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RNA-seq has transformed transcriptome characterization in a wide 
range of biological contexts1,2. RNA-seq can be used to sequence long 
reads (long RNA-seq; for example, messenger RNAs and long non-
coding RNAs) and short RNAs (small RNA-seq; for example, small 
non-coding RNAs such as microRNAs). These applications differ in 
terms of the size of the targeted RNAs and by the technical meth-
ods used and the resulting biases in the quantitative data that are 
produced3. For example, preparation of libraries for long RNA-seq, 
by virtue of having sufficiently long target RNA lengths, commonly 
utilizes primers for direct generation of cDNA from RNA. In contrast, 
small RNA-seq library preparation methods typically require RNA 
ligation or poly-A tailing steps to overcome the challenge of perform-
ing reverse transcription and subsequent PCR amplification from 
extremely short (for example, 16–30 nt) target RNA sequences.

Multiple approaches have been developed to overcome the chal-
lenge of uniformly and robustly generating cDNA from small RNAs for 
the purpose of small RNA-seq4–9. Protocols in use for small RNA-seq 

therefore vary more widely than those used for long RNA-seq, creat-
ing greater potential for variation from different library preparation 
protocols and different labs. In addition, small RNA-seq is increas-
ingly used to study samples with very low RNA concentration, such as 
biofluids containing exosomes, other extracellular vesicles (EV)10–16 
and RNA-protein complexes17–21. Normalization methods22–24 that 
have been developed to correct for variation in long RNA-seq data are 
typically not well-suited for small RNA-seq data. Although perform-
ance characteristics such as reproducibility and quantitative accuracy 
have been well-studied for long RNA-seq25,26, only the reproducibility 
of a single library preparation protocol has been evaluated for small 
RNA-seq25.

Furthermore, the performance of different small RNA-seq methods 
for quantifying single-nucleotide changes in RNA sequence, such as 
those seen with microRNA (miRNA) editing, for example, has not 
been systematically examined. Yet, with the rapid accumulation of 
small RNA-seq data (such as, the US National Institutes of Health 
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(NIH) short-reads archive27,28, EV-associated small RNA sequenc-
ing databases29–31, The Cancer Genome Atlas (TCGA)32, the exRNA 
Atlas33, etc.), meaningful, quantitative interpretation of results, espe-
cially across studies, would benefit from a systematic examination of 
technical bias, its effects on accuracy and of the reproducibility of 
small RNA-seq.

Here we report the results of a study led by investigators from 
the NIH-funded Extracellular RNA Communication Consortium34 
involving nine laboratories, in which a systematic multi-protocol, 
multi-institution assessment was carried out to assess the accuracy, 
reproducibility and technical bias of small RNA-seq using standardized,  

synthetic reference reagents as well as biologically derived reference 
RNA. We also evaluated the performance of different protocols with 
respect to characterizing miRNA editing and identified a library 
preparation approach that reduces technical bias and improves the 
accuracy and comparability of small RNA-seq results.

RESULTS
Study design and standard reference materials for miRNA 
quantification
To evaluate the performance of small RNA-seq library prepara-
tion protocols across multiple laboratories, we developed standard 
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reference samples as well as a standardized study design (Fig. 1).  
We distributed detailed instructions for library preparation and 
sequencing to each lab, along with four reference RNA samples (Fig. 1 
and Supplementary Tables 1 and 2): one equimolar pool comprising 
1,152 synthetic RNA oligonucleotides, corresponding predominantly 
to human miRNA sequences, as well as a small set of non-miRNA 
oligonucleotides of varied sequence and length (15–90 nt); two syn-
thetic small RNA pools, called ratiometric pools SynthA and SynthB, 
each containing the same 334 synthetic RNAs, but in which subsets 

of RNAs vary in relative amount between pools A and B by 15 differ-
ent ratios, ranging from 10:1 to 1:10; and an RNA pool isolated from 
human blood plasma from 11 individuals.

The common materials were distributed to nine participat-
ing research groups (L.C. Laurent, University of California at San 
Diego; D.J. Erle, University of California at San Francisco; I. Ghiran/ 
Y.E. Wang, Beth Israel Deaconess Medical Center/Dana-Farber 
Cancer Institute (BIDMC/DFCI); E.N.M. Nolte-’t Hoen, University 
of Utrecht, the Netherlands (UUTR); J.E. Freedman, University of 
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Figure 2 Equimolar pool sequencing results across multiple labs and protocols. (a) The heatmap shows expression levels for each synthetic RNA 
sequence (rows) across all replicate equimolar pool libraries (columns). Expression levels represent log2-scaled CPM calculated for 977 equimolar 
pool sequences, 16–25 nt in length and 5′-phosphorylated. Hierarchical clustering for rows and columns represents complete linkage clustering on 
Euclidean distances (the default setting for the R package, pheatmap, used for plotting). Columns are labeled at the bottom to identify replicate 
samples. Library size indicates the sequencing depth for each library (log2 scaled). (b) Violin plots summarize the mean CPM observed for each of 
the 16–25-nt, 5′-phosphorylated equimolar pool sequences (y axis, log10 scaled), as measured from equimolar pool libraries prepared by different 
institutions and using different library preparation protocols (x axis). The width of the violins is proportional to the density of data points at each 
position. The horizontal lines in each violin represent the 25th, 50th and 75th percentiles. The dashed horizontal line shows the expected CPM for 
each sequence in the equimolar pool (106 / 977 miRNAs = 1,023.5 CPM). Each violin plot and corresponding quantile lines summarize mean CPM 
values for n = 977 distinct equimolar pool sequences. The mean CPM values were calculated from n = 4 technical replicate libraries for each lab/library 
preparation method shown, with the exception of 4N_NEXTflex.Lab7 (n = 2). (c) The percentage of equimolar pool sequences sequenced at levels 
10× higher (>10,235 CPM) or 10× lower (<102.35 CPM) than expected (y axis) are plotted for each lab. The dots and whiskers indicate the median 
and range of values, respectively, measured across the technical replicates for each lab. n = 4 technical replicate libraries per lab/library preparation 
method, with the exception of 4N_NEXTflex (n = 2).



nature biotechnology	 VOLUME 36 NUMBER 8 AUGUST 2018 749

A rt i c l e s

Massachusetts; K.Wang, Institute for System Biology (ISB); D.J. Galas, 
Pacific Northwest Research Institute (PNRI); K. Van Keuren-Jensen, 
TGen; M. Tewari, University of Michigan). Nine library preparation 
protocols were evaluated (Online Methods), in which at least one 
group prepared and sequenced quadruplicate libraries from each 
of the reference samples. Three of the protocols, TruSeq (Illumina), 
NEBNext (New England BioLabs) and CleanTag (Trilink Biotech), 
are commercial kits that employ adapters with invariant sequences. 
The remaining protocols make use of adapters with four degenerate 
nucleotides at the ligation ends as a strategy to reduce the bias, and 
we collectively refer to these as ‘4N’ protocols. These six 4N protocols 
included: a commercial kit, NEXTflex (Bioo Scientific); a recently 
published protocol (4N_Xu)35; and four variants of a protocol devel-
oped by members of the consortium (protocols 4N_A, 4N_B, 4N_C 
and 4N_D) that we collectively refer to as ‘in-house’ 4N methods. The 
TruSeq kit served as the common reference kit for this study and was 
evaluated by all the groups using Illumina sequencing platforms (eight 
of nine groups). In addition, multiple laboratories generated librar-
ies using the NEBNext kit (six labs) and the in-house protocol 4N_B 
(four labs), thereby allowing for standardized cross-lab comparisons 
for these two protocols, as well as to the Illumina TruSeq protocol.

