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Abstract

Recent progress in simulation methodologies and high-performance parallel computers have
made it is possible to perform detailed simulations of multidimensional reacting flow phenomena
using comprehensive kinetics mechanisms. As simulations become larger and more complex, it
becomes increasingly difficult to extract useful information from the numerical solution, partic-
ularly regarding the interactions of the chemical reaction and diffusion processes. In this paper
we present a new diagnostic tool for analysis of numerical simulations of reacting flow. Our
approach is based on recasting an Eulerian flow solution in a Lagrangian frame. Unlike a con-
ventional Lagrangian viewpoint that follows the evolution of a volume of the fluid, we instead
follow specific chemical elements, e.g., carbon, nitrogen, etc., as they move through the system.
From this perspective an “atom” is part of some molecule of a species that is transported through
the domain by advection and diffusion. Reactions cause the atom to shift from one chemical
host species to another and the subsequent transport of the atom is given by the movement of
the new species. We represent these processes using a stochastic particle formulation that treats
advection deterministically and models diffusion and chemistry as stochastic processes. In this
paper, we discuss the numerical issues in detail and demonstrate that an ensemble of stochastic
trajectories can accurately capture key features of the continuum solution. The capabilities of
this diagnostic are then demonstrated by applications to study the modulation of carbon chem-
istry during a vortex-flame interaction, and the role of cyano chemistry in NOx production for
a steady diffusion flame.



1 Introduction

Advances in simulation methodologies and high-performance computers make feasible detailed
simulations of multidimensional reacting flow phenomena using comprehensive reaction sets [21].
For steady flames, Smooke and his co-workers [6, 10, 26, 32–35] have performed numerous studies of
laminar methane diffusion flames with detailed kinetics. Mechanisms that include detailed nitrogen
chemistry were used by Bell and colleagues [4, 19, 36] to study NOx chemistry in ammonia-enriched
methane flames. For transient laminar flames, Hilka et al. [22], Najm and co-workers [27–29], and
Bell et al. [2], studied vortex-flame interactions with detailed methane chemistry. For premixed
flames in fields of two-dimensional (2D) isotropic turbulence, Baum et al. [1] studied turbulence-
flame interactions with detailed hydrogen chemistry, Haworth et al. [20] studied the effects of
mixture inhomogeneity with a detailed propane mechanism, Chen and Im [7] considered local
flame speed using detailed methane chemistry, and Echekki and Chen [9] studied autoignition with
a detailed hydrogen mechanism. Vervisch et al. [42] studied a 2D turbulent premixed V-flame with
detailed hydrogen chemistry. For 3D simulations with detailed hydrogen chemistry, Tanahashi
et al. [37, 38] examined turbulent premixed flame sheets, Mizobuchi et al. [25] determined the
structure of turbulent jet diffusion flames, and Tsuboi et al. [41] predicted diagonal structures
in turbulent detonation fronts. For 3D simulations with detailed methane chemistry, Bell et al.
[3, 5] studied turbulent premixed flame sheets and laboratory-scale turbulent V-flames. Complex
reaction systems are also used to model nuclear burning in simulations of supernovae: for example
see Timmes and Woosley [39], Timmes et al. [40] and Fryxell et al. [12].

The scientific utility of these simulations depends on the ability to analyze the implications of
what is computed and to draw conclusions about the underlying chemical kinetics [13]. As the sim-
ulations grow in complexity this task becomes increasingly difficult. For example, one-dimensional
calculations show [18] the relationship between preheat and heat-release zones in premixed laminar
flames, but for turbulent flames probability distributions are needed just to tabulate the range of
chemical states. The close coupling between advection, diffusion and chemical kinetics in time-
dependent turbulent systems makes analysis difficult even in the simplest settings.

In this paper, we develop a diagnostic tool for analyzing multi-component, multi-dimensional
reacting flow problems with detailed kinetics. We intend the analysis to be undertaken after a
continuum calculation has been performed. Thus we assume the distribution of all species as well
as the temperature and velocity fields over all space and time are known. Our analysis procedure
then interrogates the solution by following “particles” that track one of the specific kinds of atoms
in the chemical species comprising the fluid. For example, to understand basic flame chemistry in
a hydrocarbon flame we might track the behavior of carbon atoms; to study NOx formation we
might track nitrogen atoms. We not only follow the particles as they traverse paths in the flow
(analogous to tracing the evolution of passive particles in a flow field), we must also account for
the effects of differential diffusion and chemical reactions. We approximate diffusion as a random
walk whose probability of making a step is determined by the local diffusivity of the host species.
Chemical reactions, which transfer the traced atom from one species to another, are approximated
as a Markov process whose transitions are determined from the elementary steps of the reaction
mechanism. Statistics from tracing an ensemble of such stochastic particles are collected and used
to analyze the interplay of convection, diffusion, and reaction in the flame.

After introducing the method in the next section, we will demonstrate the utility of this new
approach for several prototype problems. First, we will relate stochastically obtained diagnostics to
more conventional characteristics of the flame derivable from the continuum solution. In doing so,
we can quantify statistical requirements and validate the diagnostics. In addition, we present two
more interesting applications of the diagnostics: the modulation of carbon chemistry in a premixed
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methane flame interacting with a vortex, and the role of cyano chemistry on NOx formation in a
methane diffusion flame. In each case we demonstrate that the stochastic particle diagnostics allow
us to pose complex analysis questions in a straightforward manner and provide interesting insights
into the flow.

