because

merging two regions satisfying the V AR constraint doesn’t ensure a resultant region staying

within the range, owing to differing averages of the variance attributes, the merge limit is

adopted here to allow the algorithm to attempt combining several regions before getting

into the feasible range according to Equation 3.7. A similar heuristic mechanism is also

adopted for the following step when an area reallocation or region merging violates the

VAR constraint. In instances where unfeasible regions that can’t merge with their neighbors

persist, they are removed, with their areas incrementally integrated into neighboring regions

as dictated by the acceptable range derived from Equation 3.9.

Runtime: The approach to compute AV G and V AR shares procedural similari-

ties, and any single query can accommodate only one constraint at a time. As we have shown

that the validation operations that are different for the two constraints all take constant

time, the time complexity of the two constraints is the same.

3.9.2 Incremental update and reuse of results

Incremental update is a useful technique widely adopted in database systems and

real-time data processing. Adapting the FaCT algorithm to support the incremental update

feature boosts the scalability when dealing with large datasets or bottlenecking constraints

and also enables interactive exploration.

As stated in Section 6.1, one of the major concerns of the regionalization problems

is how to define the scale of the region, which inspires the evolution from the p-regions

problem to MaxP. With more complex constraints introduced to the EMP formulation,

adjusting the scale takes a much longer time as the problem has become much more difficult.
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In addition, as the size of the dataset increases, even the efficient operations, such as filtering

and seeding that take O(n) time, can be expensive. However, due to the greedy approach

that FaCT adopts and the selection scheme implemented, the results obtained for each

constraint remain high quality as long as the corresponding constraint does not change.

We classify the changes into two categories and adopt different approaches to

perform the incremental update operation accordingly:

Local Incremental Update: This pertains to alterations affecting a small por-

tion of the regions. Historical changes in administrative boundaries, like merging or splitting

counties and cities due to political or functional reasons, are typical examples. In terms of

the EMP formulation, there can be a dramatic change in the population of certain areas,

which will render the current partitioning obsolete. However, the changes are usually kept

local, i.e. the merging and splitting of regions as well as the reallocation of areas happens

within the neighboring counties or cities. With this observation and the inspiration from

the Iterated greedy algorithm [101–103], we propose to perform a deconstruction and recon-

struction to repartition the areas within the one-hop neighbor if the changes of attributes

for the areas happen locally. To be more specific, the incremental update for local changes

is divided into three steps. 1. We determine whether the regions that are affected by the

changes are in a local cluster of one-hop neighbors, i.e. if a set containing a certain region

and its neighbor regions contains all regions that are affected. 2. The one-hop neighbor

is deconstructed and the areas are released while the other parts of the partition remain

untouched. 3. We perform a reconstruction with the released areas and combine the up-

dated partial result with the unchanged part from the previous result. As demonstrated in
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Section 3.6, the time complexity of the FaCT algorithm stands at O(αn3). Consequently,

FaCT ’s performance is markedly enhanced when the problem size is reduced by the local

incremental update.

Global Incremental Update: This relates to significant alterations to one or

multiple constraints. Such changes might involve users altering threshold values or switching

to different attributes for a particular constraint, which affects all regions. Because of the

modular design of the construction phase, the results of each step can potentially be reused

when there is a partial update of the constraints or the attribute values are updated. For

example, after the result is obtained for the constraints C = {(MIN, smin, lmin, umin),

(AV G, savg, lavg, uavg), (SUM, ssum, lsum, usum)}, a user might want to adjust the threshold

for SUM to change the scale of the regions, or change ssum from total population to

employed population. In this case, the results obtained by Step 2 of the construction phase

can be reused. Because the AV G computation can seriously bottleneck the performance,

the ability to perform the incremental update saves a huge amount of resources and time

and is especially in an online environment. We modify the FaCT algorithm to support the

global incremental update in the following way: 1. We determine the constraints that are

redefined by comparing the hash of the constraint definition and the attribute list. 2. The

results that can be reused are determined by the unchanged constraints. 3. The partition

is incrementally updated by only recomputing the required constraints.
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Algorithm 1: Region Growing - Merging Areas

Input: c = (AV G, s, l, u), unassigned low, unassigned high, P
Output: unassigned low, unassigned high, P

1 removed areas← ∅
2 u areas← unassigned low ∪ unassigned high
3 foreach area a ∈ u areas do
4 Create a tempory region R with R.id = -1;
5 R.addArea(a);
6 updated = true;
7 neighbor areas = R.getNeighbors();
8 while updated do
9 updated = false;

10 if l ≤ R.getAverage() ≤ u then
11 R.updateId(P .size() + 1);
12 P .add(R);
13 removed areas.addAll(R.areas);

14 end
15 else
16 foreach area an in neighbor areas do
17 if an is not assigned to any region then
18 if (R.getAverage() < l AND an.s > u) OR ((R.getAverage() > u

AND an.s < l)) then
19 R.addArea(an);
20 updated = true;
21 break;

22 end

23 end

24 end

25 end

26 end

27 end
28 unassigned low.removeAll(removed areas);
29 unassigned high.removeAll(removed areas);
30 return unassigned low, unassigned high, P ;

Name No. of areas States

10k 10255 CA, NV, AZ

20k 20570
10k + OR, WA, ID, UT, MT, WY,

CO, NM, OK, NE, SD, ND

30k 29887 20k +TX, LA, AR, MO, IA

40k 40214 30k + MN, MS, AL, TN, KY, IL, WI

50k 49943 40k + GA, IN, MI, OH, WV

Table 3.1: Description of the multi-state datasets
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Constraint Type Aggregate Attribute Range

Extrema MIN POP16UP (−∞, 3000]

Centrality AVG EMPLOYED [1500,3500]

Counting SUM TOTALPOP [20000,∞)

Table 3.2: Default attribute and ranges for different constraints.

Ranges with l = -∞ Ranges with u = ∞ Ranges with bounded u and l
(-∞,2k] (-∞,3.5k] (-∞,5k] [2k,∞) [3.5k,∞) [5k,∞) [2.5k,3.5k] [2k,4k] [1.5k,4.5k] [1k,5k] [1k,2k] [2k,3k] [3k,4k] [4k,5k]

M 270 1447 2172 2074 898 173 834 1501 1895 2109 207 789 712 401
MS 184 354 365 342 142 12 281 334 356 362 159 307 215 78
MA 208 1037 1483 1593 812 97 776 1206 1398 1496 175 654 704 386
MAS 170 335 341 337 145 7 275 328 339 344 152 304 215 74

Table 3.3: p values for different threshold ranges for MIN constraint combinations.

Ranges with u = ∞ Ranges with different lengths
[1k,∞) [10k,∞) [20k,∞) [30k,∞) [40k,∞) [15k, 25k] [10k,30k] [5k,35k]

MP 2298 717 373 245 185 N/A N/A N/A
S 2298 720 371 245 186 489 714 1358
MS 1056 581 342 237 179 408 567 785
AS 1545 642 345 233 177 445 640 1095
MAS 758 518 323 226 172 370 497 631

Table 3.4: p values for different threshold ranges for SUM constraint combinations.
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Chapter 4

Scalable Evaluation of Local

K-Function for Radius-Accurate

Hotspot Detection in Spatial

Networks

4.1 Introduction

In recent years, the rapid growth of spatial data has sparked considerable interest

in the field of spatial analysis [104–106]. Spatial data is usually associated with spatial

networks [107–113]. Spatial networks significantly influence various aspects of society, from

daily commuting patterns [114] to the distribution of goods and services [115]. Hotspot

detection along the spatial network is an important problem that identifies regions where
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objects are significantly concentrated. Compared to Euclidean space [106], hotspot detec-

tion proves to be more precise along spatial networks, given the fact that most human

activities are centered around these networks [105]. Hotspot detection in spatial networks

is applied in diverse fields such as traffic management [110], epidemiology control [111], and

crime analysis [107]. In some cases, practitioners having specific domain knowledge aim to

identify hotspots within predetermined radii. For example, in environmental studies [116],

certain pollutants tend to affect a specific radius around the point of release, so, fixed-

radius hotspots could be established at this distance to pinpoint high-risk areas. However,

in many cases, the hotspot radius may not be known, e.g., identifying crime regions and

traffic congestion. Therefore, most hotspot detection algorithms used in spatial networks

automatically determine the appropriate radius through enumeration. [106,108,117–119].

Existing hotspot detection methods along spatial networks fall into two categories:

clustering-based methods [112, 113, 120–122] and statistical-based methods [104, 105, 108,

117–119, 123]. While clustering methods have efficient runtime, they might produce false-

positive results [106]. In contrast, statistical-based methods offer a thorough statistical

examination of the detected hotspots, typically by using a scoring function for quantifica-

tion, e.g., log-likelihood score [108], density score [117, 118], to filter candidates. However,

the log-likelihood score doesn’t directly give a statistical significance guarantee because it

doesn’t take into account the variability that could arise from random sampling. Conse-

quently, randomization techniques such as Monte Carlo Simulation [124] are followed to

further validate the statistical significance. However, these kinds of approaches often de-

mand a large number of simulations, which can lead to performance issues.
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The network local K-function [105, 125] is a statistical function for the analysis

of the distribution of objects in the spatial network. For a given center, it computes the

sum of edge weights and the number of reachable objects in the network within a specific

distance from the center and derives a distribution function. Consequently, the network

local K-function can be used directly to compute a measure of statistical significance due to

its incorporation of the distribution function, without using randomization techniques for

statistical validation. This makes its computation efficient and solution quality statistically

supported. Consequently, the network local K-function can efficiently and effectively detect

hotspots in spatial networks.

Detecting hotspots in spatial networks is challenging for several reasons. Firstly,

modern network datasets are extensive, including up to millions of objects [126], whereas

existing statistical methods for network hotspot detection are typically designed to han-

dle smaller datasets, usually thousands of objects [108, 117, 118]. Second, the distances

between objects are constrained by the network topology, where edges in the network are

intricate and interconnected, making the distance computation more complicated compared

to that in Euclidean space. Third, determining the range of each hotspot is computation-

ally expensive. Existing statistical-based methods for hotspot detection are mainly based

on enumeration [108, 117, 118, 127], which does not scale due to the vast candidate size

involved.

In this chapter, we address the limitations of the current hotspot detection algo-

rithms in spatial networks based on the network local K-function. The algorithm is now
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available in the Machine Learning module of the Pyneapple library. Our contribution can

be summarized as follows:

• We propose two problems on spatial networks: Hotspot Detection with Predefined

Radius (HDPR) and Hotspot Detection Without Predefined Radius (HDWPR) based

on the network local K-function.

• We propose efficient algorithms to solve the HDPR problem.

• We define optimal hotspots radii and propose an approximate algorithm to solve the

HDWPR problem.

• We present complexity analysis and correctness proof for the proposed algorithms.

• We conduct extensive experimental evaluations on both real and synthetic spatial

network datasets to demonstrate the efficiency of our methods.

The rest of the chapter is organized as follows: Section 4.2 presents the related

work. Section 4.3 defines the problems. Section 4.4 and Section 4.5 detail our proposed

algorithms. Section 4.6 presents the experimental evaluation and Section 4.7 concludes the

chapter.

4.2 Related Work

In this section, we discuss the work related to hotspot detection in spatial networks

and the evaluation of the network K-function.

Hotspot detection: Spatial hotspot detection is an important problem with

numerous applications, e.g., identifying regions with high occurrences of diseases in the
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study of epidemiology [128,129], pinpointing locations with a high concentration of accidents

or congestion in traffic management [110,130], and revealing areas with high crime rates in

public safety [131, 132]. Hotspot detection has been studied extensively in the Euclidean

space [106]. However, in this chapter we focus on hotspot detection in spatial networks as

it provides accurate insights based on actual edge distances.

Consider a set of events happening on a spatial network, a hotspot [108] in a spatial

network denotes a region in the network that exhibits a high density of events compared

to the mean number of events. There are two main approaches for identifying hotspots

in spatial networks: (1) clustering-based hotspot detection, and (2) statistical analysis-based

hotspot detection. Clustering-based hotspot detection [112, 113, 120–122] aims to identify

groups of events that are close to each other in the network space. Extensions of traditional

clustering approaches have been developed to support spatial networks, e.g., partition-based

clustering [121,133], DBSCAN-based [112,121,134], and hierarchical-based clustering [121].

While clustering-based hotspot detection algorithms are considered computationally effi-

cient, they lack strong statistical robustness, i.e., they can result in biased or misleading

results [106]. For example, partition-based clustering [121] and DBSCAN-based cluster-

ing [112] algorithms will always return clusters even if the points are randomly distributed.

These clusters are not statistically robust and are considered false positives for statistical

methods.

Statistical-based hotspot detection [104, 105, 108, 117–119] defines hotspots based

on statistical models. These models identify regions where the density of events significantly

exceeds the expected density assuming a specific event distribution. Khalid et al. [107] use
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the NetKDE [130] to detect crime hotspots and the Getis-Ord GI* [135] is adopted as the

statistical evidence of hotspot properties. However, this method is rather computationally

expensive for large networks as it needs to compute the pairwise correlation between events.

Tang et al. [108], propose NPP, which is the most relevant statistical method for objected-

centered hotspot detection in spatial networks. NPP assigns a log-likelihood score for all

possible radii of hotspots, and uses network partitioning to prune spatial objects that do

not contribute to hotspots. Candidate hotspots are validated using Monte Carlo simulation

trials [124]. While NPP provides strong statistical evidence for detected hotspots, NPP is

computationally expensive because of the large number of Monte Carlo simulation trails

and the scoring of multiple radii per hotspot.

