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Abstract Post-translational control of PERIOD stability by Casein Kinase 1d and e (CK1) plays a

key regulatory role in metazoan circadian rhythms. Despite the deep evolutionary conservation of

CK1 in eukaryotes, little is known about its regulation and the factors that influence substrate

selectivity on functionally antagonistic sites in PERIOD that directly control circadian period. Here

we describe a molecular switch involving a highly conserved anion binding site in CK1. This switch

controls conformation of the kinase activation loop and determines which sites on mammalian PER2

are preferentially phosphorylated, thereby directly regulating PER2 stability. Integrated

experimental and computational studies shed light on the allosteric linkage between two anion

binding sites that dynamically regulate kinase activity. We show that period-altering kinase

mutations from humans to Drosophila differentially modulate this activation loop switch to elicit

predictable changes in PER2 stability, providing a foundation to understand and further manipulate

CK1 regulation of circadian rhythms.

Introduction
Circadian rhythms are generated by a set of interlocked transcription/translation feedback loops

that elicit daily oscillations in gene expression to confer temporal regulation to behavior, metabo-

lism, DNA repair and more (Bass and Lazar, 2016). The PERIOD proteins (PER1 and PER2) nucleate

assembly of large, multimeric complexes with the circadian repressors CRY1 and CRY2 that directly

bind to and inhibit the core circadian transcription factor, CLOCK:BMAL1, on a daily basis

(Aryal et al., 2017; Michael et al., 2017; Xu et al., 2015). PERs are stoichiometrically limiting for

the assembly of these essential repressive complexes (Lee et al., 2011b). In this way, their abun-

dance and post-translational modification state relay important biochemical information on the rela-

tive timing of the clock to other core clock proteins. Therefore, the expression, modification, and

protein stability of PER1 and PER2 is under particularly tight regulation.

While both transcriptional and post-transcriptional mechanisms feature importantly in the rhyth-

mic generation of PER proteins (Kojima et al., 2011; Takahashi, 2017), much attention has been

focused on the post-translational control of PER orchestrated by its cognate kinases, CK1d and the

closely related paralog CK1e (Hirano et al., 2016). These clock-associated kinases are somewhat

unusual, in that they remain stably anchored to PER1 and PER2 throughout the circadian cycle

(Aryal et al., 2017; Lee et al., 2001) via a conserved Casein Kinase Binding Domain (CKBD)
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(Eide et al., 2005; Lee et al., 2004). Mutations in CK1d/e (hereafter referred to jointly as CK1), as

well as PER2, exert powerful control over circadian period, altering the intrinsic timing of circadian

rhythms by hours in vivo (Lowrey et al., 2000; Toh et al., 2001; Xu et al., 2005; Xu et al., 2007).

Because circadian period is linked to the timing of sleep onset, PER2 or CK1-dependent alterations

to human circadian period manifest as sleep phase disorders that influence behavior and wellbeing

on a daily basis (Jones et al., 2013).

PER2 is regulated by a CK1-dependent phosphoswitch, where kinase activity at two antagonistic

sites functionally interact to control PER2 stability (Masuda et al., 2019; Zhou et al., 2015). Two fea-

tures define the CK1 phosphoswitch: degradation is initiated by phosphorylation of a Degron

located several hundred residues upstream of the CKBD to recruit the E3 ubiquitin ligase, b-TrCP

(Eide et al., 2005; Vanselow et al., 2006); this is counteracted by sequential phosphorylation of five

serines embedded within the CBKD known as the FASP region (Narasimamurthy et al., 2018). This

region is named for a Ser to Gly polymorphism in human PER2 that disrupts this stabilizing multi-site

phosphorylation, shortens circadian period, and leads to Familial Advanced Sleep Phase Syndrome

(Toh et al., 2001). Mutation of the Degron phosphorylation site has the opposite effect, stabilizing

PER2 to significantly compromise circadian rhythms (Reischl et al., 2007) in a manner similar to its

constitutive overexpression (Chen et al., 2009). Therefore, the balance of stabilizing and degrading

phosphorylation by CK1 leads to a complex temporal pattern of degradation in PER2 that is impor-

tant for circadian timing (Zhou et al., 2015).

Despite the importance of CK1 for circadian timing in eukaryotic organisms from humans to Dro-

sophila, Neurospora, and green algae (Görl et al., 2001; Kloss et al., 1998; van Ooijen et al.,

2013; Xu et al., 2005), little is known about how its activity is regulated on clock protein substrates.

CK1 is thought of as an anion- or phosphate-directed kinase, relying on negative charge on the sub-

strate to template activity in the pSxxS consensus motif (Flotow et al., 1990). Consistent with this,

biochemical studies exploring CK1 activity have primarily relied on the non-physiological acidic sub-

strates casein (Venerando et al., 2014) and phosvitin (Lowrey et al., 2000), or used peptides har-

boring anion- or phosphate-driven motifs (Isojima et al., 2009; Marin et al., 1994; Shinohara et al.,

2017). However, in vitro studies of clock-relevant kinase mutants using these non-physiological sub-

strates have led to the puzzling conclusion that CK1 mutants that either decrease or increase period

length all have reduced kinase activity (Kivimäe et al., 2008; Venkatesan et al., 2019).

The importance of anion binding is highlighted by the CK1e tau allele that markedly speeds up

the clock, leading to a ~ 20 hr period (Lowrey et al., 2000; Ralph and Menaker, 1988). The R178C

mutation in tau alters a phosphate binding pocket on the surface of the kinase to block the ability of

CK1 to further phosphorylate primed or acidic substrates. We discovered that tau has reduced activ-

ity on the FASP region in vitro, but exhibits a gain of function on the Degron site. Therefore, the tau

allele inverts substrate selectivity on PER2 relative to the wild-type kinase to promote PER2 degrada-

tion. A mechanism for inverted substrate selectivity was suggested by the crystal structure of the tau

kinase domain, which revealed the presence of a two-state conformational switch in the CK1 activa-

tion loop. Anion binding near the activation loop biases the switch towards a conformation that

favors the FASP substrate, while mutations that disfavor anion binding enhance activity towards the

Degron. Molecular dynamics simulations reveal that the alternate conformation is stabilized in tau,

forming the basis for its enhanced activity on the Degron. A comprehensive analysis of other short

period kinase mutants from Drosophila to humans finds that they differentially bias this intrinsic

switch to enhance phosphorylation of the Degron and turnover of PER2. Therefore, the anion-trig-

gered activation loop switch may be a general mechanism regulating CK1 substrate selection.

Results

The tau mutant has decreased activity on the FASP region
We recently demonstrated that CK1 primes FASP phosphorylation in a slow, rate-limiting step at ser-

ine 659 (mouse PER2 numbering, Figure 1A–B), with phosphorylation of the downstream consensus

sites following rapidly in a sequential manner (dashed arrows at pSxxS consensus, Figure 1B)

(Narasimamurthy et al., 2018). Because tau is a loss of function on the FASP domain, the prevailing

model was that this disabled the phosphoswitch to allow for unchecked Degron phosphorylation to

degrade PER2 (Gallego et al., 2006). The tau mutation eliminates a positively charged residue in
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Figure 1. tau alters CK1 substrate selectivity on PER2 to enhance Degron phosphorylation. (A) Domain map of PER2 with tandem PAS domains, Casein

Kinase-binding domain (CKBD), CRY-binding domain (CBD) and CK1 phosphorylation sites. (B) Sequence of the mouse PER2 FASP peptide with the

priming site (S659, bold) and two downstream phosphorylation sites (S662 and S665, bold) that are phosphorylated sequentially by CK1d (dashed

arrows). Gray, polybasic motif included for 32P kinase assay. (C) CK1d kinase domain with three anion binding sites (PDB: 1CKJ with WO4
2- anions).

R178, blue. D, Kinase assay with 20 nM CK1d DC WT or tau on 200 mM of primed FASP peptide (pS659) (n = 4 with s.d.). (E) Phosphorylation rates on

Figure 1 continued on next page
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the first of three CK1 family-specific anion-binding sites (Sites 1, 2, and 3) (Figure 1C)

(Longenecker et al., 1996). R178 sits at Site 1, located adjacent to the active site, and has been

postulated to bind a phosphorylated priming site to position the downstream serine of the consen-

sus motif near the active site (Longenecker et al., 1996; Zeringo and Bellizzi, 2014). Based on this

model, we predicted that tau should preferentially disrupt phosphorylation of the downstream con-

sensus sites in the FASP region due to its inability to recruit the primed substrate.