2 Diagnostic Algorithm

The basic idea for the diagnostic algorithm is to monitor the path of a tagged atom (or collection
of atoms) through the flow domain, including the history of which molecules transport them. The
data to be analyzed includes the distribution of all species in the continuum solution, as well as the
temperature and velocity fields. This data is obtained through numerical simulation of the reacting
Navier-Stokes equations. Our analysis is independent of whether the solution is obtained with a
compressible or low Mach number formulation, but does depend on the details of the transport and
kinetics models employed. To focus the exposition, we assume that the numerical simulations that
we wish to analyze (and, consequently the diagnostic algorithm as well) are based on a mixture-
averaged model for transport and a collection of fundamental reactions specified as a CHEMKIN
[24] compatible kinetics database. With these assumptions, the k-th species satisfies the equation

∂ρYk

∂t
+∇ · (uρYk) = ρ

DYk

Dt
= ∇ · ρDk∇Yk + ρωk , (1)

where Yk is the mass fraction, ρ is fluid density, u is advection velocity, and Dk and ωk are the
mixture-averaged diffusion coefficient and chemical production rate, respectively. We note that it
would be a simple matter to tailor the analysis to other, similar, models as appropriate.

We are interested in following atoms of some specific element such as carbon or nitrogen as they
propagate through the system. We denote the atom we are tracking by A. For the chemical system
being modeled there is a subset of the molecules, M1,M2, . . . ,MK that contain atoms of the type
A as one of their constituents. At each time, the atom A is thus in one of the elements, Mk, which
we denote by A ∈ Mk. If we specify a probability distribution that determines how A is initially
dispersed throughout the system, equation (1) prescribes the evolution of that distribution.

If we interpret the species equation from the perspective of an atom, A ∈ Mk, we obtain a
stochastic differential equation for the fate of the particle in the flow field:

dxA = u(xA, t)dt + dWk(t)(xA, t) + dRk:k′(xA, t) , (2)

where the terms on the right hand side represent advection, diffusion and reaction. In particular,
u(xA, t) is the velocity obtained from the continuum solution, and dWk(t) represents a generalized
Brownian motion with properties chosen to model the diffusion of the Mk molecules. Finally,
dRk:k′ denotes a “scattering” of A from Mk into the set Mk′ as the result of reaction. After Mk

reacts, the dynamics of the particle are determined by the motion of the k′-th species. We integrate
equation (2) over a time interval, ∆t, using a time-explicit split approach that treats each term
independently.

The first term in equation (2) corresponds to a standard particle tracing algorithm and requires
no elaboration. We want to represent diffusion as a random walk; however, rather than attempting
to construct an analytic form of the random walk to model species diffusion, we introduce a spatial
scale ∆x and a temporal scale ∆t and use a lattice model to approximate the random walk. In
particular, we consider the standard time-explicit one-dimensional centered discretization of the
diffusion term in equation (1). At three adjacent lattice points we have

ρY n+1
k,j−1 = ρY n

k,j−1 +
∆t

∆x2

[
(ρD)n

k,j−1/2
(Y n

k,j − Y n
k,j−1)− (ρD)n

k,j−3/2
(Y n

k,j−1 − Y n
k,j−2)

]
,
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ρY n+1
k,j = ρY n

k,j +
∆t

∆x2

[
(ρD)n

k,j+1/2
(Y n

k,j+1 − Y n
k,j)− (ρD)n

k,j−1/2
(Y n

k,j − Y n
k,j−1)

]
,

ρY n+1
k,j+1 = ρY n

k,j+1 +
∆t

∆x2

[
(ρD)n

k,j+3/2
(Y n

k,j+2 − Y n
k,j+1)− (ρD)n

k,j+1/2
(Y n

k,j+1 − Y n
k,j)

]
.

Here, the j-subscript represents a lattice location. Subscripts j±1 represents locations immediately
to the right or left, separated by a distance ∆x. If we start with a mass, ρYk at xj and time tn,
then at tn + ∆t, the fraction pR = ∆t(ρD)n

k,j+1/2
/∆x2 of that mass moves to the right a distance

∆x, and the fraction pL = ∆t(ρD)n
k,j−1/2

/∆x2 moves to the left. The remaining mass stays at its
original location.

For ∆t sufficiently small that pR + pL < 1, these expressions define a discrete probability
distribution that approximates the diffusion of molecules, Mk. The path xn

A of a trace particle
associated with a molecule Mk at time tn over the time interval ∆t, is computed according to
the following prescription. We first perform an advective update of the particle location to obtain
x∗A = xn

A + ∆t u. We then choose a random number α ∈ [0, 1] and define the diffusion update as
the random-walk step:

xn+1
A =


x∗A + ∆x if 0 ≤ α ≤ pR,
x∗A −∆x if pR < α ≤ pR + pL,
x∗A if pR + pL < α ≤ 1.

