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ABSTRACT

Electrocatalysts are mainly characterized by their intrinsic adsorption properties. However,
the observed electrocatalytic activity ultimately results from the interplay between such
properties and various additional interactions within the electrified solid-liquid interface. One
of such phenomena is solvation, which can substantially affect the stability of adsorbates. The
incorporation of solvation in computational electrocatalysis models can be fully implicit
(inaccurate for H-bonded adsorbates), fully explicit (challenging computation of free
energies), or embedded. Here we show that without any need for explicit or implicit media, a
micro-solvation approach with just 3 water molecules captures the contribution of coadsorbed
water to the adsorption energies of *OH and *OOH (two important adsorbates for oxygen
reduction) on platinum nanoparticles of various sizes. The approach enables an accurate yet
inexpensive explicit modeling of solvent-adsorbate interactions in nanoparticles, and the
calculation of solvation corrections, estimated as —0.59+0.14 ¢V and -0.47+0.13 eV for

*OH and *OOH adsorption on Pt.
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The efficiency of renewable-energy-based technologies such as fuel cells and electrolyzers is
adversely affected by the low performance of the involved electrocatalytic processes. The
much-needed improvement is difficult, as the electrocatalytic activity of materials results
from a combination of several factors: first, the electronic and geometric structures of solids,
which display beneficial or deleterious interactions with the reactants, intermediates and
products of catalytic reactions.' Second, substrate-adsorbate interactions are modified by pH,
electrolyte, solvent, and electric-field effects.’

Thermodynamically, substrate-adsorbate interactions are captured by adsorption
energies (AG,,, ), which are strongly correlated with the geometric and electronic structures of

1, 3-6

materials. In addition, one can assess the influence of electric fields” and pH® on AG s -

Solvent effects may be accounted for using implicit models,” *'°

though it is generally
desirable to include them explicitly, especially when strong solvent-adsorbate interactions
such as H-bonds are present.'' Embedded methods exist with explicit solvent molecules in the
first solvation shell and an implicit medium beyond, but the results need careful benchmark.'*
' All those models capitalize on the conclusions and advances on the solvation of chemical
species, mostly ions, in solution, which is a well-established field of research.' 1317

For water, the most common solvent, different adsorbed frameworks depending on the

surface morphology are observed.'®?” Such “water bilayers” modify AG,, of reaction

intermediates: several studies have shown the importance of *OH and *OOH solvation by
water for computational models of the oxygen reduction reaction (ORR) to be quantitatively

- 14, 19, 23-26
comparable to experiments.

Explicit ice-like hexagonal water layers over pristine
close-packed surfaces of transition metals are typically used (Figure 1b).” ' *° Such explicit
approach is computationally affordable depending on the size of the surface unit cells, but its

use on realistic nanoparticles is challenging: for instance, Pt nanoparticles with diameters of

~3 nm, which display maximum mass activity for the ORR,*’ possess hundreds of surface



atoms. Modelling a ~1.7 nm nanoparticle immersed in explicit water by ab-initio molecular
dynamics (AIMD) already requires including ~700 H,O molecules.'' Besides, finite-size
effects™ **%° frequently prevent straightforward extrapolation of conclusions drawn from
extended surfaces to nanoparticles.

Thus, the question is whether computationally inexpensive explicit solvation schemes
can be devised for nanoparticles. Here we offer an affordable micro-solvation approach to
account for water solvation tested for *OH and *OOH on Pt nanoparticles of various sizes.

The reactions used to calculate the adsorption energies of *OH and *OOH (AG,,, and AG,

OOH )

arc:
*+(n+1)H,0—=*0OH +nH,0+ H" + ¢ (1)
*+(n+2)H,0—=*00H +nH,0+3(H" +¢") (2)

Where * denotes a free adsorption site, and proton-electron pairs are described using the
computational hydrogen electrode, so %M( Hz) . u(H * +e').23 The way in which H,O is

accounted for in these equations affects substantially the actual values of the adsorption
energies. Consider the following cases on Pt(111): a) H,O from gas-phase calculations, (“in
vacuum”, n=0). b) Periodic adsorbed H,O bilayers (n — %, depending on the size of the
slab. n =51n Figure 1b for a 3x3 slab). ¢c) Adsorbed H,O molecules close to the adsorbates
and H-bound to them (“micro-solvation”, n=2). These configurations are displayed in
Figure 1 for *OH and *OOH. Figure 1b corresponds to the well-known ‘“half-dissociated”
water layers® in which each adsorbate is surrounded by three water molecules. Note that

previous reports showed that 1-2 water molecules are insufficient to fully solvate *OH."



a) vacuum (vac)
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Figure 1. AG,,,, (left) and AG,,,, (right) at pH = 0 and 298.15 K on Pt(111) in a) vacuum; b) a periodic water

bilayer; c¢) a micro-solvation environment with three coadsorbed water molecules. O atoms in *OH/*OOH

appear in orange.

