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Abstract

The utility of a quantum computer is highly dependent on the ability to reliably perform accurate
quantum logic operations. For finding optimal control solutions, it is of particular interest to
explore model-free approaches, since their quality is not constrained by the limited accuracy of
theoretical models for the quantum processor—in contrast to many established gate
implementation strategies. In this work, we utilize a continuous control reinforcement learning
algorithm to design entangling two-qubit gates for superconducting qubits; specifically, our agent
constructs cross-resonance and CNOT gates without any prior information about the physical
system. Using a simulated environment of fixed-frequency fixed-coupling transmon qubits, we
demonstrate the capability to generate novel pulse sequences that outperform the standard
cross-resonance gates in both fidelity and gate duration, while maintaining a comparable
susceptibility to stochastic unitary noise. We further showcase an augmentation in training and
input information that allows our agent to adapt its pulse design abilities to drifting hardware
characteristics, importantly, with little to no additional optimization. Our results exhibit clearly the
advantages of unbiased adaptive-feedback learning-based optimization methods for transmon gate
design.

1. Introduction

Quantum computing holds immense potential to revolutionize various fields, such as optimization,
simulation, and cryptography—in some cases promising exponential computational speedup compared to
its classical counterpart. However, a central obstacle to harnessing this potential is the challenge of realizing
reliable quantum operations. Therefore, achieving high-fidelity quantum gates is a crucial prerequisite to
unlocking the full potential of quantum computing for practical applications.

A common approach is to optimize control protocols based on effective models of the physical platform.
With a suitable model at hand, high-fidelity strategies can often be achieved through analytical insights,
gradient-based optimization methods, or error amplification techniques [1-6]. However, present-day
quantum systems are characterized by substantial levels of noise, decoherence, and other environmental
disturbances, for which accurate models are rarely known. Moreover, even when a good model is known, it is
often not exactly solvable, limiting its usefulness for optimal quantum gate design. A route to circumvent
these shortcomings is to resort to model-free approaches, which facilitate gate optimization through direct
interactions with the quantum device.

© 2024 The Author(s). Published by IOP Publishing Ltd
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Recently an adaptive approach using reinforcement learning (RL) has become increasingly popular in
quantum gate design due to its model-free nature, obviating the need for a precise description of all details of
the system [7]. When trained in a simulation, the RL approach rivals optimal control techniques in
synthesizing high-precision quantum gates using discretized control for qubit-based [8-10] and
qudit-based [11, 12] systems, including potentially drastic improvements in exploration [10] and sample
efficiency [13]. Similarly, RL was found successful in optimizing continuous controls for a generic qubit
model [14] as well as a hardware-specific gmon model [15]. Niu et al [15] further demonstrates the resilience
of the RL-designed pulse sequences to stochastic noise when optimized with knowledge of a noisy
environment. Discrete control algorithms have also been adapted to successfully learn faster single-qubit
gates from scratch using experimental data from IBM’s superconducting platform [16, 17]; Baum et al [17]
additionally uses RL to improve upon the standard structure of an analytical cross-resonance pulse sequence.

While many aspects of the RL approach are more broadly applicable, in this work, we will specifically
address the gate design problem for fixed-frequency fixed-coupling transmon qubits. For this platform, the
model-based approach has yielded valuable insights in the pursuit of crafting high-fidelity entangling gates
by utilizing the cross-resonance interaction [18, 19]. An effective approximate analytical model, capable of
capturing the dominant Hamiltonian terms generated by the primary cross-resonance drive as well as
undesired cross-talk [20], has paved the way for the development of various error suppression techniques,
including echo sequences [21], selective-darkening/active cancellation [22—24], optimal control theory [25],
rotary pulsing [26], and most recently derivative pulse shaping [27]. However, the intricate nature of real
hardware and its inevitable imperfections persist, hindering our ability to achieve flawless quantum gate
operations. Moreover, while the analytical insight motivates a specific family of control pulses, it remains
unknown whether even better solutions can be found by expanding the considered protocol space.