To test this idea, we used a FASP peptide based on the native mouse PER2 sequence (Figure 1B)

that was primed synthetically by phosphorylation at S659. We used a constitutively active version of

the isolated wild-type (WT) or tau (R178C) kinase lacking its autoinhibitory tail (CK1d DC, with 97%

identity between CK1d and CK1e in the kinase domain). As expected, tau had significantly lower

activity than the WT kinase on this primed substrate (Figure 1D–E). This was also true for a minimal,

primed synthetic substrate CK1tide (Figure 1—figure supplement 1). We then asked if tau would

influence priming phosphorylation using an unmodified FASP peptide. As we observed before,

phosphorylation of the non-consensus priming site occurs with much slower kinetics than the down-

stream consensus sites (Figure 1F–G) (Narasimamurthy et al., 2018). To our surprise, we found

that tau also had significantly diminished activity on an unprimed FASP substrate (Figure 1F–G), indi-

cating that R178 is also important for the non-consensus priming event. The decrease in activity of

tau on the priming site was also validated using an ELISA-based kinase assay with an antibody that is

specific for phosphorylated S659 (Figure 1—figure supplement 1).

We used an NMR-based kinase assay to confirm that tau influences both priming and down-

stream events at the FASP region. In contrast to radiolabeled kinase assays, this assay provides site-

specific information on the substrate by measuring new peaks that arise for phosphorylated serines

over time (Theillet et al., 2013). We established the requirement for priming to initiate phosphoryla-

tion of downstream sites in the FASP by CK1 (Narasimamurthy et al., 2018). Therefore, if tau was

simply deficient in recruitment of primed substrate, we should observe a similar degree of phosphor-

ylation at the priming site (pS659) compared to WT kinase, but a decreased peak volume for the

downstream serine (pS662). By contrast, we observed that the peaks for both pS659 and pS662

were decreased in volume for tau (Figure 1H–I), revealing that the ratio of consensus to priming

activity (pS662/pS659) was similar in WT CK1 and tau (Figure 1J).

To see if these findings held in the context of full-length protein, we expressed myc-PER2 and

WT or tau myc-CK1e in HEK293 cells and assessed phosphorylation using an antibody specific for

phosphorylation on the priming site at S659. Consistent with our in vitro studies, the activity of tau

was much lower on the priming site relative to the WT kinase (Figure 1K). As expected, phosphory-

lation of the subsequent serine was also decreased with tau (Figure 1—figure supplement 1). To

examine the possibility that loss of activity on the FASP region was specifically due to the cysteine

mutation (R178C), we also tested an R178A mutant in the cell-based assay and found that it also

exhibited much lower activity on the FASP priming site in a cell-based assay (Figure 1—figure sup-

plement 1). Collectively, these data show that loss of R178 at the site one anion-binding pocket in

tau leads to a reduction in both the slow priming step as well as the downstream sequential, primed

phosphorylation of the FASP region.

Figure 1 continued

primed FASP (n = 4 with s.d.). Significance assessed by unpaired Student’s two-sided t-test: **, p<0.01. (F) Kinase assay as in D, but with 200 nM CK1d

DC WT or tau on 200 mM of unprimed FASP (n = 4 with s.d.). (G) Phosphorylation rates on the unprimed FASP peptide (n = 4 with s.d.). Significance

assessed as above. (H) Overlaid 15N/1H HSQC spectra at 3 hr timepoint in the NMR kinase assay on 200 mM 15N FASP (black) ±1 mM WT (gray) or tau

(red) CK1d DC. Arrows, phospho-specific peaks corresponding to pS659 and pS662. (I) Phosphoserine peak intensities for pS659 and pS662 by WT and

tau kinases from NMR kinase assay. (J) Ratio of consensus to priming activity on the FASP (pS662/pS659) in the NMR kinase assay. Errors were

estimated from the standard deviation of the noise in the spectrum. (K-L) Western blot of FASP priming site, detecting pS659 (K) or the Degron,

detecting pS478 (L) on mouse myc-PER2 in HEK293 cell lysates after transfection with indicated expression plasmids. Representative blot from n = 3

shown. Wedge, 10 or 50 ng of myc-CK1e plasmid used. *, non-specific band. (M) Sequence of mouse PER2 Degron peptide with S478 (bold) and

polybasic motif (gray). (N) Kinase assay with 200 nM kinase on 200 mM Degron peptide (n = 4 with s.d.). (O) Phosphorylation rates on Degron (n = 4 with

s.d.). Significance assessed as above. See also Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The tau mutation alters substrate selectivity.
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Tau exhibits a gain of function on the Degron
Using an antibody specific for phosphorylation of the CK1-dependent b-TrCP recruitment site at

S478, we recapitulated the increased activity of tau on the Degron observed previously on myc-

PER2 that was transiently expressed with the kinase in HEK293 cells (Figure 1L) (Gallego et al.,

2006). Consistent with the phosphoswitch model that FASP phosphorylation antagonizes CK1 activ-

ity on the Degron (Figure 1A), we observed an increase in activity of WT kinase on the Degron with

the S659A mutant that eliminates all phosphorylation of the FASP region (Figure 1L)

(Narasimamurthy et al., 2018). We found that tau also had increased activity on the Degron in the

S659A mutant, demonstrating that the tau mutant can still be regulated by the phosphoswitch.

Given that kinase activity on the Degron is clearly linked to phosphorylation of the FASP region in

cells, we sought to clarify whether tau truly exhibits increased activity at the Degron using a peptide-

based kinase assay in vitro (Figure 1M). Here, we found that even on a peptide substrate in vitro,

tau had significantly increased activity on the Degron relative to WT kinase (Figure 1N–O). More-

over, both tau and WT kinase maintain their distinct substrate preference in the presence of both

FASP and Degron peptides in vitro, with tau showing enhanced activity for the Degron relative to

WT kinase (Figure 1—figure supplement 1). These data demonstrate that in addition to any regula-

tion imparted by the phospho-FASP on the Degron in cells, the tau mutation leads to a fundamental

change in CK1 activity and substrate specificity.

The tau mutation disrupts anion binding at site one and site two on
CK1
To explore the molecular basis for tau’s altered substrate specificity, we solved a crystal structure of

the CK1d R178C kinase domain (Figure 2A and Supplementary file 1a). Both WT and tau coordi-

nate an anion at Site three similarly (Figure 2—figure supplement 1). However, the mutation dis-

rupted anion binding at Site 1, although it led to only minor structural changes in this anion-binding

pocket (Figure 2B). Unexpectedly, we observed a loss of anion binding at Site two in tau, mediated

by an alternate conformation of the activation loop near this pocket that sterically blocks binding of

the anion (Figure 2C). This alternate conformation initiates at G175, three residues upstream of the

tau mutation (Figure 2C). A rotation of the backbone at G175 to a left-handed configuration dra-

matically alters the configuration of upstream residues to create a distinct conformation of the acti-

vation loop (Figure 2D and ). A backbone flip of a glycine at this conserved position has been

observed in other serine/threonine kinases, linking changes in conformation of the activation loop to

regulation of kinase activity (Nolen et al., 2004); therefore, the ‘loop up’ conformation observed in

tau may lead to different kinase activity than the ‘loop down’ conformation observed in the WT

kinase.