In total, the nine participating groups prepared 384 libraries for 
miRNA quantification analysis, of which 377 (98%) were success-
fully sequenced and submitted for central analysis. The seven librar-
ies that were not successfully prepared and sequenced included four 
plasma pool libraries (Lab8 4N_NEXTflex), two equimolar pool 
libraries (Lab7 NEXTflex) and one SynthB library (Lab8 TruSeq). 
Together, the nine participating groups collectively contributed 5.45 
billion small RNA-seq reads to the analysis (Fig. 1). These sequenc-
ing data were centrally analyzed using the Genboree Workbench 
and its implementation of the Extracellular RNA Communication 
Consortium’s exceRpt Small RNA-seq pipeline, which is specifically 
designed for the analysis of small RNA-seq data and uses its own 
alignment and quantification engine to map and quantify a range of 
RNAs represented in small RNA-seq data (see Supplementary Table 3  
for pipeline quality control (QC) metrics). Of the 377 samples ana-
lyzed, 364 (>96%) satisfied the minimum quality criteria (Online 
Methods) and were included in the analyses.

Characterization of sequence-specific bias of small RNA-seq 
protocols
Of the 1,152 synthetic RNAs in our equimolar pool, we focused on 977 
5′-phosphorylated 16–25-nt-long RNAs, which can be captured with 
standard small RNA-seq protocols. The efficiency of recovery of RNA 
sequences varied by multiple orders of magnitude depending on the 
protocol, confirming that small RNA-seq protocols are associated with 

prominent sequence-dependent bias4,25,36–38 (Fig. 2a,b) and that the 
bias is greater than that in long RNA-seq26. This was highly reproduc-
ible in a given protocol, both across technical replicates and laborato-
ries using the same protocol (Fig. 2a). Libraries prepared by different 
labs clustered first into two groups, corresponding to methods with 
invariant (TruSeq, NEBNext and CleanTag) or degenerate (4N) adapt-
ers. In each of these two larger groups, the libraries then formed dis-
tinct clusters corresponding to the different protocols included in 
the study, indicating that the effect of the protocol bias is potentially 
greater than that of lab-to-lab variation. Consistent with this result, 
the ten most overrepresented and underrepresented sequences varied 
widely between protocols (Supplementary Fig. 1).

Although all of the protocols exhibited some bias, it was reduced in 
those using degenerate adapters (Fig. 2b and Supplementary Fig. 2).  
As one measure of this, we calculated the median percentage of 
sequences with a number of reads in counts per million (CPM) more 
than ten times above or below the expected value, for each protocol. 
This ranged from 41.6 to 61.5% for protocols using adapters with 
defined sequences (TruSeq, 41.6%; CleanTag, 53.9%; NEBNext, 
61.5%), and from 2.8 to 22.4% for protocols using adapters with 
degenerate nucleotides (4N_A, 8.9%; 4N_B, 2.8%; 4N_C, 12.1%; 
4N_D, 22.4%; 4N_Xu, 7.1%; 4N_NEXTflex, 17%) (Fig. 2c). The in-
house 4N protocols showed fewer missing sequences from the equi-
molar pool (Supplementary Table 4) and when downsampling to 
compare the same number of total mapped reads across protocols at 
varying sequencing depths (Supplementary Fig. 3). We found that, 
with the in-house 4N_B protocol, even when downsampling to 10,000 
total mapped reads, >90% of the miRNAs had a high probability of 
detection (median, 92%; range, 78–95%). In contrast, even with the 
best-performing invariant adapter protocol, TruSeq, <50% of miRNAs 
had a high probability of detection (median, 46%; range, 40–55%) at 
the same depth, indicating that the 4N_B protocol may require lower 
read depth to yield similar coverage as other library protocols.

We also assessed the reproducibility of small RNA cloning biases 
across labs by examining the rank-order of RNA sequence abun-
dance. To do so, we calculated Spearman rank correlations for the 
equimolar synthetic pool counts between labs and protocols. As 
expected, the strongest correlations were found between technical 
replicates from the same lab and method (Supplementary Fig. 4). 
Correlations were also strong between samples generated by dif-
ferent labs using the same protocol (Supplementary Table 5). The 
somewhat lower correlation value observed for 4N_B (combined 
Rho value: 84%; top/bottom 2%: 0.66/0.95) can be attributed to the 
overall lower variation in read counts across miRNAs resulting from 
less cloning bias with this protocol. The reduced spread in the data 
limits the maximum absolute correlation coefficient values that can 

Figure 3 Small RNA-seq accuracy and cross-protocol concordance in measuring relative expression levels between samples. (a) Boxplots show the 
observed ratio (y axis; log2 scale) versus expected ratio (x axis) for miRNAs present in each of the SynthA and SynthB synthetic RNA subpools. Observed 
ratios for each miRNA were calculated as mean CPM of SynthA / mean CPM of SynthB across technical replicates for each lab and library prep method. 
Boxes show the median + IQR; upper/lower whiskers indicate the smallest/largest observation less than or equal to 1st/3rd quartile ± 1.5 * IQR; outliers 
are calculated as being <1st quartile – 1.5 * IQR or >3rd quartile + 1.5 * IQR. Mean CPM ratios were calculated from n = 4 SynthA and n = 4 SynthB 
technical replicate libraries for each lab and library preparation method shown, with the exception of TruSeq Lab8 SynthB (n = 3). Those miRNAs with 
a mean CPM of 0 in SynthA or SynthB are not plotted. The numbers of miRNA not plotted are as follows: Truseq Labs, 1, 2, 3, 4, 5, 6 and 8: 1; Lab9: 
0; CleanTag Lab5: 0; NEBNext Labs, 1, 3, 5 and 9: 0; Lab4: 1; Lab2: 3; 4N_NEXTflex Lab7: 1; other 4N: 0. The number of sequences represented in 
each boxplot is provided in Supplementary Table 10. (b) Heatmaps show the pairwise, squared Spearman rank correlation coefficients from sequencing 
the SynthA and SynthB pools. Pairwise correlation coefficients were calculated on the basis of the mean CPM across technical replicates for SynthA 
samples (left), SynthB samples (middle) and the ratio of SynthA: SynthB (right). The mean CPM value for each ratiometric pool sequence was 
calculated from n = 4 technical replicate libraries per lab, library preparation method and pool. Mean CPM values for n = 290 ratiometric pool RNAs 
were used for calculating each pairwise correlation coefficient. Hierarchical clustering for rows and columns is the same for all heatmaps, and is based 
on the average pairwise Euclidean distances calculated from the SynthA CPM and SynthB CPM correlation matrices. Column labels indicate the lab ID 
and library prep method; row labels indicate only lab ID, but are presented in the same order (top to bottom) as columns (left to right).
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be obtained. This limitation notwithstanding, comparison across 
labs using different protocols showed much weaker correlations 
(Supplementary Table 5).

To dissect the source of observed bias, we evaluated the effect 
of several variables (5′ or 3′ terminal bases, %GC of the four 5′ 
or 3′end bases, overall %GC, dG [free energy], dH [enthalpy], dS 
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[entropy] and Tm [melting temperature]) on the number of obtained 
reads with different library preparation protocols (Supplementary  
Figs. 5–13). However, none of these variables substantially explained 
the observed bias.

Accuracy and cross-protocol concordance for relative 
quantification
To investigate the accuracy of relative quantification of the same small 
RNAs between different samples, we designed two ratiometric pools, 
SynthA and SynthB, each containing the same 334 synthetic RNA 
sequences, but varying the relative abundance of sequences between 
the two pools for 15 expression ratios (Fig. 1 and Supplementary 
Table 2). All of the protocols that were tested showed close con-
cordance between observed and expected ratios (Fig. 3a). We also 
analyzed the data using standard differential expression workflows 
from three commonly-used R packages (EdgeR39,40, DESeq2 (ref. 41) 
and limma/voom42) to determine the smallest difference in abun-
dance that could be distinguished using small RNA-seq methods. 
We observed that for most protocols and for the majority of miR-
NAs, a difference in levels of as little as 1.5-fold between the two 
samples could be detected (Supplementary Fig. 14). As shown in 
Supplementary Table 6, all of the evaluated protocols performed 
relatively well in detecting miRNA abundances.