As mentioned above, RL approaches have been explored to design entangling gates for the transmon
platform. However, one of the inherent strengths of RL—its capability to discover innovative strategies free
from the confines of theoretical protocol sequences—has remained underutilized. The absence of such
flexibility results in lengthy pulse sequences which, in turn, impose severe limitations on the fidelity of these
operations. Moreover, the ability of RL agents to learn adaptive strategies, that include optimal reactions to
the feedback received when they are deployed, has so far received little attention. For example, although RL
solutions display a degree of temporal robustness due to exposure to changing underlying system
characteristics during training [17], leveraging the adaptability of the RL agent to deal with such fluctuations
explicitly remains largely unexplored.

In this work, we address these and related open questions by deploying a continuous control RL
algorithm to construct piece-wise constant (PWC) pulse sequences for cross-resonance and CNOT gates
without any prior knowledge about the controlled system. We emphasize that this model-free approach only
requires feedback from the environment (simulated or experimental) and has no information about the
physical model for the environment’s dynamics. Our RL training agent only has access to the quantum state
and the gate fidelity, which, in principle, can be obtained experimentally via tomography and fidelity
benchmark; however, in this work we train the RL agent in simulation. We tailor the simulated environment
to fixed-frequency fixed-coupling transmons using realistic system characteristics to have a direct
comparison between our RL results and the existing error suppression techniques in superconducting
platforms. Note that in this particular transmon architecture, the qubit frequency depends on the fabrication
of the transmon chip itself and cannot be controlled throughout the gate duration.

We first demonstrate that our unbiased RL agent is capable of generating novel high-fidelity control
solutions that outperform current state-of-the-art cross-resonance pulse sequences. By effectively navigating
the vast design space of multi-segment PWC functions to identify high-quality pulses for multiple
continuous control drives simultaneously, our agent has achieved a remarkable feat in addressing an up to
120-dimensional control problem, as compared to the 20-dimensional problem considered in [17]. Without
compromising the fidelity, our agent additionally discovers control solutions with large drive amplitudes,
that can lead to a maximum reduction in gate duration by 30%, while being feasible to implement on
modern NISQ devices. We further show how to augment our RL approach so that our agent can learn to
adapt to drifts in the underlying hardware parameters (characteristics), a common issue that plagues
near-term superconducting devices. This adaptation offers a two-fold advantage: immediate, high-fidelity
control solutions without any extra optimization when dealing with moderate drifts or a reduction in the
number of training iterations required to address more significant changes in hardware parameters. These
findings underscore the practicality of the RL approach as a potent alternative for tackling the quantum gate
design problem.

The following sections are organized as follows. We start with defining the quantum gate design problem
for one and two-qubit gates in section 2. We give a brief overview of the state-of-the-art gate
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implementations in section 3. We then present our RL approach in section 4 and our simulated results in
section 5. Finally in section 6, we conclude and discuss future directions.

2. Quantum gate design problem
A quantum gate design task aims to realize a logical operation over one or more qubits via optimizing a set of
available time-dependent external control fields {d;(¢) } over some gate duration T. The effect of these fields

is described by a control Hamiltonian Heyi () = Hew [{d;(t) }] while the intrinsic dynamics of the qubits is
captured by the system Hamiltonian Hyy,. Together, they generate the full unitary evolution

T
U= TGXP [_1/ (Hctrl (t) +Hsys) dt] , (1)
0

where 7 denotes the time-ordering operator. We measure the accuracy of approximation of the target
operation Ug,ge: by the resultant unitary U via the average gate fidelity [28]

. 2
Favg (U, Utarger) = / dao ‘<¢0| U U, e 0) ‘

_ /dwo |(tbo | M]ebo) |

e (MM') +(Tr (M) |?
B n(n+1)

; (2)

where Uit = [Jaubit TTaubit j5 the unitary map projected to the qubit subspace of dimension 7. The average
is taken over all initial states |1y} distributed uniformly according to the Haar measure. Here we focus on
superconducting qubit platforms where local Z rotations can be performed virtually [29], i.e. without
incurring any additional time. We include this degree of freedom in the unitary by augmenting U to
V() U, in which the near-optimal angles @ are given by the matrix elements of M = Udubit Ujarget, see
appendix A.2.