For ∆t Dmax/∆x2 � 1 this lattice approximation provides sufficient accuracy that statistical sam-
pling error dominates errors arising from the lattice approximation. The generalization of this
approach to two and three space dimension is straightforward. Based on tests for model problems,
we have estimated that setting ∆t as 10% of the local stability limit of the explicit diffusion scheme
provides an suitable balance between accuracy and efficiency.

Our approach to modeling the chemical reaction terms in equation (2) is based on a similar type
of discrete time approximation to the underlying stochastic process. To that end, we introduce a
time interval ∆tc over which we wish to model the chemistry. We note that the chemical time
scale depends on the particular molecule we are considering and its local environment. Thus,
the computation of ∆tc is based on local considerations. If A ∈ Mk at tn, there are a collection
of reactions, r1, . . . , rN , that transform Mk, along with other reaction participants, into a new
collection of molecules over the time interval, ∆tc. As a result of this transformation Mk is destroyed
and A is transferred from a molecule of type Mk to one of type Mk′ . This destruction of Mk is
expressed at the continuum level as

d[Mk]
dt

= −
N∑

n=1

Rn . (3)

where [Mk] is the molar concentration of Mk, and Rn is the rate of progress of reaction, rn,
destroying molecules of type Mk. Reactions representing creation of Mk are not considered because
these reactions do not affect A. Assuming ∆tc is sufficiently small, (3) can be approximated by

[Mk]n+1 = [Mk]n(1−∆tc

N∑
n=1

Rn/[Mk]) ,

so we can define pn = ∆tcRn/[Mk] to be the probability that reaction rn transforms A from Mk

to Mk′ during the time interval ∆tc. We also define p0 = (1 − ∆tc
∑N

n=1 Rn/[Mk]) > 0 as the
probability that the molecule Mk containing A does not react during the time interval.
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The representation of the kinetics is constructed so that probabilities of reaction depend only on
the current state; thus, the probabilistic model for the transfer of A from molecule to molecule as
a result of reactions is a Markov process M. A simple graphical illustration of this type of process
is shown in Figure 1. As with the diffusion, we specify ∆tc as a fraction of the maximum stable
explicit time step, namely, 10% of the maximum value of ∆tc for which p0 > 0. We note that the
time scale associated with the reaction kinetics is typically much smaller than the diffusion and
advection time scales. Thus, we subcycle the chemistry as necessary until we have modeled the
process over the full interval ∆t.

CH

CH4

C2H2

HCO

C2H3 C2H5

CH2CHO

C3H7

CH3

CH2*
CH2

C2H4

138

149

318

285

174

25

130

130
164

25,138
149

72,75
112,164

74,77
175

Figure 1: State-transition diagram for ethylene, including numbered reactions from the GRI-Mech
3.0 kinetics mechanism [11], illustrating the chemical reactions that shift carbon atoms to other
molecules.

There are several subtleties that must be addressed in construction of M to correctly represent
the chemical behavior and to satisfy the Markov property. Particular issues relate to (i) fast,
near equilibrium reactions, (ii) detail of the behavior of specific reactions, and (iii) molecules with
multiple copies of the same atom. These issues are discussed in the Appendix.

This completes the basic description of the algorithm. In summary, to analyze a particular
feature of a simulation, we identify the type of atom we want to follow, the initial molecule of
which it is a constituent and the region in space and time where we want to begin the trajectories.
This data is used to initialize an ensemble of particles that are evolved by the stochastic algorithm
described above. Namely, we first identify ∆t for the transport calculation. We then compute
the deterministic advection of the particle followed by the random walk to represent diffusion. We
then choose ∆tc and advance the chemistry, subcycling as necessary, until we reach ∆t. For time
dependent flows, we have approximated the data for a given time step as piecewise constant over
the length of the time step of the fluid dynamics algorithm; i.e., we assume the data obtained
from the fluid solution at time tn is valid until time tn+1 which is the time at which the next fluid
time step is available. We adjust ∆t for the stochastic particle algorithm so that the diagnostic
algorithm reaches tn+1 exactly and we compute new properties to continue the evolution. We then
interrogate the collected trajectories to analyze the behavior of the flow.

Before illustrating the performance of the method we first make a couple of observations about
the method. At first examination it would appear that the computations are quite costly. How-
ever, most of the required data can be precomputed, so that the actual particle integration is quite
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efficient. Also, since each trajectory is independent, the method parallelizes very well. Exploit-
ing these characteristics of the method, we have been able to follow a several hundred thousand
trajectories in just a few hours.

A second observation about this approach is a word of caution. With the stochastic description
of the algorithm it is tempting to try to relate the stochastic particles to a Boltzmann description of
the fluid. However, unlike a Boltzmann description we do not maintain velocity distribution for the
particles. Thus, our particles represent, at best, “pseudo-particles” whose velocities are averages
of the Boltzmann velocity description. Perhaps the most accurate description of an ensemble of
stochastic trajectories is as a path integral representation of an approximation to the continuum
solution.

3 Computational Results

In this section we demonstrate the behavior of the method and illustrate the relationship be-
tween the particle trajectories and the continuum solution. We consider two examples, premixed
flames and laminar diffusion flames. Both examples use detailed methane chemistry and a mixture
model for diffusion. The sample flames were computed using the low Mach number adaptive mesh
refinement algorithm developed by Day and Bell [8].

