Lawrence Berkeley National Laboratory

Recent Work

Title

STUDY OF THE LEVELS IN 140La BY (d,p) STRIPPING REACTION

Permalink


https://escholarship.org/uc/item/44n7b84n

Authors

Kern, Jean Struble, Gordon L. Sheline, Raymond K.

Publication Date

1966-04-01

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

STUDY OF THE LEVELS IN ¹⁴⁰La BY (d,p) STRIPPING REACTION

Jean Kern, Gordon L. Struble, and Raymond K. Sheline

April 1966

STUDY OF THE LEVELS IN 140 La BY (d,p) STRIPPING REACTION*

Jean Kern*, Gordon L. Struble and Raymond K. Sheline*

Lawrence Radiation Laboratory University of California Berkeley, California

April 1966

ABSTRACT

The energy levels in 140 Ia were studied by means of (d,p) reaction spectroscopy using 10 MeV deuterons. The protons that emerged were analyzed by a single gap, broad-range magnetic spectrograph with 13 keV resolution. We obtained the reaction Q-value of 2938 ± 3 keV. Exposures were taken at eight angles ranging from 25 to 105 degrees. All spectra were fitted using a least squares code, up to an excitation energy of 1860 keV. Seventy states were observed and the angular distributions of the most prominent groups were analyzed by means of DWBA stripping theory. Spins of the 140 Ia levels determined from previous decay scheme studies and the present research and the proton intensities observed in the 139 La(d,p) 140 La reaction can be satisfactorily explained in terms of the mixed configurations, $(1g_{7/2})_p(2f_{7/2})_n$ and $(2d_{5/2})_p(2f_{7/2})_n$. Above 600 keV, however, interpretation of states in terms of higher energy configurations appears also to require phonon particle coupling.

I. INTRODUCTION

Among the different nuclear species, odd-odd nuclei are perhaps the most difficult to study. From the experimental point of view, this is true for several reasons. Frequently the mass of a particular odd-odd nucleus is greater than that of both its neighboring even-even isobars. This makes it impossible to observe levels in the odd-odd nucleus by beta-ray and gamma-ray spectroscopy. In the case where levels in an odd-odd nucleus can be populated by beta decay, the daughter nucleus itself is usually unstable and this situation demands difficult experimental techniques for the spectroscopist. Finally the decay occurs from a state with 0+ spin and parity and only states with small spins will be observed. In principle, reaction spectroscopy offers a means of observing more states in odd-odd nuclei but the high level density in heavier odd-odd nuclei creates an obstacle because usually the experimental resolution is ten to one hundred times poorer than that obtainable with beta-and gamma-ray studies.

Interpreting the experimental levels in odd-odd nuclei is also difficult since simple phenomenological models inadequately describe the low energy spectra. The ordering of the levels in the multiplets resulting from a specific neutron and proton configuration is sensitive to the nature of the neutron-proton residual interaction. However it is just this feature which makes the study of odd-odd nuclei so important, since the detailed level structure can then give information about this interaction.

Although odd-odd nuclei near magic configurations have been studied in detail, little work has been attempted either in deformed nuclei^{2,3} or in the

so-called vibrational nuclei. In this and in the following paper we examine the nucleus ¹⁴⁰La, a nucleus with one neutron outside the 82 shell and 7 protons outside the 50 shell. Experimentally this is a favorable nucleus for nuclear reaction studies because 139 La is stable, monoisotopic and the reaction 139 La(d,p) 140 La has a Q-value which makes it possible to study La by this reaction with 10 MeV deuterons. Thus unambiguous data may be obtained using a deuteron beam from a Tandem Van de Graaff accelerator, a natural 139 La target, and a magnetic spectrograph to analyze the reaction products. Theoretically the nucleus is expected to be of intermediate difficulty. That is, although there is extensive configuration mixing due to interactions of the seven protons, it is in a region where quasiparticles which are defined by a special Bogolubiov transformation give good descriptions of even-even and odd-A systems. 4 Also since there is only one neutron outside the 82 magic neutron configuration, one would expect very small vibrational phonon amplitudes in the lower single quasi-proton states. It should be possible to describe the states below 1 MeV by an effective quasi-proton neutron interaction using an odd-odd quasi-particle model.

In section II, the results of previous experimental investigations are reviewed. In sections III and IV, a discussion of the experimental technique and the results from the studies of levels below 1.858 MeV by (d,p) reaction spectroscopy are given. A qualitative discussion of the odd-odd quasi-particle model is presented in section V and an interpretation of our levels below 600 keV is given. In the second paper we give the mathematical details of the odd-odd quasi-particle model and apply this model to 140 La.

II. PREVIOUS INVESTIGATIONS

The investigation of the negatron decay of ¹⁴⁰Ba to ¹⁴⁰La has been performed by many different groups. ⁶ The high resolution work of Geiger, Graham, and Ewan ⁷ strongly suggested a number of spin-parity assignments and accurate energy levels. These assignments have been confirmed by the gamma-gamma angular correlation measurements of Agarwal et al. ⁸ and lifetime measurements of Burde et al. ⁹ Burde et al. confirmed the original level assigned by Geiger et al. at 581.1 keV which had been reassigned at 566 keV by Agarwal et al.