We examined the rank-order of RNA sequence abundance and 
found that, in general, the Spearman rank correlations results obtained 
for the SynthA and SynthB samples were similar to those obtained 
for the equimolar pool: the correlation was strong when using the 
same protocol, but weaker across different protocols (Fig. 3b). In con-
trast, when we analyzed the concordance of the SynthA/SynthB ratios  
(Fig. 3b), we found a very strong correlation between labs not only 
when using the same protocol, but also across different protocols, 
confirming that relative quantification is resilient to variation in the 
protocol used (Supplementary Table 5).

Reproducibility of small RNA-seq protocols
To quantify intra-lab variation for each sequence, we used two 
metrics: the coefficient of variation (CV, 100* s.d./mean) and 
the quartile coefficient of dispersion (QCD, interquartile range/ 
average of the first and third quartile). The median CV for the 
equimolar pool libraries ranged from 6.18% (TruSeq) to 23.92% 
(CleanTag) for the different library preparation methods (Fig. 4a 
and Supplementary Table 5). In addition, the median QCD was 
<0.1 for all the protocols/labs (Fig. 4a and Supplementary Table 5). 
We also evaluated the intra-lab variation from technical replicates 
of sequencing the SynthA and SynthB libraries. The calculated CV 
and QCD values were similar to those observed for the equimolar 
libraries (Supplementary Fig. 15).

To characterize the reproducibility of small RNA-seq libraries across 
laboratories, we focused on the three protocols (TruSeq, NEBNext and 
4N_B) for which libraries were generated by at least three groups. In 
addition, of the six labs that generated libraries using the NEBNext 
protocol, two of the labs used somewhat modified conditions based 
on options provided by the manufacturer and were excluded from the 
analysis (Online Methods).

Using the results for the equimolar pool and treating each labo-
ratory’s results as one trial of the experiment, we calculated the 
CV and QCD for the mean CPM values for each RNA sequence 
across laboratories. The median CV across labs ranged from 30.42 
(4N_B) to 35.28% (NEBNext) and the median QCD from 0.13 
(4N_B) to 0.18 (TruSeq and NEBNext) (Fig. 4b and Supplementary 
Table 5). We confirmed that the choice of pseudo-counts for  

calculating CPM did not appreciably alter the CV and QCD dis-
tribution (Supplementary Fig. 16). In addition, repeating the 
inter-lab CV and QCD calculations using all combinations of  
n = 3 labs from the TruSeq, NEBNext and 4N_B equimolar pool librar-
ies showed that results from analysis of subsets of the data were com-
parable to those from analysis of the full data sets (Supplementary 
Fig. 17a,b). We also calculated across lab variation for the SynthA and 
SynthB pools individually and obtained median CV and QCD values 
that were comparable to those described for the equimolar libraries 
(Supplementary Table 5).

Performance of small RNA-seq protocols using biological 
samples
We also sought to characterize the performance of small RNA-seq 
protocols across labs using standard reference RNA derived from 
biological material to assess the reproducibility and the diversity of 
miRNA sequences recovered.

To perform this analysis, we shipped aliquots of RNA extracted 
from a pool of human blood plasma from 11 donors to the partici-
pating labs for sequencing in quadruplicate (Fig. 1). We focused our 
analysis on miRNAs because they are well-characterized and have 
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Figure 4 Reproducibility of small RNA-seq within and between labs.  
(a) Violin plots summarize the technical reproducibility of quantification 
for all equimolar pool sequences, as calculated from each lab and library 
preparation method. Reproducibility measurements, CV (top) and QCD 
(bottom) were calculated from CPM values. Horizontal  
lines in each violin indicate the 25th, 50th and 75th percentiles, 
calculated from the mean CPM values of n = 977 equimolar pool  
RNA sequences. Mean CPM values were calculated from n = 4 technical 
replicate libraries for each of the lab/library preparation methods shown, 
with the exception of TruSeq Lab1 (n = 3). (b) Boxplots summarize the 
sequence-specific reproducibility of quantification measured in equimolar 
pool libraries generated by different labs using the same protocol. CV 
(top) and QCD (bottom) values were calculated for each equimolar pool 
sequence across TruSeq (n = 8 labs), NEBNext (n = 4 labs) and 4N_B  
(n = 4 labs) library preparation protocols. The mean CPM for each 
sequence across technical replicates (n = 4 technical replicates per lab/
library preparation method) was used to calculate the between-lab CV and 
QCD plotted here. Boxplot statistics and outliers were calculated  
from CV or QCD values for n = 977 equimolar pool sequences. The 
overlaid boxes indicate the median and IQR. Whiskers represent the  
1st/3rd quartile ± 1.5 * IQR. Outliers are <1st quartile – 1.5 * IQR  
or >3rd quartile + 1.5 * IQR.
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been extensively studied in human plasma43. Hierarchical cluster-
ing generally mirrored that from the synthetic pools, with techni-
cal replicates of the same protocol clustering most closely together  
(Fig. 5a), and with samples also broadly clustering according to 
library preparation protocol.

To evaluate the intra-lab reproducibility of plasma small RNA-seq, 
we calculated the CV and QCD for individual miRNA sequences across 
technical replicates in each lab (Fig. 5b). After applying minimum 
CPM filtering criteria as before, to focus on reliably detected miRNAs 
(Online Methods), we found that the median CV across the miRNAs 
analyzed ranged from 7.7 (TruSeq) to 24.9% (CleanTag) for different 
protocols. Although this degree of reproducibility seems comparable 
to that observed with the synthetic reference pool RNA (Fig. 4 and 
Supplementary Table 5), it is important to note that the filtering criteria 
used for plasma sequencing data were different (and generally more 
stringent) than for the synthetic RNA sequencing data. In addition, the 
median QCD was ≤0.1 for all the protocols (Supplementary Table 5).

Unsupervised clustering of the plasma miRNA expression data 
revealed clear groups separated by preparation protocol (TruSeq, 
NEBNext and 4N_B), with results obtained from different labs using 
the same protocol clustering together (Fig. 5a). The median vari-
ability across labs measured using CV ranged from 25.7 (4N_B) to 
32.9% (TruSeq) and using QCD was <0.3 for all protocols. (Fig. 5c and 
Supplementary Table 5). The overall reproducibility of small RNA-
seq using RNA isolated from biological samples was therefore compa-
rable to that observed using the synthetic reference RNA samples.

To assess differences between protocols in the diversity of miRNA 
sequences recovered from the standard reference plasma RNA, 
we performed an analysis of the number of miRNAs detected by 
each protocol in which we plotted data from different in-house 4N 
protocols as one group for the sake of comparison. This was done 
using downsampled data sets so the same total number of mature 
miRNA-mapping reads could be compared across protocols, at vary-
ing sequencing depths. The in-house 4N protocols recovered a larger 
number of miRNAs than those using defined adapter sequences  
(Fig. 5d). In addition, an indirect assessment of miRNA diversity (that 
is, percent of total reads accounted for by the ten most abundant miR-
NAs) was consistent with the conclusion that 4N protocols generate a 
more diverse profile of miRNAs (Supplementary Fig. 18).

Evaluation of small RNA-seq in miRNA A-to-I editing
We extended our study to evaluate the performance of different 
protocols for quantifying sequences exhibiting adenosine to inosine 

(A-to-I) miRNA editing. This naturally occurring RNA modification 
can alter both miRNA biogenesis and regulatory functions44,45. We 
designed six synthetic RNA pools, each containing ten miRNAs that 
have previously been reported to undergo A-to-I editing46,47. Each 
pool combined the unedited (A) and edited (I) miRNA variants in 
different ratios (that is, 0, 0.1, 0.5, 5, 50 and 100% edited). Each of 
these mixtures was then combined with a background of 277 differ-
ent, unedited human miRNAs to increase complexity in the pools  
(Fig. 6a and Supplementary Table 7). The six pools were sequenced 
by three different labs, each in triplicate, using TruSeq, NEBNext and 
in-house 4N_B protocols (Fig. 6a). The resulting 162 libraries yielded 
1.42 × 109 reads aligned to editing pool sequences in total, with a 
median library size of 8.22 × 106 (range: 1.74 × 106 to 29.01 × 106). 
All 162 libraries satisfied minimum quality criteria (Online Methods 
and Supplementary Table 3).