We consider a target gate fidelity of 99.9%, which is an order of magnitude higher than the 99% fidelity of
the surface code threshold for two reasons. First, this level of fidelity is expected to enjoy a drastic reduction
in the number of physical qubits when using the surface code [30]. Second, for the typical two-qubit gate
durations considered in this work, e.g. 248.9 ns and 177.8 ns (the smallest time unit is the inverse sampling
rate dt = 2/9 ns for the considered device), the gate fidelity is coherence limited at 99.9% and 99.93%,
respectively. These limits are determined by computing the average gate error under a channel with the
amplitude damping rate T; = 300 us and the phase damping rate T, = 300 s [31], which are achievable in
current devices [32]. Thus, having in mind any realistic decoherence in the near term, our target fidelity of
99.9% coincides with the coherence limited fidelities for the considered range of gate duration.

In addition to the average gate fidelity, we also investigated the worst-case fidelity as an alternative figure
of merit. However, we did not find any discernible advantage and report this additional result in
appendix E.2.

In the following, we provide the explicit form of the Hamiltonian used to model superconducting
transmon qubits, while state-of-the-art gate implementations are discussed next in section 3.

2.1. Single-qubit Hamiltonian
We begin by modeling a single transmon in the Duffing approximation [33], with the lab frame Hamiltonian

(h=1):

lab
H 1,sys

:wab+%bTbTbb, (3)

where w and « denote the |0) ¢+ |1) transition frequency and anharmonicity, respectively, and b, b' are
ladder operators. This transmon can be driven at frequency w, via a control Hamiltonian

H® (1) = QaRe (d (1) €4) (b7 + 1), (4)

where we have factored out the drive strength §2; to keep the real and imaginary parts of the complex control
signal d(f) normalized to [—1, 1]. By rotating to the driving frame via the transformation R(t) = e ~«4'0 and
ignoring fast rotating terms (cf appendix A.1 for details), we arrive at the rotating frame Hamiltonian.

3
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H, (t) = RT (t) (Hlla]sys + lctrl( ) - lat) R(t)

~ob'b + %b*b*bu [%d(t) b+ h.c.} , (5)

where § = w — wjy is the qubit detuning, which vanishes when the transmon is driven on resonance, i.e.
Wy = Ww.

To make the connection to single-qubit rotations explicit, we consider only the first two levels and make
the replacement b — 0~ = X —iYand bt — o7 = X + 1Y in the control Hamiltonian, which results in

Y %

i (1) = S Re(d(0]) X+ — Im (d (1)) Y, 6)

1,ctrl
where X and Y denote respectively the Pauli-X and Pauli-Y matrices. Evidently, turning on the complex
control field d(t) induces qubit rotation around the x and y axes, which, for long enough gate duration, is
sufficient for realizing any single-qubit gate. With the Euler-angle decomposition,

Us (0.6, = V2 (&) Re (~ 5 ) V2 (O) Rx () V2 (), )

one can achieve any desired single-qubit gate by merely calibrating the Rx(=£7/2) rotations, and, as discussed
above, Z gates can be implemented virtually. Note that in practice much shorter gate durations are desirable,
in which case a number of errors (such as high state population [34]) will unavoidably arise and therefore
need to be counteracted, see section 3.

2.2. Two-qubit Hamiltonian

We now extend the model to describe a pair of transmons by combining two Duffing Hamiltonians coupled
by a resonator. The resonator acts as a bus for coherent communication between the quantum states of the
two Hamiltonians that will define the qubits. Although a variety of different logical two-qubit gates are
possible with this setup [35], we will discuss here the cross-resonance interaction Hamiltonian, which is the
current standard for fixed-frequency architecture.

When the resonator’s fundamental frequency is much larger than both |0)<+|1) transition frequencies of
the individual transmons, we can project the Hamiltonian onto the zero-excitation subspace of the bus
resonator to obtain the following lab-frame effective Hamiltonian:

1 .
=" (@b + Efb}b}bjbj) +7 (blbr + b)) (8)

j=0

Here, w; denotes the resonator-dressed qubit frequency and J denotes the effective coupling strength [20].