We define the solvation energy (or solvation correction) of adsorbate 4 (Q,) as the

difference between the adsorption energies in vacuum and within the bilayer (Figure la-b):



Q, = AG)® -AG;“. Within the water bilayer, Q , =-0.63eV and Q,, =-0.39eV, in line with

19, 23-26, 31 132

previous results. These energies calculated with an implicit method (VASPsol’”) are
severely underestimated (-0.16/ -0.22 eV, see also'* *?), as hydrogen-bound solvation effects
on adsorbates are usually not captured by a dielectric constant and a radius, because hydrogen
bonds are: (1) directional (some species donate and some others receive depending on their
composition and chemical structure), (2) localized (it is not an interaction of the solvent as a
whole over the adsorbate but rather of certain particular parts of such solvent near the
adsorbate), and (3) short ranged (it fades as the adsorbate-solvent distance increases).
Previous works showed that the problems can be corrected by adding an explicit first
solvation shell."® Importantly, Figure Ic shows that it is not necessary to generate water

bilayers covering the entire surface or combine implicit and explicit methods to account for

solvation, as the differences in AG,, and AG

o, between water bilayers and micro-solvation

are 0.04 and 0.02 eV. We also calculated the difference between the *OH and *OOH
solvation energies in an explicit bilayer with and without implicit water using VASPsol’* to
be only 2 and 13 meV. Solvation energies with and without dispersion in the calculations are
also nearly identical, see section S6. Thus, only three water molecules per *OH/*OOH suffice
to account for the leading chemistry: two creating H-bonds with O atoms in the adsorbates
and another creating H-bonds with their H atoms. The up or down orientations of water
molecules in the bilayers or micro-solvation environments do not affect our results, as those
orientations are typically retained in the calculations of the half-dissociated layers (see Fig.

S4g).

Optimized nanoparticles from Wulff constructions® in the range 0.9-2.7 nm are
provided in Figure 2a-d. Figure 2e shows that the micro-solvation approach does not
significantly differ from one with a larger water coverage (denoted “extended” including an

in-plane second solvation shell around *OH) by just 0.05 eV on Pty;. As shown below, this is



within the confidence interval of the method and provides the accuracy required in e.g. ORR

26,31

electrocatalysis. Thus, we conclude that Q, = AG}* -AG} = AG® - AG}“.

Next, we use this simple yet relatively accurate micro-solvation approximation to

evaluate Q , and Q,,, on various atop sites of model nanoparticles,29 specifically Ptsg, Ptyo,

OOH

Pty01 and Ptsg (Figure 2 a-d) as a function of generalized coordination numbers ( CN ):3'4’ 34-35

CN (i) - Ec"(j ) 3)

The generalized coordination number of an atom i (CN(i)) is the weighted average of
the conventional coordination numbers (cn(j)) of the n; nearest neighbors. The normalization

factor (cn__ ) for atop sites is the bulk coordination (12 for fcc metals). CN captures strain,”

3-4, 34

finite-size and multisite effects, permitting direct comparison among a variety of metal

nanoparticles and extended surfaces, which is habitually challenging.”’



AGE =053eV AG )7 =058¢eV

Figure 2. CN for non-equivalent atop sites on: a) Ptsg, b) Ptyo, ©) Ptyg;, d) Ptsgs. CN is provided for sites with

cn=9 (blue), 8 (green), 7 (orange) and 6 (red). ¢) Comparison between “extended” (*OH +9* H,0) and

micro-solvation (*OH +3* H,0) approaches on Pty;.

Figure 3 contains AG,, and AG,,, in vacuum and micro-solvated as a function of CN.