The network K-function: [105] is proposed as a robust measure for density and

distribution of spatial patterns in the network space. It is divided into two categories: the

network global K-function [105,109,136] and the network local K-function [105,125]. Chan

et al. [109] introduced the state-of-the-art algorithm for the evaluation of the network global

K-function, which counts the object pairs within a specific distance threshold. It speeds up

the processing by sharing the processing of nearby objects, i.e., neighborhood sharing. One

important limitation of the network global K-function is its inability to identify objects that

are part of dense clusters.

Recently, the network local K-function [105, 125] has been introduced to better

analyze the densities and distribution of spatial objects surrounding a center object. It

calculates the total number of spatial objects that are within a specific network distance

from the center object as well as the sum of network distances between those spatial objects
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and the center object. The main advantage of the network local K-function is that it provides

strong statistical evidence on the densities of spatial objects in the network.

In this chapter, we address the problem of efficient hotpot identification with strong

statistical evidence using the network local K-function. The statistical evidence of the net-

work local K-function is based on the spatial distribution function and density of data which

provides strong statistical evidence of the spatial density with low computational overhead.

Notice that, existing statistical-based hotspot detection algorithms [108,117,118] enumerate

and score a large number of hotspot radii. This is computationally expensive, even with

the proposal of pruning algorithms [108] that reduce the search space of hotspot radii. On

the contrary, we identify hotspots with and without a predefined radius while avoiding the

expensive enumeration. This significantly improves the efficiency of our algorithm without

affecting its utility.

4.3 Preliminaries and Problem Definition

In this section, we formally define the terminologies used and the problems ad-

dressed in the chapter.

A spatial network [105], denoted as G = (V,E), is an undirected weighted graph

where V is a set of vertices and E is a set of edges. V has two types of vertices: (1) location

vertices that represent physical locations, e.g., road intersections and turning points, and

(2) event vertices that represent spatial events, e.g., vehicle locations, 911 calls, or traffic

collisions. Practically, the set V is the union of two sets: a set of location vertices and a set of

event vertices. The spatial events are overlaid over the physical straight lines that connect
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physical locations. E represents the set of connections among graph vertices. w(u, v)

represents the weight of the connection (u, v) and it is the network travel distance between

vertices u and v. Every connection e ∈ E is either: (1) an edge, or (2) a segment. An

edge is a direct connection between two location vertices. A segment is a direct connection

that connects an event vertex to another event vertex or to a location vertex. Each segment

is overlaid on an edge and each edge is associated with zero or more overlaid segments.

Figure 4.1a gives an example of a spatial network where location vertices and event vertices

are denoted by uppercase and lowercase letters, respectively. In Figure 4.1a, Edge (F, J)

is an edge associated with zero segments, while Edge (J, S) is an edge associated with four

segments (J, d), (d, b), (b, a), and (a, S). E maintains both edges and their overlaid segments

as graph connections in one set differentiated with a flag attribute indicating their type. We

denote the shortest path distance between any pair of vertices x and y, as dist(x, y), where

x and y can be location or event vertices. In Figure 4.1a, w(J, S) = 7, and event vertex o

is overlaid on Edge (B,H) with dist(o,H) = 8, dist(o,B) = 10, and dist(o,m) = 10.

The number of overlaid event vertices along an Edge e in G is denoted as |e|. The

number of location vertices and event vertices in G are denoted as |Vl| and |Ve|, respec-

tively, so |V |= |Vl|+|Ve|. The number of edges and segments are denoted as |Ee| and |Es|,

respectively, so |E|= |Ee|+|Es|.

An isodistance sub-network [108] I(t|ϑ) of an event Vertex ϑ with a given

distance t is a network that consists of vertices, edges, and segments that are reachable

from ϑ within a distance t. Edges and segments could be fully or partially covered by

I(t|ϑ).
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(a) Spatial Network (b) Isodistance sub-network

Figure 4.1: Spatial Network Example

L(t|ϑ) is the sum of weights of all the edges and segments in I(t|ϑ) and L(G) is the

total weight of edges in G. If an edge or a segment is partially covered by I(t|ϑ), only the

covered parts are considered in L(t|ϑ). The weights of edges and their overlaid segments are

not added twice. The number of event vertices in I(t|ϑ) is denoted as N(t|ϑ). Figure 4.1b

shows an example of I(5|a) where all the edges, segments, and the event vertices encountered

in L(5|a) are highlighted in red. In this example, L(5|a) = 10 and N(5|a) = 3 (counting

event vertices a, b, d). In Figure 4.1a, L(G) = 116. Whenever there is no ambiguity, L(t|ϑ)

is abbreviated as L and N(t|ϑ) is abbreviated as N .

The network local K-function [105,125] is a statistical function to analyze the

density and distribution of events surrounding a center vertex. This function takes two

inputs, an event Vertex ϑ and a network distance t. Formally,

K(t|ϑ) = N(t|ϑ)
ρ
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where ρ = |Ve|−1
L(G) represents the overall density of event vertices within the entire network.

In Figure 4.1a, ρ = 13−1
116 = 0.103, and K(10|a) = 3

0.103 = 29.

Complete spatial randomness (CSR) hypothesis [105] is a fundamental spa-

tial statistical hypothesis that describes random occurrence of spatial events. CSR states

that random locations of spatial events follow a homogeneous binomial point process [105].

We use the CSR hypothesis to represent a hypothetical distribution of spatial events sur-

rounding a center vertex without hotspots. The expectation µ and variance σ2 of the

hypothetical spatial distribution surrounding ϑ are calculated as follows:

µ(K(t|ϑ)) = L(t|ϑ)

σ2(K(t|ϑ)) = 1

|Ve|−1
∗ L(G) ∗ L(t|ϑ) ∗ (1− L(t|ϑ)

L(G)
)

In Figure 4.1b, µ(K(5|a)) = L(5|a) = 10, and σ2(K(10|a)) = 1
13−1 ∗ 116 ∗ 10 ∗ (1 −

10
116) =

88.33.

For a specific radius t, an event Vertex ϑ is a hotspot when the actual density of

events within t distance from ϑ exceeds the expected density. We find the quantile of the

actual local K-function K(t|ϑ) compared to the hypothetical distribution. If it is above a

preset threshold, e.g., 90%, ϑ is considered a hotspot [105]. Formally, ϑ is a hotspot when

K(t|ϑ) > Kα(t|ϑ)
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Figure 4.2: Probability Distribution Function

where α is a preset quantile threshold that serves as the statistical evidence of the identified

hotspot. Kα(t|ϑ) represents the α quantile of the K(t|ϑ) distribution function.

Figure 4.2 represents the CSR-based probability distribution of events surrounding

Vertex a in Figure 4.1b and radius t = 5, given µ(K(5|a)) = 10, and σ2(K(5|a)) = 88.33.

The 22.04 is the 90% quantile of the hypothetical local K-function. The actual value of

the local K-function, i.e., K(5|a) is 29. Hence a is considered a hotspot with confidence

exceeding 90%. The quantile of a is 97.83% which represents an even higher statistical

significance of the hotspot a. Higher quantile values (¿90%) make hotspot detection more

stringent [125], which improves the confidence in the detected hotspots and avoids false

positives [106]. Based on the above discussion, we define the following problems for hotspot

detection in spatial networks.
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Problem 1. Hotspot Detection with Predefined Radius (HDPR): Given a spatial

network G = (V,E), a minimum statistical significance threshold α, and a distance value t,

find the set of event vertices VH , such that ϑ ∈ VH if ϑ satisfies K(t|ϑ) > Kα(t|ϑ).

In HDPR, hotspot detection is based on a predefined network distance, t, and

a statistical significance threshold, α. Any event Vertex ϑ is identified as a hotspot if

K(t|ϑ) > Kα(t|ϑ). However, in some situations, users may not have a specific idea about

the best radius to choose for hotspots. Hence, we define the following problem for hotspot

detection that returns hotspots alongside their radii. Instead of a predetermined radius,

each hotspot is characterized by an optimal radius that maximizes the statistical significance

of the detected hotspot.

Problem 2. Hotspot Detection Without Predefined Radius (HDWPR): Given a

spatial network G = (V,E) and a minimum statistical significance threshold αmin, find a

set of hotspots H, each hotspot h ∈ H is defined with a triple (ϑh, th, αh) where ϑh ∈ V is

an event vertex with radius th and statistical significance αh, where K(th|ϑ) > Kαmin(th|ϑ)

and αh ≥ αmin. ϑ is considered the center of a hotspot with radius th and statistical

significance αh.

4.4 Hotspot Detection with Predefined Radius (HDPR)

In this section, we present our solution to HDPR problem, i.e., hotspot detection

with a predefined radius. The key idea is to efficiently use the network local K-function

at a specific statistical significance to detect hotspots. This requires efficient computation

of N and L for every vertex in the graph. For Vertex ϑ with network distance t, N(t|ϑ)
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represents the number of vertices reachable from ϑ within distance t, and L(t|ϑ) represents

the sum of edge weights within distance t. There are two main components of our algorithm

for HDPR: (1) Graph traversal and (2) Batch-Based Traversal.

4.4.1 Graph Traversal (GT)

GT is the core technique for computing N and L values for any event vertex. GT

initiates a Dijkstra [137] shortest path-based traversal that originates from an event node,

say ϑ. The objective is to count events that are within a shortest path distance t and use

this count to compute N(t|ϑ) and L(t|ϑ) and hence the network local K-function value for

ϑ. GT starts with setting N(t|ϑ) and L(t|ϑ) to 0. Initially, the isodistance sub-network of

ϑ is not discovered. GT incrementally explores edges and keeps track of all vertices (event

and location) that are reachable from ϑ sorted based on their shortest path distances. Then,

GT visits Vertex u that is closest to ϑ. If u is an event vertex, then N(t|ϑ) is incremented

by 1. To update L(t|ϑ), GT checks the weight u can contribute to the neighboring Edge or

Segment (u, v), which is min(t − dist(ϑ, u), w(u, v)). If t − dist(ϑ, u) ≥ w(u, v) then (u, v)

is fully traversed. Otherwise, (u, v) is partially traversed. This means Edge/Segment (u, v)

partially contributes to L(t|ϑ). We keep track of the partial contribution of (u, v) to L(t|ϑ),

i.e., P (u, v) = t− dist(ϑ, u). GT keeps iterating until all vertices within the distance t from

ϑ are visited.

Running Example: In Figure 4.1, we want to check if i is a hotspot with t = 10

and significance level α = 90%. To computeN(t|i) and L(t|i), we traverse the graph starting

from i. j is the first vertex visited and N(t|i) is incremented to 2 (from Events i, and j).

L(t|i) = 10 because (i, j) is fully traversed and Segment (j, A) is partially traversed with
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P (j, A) = 6. Then, Location Vertex D is visited, with L(t|i) = 20. This is because Segment

(i,D) is fully traversed and Edge (D,G) is partially traversed with P (D,G) = 10− 8 = 2.

Hence K(10, i) = N(t|i)
ρ = 2

ρ = 19.33 and that is a significance of level of 47.9%. Recall that

ρ = |Ve|−1
L(G) = 12

116 = 0.103. This indicates that i does not qualify as a hotspot.

4.4.2 Batch-Based Traversal (BBT)

While GT accurately computes N and L for each event vertex, GT is inefficient as

events are processed individually. We speed up GT by adding batch processing of events,

i.e., Batched-Based Traversal (BBT). BBT computes N and L values of events that belong

to a single Edge e in a single batch. The key idea here is that events on the same edge

are close to each other and have the same neighboring events. This allows sharing the

computation among events on the same edge. The objective in BBT is to compute N

and L for the events along e in a single batch. This is done by traversing each edge in

G and evaluating the edge’s contribution to N and L of events along e. To speed up the

processing of event batches within an edge, events within an edge are sorted according to

their distances to one of the edge’s endpoints, and the list of sorted events on e is stored as

Se. In the following, we discuss how to batch compute the N and L of events along Edge

e = (P,Q).

First, we evaluate the contribution of events of Edge e to their own N and L

values. If t > w(e), then we increment N by |e|, i.e., the number of events along e, and

L by w(e), i.e., the weight of Edge e, for all events. The reason is that all events on e are

within distance t of each other. Otherwise, we apply a sliding-window-based approach that

incrementally computes the N and L for each event. The length of the window is 2t to
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Figure 4.3: Sliding Window Figure 4.4: Edge Categories

account for the situation where an event is in the middle of Edge e and there are events

on both sides of this event on e. Initially, the sliding window begins at the first event in

Se, say ϑ. N(t|ϑ) and L(t|ϑ) are updated according to the vertices, edges, and segments

covered in the window. When the processing of ϑ is complete, the window slides towards

the next event in Se. This results in the addition of new segments to the window and the

removal of other segments. The N and L of the new event can be updated according to the

N , L of ϑ, and the difference in the window segments. The window keeps sliding until all

events along e are processed. Figure 4.3 shows an example.

Then, we categorize any Edge, say e1, from graph G into the following categories:

1. All events in e1 are within t distance from all events in e. N and L for events on e

are batch increased by |e1| and w(e1), respectively.

2. No events in e1 are within t distance from events in e. In this case, e1 does not affect

the values of N and L for events on e.