A level scheme consistent with these results is given in Fig. 1. Low energy gamma-rays from thermal neutron capture 10 could not be placed consistently in the existing scheme but the study of high energy gamma rays following neutron capture 11 defined some additional new levels. (See Fig. 1). Study of La by the (d,p) stripping reaction was performed by Bingham and Sampson with an energy resolution of approximately 70 keV. Angular distributions were measured and the \$\ell\$ transfers were determined for a few groups. Comparison of these results with the decay-scheme results (Fig. 1) shows that the resolution was not good enough to resolve some of the known states. Since our instrumentation is appreciably better in this respect, a reinvestigation of the reaction seemed worthwhile.

III. EXPERIMENTAL METHOD

Targets were prepared by evaporating $\text{La}_2\text{O}_3^{\quad (13)}$ from a small carbon crucible under a high vacuum onto thin carbon backings. The required temperature was achieved by using an electron gun technique. The backings were obtained by depositing carbon by an electric arc in a high vacuum onto glass slides that had previously been coated with Teepol*. After ^{139}La was evaporated, the target was floated on deionized water and mounted on an aluminum frame. Targets prepared by this method have a thickness of approximately 100 $\mu\text{g/cm}^2$ and the carbon backings a thickness of 10-30 $\mu\text{g/cm}^2$.

The targets were then exposed to the 10 MeV deuteron beam of the Florida State University Tandem Van de Graaff. This beam was collimated by $1/4 \times 3$ mm slits before reaching the target and the Faraday cup. The emerging protons were analyzed in a single gap magnetic Browne-Beuchner spectrograph. The solid angle of this spectrograph is of the order of 0.7×10^{-4} sr. As a detector we used an array of three 5×25 cm fifty micron thick nuclear emulsion plates which are manufactured by Eastman Kodak Company. These plates were covered with an Aluminum foil 0.12 mm thick in order to stop elastically scattered deuterons. After exposure, the proton tracks were counted in 1/2 mm strips under microscopes equipped with calibrated stages. A more detailed description of this general experimental procedure is given in a recent publication by Kenefick and Sheline. 16

The resulting spectrum was analyzed by use of a nonlinear least squares code 17 in order to determine the individual components of the spectrum. This method of analysis was necessary because many of the peaks were unresolved. The shape of the line profile and the line width were inferred from the most prominent peaks. This resulted in a profile with a symmetric Gaussian curve that has a small low energy tail (approximately 5% of the total intensity) which was, in general, neglected.

^{*}A Shell product.

The position of the peaks, as determined by the least squares analysis, was then entered in a code written for an IBM 709 in order to extract Q-values and excitation energies. This code used an empirical energy calibration and determined if any of the entered peaks could be due to reaction with one of the impurities that might have contaminated the target. Such impurities could come from the Teepol, the glass slide, or possibly from the Tungsten filament of the electron gun.

Calculations of the average, weighted average and corrected average of the excitation energies were made. As a weight a quantity approximately inversely proportional to the standard deviation of the peak position, as determined by the least squares code, was used. In the corrected average, values whose dispersions were greater than five times the standard deviation for a single value were discarded.

In order to obtain meaningful angular distributions, either we needed to determine absolute cross sections or to insure that the target thickness and the luminosity of the spectrograph remained unchanged at the different angles. We chose the first method. To obtain absolute cross sections, we bombarded the target at each angle with 4 MeV deuterons prior to and/or after the (d,p) experiment assuming that the same geometrical configuration was maintained at the spectrograph. (In fact the Aluminum foil covering the emulsion plates had to be removed for this experiment). From the known Rutherford cross section, it was then a straightforward procedure to obtain the absolute cross sections.

IV. RESULTS

Eight exposures were taken at angles ranging from 25 to 105 degrees. Table 1 gives a summary of some of the details of the experiments. The resolution given here is the full width at half maximum of the ground state peak. It was found that the energy resolution decreases slowly along the plates when going toward smaller proton energies. For example, it is about 3 keV larger at 1800 keV excitation than at the ground state. The differential cross section corresponding to one track is given as a measure of the ultimate sensitivity in a particular exposure. This quantity, together with the exposure, gives some indication about the relative target thickness. We see, for instance, that the target used at 85 degrees is appreciably thicker than the others, and this resulted in a broadening of the lines.

When the value at 85 degrees is disregarded, the agreement of Q-values determined at various angles is very satisfactory. The corrected average is $Q = 2938.3 \pm 0.4$ keV. The good reproducibility of the Q-value, even though the plate distance from the calibration peak (carbon) to the ground state peak varies considerably, indicates that the systematic error of the calibration is small, and we therefore give the value of $Q = 2938 \pm 3$ keV. This gives a binding energy of the last neutron $B_n = 5.163 \pm 0.004$ MeV.

Our experimental number is in disagreement with and outside the experimental error of Everling, et al. 18 who give the value 8 _n = 5.02l ± 0.07 MeV. It is considerably closer to the value of 5.145 ± 0.015 MeV determined in the (n,γ) work of Groshev et al. 11 and the value of 5.11 MeV derived from the (d,p) Q-value of Bingham and Sampson. 12 In view of the high resolution available and the internal consistency of these experiments, we believe that the 8 _n- value reported here is the most accurate.