3.1 Steady Premixed Methane Flame

In this subsection, we demonstrate the application of the stochastic particle algorithm to pre-
mixed flames. We first apply the method to a steady premixed flame in order to validate the
algorithm. The steady laminar flame solution at fuel equivalence ratio φ = 1.2 was computed with
the PREMIX code [23] that is part of CHEMKIN application suite using the supplied model for
mixture-averaged diffusion. The GRI-Mech 3.0 [11] database was used for all kinetics, thermody-
namic and transport parameters.

We map this one-dimensional solution onto a locally-refined two-dimensional domain with in-
flowing reactants and the bottom and products exiting at the top by replicating the solution hor-
izontally. We track 80,000 particles representing carbon atoms that are initially part of the CH4

molecules. The particles are “released” near the bottom of the domain and allowed to propagate
upward through the system. Trajectories for six sample particles are shown in Figure 2. Since there
is no horizontal advection, all lateral motion results from the random walk algorithm describing
diffusion. Red indicates the path taken in physical space while the traced carbon atom resides in a
CH4 molecule. The portion of the path alternating in color between blue and green represents the
transfer the carbon atom between CO and CO2 in the region downstream of the flame. The flame,
corresponding to the location of peak heat release, is at y = .02 m.

Reaction pathway diagrams are a standard directed-graph approach used to analyze reacting
fluid systems. Nodes in these graphs represent chemical species, and edges represent transformation
from species to species by chemical reaction. To compile the analogous chemical behavior generated
by the stochastic particles, we tabulate all of the chemical transformations taken in the Markov
process representation of chemistry, coalesce all of the transformations representing different re-
actions that result in the same molecular transformation and compute the net transformation for
each molecular pathway. This data is represented graphically for the evolution of carbon atoms in
Figure 3 along the with analogous diagram computed by integrating the net chemical production
rates obtained from PREMIX over the computational domain. In these graphs, the thickness of the
arrows is scaled by the relative strength of that pathway, normalized to the CH4 → CH3 pathway
which is the dominant path for carbon chemistry in methane oxidation. A detailed comparison of
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Figure 2: Carbon trajectories for flat laminar premixed flame, φ = 1.2

HCCO

CH2CO

CH4 CH3

CH2

CO2

CH2CHO

CH3O

HCO

C2H3C2H4C2H5

CH2OH

CH2O

C2H2C2H6

CH2

COCH

*

Continuum-based

HCCO

CH2CO

CH4 CH3

CH2

CO2

CH2CHO

CH3O

HCO

C2H3C2H4C2H5

CH2OH

CH2O

C2H2C2H6

COCH

CH2*

Particle-based

Figure 3: Reaction path diagrams for rich (φ = 1.2) premixed methane flame computed using
PREMIX with GRI-Mech 3.0: continuum-based CHEMKIN rate evaluation, and particle-based
tabulation of 80,000 trajectories.

the data shows that the stochastic particle representation accurately captures the chemical behavior
of the flame with errors of less than 1%.

3.2 Vortex-Flame Interactions

The next example addresses the interaction of a vortex with a premixed flame. This configu-
ration has been studied computationally by a number of authors; see, for example, [2, 28, 29]. We
begin with a flat premixed flame oriented normal to the inlet flow and superimpose a velocity field
due to a periodic array of counter-rotating vortex pairs with Gaussian cores 2.25 mm wide and
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centers 2.50 mm apart. These parameters produce a vortex pair that is similar in width and prop-
agation speed to the vortex pair in described in the V-flame experiment as realized by Nguyen and
Paul [30, 31]. A schematic for the computation is presented in Figure 4. From symmetry consider-

Premixed
Flame

S
ym
m
et
ry

S
ym
m
etry

Inflow

Outflow

L R

Particle
Seeding
Locations

Figure 4: Schematic of the premixed methane flame-vortex problem. The shaded line represents
the position of the flame, and the swirl lines represent the initial vortex. We impose symmetry
along the sides of the 1.2× 4.8 cm domain to avoid modeling the dotted region.

ations, we need only simulate one half of a period of the problem. Here we take the right boundary
to correspond to the vortex centerline. Reactants flow in at the bottom, and combustion products
exit through the top. For the conditions presented here, vortex pair propagates upward with a
self-induced velocity of approximately 130 cm/s. We consider two equivalence ratios, φ = 0.8 and
1.2. Our base computational domain is 1.2 cm wide, and 4.8 cm high with an effective resolution
of 256× 1024 corresponding to ∆x = 47µ m at the finest level of resolution.

We simulate the lean flame (φ = 0.8) until tf = 12 ms, and the rich flame (φ = 1.2) until tf = 22
ms. For the cases considered, there are a number of interesting stoichiometry-dependent changes
in the chemical behavior as the vortex interacts with the flame; we focus on two of them. First, in
the rich case we observe a dramatic reduction in CH as the vortex interacts with the flame, similar
to what was observed by Nguyen and Paul [30]. Second, for both equivalence ratios, we observe an
enhancement in CH3O as the flame is stretched by the vortex. Snapshots of the mole fraction of
CH and CH3O for each case are presented in Figure 5. Our goal is to apply the stochastic particle
algorithm to the simulation data to understand the behavior of these two chemical species.