OOH

Note that section S4 shows that CN describes the trends ostensibly better than c¢n. The data

in Figure 3 appear in Table S1 and the configurations in Figures S2-S4. The trends for AG,,

and AG

o, With and without solvation are linear and approximately parallel, allowing to

obtain average solvation corrections for each adsorbate, regardless of the surface sites and

particle size (up to Ptss, a sub-nanometer particle). The corrections are Q&% =-0.59 ¢V and



Qoz = -0.47 eV with standard deviations in both cases of 0.10 eV, in agreement with bilayer

solvation models for (111) surfaces (see Figure 1 and refs.'” 22531 Intervals of +0.14 and
+0.13 eV, smaller than the intrinsic error of DFT—GGAS,36 guarantee confidence of 85%.

Hence, one can safely add these solvation energies to AG, calculated in vacuum to rapidly

include solvation effects on Pt nanoparticles (AG)” = AGY* = AG'“ +Q,).

I I I I I I I I
"¢ =0.184CN + 2.813
4.0 I~ H v =
o o a)

3.5f v .
3.0 &79 o} .

. O PH(111)
3 251 O Plsgs i
(g 20k O Pt201 i

o Vv Pty

< 15F A Ply -
1ol AGon  =0.189CN-0.258 i
0.5 i

| 1 1 1 1 1 1 1

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Figure 3. AGoy and AGooy in vacuum (blue/red) and micro-solvated (green/orange) on nanoparticles and
Pt(111) as a function of CN (see Figure 2). The vertical differences between the points provide
Q% =-0.59x0.14 eV and QF%, =-0.47+0.13 eV, see further details on sections S1 and S4.

In case not only shifts to the energies in vacuum are needed and explicit solvent
descriptions are required, micro-solvation is also helpful: for instance, Ptyo; has a diameter of
~1.7 nm and AIMD simulations at 350 K found that ~1/3 of the 122 surface atoms are
covered by water.!" Thus, the high computational cost required to dynamically describe
water/metal interfaces at finite temperature makes our static approach useful, as merely three

water molecules and no implicit environment are needed.



*OH is typically more stabilized by solvation than *OOH™* '* 2% 3! because O-H bonds
in the latter are less polarized due to the O-O bond (exemplified in Figure S1 by means of
electronic charges on the adsorbates), making H-bonds slightly weaker. We anticipate that the
micro-solvation approach could be applied to other important adsorbates in electrocatalysis
such as *NHy, *NOH, *NHOH, *COH, *CHOH and *CH,OH, among others, ensuring that a)
all moieties able to create H-bonds are close to surrounding water molecules, and b) analyzing
the water-water vs water-adsorbate stabilizations. Other metals and alloys could also be

13, 31
tested, ™

so that adsorbate- and metal-dependent corrections are obtained for nanoparticles.
Furthermore, the adsorbate’s coverage, the number and orientation of surrounding waters and
spectators (e.g. *O during ORR) impact adsorbate solvation, so that our corrections can be
used as an upper bound;** ** ?* in addition, coadsorbed ions can as well modify solvation

contributions to the adsorption energies.*’

The largest deviations from the fits for solvated *OH/*OOH (green/orange) in Figure

3 correspond to CN =6.33, at (100) terraces in Ptyg; (Figure 2). This suggests that solvation on
square-like facets might be weaker than on hexagonal facets, which is supported by
Q,, =-0.39 eV on Pt(100), calculated with the micro-solvation approach. We attribute this to
the different surface symmetries (Pt-Pt-Pt angles of 90° vs 120°), which impact water
coadsorption and H-bonding. Excluding those data from the fits does not ostensibly affect the

average solvation corrections (Q% =-0.60+0.14eV and Q% =-0.49+0.12¢V), but the

standard deviations decrease to 0.09/0.08 eV and the confidence of the intervals reaches 92%.

Summarizing, we provide here an affordable micro-solvation approach to account for
water solvation of oxygenates with accuracy comparable to bilayers with/without implicit
media. The approach has two advantages: 1) only 3 water molecules are needed, with no need

for an implicit solvent or dispersion corrections. 2) Average solvation corrections are rapidly

10



obtained for nanoparticles, estimated as Q7% =-0.59+0.14 ¢V and Q% =-047+0.13 eV

OH — OOH

on Pt.

COMPUTATIONAL METHODS

We carried out the calculations with VASP.*® See full details in the SI, section S5.

Notes
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