A typical spectrum is displayed in Fig. 2. The exact position of the intense ¹³C and ¹⁷O peaks are obtained by short exposures made before and after the main experiment. These peaks are used to recalibrate the incident energy and test the stability of the magnet. They appear outside the range of interest at backward angles, but fall inside it at angles less than 80 degrees. As their cross sections are also much larger at forward angles, it is necessary to subtract a background from under the peaks lying close to them. Because of the large level density, this subtraction is somewhat arbitrary and so we do not attempt to compute cross sections and errors for small peaks in these areas.

The least squares technique was essential in order to unfold the first group of peaks. In Fig. 3 the individual components and their sum are compared with the experimental spectrum at 25 degrees. A satisfactory fit can also be found when peak 1 is suppressed. However, the fit is then, in general, not as good, and the line width seems too large. Furthermore the correspondence with the levels of Fig. 1 is much better when level 1 is added.

Table 2 gives the results of the present investigation for energy values and differential cross sections. Below each value we give the standard deviation. For the energies these quantitites have been computed from the deviations of the single values from the average value. For the intensities they are statistical sums of the standard deviation calculated by the fitting program, the error for the solid angle calibration and the error for the Rutherford scattering experiment which is estimated to be %. Systematic errors may arise from an error on the energy calibration, use of an approximate fitting function, which may be especially important in the cases of close multiplets, undetected impurities and an incorrect number of components in the analysis. With regard to energies, the figures given

take into account only the statistical errors. It is therefore expected that the true error can be appreciably larger. It may be assumed that the error due to the calibration amounts to 0.5 keV below 600 keV and 1 keV above. We have been tempted to increase arbitrarily the standard deviation by these amounts in order to avoid discrepancies with more precise measurements. But this would also make it impossible to detect meaningful discrepancies. For example, the energy standard deviation 0.2 keV quoted for level 1 at 30.6 keV is too small when compared with the accurately measured energy of 29.97 ± 0.05 keV. As will be shown in section V, the number of components used in fitting this region is probably incorrect and the discrepancy supports this view. A biased standard deviation would have masked the difficulty. We will use possible large differences between the values given here and more accurate energy values that can be obtained by gamma-ray measurements to help locate systematic errors. For the levels where a background has been subtracted (denoted with an asterisk), the error is estimated. When a known impurity contributes to the cross section, an estimated value of its contribution is given in the comments when possible.

Although we have analyzed all spectra down to peaks with a few tracks, we have excluded from the table peaks with a cross section of only a few microbarns. Such small peaks may reproduce at many angles with an acceptable energy spread. Nevertheless, we believe that usually it is accidental and that the inclusion of such peaks in the table would only be misleading.

To fit the angular distributions we have used the DWBA code TSALLY of Bassel, Drisko and Satchler. 19 We know of no experimental values of the optical model parameters of 139 La for 10 MeV deuterons. Since 140 La is radioactive, the

parameters for 140 La and ~13 MeV protons would be very difficult to determine experimentally. For these reasons we have started with parameters extracted from the work of Perey 20 for protons and Perey and Perey 21 for deuterons. We varied them slightly in order to fit the $\ell=3$ distribution of the first group of peaks (Fig. 4A) and simultaneously the $\ell=1$ distribution of the peaks 10+13+14. This simultaneous fitting put severe constraints on the possible variations. The fit represented in Fig. 4 was obtained with the parameters given in Table 3, using the "independent Saxon plus derivative" option.

The values for the proton potential were extracted with no modifications from the work of Perey. 20 For the deuteron potential, we used the set of values A from Perey and Perey and changed only the real radius (from 1.15 to 1.26 F). A lower cut-off radius of 5 F was used in the calculation.

The fit that is obtained is very satisfactory. It is possible that small adjustments of the optical potential parameters compensate some of the approximations of the theory. The fact that our experimental distributions could be so well fitted is our only evidence that the reaction under study is essentially direct.

The use of the least-squares fit to analyze the data has generally resulted in little dispersion in energy values for components of unresolved multiplets. The intensities, however, often have large uncertainties. For this reason it is better, in general, to compare only the intensity sum of badly or unresolved peaks with the theoretical curves. A meaningful result is obtained only if the ℓ transferred is the same for each of the components. The angular distribution of such groups are plotted in Fig. 4. By a normalization of the total intensity, it is possible to compute the average relative

amplitude of each component. The normalized intensities of a number of peaks belonging to different groups are given in Table 4. The level diagram in Fig. 5 collects all the information on energy and ℓ transfer obtained in this work. For an extended region, from 1130 to 1330 keV excitation, no ℓ assignment could be obtained. We were also unsuccessful in locating levels with $\ell=5$ and $\ell=6$ transfer. The multiplicity of these levels should be equal to the multiplicity of the $\ell=3$ levels, but their cross section should be an order of magnitude smaller. The large level density may preclude observing such states.

V. INTERPRETATION OF RESULTS

The nucleus 140 La with 57 protons and 83 neutrons has one neutron outside the 82 magic core. The energy level systematics of neighboring isotonic odd-A nuclei strongly suggest that this neutron occupies the 21 7/2 orbital. Outside the 50 magic core are seven protons which are probably in the 19 7/2 orbital. If the 19 7/2 orbital were separated from other proton orbitals by an energy of at least 1 MeV, it might be possible to describe the low-lying states as arising from a configuration consisting of a 21 7/2 neutron particle and a 19 7/2 proton hole. However in 139 La the 21 9 proton orbital appears at 166 keV of excitation. This suggests that there is strong configuration interaction in the proton system and indeed proton-proton pairing correlations seem to explain the position of this state.