To analyze how the vortex interaction changes the flame chemistry, we want to compare the
behavior of carbon atoms passing through the stretched portion of the flame to the behavior of
carbon atoms passing through a relatively unperturbed portion of the flame. For this purpose we
initialize 400,000 carbon particles, initially in CH4, at the points labeled L and R in Figure 4 at
initial time. These positions represent two locations at time t = 0 of fluid that will enter the flame
at approximately 8 ms. For each starting location we then look at the subset of the stochastic
paths for particles passing through the flame in a given space-time window, ignoring those with
trajectories not relevant for analyzing CH behavior near the centerline.
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Rich (φ = 1.2)

Lean (φ = 0.8)

0 ms 5.3 ms 11 ms

0 ms 5.3 ms 11 ms

0 ms 5.3 ms 11 ms

0 ms 5.3 ms 11 ms

Rich (φ = 1.2)

Lean (φ = 0.8)

CH CH3O

Figure 5: Behavior of CH and CH3O during vortex flame interaction for φ = 0.8 and 1.2

We compute reaction pathway diagrams as before for stretched (R) and unperturbed (L) sections
of the flame by tabulating the chemical transformations in the stochastic particle trajectories. The
lean case is shown in Figure 6 and the rich case is shown in Figure 7.

Comparing the reaction paths, we find that for the lean case, the interaction with the vortex
induces minimal changes in the basic carbon chemical pathways, consistent with the behavior of
CH observed in Figure 5. For the rich case, the vortex interaction leads to a dramatic shift in the
chemical pathways. In particular, the data shows a marked shift away from the CH3 → CH2(s)
pathway combined with an enhancement of the CH3 → C2H6 pathway. This preferential shift
toward the C2 pathway is the major cause leading to the reduction in CH.

To explore the shifting of the chemical pathways in more detail, we analyze the reaction events
in the stochastic particle trajectories that create and destroy CH3. In Figure 8, CH3 pathways
are presented for both the left and right sides of the flame for the rich case. The CH3 chemistry
is dominated by a relatively small number of reactions—four reactions describing the CH4 →
CH3 kinetics and the seven destruction reactions depicted in the figure. (Three of which are also
significant in the reverse direction producing CH3.) The pathways may be distinguished by whether
they involve radical species as reaction partners. Those that involve radical species show a marked
relative reduction on the strained side of the flame compared to those in the unperturbed flame. The
remaining reactions, involving recombination or partnering with a stable chemical species show a
corresponding increase. Additional particle statistics confirm that on the strained side of the flame,
the reactions destroying CH3 occur at lower concentrations of the relevant radical species.

From the above analysis, we see that to further explore this shift in chemical pathways, we need
to examine the reduction in the radical pool. Classical stretched flame theory suggests that Lewis
number effects, especially in the mobile H and H2 molecules, are likely to impact the chemistry near
the region of intense flame interaction with the vortex. To explore how the observed behavior is
related to flow strain we generated an ensemble of particle trajectories for H atoms bound originally
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Figure 6: Carbon reaction path diagrams for vortex flame interaction, φ = 0.8. Here only paths
of strength > 1% of the largest path, CH4 → CH3, are shown. For some paths of interest their
weights are shown as a percent of the strongest.
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Figure 7: Carbon reaction path diagrams for vortex flame interaction, φ = 1.2. Here only paths
of strength > 5% of the largest path, CH4 → CH3, are shown. For some paths of interest their
weights are shown as a percent of the strongest.

in fuel methane molecules and released from the same initial point as the carbon atoms discussed
above. For both H and H2, we examine how far the H-atoms are transported before the molecule
reacts. The trajectories show that atomic H exists on average for less than 4 µs, and is therefore too
reactive to exist long enough for significant transport by advection or diffusion. The H2 molecules
are considerably longer-lived, and behave quite differently. We find that when H atoms from CH4

first become part of an H2 molecule, that molecule exists on average for 0.6 ms on the left but 1.3
ms on the right. In Figure 9 we show pdfs of the total horizontal distance traveled by these H2

molecules. The symmetric boundary conditions in the computation bias molecules on the left to
move right and molecules on the right to move left, since random-walk steps through the boundary
are reflected back into the domain. These biases have been removed from the pdf data by keeping
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CH3O

C2H6
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CH2O

CH2*

C2H5

CH3CH4

( ) 0.05, 0.08

+H 0.14, 0.09

+H02 0.13, 0.11
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Figure 8: Dominant chemistry of CH3 in the φ = 1.2 case, determined from stochastic particle anal-
ysis. Each pathway is annotated with the associated reaction partner(s) and strength, normalized
to the net number of CH4 → CH3 events. The red values represent statistics of particles released
on the left, the blue values from particles release on the right. Only paths of strength > 5% are
shown. Pathways not involving radical partners are highlighted yellow, and are increased in the
side interacting with the vortex over those in the unperturbed side. All CH3 destruction reactions
involving radicals are weaker in the strained flame region, and in particular paths leading to CH
through the CH2(s) molecule are reduced while those leading to the C2 branch through C2H5 and
C2H6 are enhanced.

track of the number of steps through the boundary, nb, and if nb is odd, mirroring the particle
through the relevant boundary to obtain a true final position. A dramatic difference is observed for
particles on the right in the strained section of the flame. We observed more than a factor of three
difference in mean distance traveled horizontally, showing that H2 is transported out of the local
flame zone by the vortical flow. The reduction in H2 in the flame zone modifies the chain-branching
reactions leading to a reduction in the available radical pool.