3. Some events in e1 are within t distance from events in e.
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The processing of Categories 1 and 2 has been described above. To present our

solution to Category 3, we define the notions of maximum distance and minimum distance

between edges. For an Edge ẽ = (P̃ , Q̃), we define the minimum distance between e and ẽ,

as the minimum distance between any endpoint in e and any endpoint in ẽ. Formally,

Dmin(e, ẽ) = min{dist(P, P̃ ), dist(P, Q̃), dist(Q, P̃ ), dist(Q, Q̃)}

The maximum distance between e and ẽ is the upper-bound on the shortest network travel

distance between any event in e and any event in ẽ. Formally,

Dmax(e, ẽ) = Dmin(e, ẽ) + w(e) + w(ẽ)

In Figure 4.4, Dmin((H,G), (A,D)) is the distance between D and G, which equals to 8.

Dmax((H,G), (A,D)) = Dmin((H,G), (A,D))+w(H,G)+w(A,D) = 8+10+28 = 46. For

Category 3, Dmin(e, ẽ) ≤ t and Dmax(e, ẽ) > t and some events in ẽ may not be reachable

from events on e. This requires events in e to be examined individually.

In this case, BBT sequentially visits the events along e, i.e., Se[i] for i = 1, ..., |Se|.

For each event, Se[i], along Edge e, we calculate the shortest distance from Se[i] to P̃ , de-

noted as dist(Se[i], P̃ ), where dist(Se[i], P̃ ) = min(dist(Se[i], P )+dist(P, P̃ ), dist(Se[i], Q)+

dist(Q, P̃ )).

Then we compute t − dist(Se[i], P̃ ), which is the remaining weight that Se[i] can

disseminate along Edge ẽ from P̃ to Q̃. Similarly, we compute t − dist(Se[i], Q̃), which is

the remaining weight that Se[i] can disseminate along Edge ẽ from Q̃ to P̃ .
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Denote ri(P̃ ) = max(t − dist(Se[i], P̃ ), 0) and ri(Q̃) = max(t − dist(Se[i], Q̃), 0),

we define the following scenarios based on the relationship between ri(P̃ )+ ri(Q̃) and w(ẽ):

(1) Case 1: ri(P̃ ) + ri(Q̃) ≥ w(ẽ). In this case, Se[i] can reach any place on ẽ within t

distance. L(t|Se[i]) is incremented by w(ẽ) and N(t|Se[i]) is incremented by |ẽ|.

(2) Case 2: ri(P̃ ) + ri(Q̃) < w(ẽ). In this case, L(t|Se[i]) is incremented by ri(P̃ ) + ri(Q̃).

As for N(t|Se[i]), since the events along each edge are sorted, we perform a binary search

with key equals to ri(P̃ ) to retrieve the number of events on ẽ reachable from P̃ to Q̃, and

update N. Similarly, we perform another binary search with key equals to ri(Q̃) to retrieve

the number of events reachable from Q̃ to P̃ and update N.

In summary, BBT creates a set Ee,t to store edges such that ∀ẽ ∈ Ee,t, Dmin(e, ẽ) ≤

t. Then, BBT computes the set of location vertices reachable from P or Q within t shortest

distance, denoted as DP,Q, using the Dijkstra single source shortest path algorithm [137].

Finally, BBT iterates over location vertices in DP,Q. For each vertex in DP,Q, denoted

as P̃ , we add every edge connected to P̃ , say ẽ = (P̃ , Q̃), to the set Ee,t. Then, edges

ẽ in Ee,t are visited incrementally and assessed for the contribution of ẽ towards the N

and L values of events along Edge e. BBT batch update N and L for edges in Category

1 and applies a binary-search based method to update N and L for edges in Category 3.

The time complexity of BBT is O(|Ee||Vl|log|Vl|+|Ee|2|Ve|log|Ve|). The space complexity is

O(|Ve|+|Ee|). The proof is given in Appendix .1.1.

Running Example: In Figure 4.4, when processing the events along Edge e =

(J, S), we have DJ,S = {F, J, S, Z,R,H,G} when t = 15, and Ee,t includes all edges except

for (B,C) and (A,D). We first process e itself. Since t = 15 > w(e) = 10, we batch update
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N = 3 and L = 7 for all events. Then, other edges satisfying Category 1, 2, and 3 are

colored blue, red, and green, respectively.

After processing the edge e itself and traversing all edges of Category 1:

(F, J), (F,Z), (S,R), and (R,G), the N and L of events are batch updated to 3 and 22, re-

spectively. Edges satisfying Category 2 are red-colored and pruned as they do not contribute

to N and L of any event along e. Then we evaluate the edges in Category 3. Take (H,G) as

an example, the minimum distance between e and (H,G) is 8, but the maximum distance is

25. Say Se = [d, b, a]. We have r1(H) = max(t− dist(d,H), 0) = max(15− 12, 0) = 3, and

r1(G) = max(t− dist(d,G), 0) = max(15− 14, 0) = 1. Since r1(H) + r1(G) = 4 < 10, this

falls into Case 2. We invoke a binary search with a key equals to 3 from H to G to find that

the number of reachable events is 0. Similarly, we invoke a binary search with a key equal to

1 from G to H and find that the number of reachable events is 1. Thus we increment L(t|d)

by 4 and N(t|d) by 1. After batch evaluation of N and L, we have N(15|a) = 9, N(15|b) = 7,

and N(15|d) = 5. Further, L(15|a) = 42, L(15|b) = 43, and L(15|d) = 45. Their respective

K function values are K(15|a) = N(15|a)
ρ = 9

0.103 = 87, K(15|b) = N(15|b)
ρ = 7

0.103 = 67.66,

and K(15|d) = N(15|d)
ρ = 5

0.103 = 48.33, where ρ = |Ve|−1
L(G) = 13−1

116 = 0.103. Finally, the

statistical significance for a, b, d are 99.74%, 93.64%, 58.09%. Hence, a and b are hotspots

with α = 90%.

4.4.3 Incremental Batched Traversal (IBT)

BBT requires a binary search operation for each event along Edge e to find the

number of events reachable from both ends of Edge ẽ. This operation is repeated for every

87



Algorithm 2: Incremental Batched Traversal (IBT)

Input: G : The spatial network
t : The network traverse distance

Output: N and L for each event vertex

1 Ns, Ls = { }, { }
2 for each Edge e = (P,Q) in G do
3 DP,Q = location vertices reachable from P or Q within t
4 Ee,t = Set()

5 for P̃ in DP,Q do

6 for Q̃ in P̃ ’s neighbors do

7 ẽ = (P̃ , Q̃)
8 add ẽ to Ee,t

9 end

10 end
11 for ẽ in Ee,t do
12 //edges in Ee − Ee,t are in Category 2 and are pruned
13 if e == ẽ then
14 Apply the Sliding Window approach
15 else
16 compute Dmin(e, ẽ) and Dmax(e, ẽ)
17 if Dmax(e, ẽ) ≥ t then
18 update N , L based on Category 1
19 else
20 update N , L based on Category 3
21 end

22 end

23 end
24 update Ns and Ls with the events along e

25 end

26 return Ns, Ls

event which can be expensive. We introduce Incremental Batched Traversal (IBT) to solve

this problem. IBT is based on the observation that the computations of Category 3 in BBT

are repetitive and can be derived from previous computations. IBT employs incremental

processing to compute N and L values for an event vertex based on the N and L values for

a neighbor event.
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Similar to BBT, IBT also processes events along Edge e, represented as Se[i],

in sequential order, for i ranging from 1 to |Se|. For each event along e, i.e., Se[i], IBT

calculates values ri(P̃ ) and ri(Q̃). The handling of Case 1 in Category 3 is identical to that

of BBT. However, IBT handles Case 2 incrementally.

For the first event along Edge e, represented as Se[i] with i = 1, IBT initiates a

binary search with key equals to ri(P̃ ) along Sẽ. Then IBT maintains a pointer, denoted as

ptrP̃ . This pointer points to the furthest vertex that Se[i] can reach from P̃ to Q̃. Likewise,

another binary search with a key equal to ri(Q̃) is invoked and IBT maintains another

pointer, denoted as ptrQ̃, that points to the furthest vertex reachable by Se[i] from Q̃ to P̃

along ẽ.

Beginning from i = 2, when computing the number of events on ẽ that can be

reached from Se[i] (either from Q̃ to P̃ or from P̃ to Q̃), IBT starts from the previous

pointers, ptrQ̃ and ptrP̃ . It then compares ri(P̃ ) against ri−1(P̃ ) and ri(Q̃) against ri−1(Q̃).

Based on these comparisons, IBT updates the positions of the two pointers, effectively track-

ing the current furthest event that can be reached from both ends and updating N(t|Se[i])

and L(t|Se[i]) accordingly. IBT continues until all the events along e have been processed.

The time complexity of IBT is O(|Ee||Vl|log|Vl|+|Ve||Ee|+|Ve|log|Ve|). The space complex-

ity is O(|Ve|+|Ee|). The proof is presented in Appendix .1.2.

Running Example: In Figure 4.4, when processing events along Edge e = (J, S)

with t = 15 regarding Edge (H,G), in the first iteration, Se[1] = d, and we have r1(H) = 3

and r1(G) = 1, because t − dist(d,H) = 3 and t − dist(d,G) = 1. We have two pointers,

ptrH pointing to H, and ptrG pointing to q. Then, in the second iteration, Se[2] = b, and
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we have r2(H) = 0 and r2(G) = 4, because t− dist(b,H) = 0 and t− dist(b,G) = 4. Since

r2(H) − r1(H) = −3, ptrH still points to H. On the other hand, r2(G) − r1(G) = 3 and

ptrG now points to g. Algorithm 2 gives the pseudocode for IBT.

4.5 Hotspot Detection without Predefined Radius (HD-

WPR)

In this section, we present the solution for HDWPR problem, i.e., hotspot detection

without a predefined radius. For each hotspot vertex, there exists an optimal radius that

most accurately defines the precise locality of the hotspot. In the following, we discuss how

to determine the optimal radius for a hotspot.

4.5.1 Optimal Hotspot Radius Determination

Consider a hotspot Vertex ϑ, there can be O(|Ve|) distinct shortest distances be-

tween ϑ to other event vertices. The possible radii for ϑ come from distinct shortest dis-

tances between ϑ to all other event vertices [108]. For example, in Figure 4.1a, there are

11 distinct distances from Event a to other event vertices. Suppose that the distances

are sorted as (r1, ...r11) where ri < ri+1. For i ∈ [1, 11], we have r1 = dist(a, b) = 3

and r11 = dist(a, p) = 30. Each ri corresponds to a statistical significance level αi. Fig-

ure 4.5 shows the statistical significance for each radius. From the figure, we see that

when t = 5, i.e., r2, we achieve the first local maximum significance of 97.83%. In this

case, the isodistance subnetwork of a includes a, b, and d, as shown in Figure 4.6a. When

t = 15, i.e., r8, we achieve the global maximum statistical significance of 97.83%. In this
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Figure 4.5: Statistical Significance under Different Radii

case, the isodistance subnetwork of a includes a, b, d,m, h, g, f, w, q, as shown in Figure 4.6b.

The events in the isodistancce subnetwork shown in Figure 4.6a are more localized compared

to the events in the isodistance subnetwork shown in Figure 4.6b.

For a given event vertex, we aim to identify the radius t that yields the first lo-

cal maximum statistical significance . This ensures that the identified hotspot is as

localized as possible. The radius that brings the first local maximum statistical signifi-

cance reflects a region where event occurrences are truly dense and not affected by other

nearby clusters. This approach ensures spatial locality in hotspot detection, maximizing

the relevance and accuracy of detected hotspots. This conforms to Tobler’s first law of

geography [138], ”Everything is related to everything else, but near things are more re-

lated than distant things”. Also, in information theory [139], the radius that brings this

local maximum statistical significance represents the highest concentration of events, thus

providing the highest information gain.
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(a) Local Maximum (b) Global Maximum

Figure 4.6: Hotspot Detection Example

In the search for the optimal hotspot radius, we start with an initial radius value.

Then, we increment the radius until we hit the optimal radius value. Two questions arise

here, (1) what is the starting radius value, and (2) how to increment the radius. The

starting radius of a hotspot needs to be neither too small nor large. If the starting radius

is set too small, it could potentially lead to false positive detection of hotspots. Conversely,

if we set the starting radius too large, we might overshoot and the large initial radius

could encompass multiple event clusters that are not in the same spatial vicinity. Setting

the starting radius to the distance between the center and the event closest to it can be

problematic. The reason is that in most practical applications many events can be mapped

to the same location. This is due to the low accuracy of event mapping or obfuscation of

locations due to privacy constraints. In this case, the starting radius will be set to 0. This

will result in a statistical significance of 1. This high statistical significance can lead to false

detection of hotspots.

We set the starting radius to the weight of the edge on which the event is located.

For instance, in Figure 4.6, we assign a starting radius of 7 to event a, which corresponds to
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w(J, S). The rationale behind this choice stems from the observation that events situated

on the same edge are inherently closer and more likely to be interconnected, thus making it

a suitable initial range for hotspot analysis. After obtaining the initial radius, we proceed

with incrementing the radius. In each iteration, we increase the radius to the minimum

value required to include the next nearest event vertex from the source event vertex. This

iterative process continues until we identify a radius that results in the first local maximum

statistical significance. As an illustration, in Figure 4.6, during the second iteration, we set

the radius for Event a to be 10, which corresponds to dist(a, q).