In addition to a standard on-resonance control field d(#) on each transmon, an entangling operation can
be realized by driving one qubit at the frequency of another via a cross-resonance (CR) control field u(t). The
two-transmon control Hamiltonian then becomes

Hib (1) = O Re (¢*do (1)) (8] + 1o
+ Qu, Re( @ity (t)) (bg + bo)
+QyRe (ew’”d] (t)) (bI + bl)

4 QuRe (ewuw (t)) (b] n hl) . 9)
Here, ug; (¢) refers to the CR pulse sent to qubit 0 when driven at the frequency of qubit 1, and vice versa for
[Z310) (t)
Moving into the frame rotating at w, for both transmons using the transformation
i (b1 bo b . . . . . S
R(t) = e~ watlbsbo+bib1) “and ignoring the fast rotating terms, we obtain the rotating-frame Hamiltonian

Ha (1) = R (1) (Hihs + Hib (1) = 01 R(1)
Z (o0 ;+ S0/ blbity ) +7 (B + bob] )
z}

2 i

[ €0y (£) -+ Q€ oy (t)] the

b ; ;
+ 2 [ € 611, (8) + Quye %0110 (t)] +h.c. (10)
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CR drive
F Qum q1 drive
g Q(h F
N 7 )
~N

Figure 1. Coupled transmons simulated as Duffing oscillators. Simulation is truncated at three energy levels per transmon (the
faded fourth level is shown but not considered), and performed in a rotating frame. The first two levels act as qubits (dashed
boxes). External control drives (purple) include on-resonance and cross-resonance complex control fields, denoted by d(r) and
u(t) in the main text, respectively. The full Hamiltonian in equation (10) is completely characterized by the detuning 6; and
anharmonicity o for each transmon, drive strengths {24, , Qu,, , 4, , Qu,, } for 4 external controls, and the direct coupling J.

where §; = &; — wy defines the detuning for the jth transmon. The pair of transmons, whose dynamics is
described by H,(#), is illustrated in figure 1. In this work, we simulate the dynamics in the frame rotating at
the second transmon’s frequency, i.e. setting §; = 0.

With the first transmon as control and the second as target, the main effect of the CR drive can be studied
by setting u; to a constant value €2 and other control fields to zero:

o; Q
H™ (1) = doblbo + Y SLbfbl by +J(bgb1 + bobi) + ton ()b + . (11)

j=0,1

To obtain the effective ZX interaction rate (or strength) within the qubit subspace while accounting for
higher levels, one can employ perturbation theory [20] to obtain the following approximate effective CR
Hamiltonian

HR = ZwABA(X)B, (12)

A,B

where A € {I,Z} and B € {I,X,Z}. In the presence of classical cross-talk and incorrect phases in control
drives, B can be extended to include the PauliY matrix [24]. Within perturbation theory for small coupling J
and small drive (2, the interaction rates have the following scaling

2
wzx,wix ~ 2, wWzr,wzz ~ 7. (13)

The resultant dominant ZX term can then be used to implement the following entangling operation
I—-1ZX

\/i ’
known as the cross-resonant (CR) gate, which is locally equivalent to the popular CNOT gate. Such

entangling operations, together with the capacity to realize any single-qubit gate, enable universal quantum
computation in the superconducting transmon platform.

ZX(1/2) = exp (A%ZX) - (14)

2.3. Leakage
Although only the first two levels of a transmon are used to represent a qubit, the higher levels are
nevertheless still present and can be populated as the system evolves. We capture the most prominent leakage
outside the ideal computational qubit subspace by including the second excited state of the anharmonic
oscillator |2) (cf figure 1). The full state space can be decomposed into a direct sum of the computational
subspace x; and the leakage subspace x,. Projectors onto these subspaces respectively are denoted as I; and
I, [36].