The behavior of CH3O is more subtle. As shown in the reaction path diagram, the changes in
the observed CH3O mole fraction are not caused by shifting of the integrated chemical pathways;
the net production of CH3O on the right hand side is somewhat reduced in both the rich and the
lean flames. The computed trajectories show that CH3O is created by essentially one reaction,
CH3 + HO2 → CH3O + OH. There are two reactions that dominate CH3O’s destruction.1

Rxn 57: CH3O(+ M) → CH2O + H (+M)
Rxn 170: CH3O + O2 → CH2O + HO2

Comparison of these two destruction reaction shows that most of the CH3O is destroyed by Rxn 57
in both the right and lean cases. However, CH3O molecules destroyed by Rxn 170 exist on average
much longer than those destroyed by Rxn 57. (The time for which a molecule exists is important

1Reaction numbers are taken from GRI-Mech 3.0 specification of kinetics
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because the observed molar concentration is determined by how much of a molecule is produced
and how long it exists before reacting again.)

To understand the observed “bloom” in CH3O as the vortex interacts with the flame we must
examine how the destruction reactions change on the right hand side as the flame interacts with the
vortex. In both the rich and the lean cases, the relative strengths of the two destruction reactions
remains unchanged. However, interaction with the vortex changes the average lifetime of CH3O.
For CH3O destroyed by Rxn 57, in the rich case the average lifetime increases by 30% while for the
lean case it increases by 10%. More dramatically, for CH3O destroyed by Rxn 170, the lifetime on
the right hand side increases by more than 100% for both the rich and lean flames. This increase
in longevity, not a shift in the chemical pathways, is responsible for the enhancement of CH3O
during interaction with the vortex. Further examination of the particle trajectories shows that, on
average, Rxn 170 occurs at lower temperatures on the right than on the left for both equivalence
ratios. This occurs because the temperature profile is steepened on the right due to vortex-induced
strain; thus, diffusion transports CH3O into a cooler region on the right than on the left. Since
this reaction is strongly temperature dependent (∼ T 7.6), CH3O particles survive longer on average
before reacting.

Thus, the behavior of the two species, CH and CH3O represent different types of phenomena.
In the case of CH the observed behavior is related to a shift in the observed chemical pathways.
For CH3O, the observed behavior arises from a change in the timing of production and destruction
of the molecule.

3.3 Laminar Diffusion Flame

The final example focuses on the nitrogen chemistry in a cylindrically-symmetric laminar dif-
fusion flame. For this example, the flame is modeled using a reaction mechanism of Glarborg et
al. [17]. This mechanism, which includes detailed nitrogen chemistry, contains 65 species and 447
reactions. The case we consider here was part of a combined experimental and numerical study of
the effect of fuel-bound nitrogen in the form of NH3 on NOx formation [4, 36]. Here we consider

H2 migration distance (cm)
-0.4 -0.2 0 0.2 0.4

500

1000

1500 (R) Strained

(L) Flat Flame

Figure 9: Symmeterized distributions of horizontal H2 migration show how the flowfield strain
disrupts local hydrogen chemistry in the rich flame.
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only the case with no added NH3. Temperature and NO mole fraction obtained from the continuum
solution are shown in Figure 10.

Figure 10: Temperature and NO mole fraction for the laminar nonpremixed flame. The dotted
white line is the stoichiometric boundary between the fuel and air.

An important scientific objective in studying these types of flames is to study the formation
of NO. For the case we are considering the only source of nitrogen is N2 in both the fuel and the
oxidizer streams. Because N2 is a relatively stable molecule, only 26 ppm of NO is formed, so the
number of trajectories in which reactions occur is very small; we are essentially looking for rare
events. Although we can examine NO chemistry as before by sampling N in N2 molecules entering
the domain, we would require a large number of trajectories to obtain a statistically significant
set of reacting trajectories. Alternatively, we can a priori decide to look only at “interesting”
trajectories; i.e., trajectories where N2 reacts. This is done by using the continuum reaction rates
for N2 over the domain to construct a probability distribution that reflects where N2 will first react.
We use one random variable to sample this distribution for points in space at which to begin the
trajectories, and then we use a second random variable to sample the distribution of N2 reactions
at such points for the initiating reactions. This type of procedure is inspired by stochastic models
for studying rare reaction phenomena in biological models originally developed by Gillespie [14, 15].
We simulate 106 trajectories for the N atom, beginning with the initial breakup of N2. With this
approach to sampling rare events, approximately 5% of the paths result in NO, reducing by a factor
of about 2000 the total number of trajectories required to understand those producing the 26 ppm
of NO. We use the particle trajectories to compute a net reaction path diagram for the nitrogen

13



chemistry which is presented in Figure 11. As in the steady premixed flame case, we can compute
the analogous net reaction graph from the continuum data and the results show that the nitrogen
chemistry as represented by the particles agrees with the analytic rate integration to within a few
percent on all paths.