The activation loop is a key feature that distinguishes the CK1 family from other serine/threonine

kinases. There is little mechanistic insight into CK1 substrate selectivity because it deviates from the

highly conserved APE motif in the P+1 region that helps to define substrate specificity in most kin-

ases (Figure 2E) (Goldsmith et al., 2007). The activation loop and surrounding region also contain

all of the residues that coordinate the three anions observed in nearly all CK1 structures: the residues

that coordinate binding at Sites 1 and 3 are unique to the CK1 family, while R127 and K154, corre-

sponding to Site 2, are broadly conserved in other kinase families. R127 is part of the highly con-

served HRD motif that coordinates a phosphorylated residue in the activation loop of many kinases

to regulate substrate binding and activity (Figure 2F) (Johnson et al., 1996). CK1 family kinases are

generally considered to be constitutively active because they do not require phosphorylation of the

activation loop (Goldsmith et al., 2007). However, CK1d and CK1e are inhibited by autophosphory-

lation of their disordered C-terminal tails (Graves and Roach, 1995; Rivers et al., 1998) and poten-

tially by the phosphorylated FASP region (Figure 1L). Therefore, these anion binding sites could

represent the basis for a CK1-specific regulatory mechanism by facilitating the binding of phosphory-

lated C-terminal tails or substrates, and/or anionic signaling molecules (Fustin et al., 2018;

Kawakami et al., 2008).
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Figure 2 continued on next page
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Eliminating anion binding at site 2 differentially regulates CK1 activity
on the FASP and degron
Mutation of the residues corresponding to positions R127 and K154 at Site 2 essentially eliminates

the activity of kinases that depend on phosphorylation of the activation loop (Gibbs and Zoller,

1991; Leon et al., 2001; Skamnaki et al., 1999). To test the role of Site 2 anion binding in regula-

tion of CK1 activity, we made charge reversion mutants at positions R127 and K154, as well as at

K171 located nearby on the activation loop, and measured enzymatic efficiency (kcat/Km) on FASP

and Degron peptides in vitro. We observed a modest decrease (~25%) in activity towards the FASP

peptide (Figure 2—figure supplement 1 and Supplementary file 1b), suggesting that the ‘loop

down’ conformation that is enforced by anion binding at Site 2 may be important for FASP activity.

Strikingly, these mutants all increased activity towards the Degron, with a ~ 50% gain in efficiency

for R127E (Figure 2—figure supplement 1 and Figure 2G). To further examine the role of K171 in

regulation of anion binding, we solved a structure of the K171E mutant crystallized in high sulfate

conditions and found a full complement of three anions bound (Figure 2—figure supplement 1),

demonstrating that local flexibility in the activation loop allows it to retain sulfate binding at Site 2 to

some degree. Overall, these data suggest that anion binding at Site 2 correlates with substrate

selectivity on the FASP and Degron peptides. Notably, the change in selectivity with Site 2 mutants

in vitro makes them much more tau-like (Figure 2H), consistent with a recent report that both tau

and charge reversion mutants at Site 2 lead to decreased PER2 stability in cells (Shinohara et al.,

2017).

The activation loop switch is intrinsic to the CK1 family of kinases
Two copies of the kinase are found in the asymmetric unit of the tau crystal. We discovered that the

mutant kinase can take on either the ‘loop down’ or the ‘loop up’ conformation (Figure 3A). The

activation loop is not stabilized by crystal contacts in the alternate ‘loop up’ conformation and was

explicitly modeled based on good density in both conformations (Figure 3—figure supplement 1),

suggesting that the kinase has an intrinsic ability to take on two discrete conformations in a switch-

like manner. Since the first structure of CK1d published in 1996, nearly all CK1 structures have been

determined after crystallization with high concentrations of sulfate or citrate anions (Long et al.,

2012; Longenecker et al., 1996; Minzel et al., 2018). Because anion binding at Site two is incom-

patible with the activation loop in its ‘loop up’ conformation, prior crystallographic conditions have

likely disfavored this alternate conformation. The WT structure that we used for our analysis (PDB:

1CKJ) was first crystallized with a low concentration of anions, and then derivatized with tungstate as

an analog for phosphate before data collection (Longenecker et al., 1996). Importantly, this struc-

ture also displays the same two discrete conformations marked by translocation of residue L173 in

the activation loop (Figure 3A), confirming that this switch is an intrinsic property of the CK1d kinase

that has not been explored functionally.

We probed the library of existing CK1d structures using the positioning of L173 as a quantitative

metric for activation loop conformation by measuring interatomic distances of the L173 CD2 atom

to either CD2 of L152 (short distance in the ‘loop up’ conformation, long in the ‘loop down’) or the

hydroxyl of Y225 (long in the ‘loop up’, short in the ‘loop down’) (Figure 3B). A survey of 68 chains

from 26 different crystal structures of CK1d (in at least 7 space groups) demonstrated that tau and

the WT kinase from PDB entry 1CKJ are the only structures of CK1d to have ever been captured in

the ‘loop up’ conformation (Figure 3C). Moreover, the residues that coordinate anion binding are

broadly conserved in the CK1 family and anions are also found bound in these sites in other CK1

family kinases (e.g., CK1e, CK1V3; Supplementary file 1c). To determine if we could independently

capture the two states of the activation loop switch in the native kinase, we optimized sulfate-free

Figure 2 continued

is shown in transparent spheres. (G) Enzymatic efficiency on the Degron (n = 3 with s.d.). Significance assessed relative to WT with an unpaired

Student’s two-sided t-test: **, p<0.01; ***, p<0.001; ****, p<0.0001. (H) Ratio of enzymatic efficiency on FASP relative to Degron (n = 3 with s.d.).

Equivalent activity on FASP and Degron, dashed line. Significance assessed as above. See also Figure 2—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Details of CK1 crystal structures.
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crystallographic conditions and solved a structure of anion-free CK1d. Similar to the 1CKJ structure,

we observed both conformations of the activation loop in the two molecules of the asymmetric unit

(Figure 3—figure supplement 1). Therefore, CK1 has an anion-dependent switch in its activation

loop. However, the tau mutation appears to favor the ‘loop up’ conformation because it was

observed in crystals that grew in the presence of high sulfate concentrations. Taken together, these

data suggest that the tau mutation allosterically regulates anion binding at Site 2 via the activation

loop.

Tau stabilizes the rare ‘loop up’ conformation of the CK1 activation
loop
To probe the dynamic behavior of CK1 and how this is perturbed by the tau mutation, we performed

Gaussian Accelerated Molecular Dynamics (GaMD) simulations (Miao et al., 2015) on four systems:

WT and tau CK1 with the activation loop in the crystallographically-defined ‘up’ or ‘down’
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Figure 3. tau alters an intrinsic molecular switch in the activation loop of CK1d. (A) View of the activation loop

switch in WT (PDB: 1CKJ, chains A (cyan) and B (gray)) and tau (PDB: 6PXN, chains A (maroon) and B (salmon)). (B)

Position of L173 CD2 relative to either L152 CD2 or Y225 OH, reporting on the conformation of the activation loop

in the ‘loop down’ (gray) or ‘loop up’ (cyan) conformation in WT CK1d (PDB: 1CKJ). (C) Scatter plot of interatomic

distances in Å (from panel B) measured in 68 chains from 26 different crystal structures of CK1d DC. See

Figure 3—figure supplement 1 and Supplementary file 1c for more information.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Crystallographic details of the CK1 activation loop switch.
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conformations (Supplementary file 1d). By monitoring the Root Mean Square Deviation (RMSD) of

the activation loop with respect to the ‘down’ or ‘up’ crystallographic conformations, we set out to

assess its stability over the course of 500 ns simulations (Figure 4A–D). We found that the activation

loop remained stably in position when simulations were started from the ‘loop down’ conformation

for both tau and WT. Similar results were seen when the anion was computationally removed from

Site 2, suggesting that this conformation of the activation loop is intrinsically stable (Figure 4—fig-

ure supplement 1). However, in simulations starting from the ‘loop up’ conformation, the WT activa-

tion loop rapidly underwent a conformational change, as shown by increased RMSDup values.

Because we did not see a concomitant decrease in the RMSDdown values, we can conclude that this

is not a complete transition from ‘loop up’ to ‘loop down’ on this timescale. Importantly, these tran-

sitions occurred more frequently in WT CK1 than in tau (Figure 4C–D). This confirms that the ‘loop

up’ conformation is better tolerated in tau, consistent with our observation of this apparently rare

conformation in our crystal structure. We also observed that Y225 displayed more conformational

freedom in tau compared to the WT kinase (Figure 4—figure supplement 1). Given that Y225 is

directly adjacent to K224 in Site one and it also makes contact with L173 in the activation loop in its

‘loop down’ conformation, this suggests that Y225 could be poised to coordinate the conformation

of the activation loop with activity at Site 1.

