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Learning Additive and Substitutive Features
Ting Qian (ting qian@brown.edu)

Joseph Austerweil (joseph austerweil@brown.edu)
Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer Street

Providence, RI 02912 USA

Abstract

To adapt in an ever-changing world, people infer what basic
units should be used to form concepts and guide generaliza-
tions. While recent computational models of human repre-
sentation learning have successfully predicted how people dis-
cover features from high-dimensional input in a number of do-
mains (Austerweil & Griffiths, 2013), the learned features are
assumed to be additive. However, this assumption is not al-
ways true in the real world. Sometimes a basic unit is substitu-
tive (Garner, 1978), which means it can only be one value out
of a set of discrete values. For example, a cat is either furry
or hairless, but not both. In this paper, we explore how people
form representations for substitutive features, and what com-
putational principles guide such behavior. In a behavioral ex-
periment, we show that not only are people capable of forming
substitutive feature representations, but they also infer whether
a feature should be additive or substitutive depending on the
observed input. This learning behavior is predicted by our
novel extension to the Austerweil and Griffiths (2011, 2013)’s
feature construction framework, but not their original model.
Our work contributes to the continuing effort to understand
how people form representations of the world.
Keywords: learning; additive features; substitutive features;
Bayesian nonparametric modeling; feature learning

Introduction
People have the remarkable capability of forming concepts
that enable them to generalize beyond what they have en-
countered so as to guide their behavior. To form these con-
cepts, one must deal with uncertainty, not only of what ob-
jects are present, but also of what the basic units of objects are
– or “features” – that represent the objects. Most theoretical
frameworks of concept learning treat these basic units as im-
mediately available to learners. However, there are an infinite
array of properties that could be used as features to encode
objects (Goodman, 1972), raising the question of whether
people infer these basic units from their observations of the
world, and if so, how. Recently, Austerweil and Griffiths
(2011, 2013) presented a computational framework for ex-
plaining how people construct feature representations from
raw sensory input. Their framework captures several theo-
retical aspects of human feature construction (e.g., arbitrary
number of features and context sensitivity), as well as em-
pirical studies of human feature construction. Their findings
synthesize and complement previous research in the literature
that shows people are able to infer features of objects from
their environment (Schyns, Goldstone, & Thibaut, 1998).

Computational models of feature learning typically as-
sume that features are independent and additive (Austerweil
& Griffiths, 2013; Goldstone, Greganov, Landy, & Roberts,
2008). That is, given a set of features inferred from objects
of the same concept, a novel object exhibiting a combination
of those features should also be an instance of that concept

as well. For instance, if we are given a group of cats and in-
fer “having whiskers”, “making meow sounds”, “furry”, and
“hairless” as the features for the concept “cat”, then a novel
animal which both meows and looks furry is most likely a cat.
However, this additive assumption can be problematic when
features are substitutive (Garner, 1978). For example, a cat is
either furry or hairless, but it cannot be both furry and hair-
less – they are two values of a “hair” feature. When learning
features from raw sensory input, people are not told whether
a feature is additive or substitutive, but must infer this while
constructing features. How do people infer whether a newly
constructed feature is additive or substitutive?

Previous work has identified psychological consequences
of features being additive or substitutive (Garner, 1978; Gati
& Tversky, 1982; Kemp, 2012). For example, Kemp (2012)
found that some categories are easier to learn when they are
defined as substitutive rather than additive features. In these
studies, participants knew whether a feature was additive or
substitutive based on prior knowledge. However, how do
people learn whether a newly constructed feature is additive
or substitutive in the first place (in which case, it might be-
come prior knowledge in the future)? Building on the work
of Austerweil and Griffiths (2011, 2013), we present a novel
computational model for capturing how people construct fea-
tures from raw sensory input, while learning whether those
features should be additive or substitutive. The new model
predicts a bias towards learning substitutive features when
parts of objects are negatively correlated in the input, and we
find support for this tendency in a behavioral experiment.