To determine the accuracy of quantifying miRNA editing in our six 
synthetic pools, we compared the number of reads observed for the A 
and I variant oligos in each library with the expected abundance based 
on the known composition of the pools. Inaccurate and widely varying 
estimates of editing levels were apparent for many miRNAs using the 
NEBNext and TruSeq protocols, especially for the 1, 5 and 50% editing 
pools (Fig. 6b and Supplementary Table 8). In contrast, the in-house 
protocol, 4N_B, proved more accurate for detecting editing levels ≥1%. 
For example, in the 50% editing pool, where the edited and unedited 
forms of each miRNA are present at equivalent levels, the mean per-
cent editing observed ranged from 19–98% and 5–95% for the TruSeq 
and NEBNext libraries, respectively, whereas estimates were all within 
10% of the expected value (43–53%) for the 4N_B protocol.

Aside from accuracy, we calculated across-lab reproducibility (that 
is, precision) of the measured edited fraction in each pool for each of 
the evaluated protocols using CV and QCD, which are most mean-
ingful where there are reads in both edited and unedited categories 
(Supplementary Table 8). We found that precision varied as a func-
tion of known percent editing, with greater precision being observed 
in the 5 and 50% edited pools compared with the 0.1 and 1% pools, as 
expected from the higher number of edited read counts in the former 
pools. Across all of the tested protocols, for the majority of miRNAs, 
the precision of percent editing measurements was CV <5 % in the 
50% edited pool, <20% in the 5% edited pool and <25% in the 1% 
edited pool, and QCD < 0.3 in the 50% edited pool, <0.4 in the 5% 
edited pool and <0.6 in the 1% edited pool.

We evaluated the specificity and limit of detection for identifying 
miRNA editing by downsampling each library to 106 reads to allow 

Figure 5 Small RNA-seq of reference plasma RNA by multiple laboratories using multiple library preparation protocols. (a) The heatmap shows CPM 
(log2 scale) for each sequence (rows) across plasma pool libraries (columns). Only mature miRNAs with a high confidence of detection are shown, 
requiring a minimum of 100 CPM in 90% of samples from at least one protocol (TruSeq, CleanTag, NEBNext or 4N). Hierarchical clustering for rows 
and columns represents complete linkage clustering on Euclidean distances. Library size indicates the sum of the mature miRNA-mapped read counts 
before filtering for the individual libraries (log2 scaled). (b) Violin plots summarize the technical reproducibility of quantification for miRNAs expressed 
in plasma pool libraries, as calculated from each lab and library preparation method. Reproducibility measurements, percent CV (top) and QCD 
(bottom), were calculated from CPM values. Horizontal lines within each violin indicate the 25, 50 and 75th percentiles, calculated from the mean  
CPM values of n = 977 equimolar pool RNA sequences. For TruSeq Lab1 n = 3 technical replicates; for all other lab/protocols n = 4. (c) Boxplots 
summarize the between-lab reproducibility for miRNAs expressed in the plasma pool libraries using TruSeq (n = 6 labs), NEBNext (n = 4 labs) and 
4N_B (n = 4 labs) library preparation protocols. Each dot represents CV or QCD calculated across labs for a single miRNA. The between-lab CV and 
QCD were calculated using the mean CPMs for each sequence across technical replicates for each lab. The underlying boxes show the median and IQR. 
Whiskers represent the 1st/3rd quartile ± 1.5 * IQR. Outliers are <1st quartile – 1.5 * IQR or >3rd quartile + 1.5 * IQR. (d) Boxplots show the number 
of mature miRNAs detected by each protocol based on downsampling of data sets to the indicated sequencing depths. Each box summarizes number 
of miRNAs detected by each lab for the indicated protocol. The probability of each miRNA being detected was estimated for every sample randomly 
downsampled to 104, 104.5, 105 or 105.5 total read counts. A miRNA was only counted as detected if the probability of detection was at least 90%. 
Libraries with total counts less than the indicated sample size were excluded. Boxplots for 4N include only in-house 4N protocols (4N_A, 4N_B, 4N_C 
and 4N_D). The number of libraries summarized by each boxplot is as follows: 105.5: TruSeq = 19; CleanTag = 4; NEBNext = 12; 4N = 28; 105, 104.5 
and 104: TruSeq = 23; CleanTag = 4; NEBNext = 16; 4N = 28. The underlying boxes show the median and IQR. Whiskers represent the 1st/3rd quartile 
± 1.5 * IQR. Outliers are <1st quartile – 1.5 * IQR or >3rd quartile + 1.5 * IQR.
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standardized comparisons across libraries. To calculate specificity, we 
first estimated the false positive frequency for each protocol by evalu-
ating: the average percent edited reads observed in the 0% edited pool 
(that is, false positive edited read frequency) and the average percent 
unedited reads observed in the 100% edited pool (that is, false positive 

unedited read frequency). The overall median false positive rate was 
0.1% across all protocols, all miRNAs, and both edited and unedited 
false positive calls (median false positive frequencies for individual 
protocols: TruSeq, 0.05% (edited) and 0.06% (unedited); NEBNext, 
0.30% (edited) and 0.14% (unedited); 4N_B, 0.10% (edited) and 0.08% 
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(unedited); Supplementary Table 8). This corresponds to an overall 
specificity across all three protocols of 99.88% for calling unedited 
sequences and 99.91% for calling edited sequences (Supplementary 
Table 8). To calculate the limit of detection (LOD), we defined detec-
tion of editing as an observed edited count that is more than 3 s.d. 
above the observed edited count in the 0% edited synthetic pool. For 
all three protocols, the majority of miRNAs had a limit of detection at 
or below the 1% edited fraction, with a few miRNAs being detectable 
in the 0.1% edited pool (Supplementary Table 8). It is worth noting, 
however, that the LOD is expected to vary based on sequencing depth, 
sample complexity, relative abundance of the miRNA being studied 
and the pipeline used for analysis.

DISCUSSION
Our results quantitatively confirm that small RNA-seq is highly 
affected by sequence-related bias4,36–38,48, which is largely protocol 
dependent. The observed biases were as large as 104-fold with some 
commonly used commercial library preparation protocols. This 
sequence-dependent bias is more severe than that previously reported 
for long RNA-seq26, highlighting differences between the technologies 
and unique challenges involved in small RNA sequencing. In addi-
tion, this bias can be particularly vexing when working with low RNA 
input samples such as biofluids, preventing the reliable detection of 
some low-abundance small RNAs. The in-house 4N protocols that we 
evaluated, which employ adapters containing degenerate bases in the 
ligating ends, reduced the bias on the order of 100-fold and achieved 
better coverage at a lower sequencing depth than the widely used 
commercial library preparation kits with invariant adapter sequences. 
The magnitude of the bias observed for some sequences when using 
fixed adapter protocols was so high that it is unlikely to be overcome 
simply by increasing sequencing depth. There were, however, dif-
ferences in the results of different 4N methods, suggesting that not 
only the use of adapters with degenerate bases, but also other factors 
in the protocols, such as the concentration of polyethylene glycol in 
ligation reactions, the time and temperature of ligations, etc., may also 
affect the bias. Our computational analyses of a range of sequence-
related variables (for example, 5′ or 3′ terminal nucleotides, %GC of 
the four 5′ or 3′end nucleotides, overall %GC, dG [free energy], dH 
[enthalpy], dS [entropy] and Tm [melting temperature]) did not reveal 
strong associations, suggesting that the mechanistic basis of the bias 
may be complex.