Under a unitary quantum channel £(p) = UpU", state leakage averaged over all initial pure states in the
qubit subspace is given by

I
L= [ dyTxr [LE =Tr|LE| —F—— |-
[ vl Qund ) = e |1 (ot )|
Here, we have used the fact that the average of |1o) (1o | results in the maximally mixed state I; /dim(x). For
a system of two transmons, the computational subspace x; is spanned by {|00), |01),]10),|11) }, and thus
dim(x)=4.
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Intuitively, the average leakage L quantifies the population fraction initially prepared in the
computational subspace, that ultimately ends up outside of this subspace [34]. While a prerequisite for
achieving a high-fidelity quantum gate is to minimize leakage at gate completion, conventional anti-leakage
schemes typically suppress leakage throughout the entire gate duration. This is due to the difficulty in
restoring population into the computational subspace at the end, as well as (historically) disproportionately
larger decoherence rates for higher levels. Nevertheless, high-fidelity control solutions, with considerable
excursion beyond the computational subspace during gate duration, do in fact exist and are achievable with
the use of RL optimization, as we will demonstrate later, e.g. see the data reported for RL protocols in figure 7
and the corresponding discussion in section 5.2.

2.4. Entanglement

In addition to the fidelity, an important goal of a two-qubit operation is to generate entanglement. Among a
number of different options, we select a simple metric called linear entropy which quantifies the
entanglement of a joint density matrix p describing the pure state of both qubit A and qubit B as follows

Sin=1—"Trp {(TrAp)z} , (15)

where Try (Trg) denotes partially tracing out qubit A (B). To calculate the linear entropy of an initial state
|4o) after a unitary operation U, we simply substitute p = |) (1| = Ults) (35| UT. When applied to a
multi-level system like transmons, we make sure to normalize the final state after projecting to the qubit
subspace.

To assess the entanglement capacity of a quantum gate, we draw inspiration from the widely adopted
entangling power of unitary operations [37], defined as the average linear entropy produced by a unitary
operator when acting on the space of all two-qubit product states. Since the average is taken over two
single-qubit Haar measures instead of a single joint two-qubit Haar measure, it can be computed exactly
using the set of tensor products of all six Pauli eigenstates {|0),|1),|+£),| £ i) }. Of the resulting 36 two-qubit
product states, 16 are maximally entangled, while 20 remain separable for gates in the class of locally
equivalent CNOT operations, including the ZX(7/2) gate. Within the scope of our work, the linear entropy
averaged over these 16 initial states is sufficient to capture the entangling power of a unitary operation. We
shall therefore define this quantity as the average linear entropy Siy,.

In the context of driving one qubit at a frequency of another in order to implement an entangling gate, it
is common to attribute the entanglement generated entirely to the use of such a CR drive. However, this
might not be the case when an on-resonance drive is used simultaneously with the CR drive. As we shall see,
studying the average linear entropy Sy, of optimized pulses implementing two-qubit gates reveals that in
some of the control solutions discovered by RL, the roles of different drives are not as isolated as one might
initially believe; e.g. see figure 9, indicating the existence of an entirely new class of solutions.

3. State-of-the-art implementations of transmon gates

To provide a meaningful point of comparison for our approach, we review the conventional methods for
implementing quantum gates within a superconducting platform and specifically the theoretical foundations
underpinning each ansatz. As concrete examples, we showcase the standard error suppression techniques for
both the single-qubit Rx(7/2) gate and the two-qubit ZX(7/2) gate in figure 2.

The most basic implementation of a single-qubit rotation around the x-axis involves driving the target
transmon resonantly with a real-valued pulse envelope d(t), according to equation (6). Common choices for
the pulse shape include Gaussian and Gaussian Square waveforms as they offer smooth ramp-up and
ramp-down. The standard error suppression approach utilizes an additional out-of-phase component equal
to the derivative of the in-phase part, see figure 2(a), which has been shown to significantly reduce gate error
including leakage to the second excited level. This is known as the Derivative Removal for Adiabatic Gate
(DRAG) scheme [38, 39], in which the amplitude of the real Gaussian pulse, the detuning, and the scaling
factor of the imaginary derivative component can be optimized. Calibration of these parameters on current
superconducting hardware can reliably achieve average gate fidelity of above 99.95% [40].