The activation loop allosterically controls the dynamics of loop L-EF in
tau
While monitoring the overall dynamics of WT and tau CK1, we detected a major difference in the

dynamics of the loop connecting a-helices E and F (loop L-EF, Figure 4—figure supplement 1), part

of the anion binding site disrupted by the tau mutation (Figure 4E–H). This is intriguing because

temperature-dependent dynamics of loop L-EF were recently shown to be important for the temper-

ature-compensated activity of CK1 on PER2 (Shinohara et al., 2017). In our simulations of the WT

kinase, this loop exhibited relatively restricted mobility, regardless of whether the activation loop

was in the ‘up’ or ‘down’ conformation (Figure 4E and G). Similar results were observed when the

anion was computationally removed from Site 2 (Figure 4—figure supplement 1). However, we

observed that the ‘loop down’ conformation of the activation loop was accompanied by a strong dis-

organization of loop L-EF in tau (Figure 4H), leading to significantly larger conformational freedom

compared to the WT kinase (Figure 4G). Surprisingly, the enhanced dynamics of loop L-EF was not

observed when tau was in the ‘loop up’ conformation; instead, loop L-EF displayed the same

restricted dynamics as the WT kinase (Figure 4E-F. These data suggest that the disruption of Site

one by loop L-EF dynamics in the tau mutation may be due to allosteric communication with the acti-

vation loop, and by proxy, anion binding at Site 2.

Tau dynamically reshapes the substrate-binding cleft in CK1
To investigate how the activation loop and dynamics of loop L-EF might influence substrate selectiv-

ity, we calculated the volume of the substrate binding cleft and adjacent anion binding sites through-

out the 500 ns GaMD simulations (Figure 4 and Figure 4—figure supplement 1). As expected, Site

two was completely open only when the activation loop was in the ‘loop down’ conformation for the

WT kinase (Figure 4I). Interestingly, this site became partially open in simulations of the WT kinase

starting from the ‘loop up’ conformation (Figure 4J), indicating that the intermediate conformational

state observed in our simulations might allow the kinase to recover, to some extent, the ability to

bind an anion at Site 2. The conformation of the activation loop indirectly affects the volume of the

substrate binding cleft with opposing effects in WT and tau. In WT, the substrate binding cleft was

open more consistently with the activation loop in its preferred ‘down’ conformation (Figure 4I–J).

By contrast, the substrate binding cleft was open more consistently in tau in the ‘loop up’ conforma-

tion (Figure 4L) and, due to the dynamic disordering of loop L-EF, often closed when in the ‘loop

down’ conformation (Figure 4K). Because the activation loop does not contact the substrate binding

cleft, it cannot directly affect the shape of the cleft by steric effects. Instead, closing of the substrate

binding cleft in tau occurs due to the conformational disorganization in loop L-EF, which is allosteri-

cally induced when the activation loop is in the ‘down’ conformation.
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Figure 4. Probing the dynamics of CK1d with GaMD simulations. (A-D) Stability of the activation loop assessed by the RMSD of residues 168–175 with

respect to the ‘loop down’ (RMSDdown, blue) or ‘loop up’ conformation (RMSDup, pink), as observed in the crystal structure. For each system, the

RMSDs from all five MD replicas are superimposed. Panel A, WT CK1dloop down; (B) tau CK1dloop down; C, WT CK1dloop up; D, tau CK1dloop up. (E-H)

Dynamics of the EF loop assessed by the RMSD of residues 213–224 with respect to the initial structure. For each system, the RMSD was calculated for

individual replica (gray lines, n = 5) and then averaged (green). The molecular representations in panels E-H show the crystallographic structure of CK1d

(gray) superimposed with snapshots of the L-EF loop extracted from the GaMD simulations (green). When present in the crystal structure and the

simulation, sulfate anions are represented by spheres. I-L, Alterations in anion and substrate-binding clefts arise from the activation loop switch and tau

Figure 4 continued on next page
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Tau influences the global dynamics of CK1
We next used principal component analysis (PCA) to uncover effects of tau on the principal modes

of motion displayed by CK1 during the GaMD simulations (Figure 5—figure supplement 1 and

Video 1). The 1st principal component consisted of a clear ‘open-and-close’ movement of the

enzyme, achieved mainly by dislocation of the N-terminal lobe (N-lobe) with respect to the top of

the helix F (Figure 5A). This mode of motion has been shown to control accessibility to the ATP-

binding site and regulate substrate access in other kinases (McClendon et al., 2014). The histo-

grams of the 1st principal component show that WT CK1 sampled more of the open conformations

compared to tau (Figure 5C). The 2nd principal component consisted of a twisting movement of the

N-lobe with respect to the top of helix F and a significant rearrangement of loop L-EF, which can

either be extended or collapsed (Figure 5B). When collapsed, loop L-EF had the effect of sterically

closing the substrate binding cleft. The histograms of the 2nd PCA illustrate that loop L-EF adopts

more extended conformations in WT CK1 and more collapsed conformations in tau (Figure 5D). The

collapsed conformations require loop L-EF to undergo a significant conformational change, which

agrees with the high conformational freedom seen in this region when the tau activation loop is in

the ‘loop down’ conformation. Altogether, the GaMD simulations suggest that the tau kinase never

behaves fully like the WT enzyme; compared to WT, it stabilizes the rare, Degron-preferring confor-

mation of the activation loop that remodels the substrate binding cleft and excludes anion binding

at Site 2. By contrast, when tau samples the ‘loop down’ conformation of the activation loop, it leads

to a dynamic disordering of loop L-EF that favors conformations of the kinase that likely accounts for

its decrease enzymatic efficiency on the FASP region.

Circadian alleles from Drosophila
to humans occur throughout CK1
To gain further insight into CK1 function, we

mapped known mutant alleles that influence cir-

cadian rhythms onto the CK1 structure (Figure 6

and Supplemenary File 2). Doubletime (DBT),

the CK1d/e ortholog in Drosophila, has one allele

that causes a short circadian period (dbtS, P47S)

while all others lead to a long period

(Kloss et al., 1998; Rothenfluh et al., 2000;

Suri et al., 2000). Many long period mutations

occur at or near catalytically important residues

like the catalytic DFG motif and the regulatory

spine that controls kinase activity (Figure 6B)

(Taylor and Kornev, 2011; Muskus et al.,

2007). Moreover, two loss of function alleles

occur in the activation loop: dco18 (S181F) is

located right behind the tau site (R178), linking it

to the substrate binding channel and activation

loop, while dco2 (G175S) occurs at the hinge

point for the activation loop switch (Zilian et al.,

1999). Although Drosophila and mammalian

PER proteins are somewhat functionally diver-

gent, conservation of their Degrons (Chiu et al.,

Figure 4 continued

mutation. Volumes for the binding clefts were extracted and averaged from GaMD simulations in the four states: panel I, WT CK1dloop down; J, WT

CK1dloop up; K, tau CK1dloop down; L, tau CK1dloop up. Water and anions were removed from the analysis. Volumetric maps are contoured at 0.1 and

represent regions that were consistently open during the simulations. See also Figure 4—figure supplement 1 and Supplementary file 1d for more

information.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Additional details for GaMD simulations.

Video 1. Principal Component Analysis of CK1d normal

modes. The 1st principal mode of motion corresponds

to an ‘open-and-close’ movement of the kinase,

achieved mainly by dislocation of the N-terminal lobe

(N-lobe) with respect to the top of the helix F. The 2nd

principal mode of motion corresponds to a twisting

movement of the N-lobe with respect to the top of

helix F and significant rearrangement of loop L-EF,

which can either be extended or collapsed.

https://elifesciences.org/articles/52343#video1
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2008; Eide et al., 2005) and FASP-like stabilizing phosphorylation sites (Kivimäe et al., 2008;

Top et al., 2018; Xu et al., 2007) suggests that there may be some conservation in their regulation

by CK1 (Figure 6C). In line with this, expressing mammalian CK1d with the tau or dbts mutation

leads to short period circadian rhythms in flies (Fan et al., 2009). Consistent with this functional con-

servation, the entire surface-exposed area linking Sites 1 and 2 and the substrate binding cleft

are �95% identical in 20 species from humans to unicellular green alga where CK1 has been impli-

cated in regulation of circadian clocks (Figure 6—figure supplement 1).