An exact approach to determine the optimal hotspot radius is by utilizing the

Graph Traversal Algorithm (GT), which is discussed in Section 4.4.1. GT traverses the

graph incrementally, visiting vertices based on their distances from the source vertex. This

incremental graph traversal of GT guarantees exact and optimal results. However, GT is

computationally expensive as it requires performing O(|Ve|) graph traversals for each event

due to the existence of up to O(|Ve|) distinct distances. For instance, in Figure 4.6, the

number of traversals for each event vertex can reach up to 11. Consequently, for each event

vertex, this process takes O(|Ve|(|Ve|+|Vl|) log(|Ve|+|Vl|)) time, since executing GT with

a specific distance t requires O((|Ve|+|Vl|) log(|Ve|+|Vl|)) time and there can be O(|Ve|)

different distances before reaching the first local maximum.

Running Example: In Figure 4.6, the initial radius for a is set to 7 because

w(J, S) = 7. We have N(7|a) = 3, L(7|a) = 14, and K(7|a) = 29 which corresponds to

a statistical significance of 91.54%. The next closest event to a is q with dist(a, q) = 10.

Consequently, in the next iteration, the radius of a is set to 10, and N(10|a) = 4, L(10|a) =
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22, and K(10|a) = 38.67, which yields a statistical significance of 89.79%. Since 89.79% <

91.54%, we conclude that the optimal radius for event Vertex a is 7.

4.5.2 Approximate Hotspot Identification

To achieve a trade-off between scalability and solution quality, we propose an ap-

proximate algorithm named Approximate Hotspot Identification via Batched Edge Traver-

sal (AH-IBT). This algorithm is an adaptation of our most efficient algorithm for hotspot

detection with a predefined radius, i.e., IBT.

Similar to IBT, AH-IBT computes the optimal t for the events along the same

edges in a single batch. The process involves incrementally increasing the radius values

but in a coarser granularity. We gradually increase the radius to cover the nearby location

vertices rather than event vertices so that the nearby edges are incrementally traversed.

While determining the optimal radii for the events along e = (P,Q), we store the

distinct distances between P and other location vertices in the arrayDP . The array is sorted

such that DP [i] < DP [i+ 1] for all 1 ≤ i < |DP |, with DP [1] = 0. During the ith iteration,

we set the radius, ti, for events along Edge e as ti = DP [i]+w(e). This approach employs a

coarser granularity in incrementing the radius compared to the ground truth computation,

leading to enhanced computational efficiency. However, our experimental results given in

Section 4.6.3 and Appendix .3.2, show that this approximation maintains a high level of

accuracy. It exhibits less than a 5% error in determining the optimal radius for hotspots,

effectively striking a balance between efficiency and precision.

Algorithm 3 gives the outline of AH-IBT, during the first iteration, i.e., i = 1,

of identifying optimal radii for events along e, AH-IBT applies IBT to compute the corre-
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sponding statistical significance with radius ti for each event, Ce, where Ce[j] represents the

statistical significance for the jth event along e. Meanwhile, we initialize a mask array M of

the same size as Ce. If Ce[j] surpasses the minimum statistical significance threshold in this

first iteration, then M [j] is assigned a true value, implying that the optimal t value for event

Se[i] could be found at a larger t value. Conversely, if this threshold is not met, M [j] is set

to false, signifying that further processing of this event is unnecessary as it does not form

a hotspot from its initial radius. The statistical significance from the initial radius should

be larger than a predefined threshold, suggesting spatial locality of events is observed.

Starting from the second iteration, while recalculating the N and L values for

Se with the updated radius value, we restrict our processing to events whose mask val-

ues are set to true. Once the new statistical significance is obtained, we compare these

with the previous statistical significance for events marked true in the mask array. If the

new statistical significance exceeds the previous one, the mask remains true, and we up-

date the optimal t value and the statistical significance for this event. Otherwise, the

mask is set to false, and we determine the optimal t value for this event to be the last t

value, corresponding to the local maximum statistical confidence. This iterative process

continues until all entries in the mask array are false. The time complexity of AH-IBT is

O(|Ve||Ee|2+|Ee||Vl|log|Vl|+|Ve|log|Ve|). The space complexity is O(|Ve|+|Ee|). The proof

is given in Appendix .1.3.

Running Example: In Figure 4.6, when calculating the optimal radii for the

events along Edge e = (J, S), the initial radius in the first iteration is set to 7. The

corresponding statistical significances for vertices d, b, and a are 84.45%, 89.36%, and
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91.54%, respectively. In the second iteration, the radius is set to 10 because the closest

location vertex to e[0] is F , and we have t = w(J, S) +w(F, J) = 10. With the new radius,

the statistical significances for vertices d, b, and a become 81.78%, 64.37%, and 89.79%,

respectively. Therefore, the optimal radius for events d, b, and a is determined to be 7.

4.6 Experimental Evaluation

In this section, we present an extensive experimental evaluation of our proposed

algorithms against the state-of-the-art algorithms for hotspot detection over spatial net-

works.

4.6.1 Experimental Setup

We evaluate our algorithms for hotspot detection with a predefined radius

(HDPR), i.e., BBT and IBT against NS*. NS* is a modified version of state-of-the-art

neighborhood sharing (NS) [109] algorithm that computes the network global K-Function.

While NS computes N values for each event vertex and sums it up, NS* also tracks L val-

ues per event vertex with shared processing among neighbor vertices. This allows efficient

computation for the network local K-function. For detecting hotspots without predefined

radius (HDWPR), we evaluate our proposed algorithm, i.e., AH-IBT against two state-of-

the-art algorithms, namely, AH-NS* and NPP*. AH-NS* combines NS* with our proposed

adaptive radius detection algorithm, i.e., AH from AH-IBT. NPP* is a modified version of

NPP [108]. NPP is the state-of-the-art algorithm for hotspot detection in spatial networks.
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NPP returns hotspots with scores assigned to all possible radii. NPP* modifies NPP to

return the radius with the maximum score per detected hotspot.

We measure the runtime for algorithms that detect hotspots with a predefined

radius (HDPR). For algorithms that detect hotspots without a predefined radius (HDWPR),

we measure both the runtime and average error [140], i.e., terr. The average error represents

the mean difference between the radius computed by the hotspot detection algorithm and

the optimal hotspot radius. terr =
1
n

∑n
i=1

|tic−tig |
max(tic,t

i
g)
, where tic and tig refer to the radius value

computed by the algorithm and the optimal hotspot radius for the ith hotspot, respectively.

The optimal hotspot radius is defined in Section 4.5.1. We use both real and synthetic

datasets in the evaluation of the proposed algorithms. The real datasets are the car collisions

in the Seattle network [141], car collisions in the New York City network [142], 911 calls of

the Detroit network [143], and crime locations of the Chicago network [126]. Synth-Seattle-

Random is a synthetic dataset that is based on the road network of Seattle with randomly

generated events. Synth-Detroit-Hotspots is a set of synthetic datasets with hotspots based

on the Detroit road network topology with different numbers of location vertices and events.

The parameters of the datasets are given in Table 4.1.
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Table 4.1: Datasets

Dataset #Locations #Events

Seattle 11K 0.2M

Detroit 16K 5.1M

Chicago 23K 7.6M

Synth-Seattle-Random 11K 1M

Synth-Detroit-Hotspots 1 - 5K 0.5K - 500K

Table 4.2: Parameters

Parameter Values

R - Radius (in meters) 200, 400, 600, 800, 1000

SS - Statistical Significance 90%, 92%, 94%, 96%,98%

MSS - Min Statistical Significance 90%, 92%, 94%, 96%,98%

All algorithms are implemented using Python 3.10 and all experiments are con-

ducted over an Intel Xeon(R) server with CPU E5-2637 v4 (3.50 GHz) and 128GB RAM

running Ubuntu 16.04. Table 4.2 summarizes the parameters used in all experiments. Bold

values represent the default settings for each parameter.
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Figure 4.7: Effect of Varying Radius in HDPR
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Figure 4.8: Effect of Varying Number of Vertices in HDPR
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4.6.2 HDPR Evaluation

This section evaluates the performance of BBT and IBT against the state-of-the-

art algorithm NS* in computing hotspots with predefined radius (HDPR).

The effect of radius (t)

Figure 4.7 shows the runtime of hotspot detection algorithms, i.e., BBT, IBT, and

NS* while changing the predefined hotspot radius under both real and synthetic datasets.

In this figure, we see that IBT consistently outperforms other algorithms. IBT is up to 28.67

times faster than NS*. The efficiency of IBT is due to the following reasons: (1) efficient

pruning of vertices and edges that do not contribute to hotspots and (2) batch processing of

events. This batch and shared processing allow updating N and L values of multiple hotspot

vertices simultaneously. Although NS* uses neighborhood sharing, NS* has a quadratic time

step used to evaluate all pairs of edges in the spatial network. This step is considerably

expensive and leads to a longer runtime of NS*. Also, Figure 4.7 shows that as the radius

increases, the runtime for all algorithms increases. The reason is that with larger radii,

hotspot detection algorithms need to explore more edges and vertices. This results in an

increase in runtime. Notice that, IBT remains stable while increasing the radius. This is

due to the efficiency of batch processing and neighborhood sharing used in IBT.

The effect of the number of locations

In this experiment, we investigate the effect of increasing the number of location

vertices on the performance of predefined-radius hotspot detection algorithms. We generate

multiple granularities of the Detroit road network using the Python OSMnx library [144] by
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tuning the library’s parameters. We change the number of location vertices from 3K to 15K.

Figure 4.8a shows the effect of increasing the number of location vertices. IBT consistently

achieves performance that is up to 4.36 times faster than NS*. Notice that, the runtime of

all algorithms increases as the number of location vertices increases. The main reason is

that, as the number of location vertices increases, the number of edges connecting location

vertices increases. This increases the edge traversal overhead required by all algorithms.

The effect of the number of events

To study the effect of the number of events on performance, we sample events

from the Detroit road network to obtain event sets with sizes ranging from 1M to 5M.

Figure 4.8b shows that increasing the number of event vertices results in increasing the

runtime for all algorithms. The reason is that increasing the number of event vertices

results in more processing per hotspot for all algorithms. Notice that, IBT is the most

efficient algorithm and consistently achieves up to 7.58 times faster compared to NS*. An

additional experiment investigating how the statistical significance affects the runtime and

accuracy is given in Appendix .3.1. Statistical significance has little impact on the runtime

because it only affects the final validation of hotspots.

4.6.3 HDWPR Evaluation

In this section, we evaluate the performance of AH-IBT against AH-NS* and NPP*

for spatial hotspot detection without a predefined radius (HDWPR).
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The effect of the number of events

Figure 4.9a shows the runtime of AH-IBT, AH-NS*, and NPP* evaluated with

the number of events ranging from 0.5K to 500K. It is worth noting that the results for

NPP* with larger datasets (events exceeding 5K) are not shown due to its extremely long

experimentation time. The figure reveals that AH-IBT is more than three orders of magni-

tude faster than NPP* and up to 2.81 times faster than AH-NS*. The efficiency of AH-IBT

stems from two main factors: (1) the inherent efficiency of IBT due to its batch process-

ing, and (2) AH-IBT’s focus on investigating hotspot radii that are likely to contribute to

the final answer, unlike NPP* which performs a nearly exhaustive search on hotspot radii.

Figure 4.9b presents the relative error, as defined in Section 4.6.1, for hotspot detection al-

gorithms while varying the number of events. This figure clearly demonstrates that AH-IBT

achieves up to a 50% higher accuracy compared to NPP*. The reason behind this improve-

ment is that AH-IBT identifies the radius that yields the first local maximum statistical

significance, whereas NPP* focuses more on the maximum log-likelihood ratio. Although

the log-likelihood score, combined with Monte-Carlo trials, provides evidence of hotspot

existence, it overlooks the spatial locality principle, which states that hotspots should be

centralized and unaffected by nearby clusters.

The effect of the number of locations

Figure 4.10a illustrates the runtime of AH-IBT, AH-NS*, and NPP* using the

synthetic dataset that is based on the Detroit road network with varying numbers of location

nodes. Similar to the reasons discussed earlier, AH-IBT consistently outperforms the other
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Figure 4.9: Effect of Varying Number of Events in HDWPR

algorithms, being four to five orders of magnitude faster than NPP* and 8.06 times faster

than AH-NS*. As the number of location vertices increases, the runtime of all algorithms

also increases due to the need to visit more edges between the expanded nodes. However, it

is important to note that the performance of AH-IBT remains stable. Figure 4.10b shows

the error of AH-IBT, AH-NS*, and NPP*. For similar reasons, both AH-IBT and AH-NS*

achieve higher accuracy compared to NPP*, with improvements of over 50%.

Additional experiments investigating how the minimum statistical significance, the

number of hotspots, and the radii of hotspots in the dataset affect the runtime and accuracy

are presented in Appendix .3.2. In these experiments, AH-IBT consistently achieves the

best runtime and accuracy.