The outline of the paper is as follows. First, we review
Austerweil and Griffiths (2013)’s feature construction frame-
work. Next, we develop a novel Bayesian nonparametric
model that constructs features while learning whether each
of those features should be substitutive or additive. Then,
we present a behavioral experiment testing a prediction of
the proposed model and demonstrate that it explains human
behavior better than the original model from Austerweil and
Griffiths (2011). Finally, we discuss the implications of our
results and some directions for future research.

Modeling Feature Learning
Inferring latent features in binary images
Viewing feature learning as Bayesian nonparametric infer-
ence is one proposed explanation of how people discover
the features of objects (Austerweil & Griffiths, 2013). For
the particular problem of feature learning with binary im-
ages, the Indian Buffet Process (IBP; Griffiths & Ghahra-
mani, 2011) with a noisy-or likelihood function (the IBP
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noisy-or model; Wood, Griffiths, & Ghahramani, 2006) is
typically used (Austerweil & Griffiths, 2013). According to
this model, the learning problem is formalized as finding the
most probable assignment of features to objects Z and feature
images Y given the raw sensory input of a set of objects X.
X, Y, and Z are all defined to be binary matrices (see Figure
1). X is the data matrix, where each row corresponds to the
image of an object, and each column contains the pixel values
at that location for all objects. So, Xnd = 1, indicates that the
dth pixel of the nth object is “turned on” (i.e., it is non-blank).
Y is the feature image matrix where each row is the image of
its corresponding feature, and each column indexes the pixel
locations. So, Ykd = 1, indicates that the dth pixel of an object
should be “on” if that object has feature k (subject to the noise
introduced by the model; more details below). Finally, Z is
the feature ownership matrix, where each row corresponds
to an object, and each column corresponds to a feature. So,
Znk = 1, indicates that object n has feature k, which in turn
suggests that the pixels that feature k can turn on are likely to
be present in object n.

Figure 1: A schematic illustration of the Z,Y,X matrices in
the IBP noisy-or model. Figure reprinted from Austerweil
and Griffiths (2011) with permission.

One challenge in learning a latent feature representation
under this model is that one does not know a priori the num-
ber of latent features that best accounts for the collection of
objects X. Instead, that number needs to be inferred from the
data as well. The inference problem is also highly undercon-
strained because only X is observed, while both Y and Z need
to be inferred from X. In terms of Bayesian inference, this
means that the joint posterior distribution of Y and Z needs
to be estimated solely based on the observed data X:

p(Y,Z|X) ∝ p(X|Z,Y)p(Y)p(Z) (1)

Using Bayes’ rule, Equation (1) shows how the inference of
p(Y,Z|X) can be decomposed into two subtasks: to find the
most likely Y and Z matrices, one should maximize the like-
lihood p(X|Z,Y), corresponding to how well our feature rep-
resentation captures the observations, and the prior probabili-
ties p(Y) and p(Z). In the IBP noisy-or model, the prior distri-
bution on Z is the IBP, which allows an infinite number of fea-
tures to be inferred, but includes a penalty for overly complex
representations. Details on how the IBP prior achieves this
goal, including the culinary metaphor that provides the intu-
ition of IBP can be found in Austerweil, Gershman, Tenen-

baum, and Griffiths (2015). Here we describe the genera-
tive process definition. First, the probability of the nth object
having a pre-existing feature k is proportional to number of
objects that already have feature k (i.e., mk in Equation 2),
divided by the number of objects observed so far (i.e., n):

p(Znk = 1|Z−nk) ∝
mk

n
(2)

where Z−nk is the feature assignments without Znk.
The nth object also can take on novel features as well. The

probability that the nth has f novel features, which have not
been observed in the first n− 1 objects, is ppoisson( f ; α/n).
That is, this probability is evaluated as the chance of obtain-
ing the sample f from a Poisson distribution with a mean of
α/n. Here, α is a free parameter of the model, which we set to
1 for models throughout this paper. The IBP noisy-or model
defines the prior distribution on Y by treating elements in Y
as independent and identically distributed, each with a prior
probability of θ to take the value 1 (Ykd ∼ Bernoulli(θ)).
The value of θ is set to 0.02 here, constraining the model to
prefer Y with empty feature images (i.e., values set to 0) un-
less the feature images describe X well.