Even using the best-performing 4N protocols, there is still consid-
erable sequence-related bias, which precludes the use of read counts 
alone for accurate quantification of different small RNAs in a given 
sample. However, despite the observed biases, we found that small 
RNA-seq was consistently accurate for relative quantification of a 
given miRNA between samples, as long as the same library prepara-
tion protocol was used for the two samples being compared, which is 
consistent with previous observations for mRNA sequencing26. In this 

sense, all of the evaluated protocols were able to distinguish samples 
with as little as a 1.5-fold difference in relative abundance of most 
sequences examined, although the design of our ratiometric pools was 
such that differences smaller than 1.5-fold could not be assessed.

Reproducibility across laboratories is a crucial requirement for any 
experimental method used for research or clinical applications49,50. 
We found that for common commercial protocols as well as for our 
in-house 4N protocol, results were reproducible between labs with a 
CV ≤ 20% for most sequences. Moreover, when comparing relative 
quantification measurements obtained by small RNA-seq across labs, 
the results were highly concordant even when the centers were using 
different protocols.

The use of a diverse pool of synthetic RNAs allowed us uniquely to 
evaluate sequence-specific biases and accuracy because the ‘ground 
truth’ is known. Since biological material, with a wide range of RNA 
species and other macromolecules, could behave differently from 
the synthetic RNA pools, we also characterized the diversity of miR-
NAs captured in a common biological sample by each protocol. We 
found that the in-house 4N protocols detected a greater diversity of 
sequences than protocols using defined-sequence adapters. In addi-
tion, for a given protocol, the profile obtained for the biological sam-
ple was very reproducible between laboratories.

We believe that the data sets generated in this study can also serve 
as a valuable resource for benchmarking computational tools designed 
to facilitate and improve on RNA-seq analysis. This is important both 
for developing new software and for evaluating the suitability of using 
existing mRNA-seq algorithms for the analysis of small RNA-seq data 
sets. This could be particularly useful for benchmarking software 
developed to account for various technical biases found in mRNA-
seq data51–54, as our data suggest that such biases may be different in 
small RNA-seq data.

We also hope that our data may facilitate the development of com-
putational approaches for normalization of data sets generated using 
different library preparation protocols. Although normalization 
algorithms are generally not intended to account for cross-platform 
variation, our preliminary analysis suggests that small RNA-seq pro-
tocol-specific biases largely correlate across samples. This suggests 
that one may be able to account for the protocol-specific differences 
in sequencing bias individually for each sequence, raising the possi-
bility of cross-protocol data normalization. We performed an initial 
exploration of this concept using a simple approach for calculating 
correction factors (Supplementary Note 1, Supplementary Table 9,  
and Supplementary Figs. 19 and 20). Although this approach was 
able to make overall profiles from different protocols appear to be 
more similar to each other, its performance was not sufficient to be 
practically relevant at this time. We propose that synthetic RNA refer-
ence data, such as that generated here, can provide a foundation for 
the future development of more advanced computational approaches 
to enable accurate cross-protocol comparisons.

Figure 6 Library protocol performance in measuring miRNA A-to-I editing events. (a) A schematic depicting the experimental design for the miRNA  
A-to-I editing experiments. Left, ten miRNAs were synthesized with either an adenosine or inosine at a single position previously shown to be edited  
in human cells. The position, relative to the 5′ end of the mature miRNA, is indicated to the right of the respective miRNA IDs, along with the identity  
of the nucleotide. 277 other unedited human miRNAs were added at a fixed concentration to increase the background complexity of the pools.  
Middle, six different editing subpools were generated, using a constant amount of the background (Bk) pool and varying percentages of unedited  
(Un; adenosine) and edited (Ed; inosine) oligos in each pool. Right, the color-coded grid depicts the library design used in the A-to-I editing experiment. 
Specifically, the six editing pools were sequenced by three participating labs, using three different library preparation protocols, with each lab 
generating libraries in triplicate. (b) The observed percent editing (y axis) is shown for each miRNA in the six A-to-I editing pools, as measured  
by each of the three labs, using TruSeq, NEBNext and 4N_B protocols. The expected editing percent in each pool is both indicated to the right of  
each plot group and by the horizontal dotted line in each plot. The dots and whiskers represent the median and range of percent editing for each  
miRNA (x axis) as measured by the three labs. Individual miRNA percentage editing is shown for n = 3 technical replicate libraries for each lab and 
library preparation method.
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We also assessed the ability of library protocols to measure miRNA 
A-to-I editing. Our results revealed that low bias protocols (that is, 
in-house 4N_B) quantify editing more accurately than protocols using 

defined adapter sequences (that is, TruSeq and NEBNext). It is worth 
noting that the accuracy of editing estimates can also be affected by 
low sequencing coverage. Indeed, some miRNAs had very low coverage 
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by at least one of the protocols, which contributed to the inaccuracy 
and variation in editing estimates. However, this lack of coverage is a 
consequence of technical biases in small RNA-seq, as 4N_B libraries 
all had sufficient coverage of each sequence and, at a minimum, all 
libraries had depth enough for ~6,000× coverage of each sequence 
in the pool. Thus, protocols with a higher degree of sequencing bias 
also have a greater potential for inaccurate estimates of editing levels, 
as a result of lower read coverage for some miRNAs and/or differen-
tial preferences based on a single base difference. This is relevant to 
miRNA editing estimates reported in the literature, given that prior 
studies have commonly used the more biased protocols with fixed 
sequence adapters55.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Reference samples. A synthetic equimolar pool containing 1,152 synthetic 
RNA oligonucleotides was prepared in an RNase-free environment and work-
ing on ice to minimize degradation. The pool was prepared by combining (i) 
the miRXplore Universal Reference from Miltenyi Biotec, which comprises 962 
RNA oligonucleotides with sequences matching human and other miRNAs, 
and (ii) a set of 190 additional, custom-synthesized RNA oligonucleotides, to 
generate the pool in which each of the 1,152 RNA oligonucleotides is present at 
equimolar concentration. This latter set comprises miRNAs and non-miRNA 
sequences of varied length from 15 to 90 nt, which were synthesized, HPLC-
purified and quantified spectrophotometrically by IDT. This latter set of RNA 
oligonucleotides is available to qualified investigators seeking to reproduce 
the synthetic equimolar for non-commercial purposes, by request of the cor-
responding authors (as long as supplies last). The resulting equimolar pool was 
aliquoted in prelabeled DNA-, DNase-, RNase-, and pyrogen-free screw cap 
tubes with low adhesion surface and stored immediately at −80 °C. Aliquots 
were distributed to the participant laboratories in overnight shipments with 
an abundant supply of dry ice. The complete list of RNA sequences comprising 
the equimolar pool is provided in Supplementary Table 1.

Two ratiometric pools, SynthA and SynthB, containing 334 synthetic RNA 
oligonucleotides were designed in the coordinating lab (see designing ratio-
metric pools section below) and synthesized by IDT. Subsets of these oligos 
were present in 15 different ratios between the two mixtures. These pools were 
also prepared, aliquoted and distributed to the participant centers following 
the same previously mentioned precautions to avoid RNA degradation. The 
complete list of sequences in the SynthA and SynthB pools, as well as their 
ratios, are provided in Supplementary Table 2.

Plasma samples from eleven healthy male donors with age ranging from 
21–45 years were collected and pooled in one of the participating labs 
(Supplementary Protocol 1). The Beth Israel Deaconess Medical Center 
IRB approved the study protocol to consent participants and collect samples. 
Informed consent was obtained from all subjects, and the samples were sub-
sequently anonymized before distributing to participating research groups. 
RNA was isolated from this plasma pool (Supplementary Protocol 2) in a 
single lab and aliquots of the purified RNA were mixed and distributed to the 
rest of the participant centers.