4.7 Conclusion

This chapter studies scalable hotspot detection in spatial networks, ensuring sta-

tistical significance. We advocate the usage of the network local K-function for discerning
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Figure 4.10: Effect of Varying Number of Locations in HDWPR

hotspots in these networks. Consequently, we present IBT, a highly efficient batch pro-

cessing algorithm, specifically designed to compute hotspots over spatial networks with

predefined radii. An exhaustive experimental evaluation employing both real and synthetic

datasets indicates that IBT exhibits a performance that is up to 28 times faster than its

contemporary counterparts. Additionally, we unveil AH-IBT, an adaptive algorithm derived

from IBT, purposed for the detection of hotspots along with their radii. AH-IBT boasts

a speed that surpasses the state-of-the-art algorithm by up to five orders of magnitude

times and delivers an accuracy that is over 50% superior. Our future work will extend our

proposed algorithms to accommodate moving objects within spatial networks.
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Algorithm 3: Approximate Hotspot Identification

Input: G : The spatial network
MSS : The minimum statistical significance

Output: optimal radius for each event vertex

1 optimal r = { }
2 for each Edge e = (P,Q) in G do
3 maske = [True, True, ....] //mask array of events
4 SSe = [0, 0, ...] //statistical significance of events
5 re = [0, 0, ...] //optimal radii of events
6 te = w(P,Q) // starting radius
7 DP = sorted distinct distances between P to other location vertices
8 while mask.any() is True do
9 //process only events whose mask values are True

10 SSnew = IBT (e, t,mask)
11 for i = 1 to |e| do
12 //process each event along e
13 if First Iteration then
14 if SSnew[i] > MSS then
15 SSe[i] = SSnew[i]
16 else
17 maske[i] = False
18 end

19 else
20 if maske[i] then
21 if SSnew[i] > SSe[i] then
22 SSe[i] = SSnew[i]
23 else
24 re[i] = t
25 maske[i] = False

26 end

27 end

28 end
29 incre = next smallest distance value in D
30 te = w(P,Q) + incre

31 end
32 update optimal r

33 end

34 return optimal r
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Chapter 5

Scalable Multi-resolution Spatial

Visualization for Anthropogenic

Litter Data

5.1 Introduction

Large-scale environmental problems involve managing and processing large

datasets [145,146]. A prominent example is anthropogenic litter data, which is data about

waste that originates from human activities such as food waste, diapers, construction ma-

terials, used motor oil, and hypodermic needles. This waste is generated in a daily basis

worldwide as a part of human daily activities. A significant part of this waste ends up in

natural dumpsters, such as oceans, which causes several environmental problems [147–149],

e.g., destroying marine life and increasing the impact of natural hazards like floods. This
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phenomenon is becoming globally more dangerous to the extent that president of the United

States (US) signed Save Our Seas Act in October 2018 committing the US to expand efforts

to clean up nearly 8 million metric tons of litter polluting the world’s oceans [150].In ad-

dition, this increasing data is affecting the quality of life in large populations urban areas,

such as undeveloped neighborhoods and poor countries, through spreading diseases and

health problems [151–153]. Therefore,many environmental scientists and several commu-

nity and governmental organizations are interested in collecting and visualizing waste data

as a preliminary step towards addressing these problems.

Environmental scientists currently use Geographic Information Systems (GIS) soft-

ware to load and visualize data in the spatial space. However, with the increasing volume

of the collected data worldwide, GIS software does not scale to visualize hundreds of thou-

sands, or even millions, of data points. This limits the abilities to analyze sufficiently large

datasets. Lack of such scalable visualization hinders several community efforts to clean

the world, which recently encouraged interested communities to develop advanced tools to

handle this [154]. Moreover, GIS software is currently limited in functionality to solve litter

data issues such as cleaning noisy data and data aggregation over different attributes. This

complicates integrating new litter reports and datasets, which hinders active monitoring of

human litter problems and limits progress in several environmental projects.

This chapter introduces CleanUpOurWorld; a scalable research database that en-

ables environmental scientists and organizations to collect, process, query, and visualize

human waste data. CleanUpOurWorld overcomes the limitation of visualization scalability

through a combination of spatial database technology and data aggregation techniques. In
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addition, it employs data cleaning and integration modules that take diverse data sources,

fix inconsistency problems, and integrate them into a unified logical model. It currently

provides six visualization levels: continent, sub-continent, country, sub-country, city, and

street levels. The street level shows individual data points while other levels show aggregate

number of data points classified based on waste type as shown in our demonstration sce-

narios (Section 5.3). Environmental scientists and activists can interactively navigate data

through zooming in/out on different spatial levels, panning over different regions, and filter-

ing based on waste type, to visualize and analyze different portions of data with real-time

response. In addition, the system allows them to add new litter data sources and download

subset of existing data.

We demonstrate CleanUpOurWorld with an actual system implementation that

integrates data from thirty different sources with total of 420K data points collected by

environmental scientists and collaborator organizations. Users are able to interact with the

system through different scenarios as detailed in Section 5.3.

5.2 Framework Overview

This section gives an overview about CleanUpOurWorld components and oper-

ations. Figure 5.1 presents CleanUpOurWorld architecture. The backend takes collected

datasets and converts them to a common intermediate data format to standardize the input

format from different data sources. Then, the converted data is fed to a pipeline of data

cleaner, data integrator and loader, and data store that preprocesses the data and store
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Figure 5.1: CleanUpOurWorld Architecture.

them in a scalable database. Finally, the query processor receives queries from end users

through frontend applications and access the data through SQL queries. This section briefly

outlines backend components and Section 5.3 outlines frontend applications.

Data collection, formatting, and conversions. In collaboration with Let’s

Do it World [155], a nonprofit organization based in Tallinn, Estonia, Gray Lab at the

University of California, Riverside started the data collection process by contacting orga-

nizations that host the largest datasets such as Ocean Conservancy [156], Litterati [157],

Marine Debris Tracker [158], Alice Ferguson Foundation [159], and US National Oceanic

and Atmospheric Administration (NOAA) [160]. Some organizations, e.g., Ocean Conser-

vancy and Marine Debris Tracker, provide open access to their data while others, e.g.,
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Alice Ferguson Foundation and NOAA, gave us special permissions to access their data.

We have collected thirty datasets so far and we are currently working on adding nine more

datasets with collaborator organizations and open data sources. In addition, we are running

a crowd-sourcing data collection project in Southern California. Datasets are collected in

four formats: ESRI Shape files, KML files, XLSX files, and CSV files. Then, all formats

are converted into a common CSV format with UTF8 encoding.

Data cleaning. CleanUpOurWorld employs a data cleaning process that ad-

dresses litter datasets collected from diverse sources. The process includes three opera-

tions. First, regulating columns names to avoid empty names, duplicate names, mismatched

names, and names that do not comply with SQL standards. The problem of mismatched

names arise when a common essential attribute, such as location, appears with multiple

names. We detect this for location and date attributes through comparing both data types

and names and fill up with a common attribute name that is used in all datasets. Other

than mismatched names, empty, duplicate, and non-compliant names are fixed with arbi-

trary names, through regular expressions, prompting the user asynchronously to alter them

with new names if needed. Second, fixing data irregularities where some data values are

not compliant with the data type and in other cases values of the same attribute has dif-

ferent formats. Regular expressions are used to discover non-compliant values and unify

the format of the same data type. Non-compliant values are filtered out for further manual

processing so that the column data type can be assigned the appropriate data type. Third,

some attribute irregularities go beyond simple format mismatches to completely different

format. For example, the location attribute is an essential attribute in all our datasets
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and its common format is a pair of latitude/longitude coordinates. However, some datasets

have this attribute as a rough textual description, such as street name, city name, etc. To

address this, we employ a Python library GeoPy, with Nominatim geocoder, that converts

this text into precise coordinates.

Data integration, loading, storage, and visualization. After each dataset is

cleaned, it is forwarded to a data integrator and loader module. This module goes over three

steps. The first step loads the dataset in a separate SQL table, which contains all input

data attributes, in a PostGIS database that represents the main data store in Figure 5.1.

The loading process is performed through a dynamic SQL function, using plpgsql language.

Then, it creates a SQL table, populates the data from the file to this table, and adds an

auto increment primary key field that guarantees a unique identification for each record in

the system. The second step loads only essential attributes of each record from the newly

loaded dataset in a centralized table, called maintable, that integrates data from all existing

datasets in a snowflake-like fashion. This table is created to scale up query processing as we

will elaborate later. The maintable have three essential attributes per record: a location as

latitude/longitude pair, a date, and a collecting organization, in addition to the record id

and the dataset name to link the record back to its original dataset table with full attribute

set. Themaintable has one record corresponds to each record in each dataset. The third step

aggregates data from the maintable in the aggregatetable. When environmental scientists

visualize data in large regions, e.g., city, country, continent, or ocean, the large number

of points in the region will limit the existing visualization frontends, such as GoogleMaps

and GIS software, to show all points while still being interactive to users. To overcome

111



this problem, CleanUpOurWorld visualizes individual data points only at the street level,

while aggregate data is visualized on higher levels. To speed up such aggregate visualization,

aggregatetable maintains aggregate counts from maintable at five different spatial levels that

corresponds to the frontend visualization levels. At each level, the whole world is divided

into a set of spatial tiles. Then, the aggregatetable maintains the number of data points in

each spatial tile classified by the litter type. When a visualization query comes, this table

is queried to retrieve data right away and visualize them to users.

Query processing. The query processor receives three types of queries from

frontend applications and accesses the database to return their results. First, a spatial

query that finds all data points in a certain spatial range. This query is answered from

maintable with a single spatial range query. Second, a spatial query that finds aggregate

counts in a certain spatial range. This query is answered from aggregatetable with a single

spatial range query as well. Third, a query that finds all attributes of a single data record.

This query is answered from the corresponding dataset table with a single query given the

record id. Using maintable and aggregatetable enables each incoming query to be translated

into a single SQL query, which allow scalable management and visualization of litter data.

5.3 Example Use Cases

CleanUpOurWorld functionalities and internals are demonstrated using the first

batch of real datasets collected from thirty different sources with total of 420K data points.

New data batches with hundreds of thousands of points are being collected as described
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earlier. Our users would be able to interact with CleanUpOurWorld through one or more

of the following example use cases.

5.3.1 Use case 1: Hypothesising and Locating Litter Through Interactive

Visualization

The main objective of CleanUpOurWorld is to enable environmental scientists and

community organizations to address human litter problems through analysis, proposing

hypotheses, or locating data to clean up certain places. Thus, users are able to interactively

visualize litter data based on multiple dimensions: different spatial levels, arbitrary time

periods, categories of different litter types, and collecting organizations. Figure 5.2 depicts

the main visualization screen of CleanUpOurWorld. Figure 5.2a depicts the highest spatial

level of visualization. At this level, the whole world is divided into ten large regions based

on continents and their adjacent oceans, eight of them are shown in the figure. The figure

shows the spatial boundaries of each region. In addition, each region has a single pie chart

that shows percentages of each litter type, out of ten types depicted in the legend. On

hovering over the pie chart, users are able to know the actual number of points of each

litter type. Zooming on the map to deeper levels shows a pie chart for each sub-area, either

in oceans or in continents. This enables scientists and activist to narrow down areas of

interest based on certain litter types, e.g., determining that the northern part of the Pacific

ocean witnesses the highest plastic pollution.

The environmental scientist can zoom in and out on the map view to show finer

granular data on six different levels: continent, sub-continent, country, sub-country, city,

and street level. By zooming in/out on the map view, the data is automatically divided or
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merged to show data that corresponds to the current level. The sub-continent level shows

data from multiple countries in one spatial tile and divides the whole world into 10x10

tiles, and so on up to the street level. Figure 5.2b depicts the street level visualization

in Riverside, California. At this level, only individual data points are shown without any

aggregation. The viewed data subset is reflecting the applied filters of litter type, time

period, and collecting organizations.

5.3.2 Use case 2: Adding a New Litter Data Source

The on-going data collection process and the natural continuity of human litter

necessitates adding new datasets to the database. A simple way is adding new data manually

through the administrative tools, e.g., PostGIS admin tools. However, this will limit both

number of collaborations and amount of data that contribute to our repository. To make it

a comprehensive research database that serves as many environmental scientists worldwide

as possible, we are enabling external data entry so that scientists and organizations can

contribute their data to our repository easily. Figure 5.3 depicts a data entry screen that

enables uploading external data to CleanUpOurWorld. The screen allows the user to upload

a file of a certain format. Currently supported formats are ESRI Shape files, KML files,

XLSX files, and CSV files. By default, the first data row is considered attributes names.

After the file is successfully parsed and loaded, the user can rename attribute names and

determine their data types. In addition, she can edit any data value in any row so she can

possibly add any missing values or correct any incorrect values. Once all corrections are

made, the user can submits the uploaded data to our backend database.
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The newly uploaded data is not directly integrated with our existing data. Instead,

the new data is loaded in a new separate database table and the system administrators are

automatically notified with a new dataset addition request. Then, the request is reviewed

for data adequacy in terms of completeness of necessary attributes, matching attribute

names, and lack of any data problems such as SQL injection data, severe noise data, etc.

In several cases, it is needed to follow up with the data owners to fix data problems before

allowing the new data to be integrated with the existing data. Once the uploaded data

is put into a good shape to be integrated, the cleaning, integration, and loading process

of CleanUpOurWorld is executed so the new data is processed as part of our database.

Although this process is lengthy and might include several cycles of interactions between

database administrators and data owners, it still allows much faster process than individual

collaborations as uploading and refining the data is much faster.

5.3.3 Use case 3: Downloading Litter Data

CleanUpOurWorld will have its prominent value with enabling environmental sci-

entists to use it as data repository where they can add and get data in addition to being

a scalable data manager and visualizer. This open culture encourages the environmental

scientists and community organizations to invest time, efforts, and contribute data to this

repository, which significantly enrich our collaboration network. For this, we will enable

users to download subsets of data based on terms and conditions of each dataset. Figure 5.2

shows a download button that enables demo attedees to download the subset of data that is

currently visualized on the map view with all the applied filters. The downloaded data will

include any aggregate data that is shown on the map view, in addition to any individual
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data points, contributing to these aggregates, that are permitted by the data owners to be

downloaded.