The likelihood function p(X|Y,Z) is defined with respect
to the chance of generating the observed data X given a spe-
cific configuration of Y and Z. In the IBP noisy-or model, the
matrix product of Z and Y is first computed. This product is a
matrix of the same dimensions as X, whose elements can be
interpreted as “weights” that indicate the total strength pos-
sessed by the current latent feature representation (i.e., Z and
Y) to turn on various pixels of observed objects. Intuitively,
if the weights are large where elements in X are in fact 1,
and the weights are small where elements in X are 0, then the
corresponding Z and Y may be close to the optimal feature
representation. Formally, the likelihood function is

p(X|Y,Z) = ∏
n,d
|xnd− (1− ε)(1−λ)znyd |, (3)

where λ (set to 0.95) is the probability that a feature whose
image has the current pixel on and is being used to represent
the current object whose image succeeds to turn that pixel
on in the current object, ε is the probability that a pixel in
an image is on by chance (set to 0.05). As a result of jointly
maximizing the likelihood function and the prior probabilities
of Y and Z, the IBP noisy-or model trades off keeping the
feature representation as simple as possible with the model’s
ability to explain the data X.

The additive nature of the IBP noisy-or model
Although the IBP noisy-or model has been shown to capture
how the distribution of parts affects the feature representa-
tions people form (Austerweil & Griffiths, 2011), the features
found by the model are always additive. For example, con-
sider a scenario where half of the objects X have part A but
not part B, the other half have part B but not part A, and no
object has both part A and part B. The IBP noisy-or model
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will correctly discover these features and, through the learn-
ing of the feature image matrix Y, encode the information
that both feature A and feature B are valid features for this
group of objects. With this representation, the model will not
only assign a high probability to any new object with either
feature A or feature B, it will also regard a novel test object
with both feature A and feature B as highly probable. The
model considers feature A and feature B to be additive, be-
cause features are assumed to be independent of each other.
The negative correlation between feature A and feature B is
ignored by the model.1

A substitutive variation of the IBP noisy-or model
To add the capability of inferring substitutive features to the
IBP noisy-or model, we propose a simple extension to the
original model. Instead of there being only one feature im-
age matrix Y, the new model has two Y matrices: Y1 and Y2.
Therefore, a single feature has two alternative feature images
(i.e., the two values the feature can take), each represented by
the corresponding row vector in Y1 and that in Y2. Addition-
ally, we used a new indexing matrix F that is the same size
as Z and whose elements encode which image matrix should
be used if an object takes a feature. The elements of F take
on the value of 0 when the corresponding value in Z is also
0, and the value of 1 or 2 when the corresponding value in
Z is 1. That is, for features that are present in an object, as
indicated by Z, the values in F indicate which of the two Y
matrices (1 or 2) is its value.

The feature learning problem is then to infer Y, Z and F
from the observed X. Similar to Equation (1), we use Bayes’
rule to decompose the posterior into simpler terms:

p(Y,Z,F|X) ∝ p(X|Y,Z,F)p(F|Z)p(Y)p(Z) (4)

The prior distribution on Z is the same IBP prior as in the
original IBP noisy-or model. Conditioned on object n taking
feature k (Znk = 1), Fnk is equally likely to be 1 or 2. If object
n does not take feature k (Znk = 0), then Fnk = 0 with proba-
bility 1. So, its value for the infinite number of features that
are not assigned to any object is 0. The prior on each Y is the
same as in the original model. The calculation of the likeli-
hood p(X|Y,Z,F) is also similar to the case of the original
model, except that feature images are retrieved conditioned
on the values of F and Z rather than on Z alone.