H2CN

CH2CN

CH3CN

HONO

NNH

NO

NH

NO2

HCN

N2
N HNO

CN

N2O

HCNO

HOCN

NH2

HNCO

NCO

Figure 11: Reaction path diagram for nitrogen chemistry. Only edges at least 3% of the strongest
are shown.

We now demonstrate that stochastic particles can also recover the spatial structure of the
continuum solution. Assume that we are given a lattice that covers the computational domain. For
each cell in the lattice and for each trajectory that crosses that cell, we determine the residence
time of N while it is part of an NO molecule in that cell. If we sum these residence times over an
ensemble of trajectories the result is proportional to the molar concentration of NO. In Figure 12,
we show the NO profile, weighted by local radius (this scaling is necessary since the the residence
time is in units proportional to moles/lattice cell not moles/volume.) Even for a modest number of
particles the residence time provides a reasonable, if somewhat ephemeral, view of the concentration
profile. As the number of samples is increased, however, the agreement becomes increasingly good.
We also note that better agreement can be obtained with fewer trajectories if we use a coarser
lattice.

These examples show that the stochastic particle approach is able to recover both the chemical
and spatial structure of the flame even for NOx chemistry where the net NOx effluent is approx-
imately 26 ppm. As a final illustration of the use to stochastic particles, we examine an issue
for these types of flames that is not easily determined from the continuum solution. To pose the
question, we consider the nitrogen reaction path analysis for this flame presented in Figure 11. The
N in nitrogen oxides leaving the system enters the system as N2 which is broken into N, NNH,
HCN, etc. and eventually exits the domain as either NO, or NO2. The path diagram shows a loop
in which nitrogen atoms reside for a time in carbon species. Indeed, the flow through some carbon
species is greater than that out of N2. This indicates that cyano chemistry plays an important role
in the formation of NOx with an N atom possibly recycling through the carbon species multiple
times before exiting the domain in NOx.

To understand the role of this carbon recycling on NOx chemistry we examine the trajectories
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Figure 12: NO concentration in moles/area comparing 32,000, 128,000 and 1,000,000 particles with
the continuum solution.

used to compute Figure 11’s nitrogen reaction path diagram and extract the subset of those paths
that exit the domain as NO or NO2. For each of these trajectories, we calculate the number
of times the N atom we are tracking changes from a non-carbon containing species to a carbon
species, and refer to this quantity as the number of cycles for that trajectory. We can then compute
a probability distribution for the number of carbon recycling cycles undergone by NO and NOx

molecules leaving the system. The resulting data, presented in Figure 13, are well approximated
by the discrete geometric probability distribution

P (n) = λ(1− λ)n for λ = 0.33

indicating that entering the recycling loop can be modeled as the arrival time for a Bernoulli process.
We can also use the particle trajectories to quantify the spatial structure of the recycling

behavior. In Figure 14 we plot the initial reaction location for each particle that exits the domain
as NO or NO2, colored by the number of times it will cycle through cyano species before leaving.
We can see that particles that initially react on the outer edge of the flame are not affected by
carbon recycling. However, considerable carbon recycling occurs for trajectories initiating on the
rich side of the flame sheet, and it becomes increasingly important as we approach the base of
the flame. This provides some quantification of the overall behavior of the system and allows us
to obtain a spatial picture that indicates where carbon chemistry plays an important role in NOx

formation.
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Figure 13: Distribution of carbon cycles in NOx chemistry.

Figure 14: Location of initial reaction for exiting NOx particles. Black points mark initial reaction
locations for particles that do not participate in carbon recycling. The remaining points are color-
coded to indicate the number of carbon cycles in the particle history using a rainbow palette ranging
from red (= 1) to violet (≥ 12).

4 Summary and Conclusions

We have developed a new diagnostic methodology for analyzing combustion simulations. This
approach is based on tracking atoms through the system using a stochastic particle formulation that
models advective transport, differential diffusion and reactions using the results of a pre-existing
solution to the reacting flow equations. We have demonstrated that the method can recover key
properties of the continuum solution and provides a mechanism for diagnosing the behavior of
complex reacting flows. Perhaps one of the most intriguing properties of this approach is that is
allows questions about the reactions and transport to be posed in a natural and straightforward
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manner. The method has been implemented for multidimensional time-dependent flows and can
directly utilize the hierarchical grid system generated by our block-structured adaptive reacting
flow algorithm. Our long term goal is to use the stochastic particle approach to study chemical
behavior in three-dimensional, time-dependent turbulent combustion.

A Appendix. Chemical Reactions as Markov Processes

In a Markov process the probability of transition from one state to another depends only on
the current state. Representing the movements of atoms among molecules as a Markov process
must address three issues: large-rate reversible reactions, reaction ambiguities, and molecules with
multiple atoms of the same kind.