5.3.4 Use case 4: Administrating Existing Litter Data

Despite the automated tasks provided by CleanUpOurWorld in maintaining litter

data, database administrators may still need to manually fix data issues, e.g. clean unknown

formatted attributes or tweak any dataset-specific problem. Thus, users are able to interact

directly with the backend database via the administration console through either command

line or GUI interfaces. This includes executing SQL queries of different types. Examples are

selection queries to view existing data records, update statements to modify certain data

values, alter table statements to modify data scheme properties (changing attributes names,

data types, adding attributes, etc). In addition, users are able to interact with dynamic

SQL functions that are used in several operations such as data loading, part of the cleaning

process, etc.
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(a) Litter Data on Continent Level

(b) Litter Data on Street Level

Figure 5.2: Visualizing Litter Data on Multiple Spatial Levels.
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Figure 5.3: Adding a New Litter Data Source.
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Chapter 6

Unified Data Model for

High-definition (HD) Map Data

6.1 Introduction

Existing mapping platforms, e.g., Google Maps, are designed, built, and deployed

for human-to-machine interaction, where the major implicit assumption is that a human

user is consuming the mapping data from a computing device, e.g., a smartphone. Over

the past few years, the rise of self-driving cars technology has triggered an urgent need for

a new type of mapping data that is designed, built, and deployed for machine-to-machine

interactions as the human driver is being replaced with an automated machine driver. This

is the main motivation behind the research wave of “high-definition” maps or “lane-level”

maps, that includes several research efforts [161–167] to enrich existing maps with much

more detailed information that are needed to be consumed by machine users.
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High-definition map (HD map) provides accurate and detailed lane-level 3D infor-

mation and it plays an essential role in several important applications for self-driving cars.

The detailed 3D localization objects included by HD maps enable the self-driving cars to

have a more precise and comprehensive knowledge of its environment and help the vehicles

to better determine their position and orientation, which enables the autonomous vehicles

to perform controlled maneuvers beyond the sensing range [168]. Potential risks and obsta-

cles ahead that are out of the range for the sensors can also be predicted and avoid with

the rich information [169]. HD maps are also able to store prior information that are of

great help when the self-driving cars need to perform computations for applications such

as traffic light recognition and speed sign recognition [170]. In addition to the application

and techniques required by self-driving cars, HD maps are also deployed to help with the

development of the advanced driver assistant systems (ADAS) and push the existing nav-

igation applications to provide more detailed lane-level instructions. The development of

these techniques will improve the driving experience of human users as well.

The huge potential of HD map has attracted plenty of efforts on map data col-

lection, automated map modeling and algorithm design for related applications. However,

there are arguments that the existing HD map data formats are not research-friendly. The

existing commercial HD map models are confidential, and some require a commercial mem-

bership to be accessed. The commercial models, taking the Navigation Data Standard

(NDS) as an example, are complained to be not suitable for researches due to their com-

plexity and the features supported [171]. Researchers with such complains tend to define

their own data model. The different data models used in different research works may down-
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grade the reusability of the data and hinder the experiments that need to be performed on

different data sources. Thus, we propose to design a standard research-friendly data model

for HD map data.

Our aim of designing the data model for the roads is to extend the node-edge

structure. There are three goals that we want to achieve with this model:

The first goal is to design a research friendly standard for HD map data. Different

map providers have different definition for HD map data [168]. In addition, the leading data

format for HD maps, the NDS format, is identified to be not “research friendly” enough

due to its complicated data structure and the features supported [171]. Hence, there is a

need for a standard research friendly HD map format.

The second goal is to maintain the widely used Intersection-Edge model. In this

way, the existing information and applications associated with the traditional maps can be

safely imported to our model without worrying about compatibility.

With the two goals in mind, we define our data model. The model consists of two

major parts: road network and landmarks. We enrich the information for road network

by extending the Intersection-Edge model using Lane Bundles while maintaining the com-

patibility for existing maps. The Landmarks are identified to record the 3D objects in the

driving environment to facilitate the vital applications for autonomous driving cars such as

localization.

The remainder of this chapter is structured as follows: Section 6.2 reviews the

commercial and research-oriented HD map models we have knowledge about. Our data
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model design is described in Section 6.3. We provide a discussion in Section 6.4 and we

conclude with perspective and future work in Section 6.5.

6.2 Related Work

Geographic Information System (GIS) is playing an important role in the develop-

ment of smart cities and there have been discussions about building 3D-GIS maps for smart

management and decision making [172–174]. In this chapter, we focus on the HD map for

autonomous vehicle applications. HD map for commercial purpose was first launched in

2015 by Tomtom [175]. Since then, several map providers have defined their own HD map

standard. Navigation Data Standard (NDS) is the leading data format in the industry [171].

The NDS format classifies all data into different building blocks, such as routing building

block, lane building block and 3D objects building block [176]. Building blocks are used to

address different functional aspects of NDS. The TomTom HD Map with RoadDNA model

is also claimed to be a highly accurate representation of the road. It provides numerous

features, including lane models, traffic signs, road furniture, and lane geometry, with high

accuracy [175].

Although being supported by major industry, there are some potential drawbacks

for existing commercial data models for HD maps. One main concern is being confidential

and not open for research purpose. It is hard to obtain the data as well as the data format

specification. From a research perspective, there are scattered data that is valuable for

constructing partial HD maps, such as the OpenStreetMap data and other crowdsourced

data sources. However, the lack of an open standard data format adds difficulty for using
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such data and also downgrades the reusability of them. Secondly, the features supported

by the data models tend to be demand-driven. The features included are for achieving

certain functions or benefits. This may be helpful for supporting different applications,

but it also makes the features to be discrete and set obstacles for introducing new features

for researchers, especially those similar to or closely related to the existing features in the

data model. Last but not least, commercial data formats are usually divided into discrete

building blocks or layers and this design choice should be closely related to the objectives

of modularity, compatibility, and interoperability. However, applications that make use

of the HD map may require specific types of data. As a result, the data models tend to

have detailed divisions that are on the same level and become too complicated for research

purpose.

For all the above reasons, we observe that researchers tend to start from a relatively

simple model and focus on certain features when studying HD maps. Jiao pointed out that

the four elements an HD map usually contains are the reflective map of the road surface,

the 3D shape of the surface of the driving environment, lane/road model and the static

elements in the driving environment [162]. Some researchers from HERE, a major map

provider worldwide, construct a road model containing only lane boundary, occupancy grid

and the road sign [171]. Takeuchi et. al. make use of Point Cloud Map and Vector maps for

blind traffic prediction [169]. The researches on HD map creation also focus on determining

the details of the lanes [161–166] and modeling the driving environment [165, 167]. Hence,

we may draw a conclusion that the basic components of HD map data models for research
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should be the road, which is extended to the level of lanes and the peripheral driving

environment.

6.3 Data model

In this section, we give descriptions for our HD map data model. Our model

builds on the popular node-edge model that has been used for long in academic research

environments. The node-edge model represents the road network as a set of nodes and

edges. Edges represent road segments and nodes represent intersections between roads.

Special semantics are added to handle special cases, such as dead ends and different types

of intersections, e.g., 2-way. 3-way, or 4-way intersections. This model is intended to be

simple, of low storage, and isolates road network data from all other data objects in the

outdoor space due to lack of applications that comprehensively use all these data items

together.

The standing point of our model is to extend the node-edge structure to model the

new rich information added to HD maps. The new information includes the lane system and

various types of landmarks. This modeling effort tries to provide a research-friendly model

for HD map data, compared to the existing various models [168] and the NDS standard

that is argued not to be research-friendly enough due to its complicated data structure, the

features supported, and openness [171] as discussed in Section 6.2. In addition to regular

road network information, HD maps also include landmarks data that is essential for several

applications, such as localization as well as obstacle avoidance for self-driving cars.
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Figure 6.1: Overview of the data model

Figure 6.1 depicts an overview of the data model. The model schema is divided

into two parts, the road network, and the landmarks. The road network still consists of

two main entities, Intersection and Edge, that correspond to node and edge in the tra-

ditional model and represent intersections and road segments, respectively. In addition,

both entities are composed of LaneBundle entities that represent the lane-level information

of the road network. Each LaneBundle consists of a group of Lane entities. Both Lane

and LaneBundle entities can be associated with on-road landmarks that are represented by

On-road Landmarks. Examples of on-road landmarks are road signs and traffic lights. In

addition, landmarks could also include information about off-road landmarks, represented

by Outdoor Landmarks in the figure. Details of both road network and landmarks are

described in the rest of this section.

6.3.1 Road network

The roads in traditional maps can be viewed as intersecting polylines. The two

central elements of the road network data model are Edge and Intersection, which corre-
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spond to the edge and node in the popular node-edge model. Our model extends these two

elements with lanes and lane bundles. We will first describe the definition of the lane and

lane bundle and then show how we extend the Edge and Intersection to model the HD map.

A lane, corresponding to the regular driving lane, is a sectional slice of the road

segment. It is modeled as a 3D surface with a boundary that records the information

including the basic shape of the driving lane and the elevation. Each lane starts and ends

with a cross-sectional boundary, which is a three-dimensional line in the space, usually

perpendicular to the lane driving direction, starts and ends with a node that is a three-

dimensional point in the space and represents the farthest corner point in the lane. A

lane reference is associated with each lane to help to show the orientation of the lane and

locate the point attributes and range attributes. Example of point attributes is the vehicle

checkpoints where polices may stop the vehicles to conduct the roadside detention with a

legitimate reason. Example of range attributes is the lane maximum speed that might have

different values over different distance ranges in the lane, e.g., the lane has a maximum

speed of 30 MPH before a certain point and 40 MPH after that. Parallel lanes in the same

road segment are grouped into lane bundles. A lane bundle reference is used to record

the attributes of the lane bundle and the attributes would apply to all the lanes within

the current lane bundle. The lane bundle starts and ends with a cross-sectional boundary,

represented as a polyline, that is the union of all cross-sectional boundary lines of all lanes

within the lane bundle.

With the definition of lane and lane bundle, we then extend the node-edge model

in the traditional map models. In the traditional maps, a road segment is represented by
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an edge that is a simple polyline. We extend the Edge into a sequence of one or more

connected lane bundles. The connection between two lane bundles is represented with

sharing the same cross-sectional boundary polyline. Thus, two lane bundles B1 and B2

are connected if and only if the starting boundary of B2 is the ending boundary of B1

or vice versa. Furthermore, the nodes in the traditional map represent the intersections

among road segments, i.e. Edges. In our model, an intersection, represented by the entity

Intersection, is a group of overlapping lane bundles in different directions based on the

type of intersection, e.g., 4-way, 3-way, or 2-way intersections. Each lane bundle in the

intersection connects two lane bundles that belong to two different road segments, either in

the same direction or in angular directions, e.g., perpendicular directions. Figure 6.2 gives

an example of the Intersection-Edge representation and the lane bundle representation of

the same T intersection of a one-way street and a two-way street. Lane bundles boundaries

are represented by the solid lines in the right figure. The area bounded by the blue rectangle

corresponds to the Intersection and the gray lane bundles correspond to the Edges.

The Intersection-Edge model is extended using the lane bundles so that the HD

map can carry more detailed information for emerging applications while maintaining the

practicality. The simplicity and the potential for feature extensions enable the data model

to be more research-friendly.

6.3.2 Landmarks

Landmarks are intended to include the objects in the driving environment. We

classify the landmarks into two subclasses: on-road landmarks and outdoor landmarks.
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(a) Edge-Intersection (b) Lane Bundle

Figure 6.2: T intersection of a one-way street and a two-way street

On-road landmarks represent landmarks that are associated with either the road

segments or intersections and are part of the driving roads, such as lane marks, traffic lights,

road signs, and guardrails. The on-road landmarks carry certain attributes or will lead to

the changes of attributes of lanes or lane bundles on certain directions. For example, lane

marks will determine whether a vehicle can pass certain lane boundaries to turn or overtake

another vehicle and speed sign marks change of the speed limit attribute for lanes or lane

bundles at a certain point.

Outdoor landmarks represent other real objects that exist in the outdoor space

but not part of the road network, such as buildings, trees, parking lots, lights, and parks.

These objects are diverse and of different nature and could have different usages for HD

map consumer. For example, trees and lights could be used for self-localization algorithms

while parking lots and parks could be used as routing destinations.
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Figure 6.3: Data model

Both on-road and outdoor landmarks are represented by Landmark entity that

has generic attributes such as type and photo. The generic representation of a landmark

comes with the reality of limited data available on this type of entities for now, so generality

allows more flexible accommodation for new information later.

6.3.3 Detailed Schema Description

The previous subsections give a high-level overview of different components of

our proposed model. This subsection gives a detailed data scheme along with a more de-

tailed description of different entities and relationships among them. Figure 6.3 shows the

data schema. We start from the Intersection and Edge model and extend them with the

LaneBundle to accommodate lane-level information. The LaneBundle is defined to be a
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group of parallel Lanes. To register and locate the attributes on Lanes and LaneBundles,

a reference geometry is associated with each of those entities. The reference geometry

represents the underlying physical spatial coordinates, represented with points, lines, and

polylines of latitude and longitude coordinates. Points are modeled with entity Node, lines

and polylines are modeled with the entity LineSegment, and more complex geometries are

represented with the entity LaneLevelGeometry. Each LaneReferenceGeometry or LaneB-

undleReferenceGeometry has an orientation that represents the orientation of the Lane or

the LaneBundle. An attribute is registered using the relative distance from the start of the

reference geometry. An attribute could be a point attribute, such as a U-turn point or a

vehicle checkpoint, or a range attribute, such as a range on the road for the speed limit.