Other short period mutants exhibit differential activity on the FASP
and degron
Three short period mutants from humans and Drosophila (T44A, H46R, and P47S) colocalize in the

N-lobe right above Site 2 (Figure 6B) (Kloss et al., 1998; Brennan et al., 2013; Xu et al.,

2005). Given the changes in N- to C-lobe dynamics that we observed in our simulations of CK1 (Fig-

ure 5), we wondered how these mutations would influence substrate selectivity. We first tested the

activity of these short period kinase mutants in cell-based transfection assays by monitoring both

FASP priming (Figure 7A) and Degron (Figure 7B) phosphorylation. Similar to the Site two mutants

we tested earlier (Figure 2—figure supplement 1), the short period mutants T44A, H46R, and P47S

each retained substantially more kinase activity on the FASP priming site than tau. A triple mutant of

all three short period mutants (3M) did not have additive effects. Likewise, they also appeared to

retain kinase activity or even exhibited modest increases in Degron phosphorylation relative to WT
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Figure 5. tau influences the principal modes of motion in CK1d. (A) PC1 consists of an ‘open-and-close’

movement achieved by dislocation of the N-lobe with respect to the top of the helix F to control accessibility of

the ATP-binding site (dotted circle). (B) PC2 consists of a twisting movement of N-lobe with respect to the top of

helix F and significant rearrangement of the loop L-EF, which can be extended or collapsed against the substrate

binding site (dotted circle). (C-D) Structural representations correspond to (panel A) PC1 = �80 Å (cyan), PC1 = 80

Å (blue) and (panel B) PC2 = �60 Å (orange), and PC2 = 60 Å (red). The histograms represent projections of the

accumulated GaMD trajectories along the 1st (C) or 2nd (D) principal components for WT CK1d and the tau mutant,

either in the activation ‘loop down’ (black) or ‘loop up’ (white) conformations. See also Figure 5—figure

supplement 1 and Video 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Details of the principal modes of motion.
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(Figure 7B), although not to the same degree as tau. On balance, it appears that mutants near Site

two might act differently from tau in that they retain FASP priming activity while increasing activity

at the Degron relative to WT.

We also studied another short period mutant located at Site 1, K224D, which was recently

reported to have a ~ 20 hr circadian period like tau (Shinohara et al., 2017). Unlike tau, K224D

retained FASP priming activity in HEK293 cells (Figure 7C), although it exhibited a sharp increase in

Degron phosphorylation similar to tau (Figure 7D). This effect was not dependent on the charge
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Figure 6. Proximity of CK1 alleles map to catalytic and substrate binding sites. (A) Structure of CK1d (PDB: 1CKJ, chain B) clock relevant alleles mapped
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and FASP/stabilizing sequences. Residues in bold have experimental support for phosphorylation. Dashed arrows indicate sequential phosphorylation

following the consensus pSxxS motif.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Conservation of CK1d/e in eukaryotes.
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Figure 7. Substrate discrimination on the PER2 phosphoswitch is regulated by the CK1 activation loop switch. (A,B) Western blot of FASP priming site,

detecting pS659 (A) or Degron site, detecting pS478 (B) phosphorylation on mouse myc-PER2 in HEK293 cell lysates after transfection with indicated

myc-CK1e expression plasmids. 3M triple mutant: T44A, H46R, P47S. Representative blot from n = 3 shown. (C,D) Western blot of FASP priming (C) or

Degron (D) phosphorylation on PER2 as above with the myc-CK1e K224D mutant. Representative blot from n = 3 shown with replicate samples loaded

for tau and K224D. (E) Overlaid 15N/1H HSQC spectra at 3 hr timepoint in the NMR kinase assay on 200 mM 15N FASP + 1 mM K224D (teal) or WT (gray)

CK1d DC. Arrows, phospho-specific peaks corresponding to pS659, pS662, and pS665. (F) Representative real-time luminescence data for PER2::LUC

stability in HEK293 cells transfected with myc-PER2::LUC plus empty vector (black) or myc-CK1e WT (gray) or tau (red) as indicated (n = 4). 40 mg/mL

cycloheximide (CHX) added 24 hr post-transfection (arrow). (G) Quantification of PER2::LUC half-life with different myc-CK1e mutants. Data represent

mean ± s.d. (n = 4) with significance assessed as above. (H) Scatterplot with linear regression analysis of the ratio of enzyme efficiencies (kcat/Km) for

FASP and Degron relative to the PER2::LUC half-life determined in panel G and Figure 7—figure supplement 1. All data are plotted as mean ± s.d.

(n = 4 for PER2::LUC and n = 3–4 for enzyme efficiencies). Black, linear regression to data; gray, 95% confidence interval. (I) The conformational switch

of the CK1d/e activation loop is coupled to substrate selection in the PER2 phosphoswitch. Left, the activation loop of the WT kinase is stable in the

‘loop down’ conformation, leading to preferential phosphorylation the FASP region, which stabilizes PER2 by reducing phosphorylation of the Degron.

Right, the activation loop of tau kinase is better tolerated in the alternate ‘loop up’ conformation leading to an intrinsic gain of kinase function on the

Figure 7 continued on next page
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inversion, as we saw the same effect with a K224A mutant (Figure 7—figure supplement 1). Despite

retaining priming activity in cells, we noticed that the enzyme efficiency of K224D was decreased on

the FASP peptide, which contains multiple serines (Supplementary file 1b). This suggested that

while priming of the FASP site S659 might be intact, subsequent phosphorylation of the downstream

sites might be compromised in K224D. To test this, we used the NMR-based kinase assay to provide

information on the stepwise phosphorylation of the FASP region (Narasimamurthy et al., 2018).

Consistent with the cellular data, K224D retained normal priming activity at S659, but phosphoryla-

tion of the downstream serines that conform to the pSxxS consensus motif was compromised rela-

tive to WT kinase (Figure 7E). Therefore, although tau and K224D both enhance Degron

phosphorylation to a similar degree and lead to ~20 hr circadian periods (Lowrey et al., 2000;

Shinohara et al., 2017), this is likely achieved through different mechanisms on the kinase—tau

reduces both priming and downstream phosphorylation of the FASP region, while K224D (and

K224A) likely just disrupts the phosphorylation of the downstream pSxxS consensus motifs.

The ratio of FASP/Degron enzyme efficiency correlates with PER2
stability
One commonality of short period mutants is enhanced Degron phosphorylation in cells, as both cel-

lular (Gallego et al., 2006; Vanselow et al., 2006) and in vivo studies of short period mutants dem-

onstrate that PER2 stability is decreased in a CK1-dependent manner (Price et al., 1998; Xu et al.,

2007). We measured the effect of CK1 mutants on the half-life of PER2::LUC in real-time after cyclo-

heximide treatment (Figure 7F and ). All of the mutants, apart from L173A, lead to a shorter half-life

of PER2::LUC (Figure 7G). We initially mutated L173 because it appears to serve as a latch for the

activation loop in both its ‘loop up’ and ‘loop down’ conformations (Figure 2C). We found that the

mutant substantially decreased kinase activity at both the FASP priming and Degron sites in the

transfection-based assay and in vitro (Figure 7A–B and Supplementary file 1b), and a double

mutant with tau decreased its activity on the Degron to a similar degree (Figure 7—figure supple-

ment 1). We hypothesized that the L173A mutant might have a half-life similar to WT because its

reduced activity on the stabilizing FASP region was offset to a similar degree on the Degron

(Figure 7G and Supplementary file 1b). Indeed, we observed a significant correlation between

PER2::LUC half-life and the intrinsic ratio of CK1 kinase activity on these two key sites that establish

the phosphoswitch mechanism (Figure 7H). Collectively, these data support a new model for CK1

regulation whereby activation loop dynamics orchestrate substrate specificity and contribute directly

to the phosphoswitch regulation of PER2 stability, and therefore, the timing of circadian rhythms

(Figure 7I).

Discussion
Despite its powerful control over the timing of circadian rhythms in eukaryotes from humans to

green algae (van Ooijen et al., 2013; Xu et al., 2005), very little is known about the molecular

determinants of CK1d substrate selectivity and activity. We discovered a conformational switch in

the activation loop of CK1 that regulates its activity on two regulatory regions in PER2 that control

its stability and circadian timing in mammals (Zhou et al., 2015). We show that anion binding regu-

lates the conformation of this switch to reshape the substrate binding cleft and thereby control sub-

strate selectivity. Short period mutants in CK1 from Drosophila to mammals reveal that all exhibit an

intrinsic increase in kinase activity on the Degron, consistent with an earlier observation in cells

(Gallego et al., 2006). However, the tau mutant disrupts the apparent allosteric regulation between

anion binding sites; our MD simulations revealed that tau alters the dynamics of the activation loop

Figure 7 continued

Degron and loss of kinase function on the stabilizing FASP region. This switch in substrate preference promotes PER2 degradation and leads to a

shorter circadian period. CKBD, CK1 binding domain; CBD, CRY binding domain. See also Figure 7—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Effect of CK1 mutations on PER2 phosphorylation and stability.
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and adjacent loop L-EF that likely underlie the decreased activity of tau on the stabilizing FASP

region.