The effects of the proton-proton pairing correlations have a particularly simple physical interpretation in terms of quasi-particles. These quasi-particles are independent excitations which are hole excitations for orbitals well below the

Fermi surface. They are particle excitations for orbitals well above the Fermi surface, but they have mixed particle and hole nature near the Fermi surface. The use of this independent quasi-particle picture has had great success in quantitatively explaining many of the low energy features of odd-A and even-even nuclei in the mass region which we are considering. It's quantitative application to many odd-odd nuclei is as yet untested but qualitatively we would expect the gross structure of the odd-odd nucleus to be very similar to that predicted by the two particle shell model.

For example, if we consider ¹⁴⁰La and attempt to predict the lowest energy states, then there are two configurations of importance that arise from the neutron in the ^{2f}_{7/2} orbital and a quasi-proton in either the ^{1g}_{7/2} orbital or the ^{2d}_{5/2} orbital. From the first configuration, we expect an octuplet of levels that have spins 0 - 7 and negative parity. From the second configuration, there will be a sextuplet of levels that have spins 1 - 6 and negative parity. The ordering of the levels within each multiplet will be different from that predicted by the two particle (or hole) shell model since each quasi-particle is part particle and part hole. Therefore in the case of ¹⁴⁰La, there are both particle-particle and particle-hole interactions. It is not surprising, then, that Brennen and Bernstein's coupling rules ²² are violated.

These rules predict a ground state spin and parity of 6- for a particle hole configuration while for a particle particle configuration they predict a 0- ground state. However it is believed the ground state has a spin and parity of 3-. The situation is further complicated by the fact that two configurations generating states of the same parity are very close to each other in energy. This suggests that there might be considerable configuration mixing due to the

residual neutron quasi-proton interaction. The (d,p) reaction is a sensitive test of this prediction. If there is no configuration interaction, then because of the well-known selection rule that proton excited configurations are not excited by direct (d,p) reactions, the sextuplet of states $|2d_{5/2}(p)2f_{7/2}(n);$ $J\pi = 1-,\cdots,6->$ will not be observed. Further the octuplet of states $|1g_{7/2}(p)2f_{7/2}(n);$ $J\pi = 0-,\cdots,7->$ will have intensities proportional to (2J+1). The next states populated in the (d,p) reaction would then presumably be $|1g_{7/2}(p)3p_{3/2}(n);$ $J\pi = 2-,\cdots,5->$. Of course the quartet of states $|2d_{5/2}(p)3p_{3/2}(n);$ $J\pi = 1-\cdots,4->$ should also be close in energy and possibly mix. The states that arise from the $2f_{7/2}$ neutron configuration should all have $\ell=3$ angular distributions. Those from the $3p_{3/2}$ configuration should have $\ell=1$ angular distributions.

Finally in this qualitative discussion of the quasi-particle model, it should be pointed out that in order to explain even-even nuclei and odd-A nuclei in many mass regions vibrational states must be considered. However in ¹⁴⁰La we have a particularly favorable case. An examination of Kisslinger and Sorensen's ¹³⁹La and ¹⁴¹Ce wavefunctions shows that the lowest levels are essentially pure quasi-particle in nature. This results because in ¹³⁹La (a single closed shell nucleus) the one phonon quadrupole vibration is ~1.5 MeV. In ¹⁴⁰La we may hope to explain our states as pure two quasi-particle excitations without the complication of considering collective admixtures. The analysis which follows is summarized in Table 5.

(1) Let us first consider level 6 at 284.2 keV. It is the most intense peak in the (d,p) spectrum below 600 keV of excitation and has a relative intensity of 35.7. (See Table 4a.) This state has an $\ell=3$ angular distribution,

and is assigned as the $|\lg_{7/2}(p)2f_{7/2}(n); J\pi = 7$ - > state. This assignment is based on the fact that no other state with a spin and parity 7- is expected in the low energy portion of the spectra. Therefore the 7- state should be very pure. According to the (2J+1) rule, this must be the most intense state in the multiplet $|\lg_{7/2}(p)2f_{7/2}(n); J\pi = 0 - \cdots - 7$ - > . Configuration mixing in other members of this multiplet does not change this conclusion since configuration mixing can only reduce the intensities of the individual mixed states. Besides knowing that the state is pure, we see also that the peak at 284.2 keV is well-defined and its area is accurately determined. Thus we may safely use it to measure configuration mixing in other states by determining their relative intensity with respect to this state.