Crucially, this new model is capable of representing a sub-
stitutive feature, because the elements in the F matrix are ei-
ther 1 or 2, but not both. For example, if a pair of parts, A and
B, are negatively correlated across objects in the input (mean-
ing that they almost never occur together), this new model
will strongly favor a representation of a single feature with
two alternative features images, one corresponding to Part A

1Existing connectionist feature learning methods (e.g., CPLUS;
Goldstone et al., 2008) would also struggle learning substitutive fea-
tures. One way to extend them to learn substitutive features would
be to use a gating mechanism (Frank, Loughry, & O’Reilly, 2001).

and the other corresponding to Part B. The model favors this
representation over one with two additive features because
the IBP prior favors feature representations with fewer fea-
tures. Given this representation, test objects with either Part
A or Part B will be regarded as highly probable, because the
learned representation is exactly “one feature”, in the form of
A or B. Test objects with both parts will however be consid-
ered rather improbable, because the model lacks the neces-
sary representation (which would be a two-feature represen-
tation) to account for those two parts simultaneously. Note
that additive features can also be learned by the model when
it is appropriate. This occurs when the pixels are all off for
one of a feature’s images. Thus, in some sense, it is a gener-
alization of the original additive IBP noisy-or model.

The inherently additive IBP noisy-or model and our newly
proposed model are two hypotheses for how people learn fea-
ture representations. The question of interest is, in what cir-
cumstances, if any, do people form substitutive representa-
tions of negatively correlated parts in objects? Our behavioral
experiment aims to find an answer to this question.

Behavioral Experiment: Learning Additive or
Substitutive Features in Vertical Bar Images

The goal of this experiment is to investigate whether people
form additive or substitutive feature representations given 1)
the co-occurrence patterns of parts within each image and 2)
the way that parts are distributed across observed images. Ac-
cording to our model, the prediction is that people should
prefer an additive representation for parts that occur inde-
pendently. People are expected to prefer a substitutive fea-
ture representation for negatively correlated parts – that is,
those that are never observed together in the same image,
even when they have been observed separately in the set of all
training images. Correspondingly, this experiment consists of
two conditions - an additive condition and a substitutive con-
dition - which test these two predictions respectively.

Methods
Participants Forty Amazon Mechanical Turk workers par-
ticipated in this experiment (20 in each condition). Each was
paid $0.20 for about 90 seconds of work.

Stimuli We designed artificial stimuli in the form of images
containing vertical bars within a square box. Each box had 4
slots where vertical bars can appear. In both conditions, par-
ticipants were exposed to a total of six stimuli (i.e., six square
boxes with vertical bars in them). Four of the six stimuli were
shared between the two conditions (see Figure 2). These four
images are selected so that the locations of bars are counter-
balanced and images with 1, 2, and 3 bars were all observed.

The crucial difference between the additive condition and
the substitutive condition is the two additional images.2 In the

2We also ran a baseline condition, which consisted of only the 4
training images shown in Figure 2. The results were identical to the
substitutive condition reported here. This suggests people are biased
towards the substitutive interpretation of features.
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Figure 2: Four training stimuli were shared between the ad-
ditive condition and the substitutive condition.

(a) Additive condition (b) Substitutive condition

Figure 3: Two additional training stimuli were different be-
tween conditions. In the substitutive condition, the second
and third vertical bars were perfectly negatively correlated.

additive condition, as shown in Figure 3a, these additional im-
ages demonstrate that all vertical bars can co-occur in a stim-
ulus, most evidently shown by the image where all four bars
appeared together. In the substitutive condition, as shown in
Figure 3b, these additional images are consistent with a pat-
tern that is already in the four shared images: the second and
third vertical bars are never observed together.

(a) co-occurring (b) single (c) non-occurring

Figure 4: Test stimuli were grouped into three types depend-
ing on the configuration of the second and third bars.

In both conditions, participants rated the likelihood of ob-
serving the four novel test stimuli while the training stimuli
remained visible (more details in the procedure section be-
low). Because the crucial difference between the additive
and substitutive conditions is whether the second and third
bars co-occurred in the training set, these test stimuli were
grouped into 3 different groups defined by the arrangement
of those two bars for evaluating participant ratings: a “co-
occurring” groups where both the second and third bars are in
a test stimulus, which included the two stimuli in Figure 4a;
a “single-occurring” group where either the second or third
bar is in a test stimulus (see 4b), and a “non-occurring” group
where neither of the two bars is in a test stimulus (see 4c).

Procedure The procedure is identical in both conditions
(they only differed in which two extra images were given).
At the beginning of an experiment, participants were pre-
sented with the 6 training images appropriate to their con-
ditions along with the following cover story:

Recently a group of archaeologists found a cave with a

collection of different images on its walls. The archae-
ologists believe the images could have been left by a
prehistoric civilization. The images are shown below.
Please take a few moments to investigate the images.
You’ll be asked questions about these images later.