Allosteric regulation is a common feature of protein kinases, often based on dynamic changes in

ensembles of residues that can occur in the absence of major changes in conformation (Kornev and

Taylor, 2015). CK1 has remarkable, histone-like conservation (�95% identity) of the entire surface-

exposed area linking the two key anion binding sites and substrate binding cleft, suggesting that the

mechanisms we discovered here likely apply broadly to circadian rhythms as well as other CK1-regu-

lated processes in other eukaryotes. Binding of regulatory anions at these conserved sites could arise

from phosphorylated CK1 itself in cis via its autoinhibitory tail (Rivers et al., 1998), or in trans from

the binding of phosphorylated substrates like the FASP region, to allow for the generation of feed-

back regulation directly on the kinase. In line with this, changes in the sequence (Fustin et al., 2018)

or phosphorylation (Eng et al., 2017; Takano et al., 2004) of the autoinhibitory tail of CK1d/e could

alter the balance of PER2 phosphorylation at the FASP or Degron to control circadian period. There-

fore, our study demonstrates that the dynamics of CK1d/e directly encode its activity in the PER2

phosphoswitch (Zhou et al., 2015). The conformational equilibrium of the activation loop may also

play a role in the temperature-compensated activity of CK1d/e observed in vitro that is linked to

loop L-EF, an insertion in the clock-relevant kinases CK1d and CK1e that plays a role in maintaining

its relative insensitivity to temperature (Shinohara et al., 2017).

We used PER2 stability here as a cellular proxy to study the effect of mutations in CK1 on circa-

dian timing. PER proteins seem to have a special role in the mammalian clock as state variables that

define both the timing and phase of circadian rhythms through changes in their abundance

(Balsalobre et al., 2000; Zylka et al., 1998). CK1-dependent changes in PER abundance likely affect

circadian period based on their role as stoichiometrically limiting factors in the assembly of transcrip-

tional repressive complexes in the feedback loop of the molecular clock (Aryal et al., 2017;

Kim and Forger, 2012; Lee et al., 2011b). Recent studies have shown that CK1 may allow target

other clock proteins for phosphorylation in the repressive complexes (Aryal et al., 2017), a property

that seems to be conserved in Drosophila (Yu et al., 2006). Therefore, more studies are needed to

fully understand the interplay between PER2 stability, PER-CK1 interactions and its regulation by

post-translational modifications, including by phosphatases (Lee et al., 2011a) and other kinases

(Hayasaka et al., 2017; Hirota and Kay, 2009; Oshima et al., 2019) that ultimately control circa-

dian rhythms.

There is still much more to be learned about the factors that dictate CK1 substrate selectivity.

CK1 is clearly highly active on primed (pSxxS) sites (Narasimamurthy et al., 2018), supporting its

designation as the canonical consensus motif of the kinase. However, we find it compelling that

many of the biologically important roles of CK1d/e and the related kinase CK1a as key regulators of

Wnt signaling (Marin et al., 2003), the DNA damage response (Knippschild et al., 1997), cell cycle

(Penas et al., 2015), and circadian rhythms (Kloss et al., 1998; Lowrey et al., 2000) depend on

their activity at non-consensus sites. The ability of these kinases to phosphorylate lower affinity, non-

consensus sites on PER2 is likely dependent on the formation of a stable, stoichiometric complex

with PER2 via highly conserved sites that flank the FASP phosphorylation region in the CKBD

(Eide et al., 2005; Lee et al., 2004). The generally low activity of CK1 that we observe on clock-rele-

vant non-consensus sequences may also be important for the slow timescale of circadian rhythms.

This property is also conserved in KaiC, the enzyme that controls circadian timing in the cyanobacte-

rial system (Abe et al., 2015), suggesting commonalities in the biochemical origins of building slow

biological clocks.

Materials and methods

Cell lines
HEK293 cells were purchased from American Type Culture Collection (Cat.# CRL-1573, RRID:CVCL_

0045). Cells were authenticated by STR profiling and routinely tested for mycoplasma using commer-

cial kits.

Cell culture, reagents and transfection myc-mPer2, myc-mPer2 S659A, mPer2::Luc, and myc-CK1e

expression plasmids were described previously (Eide et al., 2005; Eng et al., 2017; Zhou et al.,
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2015). Mutations of the kinase domain were introduced by Quikchange site-directed mutagenesis

(Agilent) and validated by sequencing.

HEK293 were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supplemented

with 10% FBS (Gibco), 50 units/mL penicillin, 50 mg/mL streptomycin (Invitrogen) and maintained at

37˚C in a 5% CO2 environment. Cells were transfected using Lipofectamine 2000 transfection

reagent (Life Technologies) following the manufacturer’s instructions. For transfections titrating

expression of myc-CK1e, either 10 or 50 ng of plasmid was used; total plasmid DNA of either 1 or 2

mg was used for each well of a 12 or 6-well-plate respectively.10 mM MG132 was added to cultures

24 hr prior to harvest to prevent proteasomal degradation for experiments shown in Figure 7A and

B.

PER2::LUC half-life measurement
Mouse PER2::LUC expression plasmids (10 ng) were transiently transfected alone or with myc-CK1e

(100 ng) in 35 mm dishes of HEK293 cells in phenol red-free DMEM in the presence of 100 mM

D-luciferin (122799, PerkinElmer), 10 mM HEPES and 1.2 g/L sodium bicarbonate. Dishes were

sealed with 40 mm cover glasses and vacuum grease, and incubated in the LumiCycle (Actimetrics).

The next day, 40 mg/mL cycloheximide (Sigma) was added per 35 mm dish. Luminescence data were

used to calculate PER2::LUC half-life in Prism (GraphPad) using one-phase decay algorithm as

described previously (Zhou et al., 2015). Briefly, half-lives were calculated using the one-phase

decay algorithm in Prism (GraphPad) using the raw luciferase activity, beginning from the point of

cycloheximide addition to the plateau at minimum luciferase activity (n = 4).

SDS-PAGE and western blotting
Whole cell extracts of transfected HEK293 cells lysed on ice with cell lysis buffer (50 mM Tris-HCl pH

8.0, 150 mM NaCl, 1% (vol/vol) Nonidet P-40% and 0.5% deoxycholic acid containing Complete Pro-

tease Inhibitors (Roche) and PhosStop Phosphatase Inhibitors (Roche)) were analyzed by denaturing

SDS-PAGE gel, which was transferred on PVDF membrane (Immobilon, Millipore). The blot was

probed using the indicated primary antibodies: anti-myc (9E10) (sc-40, Santa Cruz Biotechnology;

RRID:AB_627268) and anti-tubulin (ab52623, Abcam; RRID: AB_869991) were purchased from com-

mercial providers, while rabbit polyclonal antibodies were generated against phospho-Ser478, phos-

pho-Ser659 or phospho-Ser662 of mouse PER2 and purified against the phosphopeptides by

Abfrontier (Young In Frontier Co.). The phosphopeptides for phospho-Ser478 and phospho-Ser659

have been described elsewhere (Narasimamurthy et al., 2018; Zhou et al., 2015); the phospho-

peptide KAESVVpSLTSQ-Cys was used to generate the phospho-Ser662 antibody. HRP-conjugated

goat secondary antibodies for anti-rabbit (1706515, Bio-Rad) and anti-mouse (1706516, Bio-Rad)

were with standard ECL reagents (Thermo Fisher Scientific). Densitometric analysis of western blot

bands was performed using ImageJ software (National Institutes of Health).

Expression and purification of recombinant proteins
All proteins were expressed from a pET22-based vector in Escherichia coli Rosetta2 (DE3) cells

based on the Parallel vector series (Sheffield et al., 1999). The wild-type recombinant FASP peptide

(residues 645–687) or Degron peptide (residues 475–505) were cloned from human PER2, and a

short wild-type mouse FASP peptide (residues 642–666) all contain an N-terminal WRKKK polybasic

motif for in vitro kinase assays and a tryptophan for UV detection during purification. All peptides

were expressed downstream of an N-terminal TEV-cleavable His-NusA tag. Human CK1d catalytic

domains (CK1d DC, residues 1–317) were all expressed in Rosetta2 (DE3) cells (Sigma Aldrich) with a

TEV-cleavable His-GST tag. Mutations were made using standard site-directed mutagenesis proto-

cols and validated by sequencing. All proteins and peptides expressed from Parallel vectors have an

additional N-terminal vector artifact of ‘GAMDPEF’ remaining after TEV cleavage. Cells were grown

in LB media (for natural abundance growths) or M9 minimal medium with the appropriate stable iso-

topes (15N, 13C for NMR, as done before Narasimamurthy et al., 2018) at 37˚C until the O.D.600
reached ~0.8; expression was induced with 0.5 mM IPTG, and cultures were grown for approximately

16–20 hr more at 18˚C.