(2) The ground state has a spin and parity of 3-. This has been deduced both from its beta decay and from atomic beam studies. This state has a measured l=3 angular distribution, consistent with the neutron being in the $2f_{7/2}$ orbital and has a relative intensity of 13.6. If the state were pure $\log_{7/2}(p)2f_{7/2}(n)$; $\log_{7/2}(p)2f_{7/2$

$$|JM\rangle_{1} = \alpha_{1}|lg_{7/2}(p)2f_{7/2}(n); JM\rangle + \beta_{1}|2d_{5/2}(p)2f_{7/2}(n); JM\rangle$$

$$|JM\rangle_2 = \alpha_2 |\lg_{7/2}(2)2f_{7/2}(n); JM\rangle + \beta_2 |2d_{5/2}(p)2f_{7/2}(n); JM\rangle$$

If we choose phases so that the α 's are positive, then $\beta_1=\pm\sqrt{1-\alpha_1^2}$, $\alpha_2=|\beta_1|$ and $|\beta_2|=\alpha_1$. In direct reaction theory, the cross section for a state is proportional to the spectroscopic factor. For the (d,p) reaction, this is the square of the overlap integral of the target ground state plus the incident neutron and the final state in the daughter nucleus. Thus for state 1, the spectroscopic factor will be proportional to α_1^2 while for state number 2, it will be proportional to β_1^2 . The theoretical ratio of intensities for mixed states will be $(I_{J=}/I_{7-})_{th}=\gamma^2(2J+1)/15$ where for states labeled 1, $\gamma=\alpha_1$ and for states labeled 2, $\gamma=\beta_1$. Solving this expression for γ using the experimental intensity ratio, we find that for the ground state $|\alpha|=0.90$ and $|\beta|=0.47$. In fitting transition probabilities Burde et al. β 0 assume that this state is pure.

- (3) If there are only two contributing configurations, then we expect a second 3- state with $\alpha = 0.43$ and $|\beta| = 0.90$. The predicted relative intensity of this state is $(I_3-/I_7)_{\rm th}=0.09$. Level 7 at 319.2 keV has an experimental relative intensity of $(I_3-/I_7)_{\rm exp}=0.09\pm0.01$ units. On the basis of the evidence we conclude that level 7 is the second 3- state.
- (4) Level 4 at 63.2 keV has a $\ell=3$ angular distribution and a relative intensity of 20.5. This yields the experimental ratio $(I_{63.2}/I_{284.2})_{\rm exp}=0.58$ \pm .03. This is in excellent agreement with the theoretical prediction of the (2J+1) rule for an unmixed 4- state, viz. $(I_{4-}/I_{7-})_{\rm th}=0.60$. Therefore we conclude that the state at 63.2 keV has $J_{71}=4$ and $\alpha=1.0$. Because of its high spin, this level would not be observed in the beta decay of 140 Ba and since $\alpha=1.0$, the second 4- state is not expected to be observed in the (d,p) experiment.

- (5) Level 3 at 49.2 keV has a $\ell=3$ angular distribution and a normalized intensity of 30.4. Using the (2J+1) rule for unmixed states, one would conclude that $(I_6/I_7)_{\rm th}=0.87$. If we take the ratio of the relative intensity of this level and the 7- level, we find that $(I_{49.2}/I_{284.2})_{\rm exp}=0.85\pm0.03$. Considering the experimental errors, this is sufficiently close to the theoretical ratio to conclude that the 49.2 keV level has $J_{\pi}=6$ and $\alpha=1.0$. Here also the large spin of this state precludes its observation in the beta decay of 140 Ba, and since $\alpha=1.0$, the second 6- state should not be observed in the (d,p) experiment.
- (6) Level 9 at 578.6 keV corresponds to the level observed in beta decay of 140 Ba 7,9 at 580 keV. This level has tentatively been assigned 0- spin and parity. This state, like the 7- state, should be essentially pure. Because of its very small intensity, it was not feasible to measure its angular distribution. However its normalized intensity is 1.7 so that $(I_{578.6}/I_{284.2})_{\rm exp} = 0.05 \pm 0.01$. The theoretical value for the ummixed 0- state is $(I_{0-}/I_{7-})_{\rm th} = 0.067$. This agreement strongly supports the spin 0 assignment.
- (7) Level 5 at 161.6 keV has also been observed in the beta decay of 140 Ba. 7,8,9 The 162 keV transition to the ground state is almost entirely Ml and so the fact that it has been populated directly in the beta decay of 140 Ba makes the spin and parity assignment of 2- unique. This state has an $\ell=3$ angular distribution and a normalized intensity of 6.0. Therefore for this state $\alpha=0.72$ and $|\beta|=0.69$. This would imply that the normalized intensity of the second 2- state is 5.7. Burde et al. 9 have also found that the 2- states are highly admixed.
- (8) Level 8 at 466.6 keV has been observed in the beta decay of ¹⁴⁰Ba. ^{7,8,9} Both angular correlation measurements and measurements of the mean life of the state⁹

suggest that it has $J\pi$ =1-. This level has an angular distribution consistent with ℓ = 3 and a normalized intensity of 2.4. This yields the experimental ratio $(I_{466.6}/I_{284.2})_{exp}$ = 0.07 ± .01 while the theoretical ratio from the (2J+1) rule for unmixed states is 0.20. Therefore α = 0.59 and |3| = 0.81. This is in contrast to the results of Burde et al. 9 who argue from transition probabilities that the two 1- states are only slightly admixed. The normalized intensity of the second 1- state is predicted to be 4.6 units.