Library preparation and small RNA-seq of reference samples. A written 
guideline for library preparation and sequencing was distributed to all the par-
ticipant centers. The input for library preparation was 10 femtomoles of RNA 
for synthetic pools and 2.1 µl of RNA for the plasma pool. Each group prepared 
four replicate libraries from each sample using the following small RNA library 
preparation protocols: Lab1 (TruSeq, NEBNext and in-house 4N_D), Lab2 
(TruSeq, NEBNext and in-house 4N_B), Lab3 (TruSeq and NEBNext), Lab4 
(TruSeq, NEBNext and in-house 4N_B), Lab5 (TruSeq, CleanTag, NEBNext, 
in-house 4N_A, in-house 4N_B and 4N_Xu), Lab6 (TruSeq, in-house 4N_B 
and in-house 4N_C), Lab 7* (NEXTflex), Lab 8* (TruSeq and NEXTflex) and 
Lab 9* (TruSeq and NEBNext). The labs marked with an asterisk did not 
contribute plasma libraries.

The protocols for TruSeq, CleanTag, NEBNext and NEXTflex for Illumina 
were performed according to the manufacturer’s instructions in all labs except 
for NEBNext in Lab9 that performed 3′ overnight ligation. Note that some 
manufacturers recommended dilution of the adapters when working with low 
input RNA (for NEBNext, adapters were diluted, 1:2 in Lab3 and Lab9 and 1:6 
in Lab1, Lab2, Lab4 and Lab5; for CleanTag 1:20 dilution of the adapters was 
performed). NEXTflex for Ion Torrent sequencing was performed as described 
in Supplementary Protocol 3. In-house 4N protocols A, B, C and D were 
performed as described in Supplementary Protocol 4–7. 4N_Xu protocol 
was performed as previously described35. Size selection was performed using 
Pippin instruments (in Lab1, Lab2, Lab4 and Lab6 for all protocols and Lab5 
for in-house 4N_B only), 6% acrylamide gels (in Lab3, and Lab9 for all pro-
tocols, Lab 8 for TruSeq and Lab5 for TruSeq, NEBNext, CleanTag,4N_A and 
4N_Xu) or Ampure XP beads (in Lab7 and Lab8 for NEXTflex).

Single-end libraries were sequenced using the Illumina HiSeq 2500 (Lab8 and 
Lab9 for all the protocols and Lab5 for TruSeq, CleanTag, 4N-Xu and 4N_A),  
Illumina HiSeq 4000 (Lab4 for all the protocols and Lab1 for TruSeq, 4N_D 
and equimolar NEBNext), Illumina NextSeq 500 (Lab2, Lab3 and Lab6 for all 

the protocols, Lab5 for NEBNext and in-house 4N_B and Lab1 for ratiometric 
and plasma NEBNext) or Ion Torrent (Lab7) platforms (see Supplementary 
Table 3 which also includes information on miRNA editing libraries). All 
labs using Illumina sequencing performed runs specifying ≥ 50 bp single-end 
reads. Details on read lengths for each library are included in Supplementary 
Table 3. Each laboratory was free to choose the number of samples to pool 
per lane, with a target of at least 8 million reads per library. FASTQ files were 
uploaded to the Genboree Workbench for central data analysis.

Evaluation of miRNA editing. Ten human miRNAs previously shown in 
the literature to undergo adenosine-to-inosine (A-to-I) RNA editing were 
selected to evaluate the performance of small RNA-seq in detecting miRNA 
editing. To this end, we designed six pools containing different ratios of the 
selected synthetic edited miRNAs and their unedited counterparts (that is, 
0, 0.1, 0.5, 5, 50 and 100% edited) plus 277 unrelated human miRNAs. All 
RNA oligonucleotides were synthesized by IDT (the complete list of sequences 
included in these pools is provided in Supplementary Table 7). The pools 
were prepared and aliquoted in the coordinating center and distributed to 
two additional labs following the same previously mentioned precautions to 
avoid RNA degradation. Each lab prepared three replicate libraries from 10 
femtomoles of each pool using three different small RNA library preparation 
protocols: TruSeq, NEBNext and in-house 4N_B. The protocols for TruSeq and 
NEBNext were performed according to the manufacturer’s instructions (note 
that for NEBNext, adapters were diluted 1:2). In-house 4N_B was performed 
as described in Supplementary Protocol 5. Size selection was performed using 
the Pippin Prep. 50 bp single-end libraries were sequenced using the Illumina 
NextSeq 500.

Designing ratiometric pools. 290 artificial sequences were assigned at ran-
dom to 8 ratiometric groups (1, 1.5, 2, 3, 4, 5, 8 and 10×) and to either ratio-
metric pool SynthA or SynthB. The ratio indicates the concentration in the 
assigned pool relative to the other pool. For example, a sequence in the 10× 
pool assigned to SynthA would be present at the base concentration in SynthB 
and at 10× the base concentration in SynthA. To make groups of approxi-
mately equal size, we assigned 8 sequences to the 8 ratiometric groups ran-
domly, without replacement. To ensure the total amount of oligonucleotide 
was approximately equal in SynthA and SynthB, an even number of sequences 
was assigned to each ratiometric group and were distributed equally between 
pools, using a similar method of equally-distributed random assignment. The 
random assignment was performed in Excel and the complete pool composi-
tion and ratios are shown in Supplementary Table 2.

Barcode splitting, FASTQ generation and data coordination. High-throughput  
sequencing, demultiplexing and FASTQ file generation was performed by 
each participating group independently. FASTQ files were uploaded to the 
Genboree Workbench for centralized analysis using the exceRpt small RNA 
analysis pipeline (http://genboree.org/java-bin/workbench.jsp).

Preprocessing, mapping and read counting. FASTQ files for the equimolar, 
ratiometric and plasma pools were initially processed through the exceRpt 
small RNA-seq Pipeline (Version 4.6.2), using the batch submission tool. For 
details on the exceRpt pipeline and the associated processing steps, see the 
Genboree Workbench documentation (http://genboree.org/theCommons/
projects/exrna-tools-may2014/wiki/Small%20RNA-seq%20Pipeline). A brief 
description of parameters changed from the default settings or that differed 
between libraries is included below.

The exceRpt pipeline was used at the default settings whenever possible. 
The default for adapter trimming is ‘auto-detect’, which identifies and trims the 
adapter sequence for multiple library types, and all samples were initially sub-
mitted using this functionality. For 4N libraries (A, B, C, D, Xu and NEXTflex), 
an additional parameter was selected to indicate the degenerate sequence at 
the end of each adapter. The default random barcode settings were used, indi-
cating that random 4nt sequences are present immediately 5′ and 3′ of the 
insert sequence. The sequence and identity of the adapter identified by the 
exceRpt pipeline was confirmed in the output files. Any library with a missing 
or incorrect adapter identified was re-submitted to the pipeline with the adapter 
sequence chosen manually, and a note was added to Supplementary Table 3.

http://genboree.org/java-bin/workbench.jsp
http://genboree.org/theCommons/projects/exrna-tools-may2014/wiki/Small%20RNA-seq%20Pipeline
http://genboree.org/theCommons/projects/exrna-tools-may2014/wiki/Small%20RNA-seq%20Pipeline
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For plasma pool libraries, sequences shorter than 18 nt after adapter trim-
ming were removed and not used for downstream analysis. For synthetic pools, 
the minimum length was changed to 15 nt, which corresponds to the length of 
the shortest sequences in the equimolar and ratiometric pools.