For CK1d kinase domain protein preps, cells were lysed in 50 mM Tris pH 7.5, 300 mM NaCl, 1

mM TCEP, and 5% glycerol using a high-pressure extruder (Avestin). HisGST-CK1d DC fusion
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proteins were purified using Glutathione Sepharose 4B resin (GE Healthcare) using standard

approaches and eluted from the resin using Phosphate Buffered Saline with 25 mM reduced glutathi-

one. His6-TEV protease was added to cleave the His-GST tag from CK1d DC at 4˚C overnight.

Cleaved CK1d DC was further purified away from His-GST and His-TEV using Ni-NTA resin (Qiagen)

and subsequent size exclusion chromatography on a HiLoad 16/600 Superdex 75 prep grade column

(GE Healthcare) in 50 mM Tris pH 7.5, 200 mM NaCl, 5 mM BME, 1 mM EDTA, and 0.05% (vol/vol)

Tween 20. Purified CK1d DC proteins used for in vitro kinase assays were buffer exchanged into stor-

age buffer (50 mM Tris pH 7.5, 100 mM NaCl, 1 mM TCEP, 1 mM EDTA, and 10% glycerol) using an

Amicron Ultra centrifugal filter (Millipore) and frozen as small aliquots in liquid nitrogen for storage

at -80˚C.

For PER2 peptide preps, cells were lysed in 50 mM Tris pH 7.5, 500 mM NaCl, 2 mM TCEP, 5%

glycerol and 25 mM imidazole using a high-pressure extruder (Avestin). His-NusA-FASP or His-NusA

-Degron fusion proteins were purified using Ni-NTA resin using standard approaches and eluted

from the resin using 50 mM Tris pH 7.5, 500 mM NaCl, 2 mM TCEP, 5% glycerol and 250 mM imid-

azole. His-TEV protease was added to cleave the His6-NusA tag from the PER2 peptides at 4˚C over-

night. The cleavage reaction was subsequently concentrated and desalted into low imidazole lysis

buffer using a HiPrep 26/10 Desalting column. Peptides were purified away from His-NusA and His-

TEV using Ni-NTA resin with 50 mM Tris pH 7.5, 500 mM NaCl, 2 mM TCEP, 5% glycerol and 25

mM imidazole. Peptides were purified by size exclusion chromatography on a HiLoad 16/600 Super-

dex 75 prep grade column, using NMR buffer (25 mM MES pH 6.0, 50 mM NaCl, 2 mM TCEP, 1 mM

EDTA, 11 mM MgCl2) or 1x kinase buffer (25 mM Tris pH 7.5, 100 mM NaCl, 10 mM MgCl2, and 2

mM TCEP) for NMR or ADP-Glo kinase assays, respectively.

Radioactive and ELISA-based kinase assays
Mouse PER2 peptides (primed FASP, RKKKTEVSAHLSSLTLPGKAEpSVVSLTSQ, or unprimed FASP,

RKKKTEVSAHLSSLTLPGKAESVVSLTSQ, or the Degron, RKKKPHSGSSGYGSLGSNGSHEHMSQTSSSD

SN, from Isojima et al., 2009) and the CK1tide peptide (KRRRALpSVASLPGL, from

Isojima et al., 2009; Shinohara et al., 2017) were synthesized and purified to 95% or higher

(SABio).

For the radioactive kinase assay, two independent reaction mixtures of 50 mL containing 200 mM

of the FASP or Degron peptides in reaction buffer (25 mM Tris pH 7.5, 7.5 mM MgCl2, 1 mM DTT,

0.1 mg/mL BSA) were preincubated for 5 min with or without 20 nM CK1d DC (for primed FASP sub-

strate) or 200 nM CK1d DC (for unprimed FASP or Degron) and the reaction was started by addition

of 750 mM of UltraPure ATP (Promega) containing 1–2 mCi of V-32p ATP (Perkin Elmer). After incuba-

tion of the reaction mix at 30˚C, an 8 mL aliquot of the reaction mix was transferred to P81 phospho-

cellulose paper (Reaction Biology Corp) at the indicated timepoints. The P81 paper was washed

three times with 75 mM of orthophosphoric acid and once with acetone. The air-dried P81 paper

was counted for Pi incorporation using a scintillation counter (Perkin Elmer) by Cherenkov counting.

Results shown are from four independent assays.

For the ELISA kinase assay, unprimed FASP peptide was diluted to 2 mg/mL in Carbonate buffer,

pH 9.5 (0.1 M sodium carbonate) and coated onto a 96 well plate (100 mL/well). The next day, wells

were washed three times with wash buffer (PBS with 0.05% Tween, PBS-T) and once with kinase

buffer (25 mM Tris pH 7.5, 5 mM beta glycerol phosphate, 2 mM DTT and 0.1 mM sodium orthova-

nadate). Reaction mixture (50 mL) containing 10 ng of CK1d DC purified protein in the kinase buffer

including 10 mM MgCl2 and 200 mM ATP was added onto each well and the plate was incubated at

30˚C for 1 hr. Next, the reaction mixture was removed and the wells were washed with three times

with wash buffer and incubated with blocking buffer (PBS-T with 5% BSA) for 1 hr at room tempera-

ture. Subsequently, wells were incubated with pS659 Ab, anti-rabbit antibody conjugated to Biotin

and Streptavidin-HRP for 1 hr at room temperature with a washing step after each incubation as

above. For signal detection, TMB (1-Step Ultra TMB-ELISA, Thermo Scientific) was added, incubated

for color development at room temperature and stopped with the addition of STOP solution

(Thermo Scientific). The plate was read at 450 nm using an xMark Spectrophotometer plate reader

(Biorad). Results shown are from four independent assays.
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NMR-based kinase assay
NMR spectra were collected on a Varian INOVA 600 MHz or a Bruker 800 MHz spectrometer

equipped with a 1H, 13C, 15N triple resonance z-axis pulsed-field-gradient cryoprobe. Spectra were

processed using NMRPipe (Delaglio et al., 1995) and analyzed using CCPNmr Analysis

(Vranken et al., 2005). Backbone assignments were obtained previously for the mouse FASP (BMRB

entry: 27306) (Narasimamurthy et al., 2018). NMR kinase reactions were performed at 30˚C with

0.2 mM 15N-mouse FASP and/or Degron, 2.5 mM ATP and 1 mM CK1d DC (WT or tau). SOFAST

HMQC spectra (total data acquisition = 6 min) were collected at the indicated intervals for 3 hr and

relative peak volumes were calculated and normalized as described previously

(Narasimamurthy et al., 2018). Data analysis was performed using Prism (GraphPad), with data fit

to either a one-phase exponential or linear regression.

ADP-Glo kinase assay
Kinase reactions were performed on the indicated recombinant peptides (Degron or FASP) using the

ADP-Glo kinase assay kit (Promega) according to manufacturer’s instructions. All reactions were per-

formed in 30 mL volumes using 1x kinase buffer (25 mM Tris pH 7.5, 100 mM NaCl, 10 mM MgCl2,

and 2 mM TCEP) supplemented with ATP and PER2 substrate peptides as indicated. To determine

the apparent 2nd-order rate constants, triplicate reactions containing 10 mM substrate, 100 mM ATP,

and 0.2 mM CK1d DC kinase were incubated in 1x kinase buffer at room temperature for 3 hr (and

repeated for n = 3 independent assays). Linearity of the reaction rate with respect to time was deter-

mined by performing larger reactions (50 mL) with wild-type and tau CK1d DC and either the FASP or

Degron substrate; 5 mL aliquots were taken and quenched with ADP-Glo reagent at discrete time

points up to 3 hr (data not shown). Luminescence measurements were taken at room temperature

with a SYNERGY2 microplate reader in 384-well microplates. Data analysis was performed using

Excel (Microsoft) or Prism (GraphPad).