- (9) Level 1 at 30.6 keV is certainly the state observed in the decay of 140 Ba at 29.6 keV. 7,8,9 The 29.6 keV gamma transition to the ground state is predominantly M1 and so the fact that it is observed in beta decay from the O+ ground state of 140 Ba makes the spin assignment of 2- unique. This state has an $\ell = 3$ angular distribution and a relative intensity of 14.4. The predicted value for the normalized intensity of this state (see paragraph 7) is only 5.7. But even if this state were pure, the (2J+1) rule would predict a normalized intensity of only 11.8 units. Clearly this is impossible and indicates that there are either more levels in the first grouplet of peaks than the least squares analysis indicates and/or there is not sufficient experimental detail to accurately determine the relative intensities of the states labeled 1 and 2. This is suggested by the fact that an acceptable fit in the least squares sense can be obtained by omitting peak 1 and that there appears to be a large systematic error in the excitation energy measured in the (d,p) experiment.
- (10) From the beta decay of 140 Ba, 7,8,9 it is deduced that there is a state at 43 keV. The fact that it does not decay to the ground state strongly suggests that its spin and parity are 1-. We find no state at 43 keV. However if the state were pure $[2d_{5/2}(p)2f_{7/2}(n); J\pi=1->$, then it would not be excited

- in the (d,p) reaction. Assuming that the values of α and $|\beta|$ extracted in (8) are an accurate measure of the mixing of these two states, then we would expect a normalized intensity for this 1- state of 4.6 units. Although our experimental detail is insufficient to define this peak, its arbitrary inclusion helps to explain the discrepencies cited in paragraph (9).
- (11) We have now accounted for seven of the eight states expected from the multiplet $\lfloor \lg_{7/2}(p)2f_{7/2}(n); J\pi = 0-, \cdots 7- > .$ Only the 5- state is missing. This state cannot be observed in the beta decay of Ba, and if it is unmixed, the (2J+1) rule predicts that its normalized intensity should be 26.1. Level 2 has a normalized intensity of 21.2. Rather than propose that this decreased intensity is due to configuration mixing, it seems more likely that states 1 and 2, in addition to the unobserved state at 43 keV, are inadequately decomposed by the least squares analysis. From arguments presented in paragraph (9), there are 8.7 too many units of normalized intensity in level 1. Of these, 4.9 units can be accounted for if level 2 has 26.1 units of intensity. An additional 4.6 units would be accounted for if the mixing of the 1- states deduced in paragraph (10) is correct. Thus within experimental accuracy, we have accounted for the intensity within the first grouplet of peaks by assuming/the 5- state is unmixed and that the intensity of the 2- and 1- states in this grouplet can be predicted from a knowledge of the relative intensities of the 162 kev 2- state and the 467 keV 1- state. Since we have assigned the value $\alpha = 1$ for this state, we expect not to observe the second 5- state in the (d,p) experiment.
- (12) Peaks 10 14 are five intense, well-resolved peaks having $\ell=1$ angular distributions and a mean energy of 687 keV. From the systematics of neighboring isotonic odd-A nuclei, one expects that the $3p_{3/2}$ neutron orbital

should appear at ~ 700 keV in excitation. If we assume that we can neglect vibrational states, then there should be eight states produced from the configurations $|lg_{7/2}(p)3p_{3/2}(n); J_{\pi} = 2-\cdots 5- > and |2d_{5/2}(p)3p_{3/2}(n);$ $J\pi = 1 - \cdots + 4 - >$. To first order, the states having spins 2, 3, and 4 may be close enough in energy so that they can be appreciably mixed. Of course, the $|lg_{7/2}(p)3p_{3/2}(n); J\pi = 5- > state$ would be pure and should be the most intense. But the method of analysis used in paragraphs(1)-(11)fails. After summing the total $\ell = 1$ intensity of these five peaks, we find that peak 14, the most intense of this group, is six units too small in relative intensity to be the 5- state predicted by the (2J+1) rule. This suggests that here phonon admixtures are appreciable. This is not surprising since Fulmer et al. 20 found appreciable phonon mixing for the 3p3/2 state in 141 Ce. It is pertinent that in ¹⁴¹Ce, a nucleus with only one more proton, Fulmer et al. ²⁵ find the 3p, strength shared between levels at 660 keV and 1120 keV and that the mean energies of our first two groups (levels 10 - 14 and levels 18 - 22) that have ℓ = 1 angular distributions are 687 keV and 1077 keV. Fulmer et al. 25 see their first excited state which/an $\ell = 3$ angular distribution at 1500 keV. We observe a sequence of levels that/ ℓ = 3 angular distributions between 1400 and 1600 keV which we therefore attribute to states having a large single particle $2f_{5/2}$ component in their state vector. Fulmer et al. 25 observe their first ℓ = 1 state attributable to the $3p_{1/2}$ single particle state at 1730 keV. We observe a sequence of states having ℓ = 1 angular distributions between 1702 and 1795 keV.

It becomes very complex to discuss these states in terms of even a simple odd-odd quasi-particle and phonon model because the state vector is then a linear combination of the basis vectors $|\overline{j}_p\overline{j}_nJ;\ pR;IM> \text{where }\overline{j}_p\ \text{ and }\overline{j}_n\ \text{ are the quantum numbers of the quasi-protons and neutrons which couple to angular momentum }J\ .$

The letter p represents the number of phonons coupled to angular momentum R, and J and R are coupled to I. Even if we restrict our analysis to states with at most one phonon (pR = 00 and 12) and with $\overline{J}_p = \lg_{7/2}$ or $2^d_{5/2}$ and $\overline{J}_n = 2^f_{7/2}$ or $3^p_{3/2}$, there are 17 basis vectors having that spin 5 and negative parity. At least five of these will be close enough in zero th order to couple extensively with the $(\lg_{7/2} 3^p_{3/2})5;00;5 > \text{component}$ which has the total $3^p_{3/2}$ strength for spin 5 states. This complexity in the nuclear structure makes it impossible to use simple relationships such as the (2^{j+1}) rule and angular distributions to deduce detailed information about the nature of the states or even as measure of their spin.