Participants had to spend at least 30 seconds studying the
training images before they were able to continue (although
they could study the images for as long as they wanted). Af-
terwards, they were given the following test instructions:

It looks like there are many more images on the cave
wall that the archaeologists have not yet had a chance
to record. If the archaeologists explored the cave wall
further, which images do you think they would be likely
to see?

You will be presented with a few images, and your task
is to rate how likely you believe it is that each image will
be discovered in that cave, based on the images that you
just studied.

Each test trial presented one test stimulus, and to minimize
memory effects, training images were also shown alongside
the test stimulus. For each test stimulus, participants were
asked “How likely do you believe this image will be discov-
ered in the cave?” and instructed to rate the likelihood using
a scale ranging from 1 to 5. They were clearly instructed that
1 meant least likely and 5 meant most likely. Once partici-
pants committed to a rating, the experiment was programmed
in such a way that they could not go back to previous test
trials to modify their ratings.

Results and Discussion
Figure 5 shows the average ratings of participants for each
group of test stimuli in both conditions. In the additive condi-
tion (see Figure 5a), participants rated the test stimuli from all
three groups equally large (F(2,77) = 1.60, p > 0.2), regard-
less of whether the second and third bars were in the same
image (the co-occurring group), only one of the two bars was
in an image (the single group), or neither of the two bars was
in an image (the non-occurring group). Crucially, there was
no difference in the ratings between test co-occuring and sin-
gle test stimuli (mean difference = -0.075, post-hoc Tukey
test p > 0.5), indicating that participants treated the second
and third bars as additive features, allowing them to appear in
the same image. Participants did not distinguish between sin-
gle and non-occurring stimuli either (mean difference = -0.5,
post-hoc Tukey test p > 0.3).

In contrast, participants in the substitutive condition gave
significantly different ratings to the test stimuli of the three
different groups (F(2,77) = 3.29, p < 0.05; see Figure 5b).
In particular, stimuli of the co-occurring group present re-
ceived a much lower rating than stimuli of the single group
(mean difference = -0.88, post-hoc Tukey test p< 0.05). This
difference in rating suggests that participants formed a sub-
stitutive feature representation for the second and third bars –
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(b) substitutive condition (N=20)

co-occurring single non-occurring
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(a) additive condition (N=20)
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Figure 5: Subjects in the additive condition rated images with
both the second and third bars as high as images without only
one of those bars. Meanwhile, subjects in the substitutive
condition gave images with both the second and third bars a
significantly lower rating.

only one of them can be in an image at a time. No significant
difference was found between the ratings of the co-occurring
and non-occurring groups (mean difference = -0.53, post-hoc
Tukey test p > 0.3), or between the single and non-occurring
groups (mean difference = 0.35, p > 0.5).

Comparison to Model Predictions Overall, the results
suggest that people can infer a substitutive feature represen-
tation for parts that are consistently negatively correlated in
the input. They can also infer an additive feature representa-
tion when it is appropriate. Qualitatively, this contrasts with
the prediction of the original IBP noisy-or model, which only
forms additive representation of features regardless of the
distribution of parts within and across objects. To examine
the extent to which the original IBP noisy-or model and our
proposed substitutive extension can describe human feature
learning, we compared participant ratings to the predictions
of these two models. To simplify the computational work-
load, the training images were downsampled to a resolution of
4 by 4 pixels without affecting the distributional information
in these images. A Gibbs sampler was implemented for each
model and run for 2000 iterations, where the 1001-2000th
posterior samples were extracted as hypotheses of latent rep-
resentations inferred by the models. We then searched among
the 1000 hypotheses and extracted the one that maximized the
generative probability of the test stimulus t:

p(t|training stimuli) = max p(t|inferred feature reps) (5)

where a “feature rep” is the inferred Z and Y matrices in the
original IBP noisy-or model, and Z, F, and two Y matrices in
our substitutive extension to the IBP noisy-or model. These
probabilities were then normalized to a 1-5 scale so that the
results are comparable to participant ratings.