For two-qubit entangling gates such as ZX(7/2), the standard implementation makes use of a CR pulse
ug; along with resonant drives (dy,d; ) on both the control and target qubit, according to equation (10). These
components can be combined in an echoed or direct fashion [40]. As illustrated in figure 2(b), the echoed
scheme employs an echo pulse sequence where the CR pulse is broken into two halves (yellow envelopes)
with the second one inverted (2 — —€2) and positioned between two w-pulses applied to the control qubit

6
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a. DRAG .\ .
— Gaussian

10 —— Derivative
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Ugy - CrOSs-resonance —— dj - target rotary
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Figure 2. Standard error suppression techniques for implementing gates on transmon-qubit devices. The analytical waveforms are
discretized at the inverse sampling rate df = 2/9 ns. (a) Rx(7/2) implemented using DRAG scheme with an in-phase Gaussian
pulse d(t) and its out-of-phase derivative (blue). ZX(7/2) implemented using (b) an echoed pulse and (c) an echo-free/direct

pulse, consisting of a main cross-resonance pulse uo; () (orange) along with on-resonance drives, dy () and d, (), on control
(blue) and target (green and red) qubits.

CR(Q)-[XI-CR(—Q)-XI]. (16)
The amplitude inversion changes the sign of w x and wyx according to the relations in equation (13), while

the addition of two m-pulses can be understood as a conjugation by XI for every term in the effective CR
Hamiltonian, leading to the following contribution from the second half

zX —zX zX

IX Q——-Q —IX conj. by XI —IX . (17)
ZI ZI —ZI

zZ zzZ —ZZ

When combined with the first half, this should ideally lead to a complete cancellation of unwanted IX, ZI,
and ZZ terms. Nevertheless, experimental results reveal a significant IY component as well as a small ZY
term, which can be attributed to classical crosstalk. This issue can be rectified by applying an on-resonance
tone to the target qubit with an identical waveform as the CR pulse, known as active cancellation [24]. On
the other hand, the direct scheme employs an echo-free sequence with the same symmetric active
cancellation tone, while introducing an additional asymmetric rotary component. In particular, the
symmetric part reduces the effects of IX and IY terms whereas the asymmetric part helps offset ZZ and ZY
terms. For both schemes, calibration of the amplitudes and phases of the main CR pulse, in tandem with
calibration of the additional tones, achieves between 99% to 99.7% average gate fidelity [24, 40].

As seen in the above examples, the standard pulse designs rely heavily on a theoretical understanding of
the platform, i.e. types of interaction induced when certain control drives are activated or when certain error
processes are present. On a real device, however, deviation from the theoretical model is unavoidable and
closed-loop optimization is required to mitigate the unwanted effects. Additionally, the perturbative
approach of deriving the effective interaction rates break down at high control amplitudes, preventing
exploration for potential solutions in the strong drive and short time regime.

While these theoretical ansitze offer the advantage of straightforward calibration procedures with a
minimal number of parameters, they may also impose significant limitations and/or necessitate longer gate
durations to compensate for errors not captured by the relevant theoretical model. Moreover, should
previously unidentified errors come to light, it will be necessary to develop and implement novel error
suppression strategies. Established alternative approaches usually involve gradient-based optimization, such

7
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as GRAPE [3], which still requires detailed knowledge about the model and access to the gradient of the loss
function. A model-free approach like RL is therefore highly desirable since it offers adaptability to system
dynamics by learning from ‘direct interactions’ which we will define in the next section. Even when equipped
with a relatively simple but flexible design space, such as PWC pulses, RL has the potential to unearth control
solutions that are out of reach in conventional methods [10]. Furthermore, RL leaves us with a
representation of gained knowledge from the control problem, i.e. the agent, that can be reused and analyzed
for additional insights (cf section 5).

4. Reinforcement Learning

Reinforcement learning operates on a simple principle of trial and error. A generic problem involves an agent
learning to make decisions to complete a task by interacting with an environment. Therefore, it is natural to
formulate a RL problem using a finite Markov Decision Process, in which a decision is made based solely on
the current state of the system but not the entire history. We illustrate the basic RL loop in figure 3. In this
framework, at every step i, the agent selects an action 4; based on a probability distribution or policy w(ais;),
conditioned on the current state of the environment, s;. After execution, the agent observes a new state s,
along with a reward r;;; which indicates progress towards completing a particular task. The process
terminates once the task is completed or the number of steps reaches a set limit, defining the end of an
episode. Training the agent then involves running many of these episodes to gather experience, while