VI. CONCLUSION

We have observed 70 levels below 1.858 MeV in the nucleus 140 La by (d,p) reaction spectroscopy and have characterized 43 of them by specifying their ℓ values as deduced from angular distributions. Of the 14 lowest levels expected from the two configurations $|1g_{7/2}(p)2f_{7/2}(n); J_{\pi}=0-,\cdots,7->$ and $|2d_{5/2}(p)2f_{7/2}(n); J_{\pi}=1-,\cdots,6->$, we have characterized 11 with respect to their energy position, spin, parity, and the absolute value of the amplitudes in the state vectors with the assumption that configurations other than the two mentioned above are not important. In addition, the (d,p) intensity of the observed 4-, 5-, and 6- states suggest that they are not appreciably mixed and therefore the three unobserved states which also have these spins should be observed in the (d,p) experiment with very small intensity. Below 600 keV we have not been able to interpret the two weak levels 4b and 4c. However, as shown in Table 2, only one of these peaks may be real. It is most likely the

unassigned 4-, 5-, or 6- state and is populated either through a weak $\lg_{7/2}$ proton component or a second order process in the (d,p) reaction. Any attempt to extend these simple interpretations to levels above 600 keV seems doomed because of the strong phonon particle coupling.

La is one of the first non-magic vibrational odd-odd nuclei to be carefully studied. The results suggest, at least qualitatively, the validity of the odd-odd quasi-particle model but above 500 keV careful consideration of the particle phonon interaction must be included in any description even in this simple case where there are only 83 neutrons.

VII. ACKNOWLEDGEMENTS

The authors wish to acknowledge a critical reading of the manuscript by John Rasmussen and valuable comments by Professor Rasmussen and Dr. T. Udagawa: The assistance of Carson Nealy, Frank Rickey and the crew of the F. S. U. Tandem Van de Graaff in taking the data, and the careful plate counting of Mary Jones, Sue Hipps and Ella Jean Wehunt are greatly acknowledged. One of us (J. K.) wishes to thank IBM International (Extension Suisse) for five free hours on the IBM 7040 computer at the Polytechnic School in Lausanne.

Footnotes and References

*This work was supported in part by the U. S. Atomic Energy Commission under contract numbers W-7405-eng-48 and AT-(40-1)-2434. The Florida State University Tandem Van de Graaff was supported by the U. S. Air Force Office of Scientific Research under Contract AFOSR-62-423 and by the Nuclear Program of the State of Florida. Supported in part by the Fonds National Suisse de la Recherche Scientifique.

**
Present address: Physics Dept., University of Fribourg, Fribourg, Switzerland.

- 1. Y. E. Kim, UCRL-10865(unpublished).
- 2. G. L. Struble, J. Kern, and R. K. Sheline, Phys. Rev. <u>137</u>, B772 (1965).
- 3. G. L. Struble and J. O. Rasmussen, Phys. Letters <u>17</u>, 283 (1965).
- 4. L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. 35, 853 (1963)
- 5. See wavefunctions for ¹³⁹La and ¹⁴¹Ce in Kisslinger and Sorensen (Ref. 4).
- 6. Nuclear Data Sheets, National Academy of Sciences, National Research Council (U. S. Government Printing Office, Washington, D. C.).
- 7. J. S. Geiger, R. L. Graham and G. T. Ewan, Bull. Am. Phys. Soc. <u>6</u>, 71 (1961), and private communication.
- 8. Y. K. Agarwal, C. K. Baba and S. K. Bhattacherjee, Nucl. Phys. <u>58</u>, 641 (1964).
- 9. J. Burde, M. Rakavy, and G. Adam, Nucl. Phys. <u>68</u>, 561 (1965).
- 10. M. Giannini, G. Pinto, D. Prosperi, and S. Sciuti, Nuovo Cimento 29, 977 (1963).
- 11. L. V. Groshev, A. M. Demidov and V. I. Pelekhov, in Soviet Progress in Neutron Physics (ed. by P. A. Krupchitskii), Consultants Bureau, New York, p. 248.
- 12. F. W. Bingham and M. B. Sampson, Phys. Rev. <u>128</u>, 1796 (1962)
- 13. High purity La₂03 was provided by Johnson, Matthey and Co., London.
- 14. M. C. Oleson and B. Elbek, Nucl. Phys. 15, 26 (1960).

[†]Present address: Florida State University, Tallahassee, Florida.