To quantify alignments to the full set of synthetic pool sequences, equimolar, 
ratiometric SynthA and ratiometric SynthB libraries were mapped to a ‘Spike-In’ 
sequence library uploaded to the Genboree Workbench. This spike-in library 
FASTA file contains a non-redundant set of sequences from the ratiometric and 
equimolar pools (Supplementary Table 7). Adapter-trimmed and filtered reads 
were mapped to the spike-in index with bowtie2 using the default Genboree 
Workbench alignment parameters, except that the minimum read length was 
reduced to 15. The number of reads aligning to each sequence was obtained 
from the .calibrator.mapped output files. At the time of writing, reads mapped 
to the spike-in sequences are removed before genomic alignment, so any endog-
enous alignment information from these samples was ignored. To quantify 
alignments to endogenous miRNAs, equimolar and plasma pool libraries were 
also run through the exceRpt pipeline without mapping to spike-in sequences. 
The default minimum read length of 18 nt was used, along with all default align-
ment parameters. Reads were mapped to hg19 using the STAR alignment algo-
rithm. Multi-mapping-adjusted read counts corresponding to mature miRNAs 
were used for all plasma pool analyses and for the equimolar pool correction 
factor analyses. For all other analyses with the equimolar and ratiometric pools, 
the spike-in read counts from the .calibrator.mapped files were used.

Sample filtering. Unless specifically noted in the text, only libraries meet-
ing minimum read count requirements were considered for analysis. For the 
synthetic pools, an average of one million reads mapping to the ‘spike-in’ 
sequences (the unique set of sequences present in the equimolar and ratio-
metric pools), were required across all replicate libraries. The average was 
taken after filtering, such that the totals were based only on 5′-phosphorylated 
sequences 16–25 nt in length. For the plasma pool samples, replicate libraries 
with fewer than 100,000 miRNA-mapping reads were removed. The entire 
sample was removed if more than one of the replicate libraries failed to pass 
the minimum count threshold.

Equimolar pool analysis. Read counts for the equimolar (and likewise for the 
ratiometric pools) were obtained from ‘calibratormapped.counts’ files included 
in the exceRpt pipeline output for each sample file. Sample-specific informa-
tion, including the contributing lab, library preparation method and replicate 
number were associated with the corresponding calibrator count file, and were 
loaded into R for analysis. A full list of equimolar and ratiometric sequences with 
additional sequence information was used as a reference to merge all input files 
and add zero counts, where needed. Unless specifically mentioned in the text, 
analysis of ratiometric and equimolar libraries was limited to sequences with 
a 5′-phosphate modification, 16–25 nt in length. Read counts were scaled to 
counts per million (CPM) using the total counts from the filtered sequences.

For plots and calculations using log-transformed values, an arbitrarily small 
count was added to avoid taking the log of zero. To confirm that the extent of 
sequencing bias and reproducibility we observed was not influenced by the 
choice of pseudo-count for calculating CPM, we repeated our calculations in dif-
ferent ways with pseudo-counts ranging from 1 to 0.0001 (see Supplementary 
Fig. 16). The adjusted CPM values were calculated using the method employed 
by the R package, EdgeR39,40. This scales the user-supplied prior count (0.25; the 
default setting) to be proportional to the library size. The scaled prior count is 
calculated by multiplying the raw prior count (0.25) by the sample library size 
divided by the mean library size across all equimolar samples and then adding 
this value to the raw counts for each miRNA. Library sizes are adjusted by add-
ing 2 × the scaled prior count value. Adjusted CPM values are finally calculated 
as (raw.count + adjusted.prior) * 106 / adjusted.library.size.

Determining overrepresented and under-represented sequences. Sequences 
in each equimolar pool replicate library were ranked by abundance, assign-
ing the minimum rank value in case of ties. The ten top and bottom-ranked 
sequences were determined by arranging counts in descending and ascending 
order, respectively. TruSeq, NEBNext, CleanTag and 4N libraries were each 
queried for sequences consistently found in the top or bottom 10, as defined 
by at least 75% agreement among the libraries of at least one method.

Dissecting the source of bias. The CPM obtained for each sequence of the 
equimolar pool was calculated using pseudo-counts, as in the equimolar pool 
analysis described above, except that the library sizes were calculated from all 
equimolar pool sequences before filtering for length and end modifications. 
Sequence length, 5′and 3′ terminal bases, %GC of the four 5′or 3′end base, 
overall %GC, dG [free energy], dH [enthalpy], dS [entropy] and Tm [melt-
ing temperature] were calculated from the annotated sequence. UNAFold56 
(http://unafold.rna.albany.edu/) was used to obtain the dG, dH, dS and Tm 
values of each of the sequences comprising the equimolar pool.

Ratiometric pools analysis. Ratiometric pool counts were initially processed 
as described above for equimolar pools, considering only counts for 16–25 nt 
sequences. The ratio of SynthA:SynthB was calculated as the ratio of the mean 
CPM across technical replicates in SynthA / SynthB.

Ratiometric Pools: Differential Expression. Independent differential expression 
workflows were run for each lab and library prep method, following a standard 
two-group comparison between ‘A’ and ‘B’ ratiometric pools. Normalization, 
dispersion estimation and differential expression testing was performed using 
three different R packages: EdgeR39,40, DESeq2 (ref. 41) and limma/voom42. For 
EdgeR, normalization factors were calculated using the Relative Log Expression 
(RLE) method, and significance was calculated (after calculating common, 
trended and tagwise dispersion estimates) using the default settings, based on 
a likelihood ratio test on the null hypothesis that ratiometric sample B – A = 0. 
Default settings were used for DESeq2, and significance was calculated based 
on a Wald Test. Significance for the limma/voom workflow was based on an 
empirical Bayes moderated t test.

Plasma pool analysis. Comparison of plasma pool libraries was limited to 
mature miRNAs. Read counts for mature miRNAs were taken from ‘read-
Counts_miRNAmature_sense.txt’ files provided in the exceRpt pipeline out-
put. The read count files and associated metadata for all samples were loaded 
and merged in R for further analysis. Multi-mapping-adjusted read counts are 
calculated as part of the exceRpt pipeline and were used for all comparisons. 
The total number of unique reads mapping to miRNAs was taken from ‘.stats’ 
files provided in the exceRpt pipeline output.

Downsampling read counts. The R package Vegan, was used to simulate 
random downsampling of equimolar and plasma pool count matrices. The 
Vegan function, drarefy, was used to estimate the probability of detection for 
each sequence based on random simulations of downsampling to specified 
levels. For the plasma pools, downsampling was performed to four different 
levels (104, 104.5, 105 and 105.5). Equimolar pools were downsampled to six 
different levels (106.5 down to 104 at half-log intervals). Libraries with read 
counts below the specified threshold were removed. A minimum probability 
of 0.9 was used as the threshold for detection.

Inter-protocol bias correction factors: estimation. Equimolar pool samples 
were processed through the exceRpt pipeline using the same input parameters 
as the plasma pool libraries, to obtain multi-mapping, scaled read counts for 
mature miRNAs that were directly comparable to the plasma pool counts. 
Differential expression analyses were performed using the mature miRNA read 
counts for the equimolar pool samples, and scaling factors were calculated for 
each miRNA, and were taken from the resulting log2 fold-change estimates. 
Key assumptions used in these calculations were: that the median mapped read 
level calculated for a given protocol should match the median for the 4N results 
given the same RNA input; that the comparisons of the results from a given 
protocol and the 4N protocol are performed on data processed in the same way 
that biological samples are processed (that is, using the exceRpt pipeline and 
its mapped read outputs). For details on limma and voom functionality and 
the parameters used, see the documentation for the limma package.

To summarize, correction factors were calculated for each pair of library 
preparation methods using the following workflow:

1. Filter out miRNAs with 0 counts in any library: For the subset of samples 
being tested, scaling factors are only calculated for miRNAs having at least one 
count in every sample of the two methods being tested.

2. Prepare miRNA count matrices for linear modeling: Use the R package, 
voom, to calculate precision weight estimates and normalize data to allow count 

http://unafold.rna.albany.edu/
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data to be analyzed appropriately using the limma package. Normalization is 
also performed between samples such that the median miRNA expression 
value is the same in all samples.

3. Fit miRNA-wise linear models to account for batch (lab) effect: The lmFit 
function from the limma package is used to fit linear models for each miRNA, 
estimating coefficients for each lab+library prep method. The coefficients rep-
resent the differences in expression for each miRNA between each lab+library 
prep method.