Each Lane is bounded by a Boundary. The Boundary is associated with the attributes

that depict its characteristics, such as whether it is a boundary that connects two Lanes

from different LaneBundles or two parallel lanes in the same LaneBundle, whether it allows

vehicles to pass through it to perform maneuvers. The Boundary, LaneReferenceGeometry,

and LaneBundleReferenceGeometry are defined as subclasses for LaneLevelGeomerty. The

LaneLevelGeometry is a sub-entity of the LineSegment entity that connects a sequence of

Nodes. A Node represents a point in the three-dimensional space, and its attributes include

its latitude, longitude, and altitude and it is the fundamental entity of the data model.

A landmark is located by a single Node and the Node serves as the center point for

the landmark. A landmark is bounded by its Boundary. The boundary sketches the shape

of the vertical view of the landmark and it could be an arbitrary polygon. We propose to

make photo as one of the attributes of the Landmark. In cooperation with the cameras
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and sensors on autonomous vehicles, photos taken beforehand can play an important role in

applications such as vehicle self-localization, traffic sign recognition, and traffic light recog-

nition. The On-roadLandmarks are associated with the Lanes and LaneBundles. Example

of On-roadLandmarks is the speed sign. A speed sign is represented by a 3D point cloud

that depicts the shape and the size of the object in the real world. High-resolution photos

of the sign are stored to facilitate the recognition process of the sensors to save computation

power and increase safety. The absolute location of the sign is represented by a Node and

its Boundary. The sign is associated with the LaneBundle and the range attribute that it

has an effect on. The Outdoor Landmarks are not associated with Lanes or LaneBundles

because they have no impact on the attributes. One of the examples could be a tree. The

Node and the Boundary for the tree are located away from the LaneBundle representing the

road. The more detailed information, such as the profile of the tree and the 3D point cloud

representing the shape of the tree can be registered. Although the Outdoor Landmarks are

not directly associated with the road network, the information about the position and the

shape of these landmarks can be used for localization and incident avoidance.

6.4 Discussion

This section provides further discussion on three main points: (1) compatibility of

the proposed data model with existing data and applications, (2) potential simplification for

the proposed data model, and (3) potential applications for HD maps other than self-driving

technology.
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Model compatibility. As the existing applications need to be supported along

with the emerging applications, such as autonomous driving, our data model is compatible to

serve all existing applications. Due to economic and infrastructural reasons, human drivers

are expected to share the roads for at least a decade after a large number of fully autonomous

cars are on roads. For example, autonomous cars are not expected to be affordable for many

people at the beginning, and it will be neither affordable nor indispensable for cities to build

new roads for autonomous cars isolating them from other cars. This is regardless of the

fact that having a reasonable number of fully autonomous cars is not even the reality yet.

Therefore, there is still a demand for human-machine interactions and the existing map

applications are also essential for a long time ahead.

Our model maintains compatibility with the traditional applications through us-

ing the same core entities, Edge and Intersection, so any attribute or processing on the old

edge and node entities can be performed on their corresponding entities. For Intersection

entities, a center point of the intersection can be used to represent the whole intersection

and treat it as the original node if needed. For Edge entities, a polyline that spans the dif-

ferent connected lane bundles can be used to represent the edge in the traditional format.

Both the center point of an intersection and road segment polyline can be easily derived

from the stored attributes in our model. This serves the existing applications with even im-

proved potential features. For example, out of the most popular applications nowadays are

navigation and route planning. Turn-by-turn navigation directions can be easily provided

using our model treating edges and nodes as highlighted. Furthermore, the introduction of

the lane level enables the navigation and routing applications to give more detailed instruc-
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tions, which help to further improve the user experience for human drivers. Google Maps

has started to use lane-level data to provide more detailed driving instructions to its users.

Model simplification. In Section 6.3, we described how we extend the existing

Intersection-Edge format to model the HD map data. Reflecting on this extension while

assuming we do not have the constraint of compatibility with the traditional node-edge

model might lead to a potential simplification for the proposed model that worth further

explorations. This simplification makes use of the observation that Edge and Intersection

entities, which are marked with the dashed rectangle in Figure 6.3, are mere containers for

a set of lane bundles. In fact, the definition of both entities has totally replaced with a set of

lane bundles that have different spatial relationships. In the Edge, the set of lane bundles

form a connected sequence, where a lane bundle starts wherever the previous one ends.

In the Intersection, the set of lane bundles are geographically overlapping and connects

different Edge instances. In all cases, each lane bundle encapsulates its own geometry that

defines its geographical location and orientation. The entities Edge and Intersection are

mere logical grouping that do not hold any attributes in the proposed model. Some popular

applications, such as routing, might not need this logical grouping and can sufficiently use

the lane bundles to provide the functionality. In this case, we can remove the abstraction

of Edge and Intersection entities and use sets of LaneBundles as replacements for them. It

worth exploration if this is applicable for the vast majority of applications, or there is still

a significant need to keep the Edge and Intersection entities.

Before discussing the implications of the suggested simplification on other entities

in the data model, it is essential to highlight merits and potential drawbacks of such sim-
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plification. One of the obvious drawbacks is the lack of compatibility with existing map

models and applications. In other words, this simplification will convert the model into

a model that purely serve HD map application and will make integration with traditional

mapping application harder. In specific, it will be a necessity to map traditional edges to

multiple lane bundles, that are not currently grouped at the logical level, and the same

for traditional intersections. So, using this in applications need to be conditioned with an

awareness of such limitation. On the other hand, the simplification will make the model

simpler and will ensure more integrity for the underlying data due to removing one layer of

redundancy.

Removing the Edge and Intersection logical grouping will have minimal effect on

the rest of the modeled entities. First, it will not cause the model to collapse. The In-

tersection and Edges record the fundamental topology of the road networks. Since the

Intersections and Edges are composed of lane bundles, the topology information is main-

tained by the relative position of different lane bundles. Second, it is worth considering how

to accommodate the attributes associated with the Edges and Intersections. It is straightfor-

ward to map the Edge oriented attributes on to the LaneBundleReferenceGeometry. Since

the Edge is decomposed into a sequence of LaneBundles that are not intersected, the at-

tributes are also distributed into segments. The attributes associated with the intersections

will be mapped to the specific lanes or lane bundles. For example, the Intersection traversal

information will be reflected by whether there are turning lanes for the corresponding direc-

tion. The traffic lights will be associated with the boundary of the corresponding lanes to

put a condition about when the vehicles can pass a certain boundary to proceed. Overall,
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all attributes that can be associated with both Edge and Intersection entities can be also

associated with one of the other entities.

Potential applications on HD maps. Although high-definition maps are

mainly motivated by self-driving cars, this kind of data can be used in endless applications

that could make use of such fine-granularity information in other contexts. For example,

an on-going research in forestry makes use of Google street images to identify types of

trees that suffer from certain problems in Vancouver, Canada, and researchers are willing

to expand their techniques to other geographical areas in North America and Europe. An-

other example is a tree atlas for Southern California that is being developed based on Google

Earth images data that document forests and trees in the region. A third potential example

is studying the development of urban areas and human migrations through analyzing data

from different time snapshots. In nutshell, the on-going efforts to build high-definition maps

will help researchers from different disciplines to study different problems with a relatively

cheap source of data compared to existing methods.

We are also aware that one of the major features of the HD maps is the enormous

map data size due to the details added. Currently, there are also room for improvement

for efficient data management [168] and format compactness and efficiency [176]. These

shortcomings may prevent the HD map from replacing the existing digital maps, but we

have a positive prospect about with the development of communication technology and data

access technology.
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6.5 Conclusions

To cater to the requirement for highly detailed and accurate maps by self-driving

cars, HD map has been widely discussed and there are several commercial HD map data

models from different map providers. However, there are arguments that the existing HD

map data models are not research-friendly. In this chapter, we propose a standard research-

friendly HD map data schema by extending the existing node-edge structure in the tradition

map data models. The data model includes two major parts, road network, and landmarks.

The chapter also discussed the compatibility of the model with existing applications, poten-

tial simplifications to the model, and further applications for HD maps beyond self-driving

cars. The data model serves as a generic framework for a more detailed design. Meanwhile,

the management [177] and the efficient update of such a data model are also examples for

future research directions.
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Chapter 7

Conclusions

This dissertation encapsulates our endeavors to enhance the scalability and ex-

pressiveness of spatial analysis algorithms.

In the outset, we introduce Pyneapple, an open-source Python library geared to-

ward scalable and expressive spatial data analysis. The release of Pyneapple extends our

research contributions in regionalization, machine learning, and group-by aggregation tech-

niques to the broader social science community. The library offers intuitive user interaction

through a graphical interface that allows for attribute selection and constraint threshold

adjustments via sliding bars. APIs are provided in both Python and Java environments,

facilitating usage across a diverse set of developers and researchers. Notably, our experience

in integrating low-level Java APIs with Python showcases potential avenues for bridging the

gap between algorithm designers and social scientists more seamlessly. The integration of

the GPT-3.5 model into our web application has yielded noteworthy results. This advanced

AI model not only translates natural language queries into formal database requests but
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also autonomously interprets data columns, obviating manual adjustments. This success-

ful adaptation illustrates the viability of cutting-edge AI models as intermediaries between

users and core algorithms, as well as between different software components.

In terms of algorithms within the Pyneapple library, we focus on our innovative

work on expressive max-p regionalization (EMP) and spatial hotspot detection on spatial

networks. EMP extends the conventional max-p regions problem by incorporating multiple

constraints, aggregation functions, and range operators, thereby elevating its expressiveness

significantly. To address EMP, we propose FaCT, a three-phase heuristic algorithm. FaCT

integrates feasibility checks, constraint validation, and efficient construction phases, allowing

it to tackle larger and more complex datasets compared to existing methods.

Additionally, the dissertation improves the scalability of spatial network hotspot

detection through sophisticated graph traversal algorithms, which is also an indepensible

component of the Pyneapple library. Utilizing edge-level approximations, our methods

achieve near-perfect accuracy while drastically reducing computation time, as evidenced by

a five-order-of-magnitude improvement in speed compared to existing solutions. In future

works, we would like explore the possibility of utilizing the machine learning, especially

deep learning technologies to further improve the scalability of hotspot detection on spatial

networks. Because the spatial networks are in nature graphs that caries spatial properties,

it would fit into the scheme of graph deep learning, such as graph neural networks, graph

convolution networks, and graph attention networks.

In Chapter 5, we present CleanUpOurWorld, a tool designed for scalable visual-

ization of global anthropogenic litter data. The platform leverages machine learning and
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natural language processing to manage, clean, and visualize over 420,000 data points. The

tool’s design reflects the increasing utility and necessity of advanced algorithms in handling

diverse types of spatial data.

Lastly, Chapter 6 introduces HiDaM, a high-definition map data model geared to-

ward research applications. HiDaM is purposefully expressive, supporting a wide range of

applications by including fine-grained road and environmental data. Through its high-level

abstractions, HiDaM maintains compatibility with existing GIS applications. As the field

of high-definition mapping remains an active area of research, we anticipate that our contri-

butions will stimulate further investigations and developments in this burgeoning discipline.

In summary, this dissertation makes substantial contributions to advancing the

fields of scalability and expressiveness within spatial analysis. Our work encompasses a

range of activities, from data discovery and analysis to visualization and modeling. Specif-

ically, we’ve developed robust algorithms, intuitive platforms, and data models that not

only increase the efficiency of processing large datasets but also enhance the capacity to

capture intricate spatial relationships and constraints. These advancements enable more

comprehensive and nuanced insights into geographical patterns, thereby enriching the ca-

pabilities of researchers and practitioners in social science and other disciplines that utilize

spatial data analysis techniques. Looking ahead, we are enthusiastic about leveraging our

acquired knowledge and insights to further expand the frontiers of spatial analysis. Our aim

is to continue producing research that is both innovative and practically applicable, with a

focus on addressing real-world challenges and influencing policy through enhanced spatial

understanding.
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[166] Gellért Máttyus, Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Hd maps:
Fine-grained road segmentation by parsing ground and aerial images. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3611–3619, 2016.

[167] Mahdi Javanmardi, Ehsan Javanmardi, Yanlei Gu, and Shunsuke Kamijo. To-
wards high-definition 3d urban mapping: Road feature-based registration of
mobile mapping systems and aerial imagery. Remote Sensing, 9(10):975, 2017.

[168] Andi Zang, Xin Chen, and Goce Trajcevski. High definition maps in urban
context. SIGSPATIAL Special, 10:15–20, 06 2018.

152

https://oceanconservancy.org/
https://www.litterati.org/
http://www.marinedebris.engr.uga.edu/
http://fergusonfoundation.org/trash-free-potomac-watershed-initiative/
http://fergusonfoundation.org/trash-free-potomac-watershed-initiative/
https://www.noaa.gov/
https://www.noaa.gov/


[169] Eijiro Takeuchi, Yuki Yoshihara, and Ninomiya Yoshiki. Blind area traffic
prediction using high definition maps and lidar for safe driving assist. In
2015 IEEE 18th International Conference on Intelligent Transportation Sys-
tems, pages 2311–2316. IEEE, 2015.