Unsurprisingly, model predictions were more extreme and
did not show as much variation as in participant ratings. How-
ever, we can still assess the qualitative similarity between the
model ratings as shown in Figure 6 and participant ratings

shown in Figure 5. As expected, the original IBP noisy-
or model (Figure 6a) rated co-occurring, single, and non-
occurring stimuli equally high regardless of whether the train-
ing condition was additive or substitutive. This is because the
original IBP noisy-or model inferred four independent fea-
tures, each of which represented a vertical bar at one of the
four possible locations in a stimulus. Although such an addi-
tive representation correctly predicted the average rating be-
havior of participants in the additive condition (R2 = 0.99), it
failed to explain the lower ratings for the co-occurring stimuli
in the substitutive condition (R2 = 0.44).

The substitutive IBP noisy-or model, successfully pre-
dicted participant ratings in both conditions (Figure 6b).
Given the substitutive images, it rated co-occurring stimuli
much lower than the other two types of test stimuli (R2 =
0.83), because it represented the negatively correlated parts
(i.e., the second and third bars in the training images) as two
alternative, but never co-occurring, values of a single feature.
At the same time, it also predicted behavior relatively well in
the additive condition (R2 = 0.86). The R2 value is slightly
lower for the additive condition, which is most likely due to
its built-in tendency towards substitutivity by having two Y
matrices hardcoded in the model. However, it still qualita-
tively captured human performance in the additive condition.
Thus, our newly proposed model described the overall pat-
tern of human feature learning in our experiment better than
the original IBP noisy-or model.

Conclusions and Future Directions
In this paper, we explored how people learn additive or sub-
stitutive features depending on the distribution of parts over
objects using computational models and a behavioral exper-
iment. In the experiment, one group of participants received
images without negatively correlated parts (i.e., the additive
condition), and the other group received images where two
parts were never seen together (i.e., the substitutive condi-
tion). Our results demonstrated that the latter group readily
treated the negative correlated parts as substitutive features:
novel images with both those parts present were given a sig-
nificantly lower rating than novel images with only one of
those parts. However, what computational principles do peo-
ple use to form substitutive feature representations? To an-
swer this question, we proposed an extension to the original
IBP noisy-or model (Austerweil & Griffiths, 2011), which
allows a single feature to be realized in two alternative, but
never co-occurring forms. The resulting substitutive IBP
noisy-or model successfully captured the rating pattern of
participants in the substitutive condition, improving upon the
original IBP noisy-or model that failed to do so.

Building upon the behavioral paradigm and computational
framework introduced in this paper, we plan to further investi-
gate the issue of substitutive representation in human feature
learning. First, we will test the generality of the results by
using more natural perceptual and conceptual stimuli. This
should also help address the potential confound of there be-
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Figure 6: The both the original IBP noisy-or model and our model captured the additive condition reasonably well, but only
our model predicted subjects’ ratings in the substitutive condition.

ing more bars in the substitutive condition than additive con-
dition (this can also be addressed by having six possible bars
and equating the number of bars in each image across condi-
tions). We will also pursue how well the substitutive model
explains human performance while parametrically manipu-
lating the negative correlation of the parts. In the substitutive
condition of the current experiment, the parts of interest are
perfectly negatively correlated. However, presumably, such a
strong correlation is rare in the real world, and people should
adjust their representation between extreme additivity and ex-
treme substitutivity based on the observed correlation. Fur-
ther, we will generalize the substitutive IBP noisy-or model
to learn substitutive features with more than two values (e.g.,
line styles can be “solid”, “dashed”, or “dotted”), as previ-
ous work has demonstrated people can learn categories with
three-valued features (Aitkin & Feldman, 2006). One poten-
tial way to address this limitation is to generate a set of fea-
ture image matrices from a Dirichlet Process (DP; Ferguson,
1973). This results in the number of feature image matrices
also being inferred, which will enable the model to represent
multi-valued substitutive features, thus extending the current
model’s assumption that substitutive features can only have
two possible values. Together with the current findings, fu-
ture work will further illuminate how people construct repre-
sentations beyond the simple case of binary additive features.
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