Statistical analyses
All statistical analyses were done using Prism (GraphPad). p-values were calculated using unpaired

two-tailed Students t-tests. In all figures, * indicates p<0.05, **p<0.01, ***p<0.001, ****p<0.0001;

ns, not significant.

Crystallization and structure determination
Crystallization was performed by hanging-drop vapor-diffusion method at 22˚C by mixing an equal

volume of CK1d DC with reservoir solution. The reservoir solution for CK1d DC tau (R178C) (8.5 mg/

mL) was 50 mM sodium acetate pH 6.0, 300 mM ammonium sulfate, and 17.5% (vol/vol) PEG 2000.

The reservoir solution for crystallizing CK1d DC wild-type (8 mg/mL) without sulfate was 150 mM suc-

cinic acid pH 5.5% and 17% (vol/vol) PEG 3350. The reservoir solution for CK1d DC K171E (7.7 mg/

mL) was 50 mM sodium acetate pH 6.0, 350 mM ammonium sulfate, and 17.5% (vol/vol) PEG 3500.

The crystals were looped and briefly soaked in a drop of reservoir solution and then flash-cooled in

liquid nitrogen for X-ray diffraction data collection. For CK1d DC tau, a cryopreservant of reservoir

solution with 20% (vol/vol) glycerol was used. Data sets were collected at the APS beamline 23-ID-D,

and the ALS beamline 8.3.1. Data were indexed, integrated and merged using the CCP4 software

suite (Winn et al., 2011). Structures were determined by molecular replacement with Phaser MR

(McCoy et al., 2007) using the ADP-bound structure of wild-type CK1d DC (PDB: 5 � 17). Model

building was performed with Coot (Emsley et al., 2010) and structure refinement was performed

with PHENIX (Adams et al., 2011). All structural models and alignments were generated using

PyMOL Molecular Graphics System 2.0 (Schrödinger).

Molecular dynamics
Initial structures
To simulate tau CK1d, we used the crystallographic structure reported herein (PDB: 6PXN), using

chain A to simulate the ‘loop up’ conformation and chain B to simulate the ‘loop down’ conforma-

tion. As starting structures for the WT CK1d simulations, we selected an apo structure (PDB: 1CKJ)

of 2.46 Å resolution, which has the activation loop crystallized both in ‘up’ (chain A) and ‘down’

(chain B) conformations (Longenecker et al., 1996). This structure contained two (chain A) or three
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(chain B) WO4
�2 anions, which were computationally replaced by SO4

2- anions at the same positions,

to make the simulations of WT CK1d more comparable to the tau simulations. The initial backbone

conformation of loop L-EF was similar in all of the structures used as starting points for the MD simu-

lations with a backbone RMSD for residues 210 to 230 of <3.7 Å between initial structures. Using

these structures, we created the systems to be simulated, described in Supplementary file 1d.

Systems set up and equilibration
The systems described in Supplementary file 1d were refined by (i) position restrained energy mini-

mization followed by (ii) full energy minimization, using Maestro (Schrödinger). The protonation

states of the minimized models were estimated using the H++ server (Anandakrishnan et al., 2012)

and hydrogens were added using pdb2pqr (Dolinsky et al., 2007).

All systems were solvated in a pre-equilibrated cubic TIP3P (Jorgensen et al., 1983) water box

with at least 15 Å between the protein and the box boundaries. The net charge of the system was

neutralized with Na+ or Cl- counterions. Parameters for protein atoms and counterions were

extracted from the ff14SB forcefield (Maier et al., 2015), while parameters for the SO4
2- anions

were extracted from the Generalized Amber Force Field (GAFF) (Wang et al., 2004) and adjusted

as proposed by Kashefolgheta and Vila Verde (2017).

Minimization and equilibration were performed with AMBER 16 (Case et al., 2016), using the fol-

lowing protocol: (i) 2000 steps of energy minimization with a 500 kcal mol�1 Å�1 position restraint

on protein and SO4
2- anions; (ii) 1000 steps of energy minimization with a 500 kcal mol�1 Å�1 posi-

tion restraint on protein atoms only; (iii) 2000 steps of energy minimization without position

restraints; (iv) 50 ps of NVT simulation, with gradual heating to a final temperature of 300 K, with 10

kcal mol�1 Å�1 position restraint on protein and SO4
2- anions; (v) 1 ns of NPT simulation to equili-

brate the density (or final volume of the simulation box).

Conventional (cMD) and Gaussian accelerated MD (GaMD) simulations
Before running the GaMD simulations, we ran 100 ns of conventional MD simulations for each sys-

tem, using AMBER 16 (Case et al., 2016) These simulations were performed in the NVT regime,

with a time step of 2 fs, and all bonds involving hydrogen atoms were restrained with SHAKE

(Ryckaert et al., 1977). The PME method (Darden et al., 1993) was used to calculate electrostatic

interaction using periodic boundary conditions, and a 12 Å cutoff was used to truncate non-bonded

short-range interactions.

The final conformations produced by the cMD simulations were used as starting configurations

for the GaMD simulations, which were performed with AMBER 17 (Case et al., 2017). For these sim-

ulations, additional acceleration parameters were used to boost the exploration of the conforma-

tional space, as described in Miao et al. (2015). All systems had a threshold energy E = Vmax and

were subjected to a dual boost acceleration of both the dihedral and the total potential energies. To

optimize the acceleration parameters we first ran 2 ns of MD simulations with no boost potential,

during which the minimum, maximum, average and standard deviation (Vmin, Vmax, Vav, savg) of the

total potential and dihedral energies were estimated and used to derive boost potentials as detailed

in Miao et al. (2015). These potentials were used to start 50 ns of Gaussian accelerated MD simula-

tions, during which the boost statistics and boost potentials were updated until the maximum accel-

eration was achieved. The maximum acceleration was constrained setting the upper limit of the

standard deviation of the total boost potential to be 6 kcal/mol.

We ran 5 replicas of production GaMD simulations for each system with fixed acceleration param-

eters derived from the previous equilibration stage. Each replica started from the same initial confor-

mation, but the atoms were given different initial velocities, consistent with a Maxwell-Boltzmann

distribution at 300 K. Each production simulation ran for 500 ns, totalizing 2.5 ms of sampling for

each system, and 15 ms in total.

Analysis of GaMD simulations
Conformational dynamics of loops
The RMSD of the activation loop (Figure 4A–D) or loop L-EF (Figure 4E–H) was measured through-

out the GaMD trajectories with CPPTRAJ using the rms module (Roe and Cheatham, 2013).
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Volumetric analysis of the substrate binding cleft
The volume and shape of the substrate binding cleft and adjacent anion binding sites were obtained

from the GaMD trajectories using POVME 3.0 (Wagner et al., 2017). For each trajectory, conforma-

tions of WT or tau CK1d were extracted every two ns, stripping all water molecules, counter-ions

and sulfate anions. All protein conformations were superimposed to the same reference frame and

the substrate binding cleft and adjacent anion binding sites were encompassed by three overlapping

spheres as shown in Figure 4—figure supplement 1. POVME was then used to estimate the free (or

empty) volume within the three overlapping spheres for all conformations extracted from the GaMD

trajectories. The resulting volumes were averaged to produce three-dimensional density maps, as

shown in Figure 4 (panels I-L). The maps in Figure 4 were contoured at 0.10 and represent regions

that are found more frequently ‘open’ during the simulations.

Principal modes of motion
To detect the principal modes of motion displayed by WT and tau CK1d, we used atomic fluctua-

tions sampled during the GaMD simulations to perform Principal Component Analysis (PCA)

(Amadei et al., 1993; Amadei et al., 1996). Before performing PCA, we stripped the trajectories of

all solvent, ions and protein side-chains, keeping the backbone atoms only. We then concatenated

and aligned these new trajectories to the same reference frame. To construct and diagonalize the

co-variance matrix of atomic fluctuations, we used the matrix and analyze modules, respectively, in

CPPTRAJ (Roe and Cheatham, 2013). For each system (WT CK1dloop down, WT CK1dloop up, tau

CK1dloop down, tau CK1dloop up), we projected their respective trajectories into the obtained eigen-

vector space using the projection function in CPPTRAJ (Roe and Cheatham, 2013). The projections

of each system along the subset of the eigenvector space formed by the 1st and 2nd principal com-

ponents are shown in Figure 5 and Figure 5—figure supplement 1.

All visualization of the GaMD simulations was performed with VMD (Humphrey et al., 1996).
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