4. Estimate the log fold change between the two methods for each miRNA: 
Use the fitted model to calculate for each miRNA the average expression esti-
mated using the method A coefficients – the average expression estimate for 
the method B coefficients.

The R packages limma/voom were used for read count normalization and 
differential expression estimates, using standard workflows suggested for 
RNA-seq data to account for batch (lab) effects, and then testing for the main 
effect of the library prep methods. For each pairwise comparison of library 
preparation methods, equimolar pool counts matrices were extracted and 
only miRNAs with ≥ 1 read count in all samples of both methods were kept 
for analysis. After filtering, voom was used to normalize the count data and 
calculate precision weight estimates that allow count data to be appropriately 
tested with the linear modeling schema used in the limma package. Voom was 
run with the default parameters, except that read counts were additionally 
normalized between arrays using the ‘scale’ method, which adjusts read counts 
such that the median miRNA expression value is the same in all labs. The 
voom-transformed data was supplied to the limma lmFit function, along with a 
design matrix indicating the coefficients to be estimated. Initially, coefficients 
were estimated for each lab + library prep method to model batch/lab-specific 
effects. The main effect of the library prep method was then calculated as the 
average effect of method 1 – method 2. A contrasts matrix was generated and 
supplied, with the fitted model, to the contrasts.fit function, followed by an 
empirical Bayes function to estimate the resulting statistics for each miRNA. 
Log2 fold-change estimates, along with 95% confidence interval were obtained 
from these estimates.

Inter-protocol bias correction factors: applying corrections. The equimo-
lar pool-derived, inter-protocol bias correction factors were applied to the 
corresponding plasma pool samples for testing. To apply the correction fac-
tors, count matrices for the subset of plasma pool libraries being compared 
were selected and were then pre-filtered and normalized in the same way as 
the equimolar pools in generating the correction factors, described above. 

MiRNAs were filtered to include only those with a correction factor estimated 
from the equimolar pool and at least five counts in every library in the subset of 
methods being compared. Correction factors were applied to the appropriate 
samples. For example, if correction factors were calculated as the log2 fold-
change between TruSeq and 4N samples (TruSeq - 4N), then the correction 
factors would be applied to the log2-transformed TruSeq plasma pool sam-
ples by subtracting the correction factor. For the heatmaps and density plots, 
corrected values were added to the original count matrix of untransformed 
values, and unless specifically noted in the text, normalized using quantile 
normalization.

miRNA editing analysis. Editing libraries were trimmed of 5′ and 3′ adapters 
using cutadapt (version 1.9.1). Trimmed reads 16 nt and longer were aligned 
to editing pool sequences using bowtie2 (version 2.3.2) in local alignment 
mode. The first (5′) 4 nt were removed from 4N library reads during the align-
ment stage by adding the optional parameter ‘–trim5p 4’. Read counts were 
calculated from alignments filtered to have a minimum MAPQ of 20 and 0 
mismatches to the reference sequence within the locally-aligned region. The 
sum totals of the filtered read counts for each library were used to calculate 
CPM. Down-sampling was performed using the R package, Vegan.

Life Sciences Reporting Summary. Further information on experimental 
design is available in the Nature Research Reporting Summary linked to this 
article.

Data availability and accession code availability statements. Sequencing 
data for all experiments can be obtained from the GEO Superseries, GSE94586. 
Accession numbers for the four subseries are: GSE94584 (Equimolar), 
GSE94585 (Ratiometric A/B), GSE94582 (Human Plasma Pool) and 
GSE108138 (A-to-I Editing). GEO records include raw FASTQ files and proc-
essed counts from the exceRpt pipeline.

All code, metadata and processed data files required for reproducing 
the figures, tables and in-text statistical summaries are freely available on 
GitHub (https://github.com/rspengle/CrossU01_exRNA_Manuscript2017). 
The repository also includes a Packrat library with a snapshot of R package 
versions used.

56. Markham, N.R. & Zuker, M. UNAFold: software for nucleic acid folding and 
hybridization. Methods Mol. Biol. 453, 3–31 (2008).
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    Experimental design
1.   Sample size

Describe how sample size was determined. Not done. Our study was aimed at analyzing accuracy, bias and reproducibility 
based on ground truth composition of the samples therefore a pre-specified effect 
size was not used.

2.   Data exclusions

Describe any data exclusions. All the participating groups sequenced the same reference samples for the study 
and only those libraries not passing the QC criteria were excluded for the analysis. 
Reported in online Methods, sample filtering section/paragraph 1.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Experiments in this paper were done in quadruplicate or triplicate and most of 
them included multiple centers. 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

We specifically created reference samples for the study. The participating groups 
obtained aliquots of these reference samples for all the analyses to permit 
comparisons across groups. Since we were able to send the same samples to all 
groups, randomization was not needed. Reported in online Methods, Library 
preparation and small RNA-seq section/paragraph 1.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

There was no blinding, as it would have been difficult to truly blind the standard 
reference samples because they could easily be discerned during the process of 
working with them, based on RNA diversity and concentration. Moreover, for this 
type of study aimed at analyzing bias, accuracy and reproducibility of sequencing 
using standard reference samples, blinding is less important than it is for an 
experimental study assessing outcomes, for example.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The computer code is available on GitHub at this link: https://github.com/rspengle/
CrossU01_exRNA_Manuscript2017.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

We have provided the sequences contained in the synthetic pools evaluated in this 
study so investigators can synthesize them if desired. In addition, we are 
committed to providing the customs pools to any qualified investigators seeking to 
reproduce the synthetic reference pool for non-commercial purposes, as long as 
our own supply lasts.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Antibodies were not used in this study.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Cell lines were not used in this study

b.  Describe the method of cell line authentication used. Not applicable.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not applicable.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not applicable.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

This study did not involve animals.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

We have not used individual human samples in this study. The plasma RNA pool 
analyzed in this paper was obtained from eleven healthy male individuals with age 
ranging from 21-45 years that was collected and pooled before RNA isolation. The 
Beth Israel Deaconess Medical Center IRB approved the study protocol to consent 
participants and collect samples. The samples were subsequently anonymized 
before distributing to the other participating research groups. See details reported 
in online methods, reference samples section/paragraph 3 (page 22). The 
participating groups did not have access to any patient identifying information. 
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Erratum: Comprehensive multi-center assessment of small RNA-seq 
methods for quantitative miRNA profiling
Maria D Giraldez, Ryan M Spengler, Alton Etheridge, Paula M Godoy, Andrea J Barczak, Srimeenakshi Srinivasan, Peter L De Hoff, 
Kahraman Tanriverdi, Amanda Courtright, Shulin Lu, Joseph Khoory, Renee Rubio, David Baxter, Tom A P Driedonks, 
Henk P J Buermans, Esther N M Nolte-‘t Hoen, Hui Jiang, Kai Wang, Ionita Ghiran, Yaoyu E Wang, Kendall Van Keuren-Jensen, 
Jane E Freedman, Prescott G Woodruff, Louise C Laurent, David J Erle, David J Galas & Muneesh Tewari
Nat. Biotechnol. doi:10.1038/nbt.4183; corrected online 31 July 2018

In the version of this article initially published online, the text “Beth Israel Deaconess Medical Center/Dana Farber Cancer Institute (BIDMC/
DFCI)” was inserted into the last sentence in the right-hand column of p.10, beginning “It is worth noting….” . In addition, on p.2, the acronym 
for The Cancer Genome Atlas was given as TGCA, rather than TCGA; and on p. 3, UUTR should have been defined, as University of Utrecht, the 
Netherlands. Finally, ref. 48 was cited in the Online Methods after “4N_Xu protocol was performed as previously described35”; this extra citation 
has been deleted. The errors have been corrected for the print, PDF and HTML versions of this article.


	Button 1: 
	Page 1: Off