A.1 Reversible Reactions

The transition probabilities for the chemical Markov process represent reactions most of which
are reversible. The forward and reverse rates either can be treated separately or can be coalesced
into a single net destruction (or creation) rate. Since creation rates do not enter the construction
of transition probabilities explicitly, the choice makes a substantial difference in the behavior of
our algorithm. In Figure 15, we consider the situation of large forward and backward reaction
rates that are near equilibrium. If the destruction probability for species M1 involved the coalesced
rate, the net probability of transferring A from M1 to M2 would be very small, and atoms entering
molecule M1 will nearly always transform to M3. However, in reality, the atom bounces back and
forth from M1 to M2 and is equally likely to transform to M4 as M3. To capture this behavior,
both forward and reverse version of each the reversible reactions must be taken into account when
constructing the destruction probabilities. In this way, it is possible for a traced atom to make
several jumps between host molecules over the time interval ∆t since ∆tc < ∆t. Note that in opting
not to coalesce the forward and reverse rates, our algorithm incurs a more restrictive ∆tc.

A∈M0

M1

M3 M4

M2

Figure 15: Two species (M1 and M2) with rapid forward and backward reactions near equilibrium.
If tracked particle A ∈ M0 enters the M1 species group, the probability that A will emerge later in
the M4 group depends on whether the production rates between M1 and M2 are coalesced.

A.2 Reaction ambiguities

There are several subtleties associated with constructing the Markov process from a reaction
kinetics database. A CHEMKIN [24] mechanism file includes very little information about the
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atomic details of the reactions. Specifically, there may not be enough information to determine the
specific molecule in the product list to which our trace atom in the reactants has been converted.
The most common example of this situation in the GRI-Mech 3.0 database used in this study
occurs when there are at least two reactant and two product species containing our trace atom,
as illustrated in Figure 16. In this case, we are tracing N atoms, and will want to map species
on the left to species on the right in order to determine the fate of N. This reaction may involve
the transfer of a single O atom, in which case the N in the NO2 molecule becomes the N in the
NO molecule. Alternatively, the reaction may exchange O and C atoms so that the N in the NO2

becomes the N in the NCO. In rare cases, both options may occur with some finite probability,
or the process may even involve more complex intermediate steps. Unique decomposition of the
reaction may therefore require intimate knowledge of the molecular bond structures involved and
that data is not encoded in the CHEMKIN file.

CN + NO2 NCO + NO

-O

-O, +C

Rxn 281:

Figure 16: Example of a potentially ambiguous reaction. The CHEMKIN specification does not
indicate whether this reaction simply exchanges an O atom from NO2 to the CN molecule or if it
represents a multi-step exchange event.

In our implementation, we have arbitrarily resolved such ambiguities with a simple set of “rules”
to apply to the reaction decomposition. The rules are motivated by a knowledge of molecular
processes in consultation with P. Glarborg [16]. We summarize the rules as follows.

• Rather than exchange-type processes, we prefer simple shuffling reactions that transfer a
single atom or element group from one base molecule to another.

• We prefer shuffling the smallest group of atoms (in number first, then by atomic weight).

• We avoid the transfer of single carbon atoms, or cases that break C-O bonds.

The rudimentary rules may well be incorrect for some reactions in the GRI-Mech 3.0 mechanism.
We note, however, that the resolution of these special cases has very little impact on the chemical
analyses presented in this paper. The issue is generic to the stochastic particle analysis approach,
and new applications should be approached with care.

A.3 Multiple atoms per molecule

Once the details of the reactions have been determined, the only additional issues concern
molecules that contains more than one atom of element A. If the molecule is symmetric with
respect to A, we can assign probabilities for the destination molecule based on simple counting
arguments and a uniform distribution. This case is illustrated in Figure 17a which considers the
behavior of H in the reaction O + CH4 ⇀↽ OH + CH3. If we assume that this reaction occurs, then
there is a 25% chance the H atom will be shifted to the OH radical and a 75% chance that it will
be shifted to CH3. Thus, in defining M, if p is the probability of the reaction occurring, then we
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specify that 0.25p is the probability of the transition CH4 → OH and 0.75p is the probability of
the transition CH4 → CH3.

Rxn 81

Rxn 140

Rxn 140 Rxn 81

O + CH4 OH + CH3Rxn 11:

Probability = p

CH4

CH3

OH0.75 p

0.25 p

a) b)

Figure 17: Examples of reactions involving molecules with several of the atoms being tracked.
Example a) shows a symmetric case involving H atoms in CH4. Example b) show an unsymmetrical
case involving carbon.

When the structure of M is asymmetric with respect to the A atoms, we need to know which
position (up to symmetry) A occupies; and we must augment the definition of the states and the
reaction probabilities to reflect this location (eg. to prevent physically impossible transitions). In
Figure 17b we show an example of an asymmetric molecule participating in reactions that illustrate
the issues. Here, two carbon-containing species react to form a single composite molecule which
subsequently breaks apart. After the second reaction, we see that the carbon atom originally in
the CH2 molecule becomes the carbon atom in CH3; physically, it cannot be the carbon atom
from the CO molecule. For the reaction history to be correct, this positional information needs
to be included in the definition of M. In order to include this information and preserve the
Markov property of M, the two different carbon positions in CH2CO need to be represented as
distinct states with their own transition properties. We note that in the present implementation,
we have not distinguished these states and have used the treatment discussed above for symmetric
molecules. For the flames considered here, no reactions involving asymmetric molecules played any
substantive role in the dynamics; however, if more complex fuels were considered this type of effect
could become important.
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