[170] Manato Hirabayashi, Adi Sujiwo, Abraham Monrroy, Shinpei Kato, and Masato
Edahiro. Traffic light recognition using high-definition map features. Robotics
and Autonomous Systems, 111:62–72, 2019.

[171] Andi Zang, Zichen Li, David Doria, and Goce Trajcevski. Accurate vehicle
self-localization in high definition map dataset. In Proceedings of the 1st ACM
SIGSPATIAL Workshop on High-Precision Maps and Intelligent Applications
for Autonomous Vehicles, page 2. ACM, 2017.

[172] Wang Tao. Interdisciplinary urban gis for smart cities: advancements and
opportunities. Geo-spatial Information Science, 16(1):25–34, 2013.

[173] GIS for Smart Cities. https://www.esri.in/~/media/esri-india/files/
pdfs/news/arcindianews/Vol9/gis-for-smart-cities.pdf, 2015.

[174] A Gateway to Smart City Using 3D GIS Maps of Cities - LiDAR
News Magazine. http://www.lidarmag.com/PDF/LiDARNewsMagazineGupta-
SmartGISand3DVol5No4.pdf, 2015.

[175] HD Map with RoadDNA info sheet. http://download.tomtom.com/open/
banners/HDMapwithRoadDNAProductInfoSheet.pdf, 2018.

[176] NDS Open Lane Model. http://www.openlanemodel.org, 2019.

[177] Andi Zang, Shiyu Luo, Xin Chen, and Goce Trajcevski. Real-time applications
using high resolution 3d objects in high definition maps. In Proceedings of the
27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2019.

[178] Rubbish and Diseases. http://www.health.gov.au/internet/publications/
publishing.nsf/Content/ohp-enhealth-manual-atsi-cnt-l~ohp-
enhealth-manual-atsi-cnt-l-ch4~ohp-enhealth-manual-atsi-cnt-

l-ch4.2, 2010.

[179] Sven Bauer, Yasamin Alkhorshid, and Gerd Wanielik. Using high-definition
maps for precise urban vehicle localization. In 2016 IEEE 19th Interna-
tional Conference on Intelligent Transportation Systems (ITSC), pages 492–497.
IEEE, 2016.

[180] Franck Li, Philippe Bonnifait, and Javier Ibañez-Guzmán. Estimating localiza-
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Appendix for Local Hotspot Detection on Spatial Networks

.1 Complexity Analysis

This section presents the time and space complexity for all the proposed algo-

rithms.

.1.1 Batch Based Traversal (BBT)

The time complexity of the BBT algorithm is O(|Ee||Vl|log|Vl|+|Ee|2|Ve|log|Ve|)

and the space complexity is O(|Ve|+|Ee|).

BBT has two steps. (1) sorting the events along each edge, which takes

O(|Ve|log|Ve|). This is because it takes O(|e|log|e|) to sort the events along e. Consequently,

the complexity of sorting events along all edges is

∑
e∈Ee

O(|e|log|e|) ≤ O(log|Ve|)
∑
e∈Ee

O(|e|) = O(|Ve|log|Ve|)

(2) batch processing of events for every edge. For an Edge e = (P,Q), we first compute

the location vertices reachable from P or Q within a predefined distance, which takes

O(|Vl|log|Vl|+|Ee|). Then, for events along e, denote the complexity of evaluating the

contribution of an edge ẽ to events along e as Ce,ẽ. If ẽ falls into Category 1, then Ce,ẽ =

O(1). Otherwise, ẽ falls into Category 3, and Ce,ẽ = O(|e|log|ẽ|) . The reason is that BBT

invokes binary search along ẽ twice for all events on edge e, which takes O(|e|log|ẽ|). BBT

visits O(|Ee|) edges when evaluating events along e. The complexity of evaluating events
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along e becomes

∑
ẽ∈Ee

O(|e|log|ẽ|) ≤ O(|Ve|)
∑
ẽ∈Ee

O(log|ẽ|) ≤ O(|Ee||Ve|log|Ve|)

Consequently, batch processing events along e takes a complexity of

O(|Vl|log|Vl|+|Ee||Ve|log|Ve|). Since there are |Ee| edges, and the total time complexity for

Step 2 for the batch processing of events along e becomes O(|Ee||Vl|log|Vl|+|Ee|2|Ve|log|Ve|)

The total complexity for Step 2 is O(|Ee||Vl|log|Vl|+|Ee|2|Ve|log|Ve|). Combining

the time complexities of Step 1 and Step 2, we conclude that the time complexity of BBT

is O(|Ee||Vl|log|Vl|+|Ee|2|Ve|log|Ve|) +O(|Ve|log|Ve|) = O(|Ee||Vl|log|Vl|+|Ee|2|Ve|log|Ve|).

The space complexity of BBT is O(|Ve|+|Ee|). This is due to the storage required

for each event vertex’s distance to the endpoint of the edge it is located on, taking up O(|Ve|)

space. In addition, there are |Ee| number of edges connecting different location vertices,

which takes O(|Ee|) space.

.1.2 Incremental Batched Traversal (IBT)

The time complexity of the IBT algorithm is

O(|Ee||Vl|log|Vl|+|Ve||Ee|+|Ve|log|Ve|) and the space complexity is O(|Ve|+|Ee|). Similar

to BBT, IBT also has two steps. (1) sorting the events along each edge, which takes

O(|Ve|log|Ve|) as proved above, and (2) batch processing of events in every edge. However,

IBT differs from BBT in Step 2, i.e., addressing edges in Category 3. In IBT, Ce,ẽ is

bounded by O(|e|+|ẽ|) instead of O(|e|log|ẽ|). The reason is that IBT utilizes two pointers,
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ptrP̃ and ptrQ̃, and updates them in each iteration. Given the relationship between

sdist(P, P̃ ), sdist(Q, P̃ ), and w(e), three scenarios are considered for updating ptrP̃ :

Scenario 1: sdist(P, P̃ ) + w(e) < sdist(Q, P̃ ). Here, ri(P̃ ) decreases monotoni-

cally, causing ptrP̃ to move from Q̃ to P̃ as i increases, resulting O(|ẽ|) complexity.

Scenario 2: sdist(Q, P̃ ) + w(e) < sdist(P, P̃ ). The complexity is similar to

Scenario 1, i.e., O(|ẽ|).

Scenario 3: |sdist(P, P̃ ) − sdist(Q, P̃ )|≤ w(e). The update of pointer ptrP̃ is

monotonic for i ∈ [1, j] and i ∈ (j, |Se|] but in opposite directions, where j ∈ [1, |Se|] such

that for any events Se[i] with i ≤ j, sdist(Se[i], P ) ≤ sdist(Se[i], Q) and for any events Se[i]

with i > j, sdist(Se[i], P ) > sdist(Se[i], Q). This also gives a complexity of O(|ẽ|).

Updating pointer ptrQ̃ also takes O(|ẽ|), proven similarly. Consequently, pro-

cessing events along e takes O(|Vl|log|Vl|+|Ve|), and the total complexity of Step 2 is

O(|Ee||Vl|log|Vl|+|Ve||Ee|), since there are |Ee| edges.

Hence, the overall time complexity of IBT is

O(|Ee||Vl|log|Vl|+|Ve||Ee|+|Ve|log|Ve|), and space complexity is O(|Ve|+|Ee|), proved

similarly to BBT.

.1.3 Approximate Hotspot Identification via Batched Edge Traversal

(AH-IBT)

AH-IBT discovers hotspots without predefined radius by incrementally increasing

the radius and computing the N and L using IBT for each radius. Similar to IBT, AH-IBT

has two steps (1) sorting the events along each edge, and (2) batch processing of events

and determine their optimal radii. Step 1 takes O(|Ve|log|Ve|), which is proved above.
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Step 2 takes O(|Ve||Ee|+|Vl|log|Vl|) for the events along a single edge e. The reason is

that it takes O(|Ve|) to evaluate the statistical significance of events along e at a specific

radius using IBT, and there can be O(|Ee|) different radii. Plus the cost of incrementally

retrieving location vertices closest to the endpoint of ẽ, which takes O(|Vl|log|Vl|+|Ee|),

the complexity of processing a single edge e is O(|Ve||Ee|+|Vl|log|Vl|). Taking into account

all |Ee| edges, the total complexity for Step 2 is O(|Ve||Ee|2+|Ee||Vl|log|Vl|). Hence, the

overall time complexity for AH-IBT is O(|Ve||Ee|2+|Ee||Vl|log|Vl|+|Ve|log|Ve|). The space

complexity of AH-IBT is O(|Ve|+|Ee|). The proof is similar to the above.

.2 Correctness Proof

In this section, we give the correctness proof for all the proposed algorithms. We

prove that the proposed algorithms, i.e., GT, BBT, and IBT compute HDPR correctly by

proving that they compute the N and L values correctly. Then, we prove that AH-IBT

correctly answers HDWPR.

GT: For an event vertex ϑ̃, if sdist(ϑ, ϑ̃) ≤ t, ϑ̃ is visited before GT’s termination

due to Dijkstra’s algorithm properties. Any edge, or segment, e = (u, v) contributing to

ϑ’s L value is considered when visiting u or v. This guarantees that all event and location

vertices within t distance of ϑ are factored into N and L updates. GT terminates when all

remaining vertices have distances to ϑ exceeding t.

BBT and IBT: For an event ϑ, BBT and IBT batch processes the computation of

N and L with other events along the same edge e. Given another event, ϑ̃ with dist(ϑ, ϑ̃) ≤ t

attached to ẽ = (P,Q), ϑ̃ is considered for updating N and L since ẽ fulfills either Category
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1 or 3. BBT and IBT exclude any event ϑ with dist(ϑ, ϑ) > t by pruning all edges that

meet Category 2.

AH-IBT: The final radius t output by AH-IBT is indeed the radius that brings

the first local maximum statistical significance. Suppose this local maximum is identified at

iteration j in Algorithm 3 when expanding the radius for the event ϑ, then for all iterations

of expanding the radius before j, the statistical significance of ϑ monotonically increases

according to our definition in Section 4.5.2 . Then, from the jth to (j + 1)th iteration of of

expanding the radius , the statistical significance of ϑ drops. Thus, the radius identified at

at iteration j is the first local maximum statistical significance for ϑ.

.3 Additional Experiments

.3.1 Additional Experiments for HDPR

This section presents additional experiments for HDPR, i.e., hotspot detection

with predefined radius.

The effect of statistical significance

Figure .1 shows the runtime of BBT, IBT, and NS* while changing the statistical

significance. IBT consistently outperforms the other algorithms with up to 6.82 times

speed up for the same reasons explained in Section 4.6.2. Also, Figure .1 shows that the

runtime remains stable under different statistical significance levels. The reason is that

changing the statistical significance required for hotspot detection does not significantly

impact the computational overhead of N and L in all algorithms. However, changing the
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required statistical significance only affects the final validation of hotspots, as discussed in

Section 4.3. Although higher statistical significance results in fewer hotspots being qualified

and detected, this has little impact on the overall runtime of algorithms.
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Figure .1: Effect of Varying Statistical Significance (SS) in HDPR

.3.2 Additional Experiments for HDWPR

This section presents additional experiments for HDWPR , i.e., hotspot detection

without a predefined radius.

The effect of the minimum statistical significance

In this experiment, we investigate how the minimum statistical significance affects

the runtime and average error for AH-IBT and AH-NS*. Notice that we do not consider

NPP* in this experiment as NPP* does not have statistical significance as an algorithm

parameter. Figure .2a shows that AH-IBT is up to 2.44 times faster than AH-NS*. The

reason is that AH-IBT is based on IBT and AH-NS* is based on NS* which is slower than
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IBT. Figure .2b shows that both AH-IBT and AH-NS* have the same average error because

they adopt the same algorithm for identifying the radii of hotspots.
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Figure .2: Effect of Varying Minimum Statistical Significance (MSS) in HDWPR

Although Figure .2b shows that the average error increases as MSS increases,

there is no evident relationship between the average error and the minimum statistical

significance. This is because under different MSS, the hotspots involved in computing the

average error are different, which results in varying average error. However, in all cases, the

average t error is less than 5%.

The effect of the number of hotspots and hotspots radii

Figure .3a and Figure .4a show the runtime of AH-IBT, AH-NS*, and NPP* using

Synth-Detroit-Hotspots dataset defined in Table 4.1. Both figures show that the number of

hotspots and the radii of hotspots have a slight impact on the runtime for all algorithms. For

similar reasons discussed in Section 4.6.3, AH-IBT consistently achieves better performance

and it is up to 4 orders of magnitude faster than NPP* and up to 1.88 times faster than

AH-NS*. Figure .3b and Figure .4b show the error of AH-IBT, AH-NS*, and NPP*. AH-
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IBT and AH-NS* achieve better accuracy compared to NPP*, with up to 50%, for the same

reason discussed in Section 4.6.3.
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Figure .3: Effect of Varying Hotspot Numbers in HDWPR

0.01

1

100

10000

200 400 600 800 1000

R
u
n
t
i
m
e
 
(
s
)

Hotspot Radius (m)

AH−IBT
AH−NS*

NPP*

(a) Runtime

%0

%20

%40

%60

200 400 600 800 1000

A
v
e
r
a
g
e
 
E
r
r
o
r

Hotspots Radius (m)

AH-IBT
AH-NS*
NPP*

(b) Accuracy
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