- 15. C. P. Browne and W. W. Buechner, Rev. Sci. Instr. <u>27</u>, 899 (1956).
- 16. R. A. Kenefick and R. K. Sheline, Phys. Rev. <u>133</u>, B25 (1964).
- 17. R. H. Moore and R. K. Zeigler, A.E.C. Report LA-2367 (unpublished).
- 18. F. Everling, L. A. König, J. H. E. Mattauch and A. H. Wapstra, Nucl. Phys. 18, 529 (1960).
- 19. R. H. Bassel, R. M. Drisko, and G. R. Satchler, AEC Report ORNL-3240 (unpublished).
- 20. F. G. Perey, Phys. Rev. 131, 745 (1963).
- 21. C. M. Perey and F. G. Perey, Phys. Rev. <u>132</u>, 755 (1963).
- 22. M. H. Brennan and S. A. Bernstein, Phys. Rev. <u>120</u>, 927 (1960).
- 23. F. R. Petersen and H. A. Shugart, Bull. Am. Phys. Soc. 5, 343 (1960).
- 24. BCS calculations described in the second paper predict that in 139 La the 2d $_{5/2}$ quasi-proton state is 200 keV above the $_{197/2}$ state but that all other states of the same parity are > 2000 keV.
- 25. R. H. Fulmer, A. L. McCarthy, and B. L. Cohen, Phys. Rev. <u>128</u>, 1302 (1962).

Table 1. A summary of experiments.

Target Angle		Exposure	Resolution (keV)	Cross sec/track	Q-Value (keV)		
				<u> </u>		· · · · · · · · · · · · · · · · · · ·	
1	25	10,000	13.1	0.20	2939.7	•	
3	35	6,000	12.4	0.56	2936.4		
3	45	7,500	12.8	0.45	2939.1	i. Ver	
3	55	6,000	13.9	0.54	2939.1		
3	65 😸	6,000	12.1	0.58	2938.5	:	
13	75	12,000	12.8	110.29	2937.6		
)4	.85	9,000	14.3	0.13	2921.1	• .	
6	105	8,000	12.1	0.32	2937.8		

Comment to Table 2

For the significance of these standard deviations, the reader is referred to the paragraph on errors in section IV. Since we cannot make a good estimate of such errors as the energy calibration error at this time, we prefer not to increase arbitrarily the standard deviation to include them, in order not to mask such important errors as an improper number of components in the fitting of a group of peaks. Large and erratic differences compared to the standard deviation between our and other values should however not automatically be interpreted in this sense. For instance impurities may also alter the results, especially in the case of small peaks. We believe the standard deviation in intensities is in general a good estimate of the true error. However in some cases an improper number of components, impurities and the approximate fitting shape may be the cause of large non-statistical errors.

WA: The energy value is a weighted value.

- 1) $5Si^{29}$ component at 45° .
- 2) $9F^{20}$ at 35° (30 μ b).
- 3) 5Si²⁹ at 85°.
- 4) $9F^{20}$ at 45° (30 μ b).
- 5) G. S. 0^{19} at 25° (100 µb). $9F^{20}$ at 55°. $5Si^{29}$ at 105°.

[†]It appears from the discussion in section V, that there is an unobserved peak at 43 keV which has a non-negligible intensity. The inclusion of this component would, of course, modify the energies and intensities of the close lying peaks.

^{*}A background has been subtracted from this peak.

^{**} It is possible that the two levels 4a and 4b have only been artificially decomposed and that they represent only one level at about 102 keV.

^{***}The appearance of impurity peaks near this level at several angles makes the uncertainty of the values appreciably larger than the quoted standard deviations.

- 6) 5Si²⁹ at 105°.
- 7) G. S. 0^{19} at 35° (20 μ b).
- 8) $7si^{29}$ at 25° (10 µb).
- 9) 9si²⁹ at 25° (300 μb).
- 10) 9Si²⁹ at 35° (170 μb).

Table 2. Level energies (keV) and differential cross sections (Microbarns/sr).

The standard deviation is given beneath each value.

Level	Energy	,	Di	fferer	ntial (Cross S	Section	1	-	Comments
		25°	35°	45°	55°	65°	75°	85°	105° .	
GS	0.0	52	134	147	171	194	163	114	96	
		, 6	9	9	13	15	11	7	11	
1	30.6	43	85	220	149	227	189	147	114	#
	0.2	54	47	56	82	84	54	88	46	
2	37.5	81	265	215	345	243	195	169	157	#
<u> </u>	0.4	47	43	41	59	57	40	95	64	
3	49.2	1.11	290	448	395	378	325	251	230	#
	0.3	10	17	31	27	50	28	14	13	
14	63.2	70	152	299	277	264	228	199	156	
	0.2	6	9.	19	. 22	1.8	13	15	11	
4a	92.8	14	, J [†]	9 .	13	11	3	32	. 5	X-X
÷.	1.5	1	2	3	14	5	2	14	1	
4 _b	106.3	5	12	20	13	9	16	30	14	**
S.	0.7	. 1	2	-2	14	14	3	: ** 3	2	
5	161.6	25	1414	89	77	71	62	60	43	***
	0.3	2	4	. 8	7	6	λ _†	-5	4 .	
6	284.2	123	315	477	492	447	387	341	234	
	0.4	8	20	27	30	25	20	17	22	
7	319.2	14	21	40	31	40	35	38	32	
	0.7	1	3	, 4	4	3	5	3	4	

Table 2. (continued)

Level	Energy		Di	fferen	ntial	Cross S	Section			Comments
		25°	35°.	45°	55°	65°	75°	85°	105°	
8	466.6		22	34	35	31	26	20	16	AW
	1.0		3	2	3	3	2.	4	3	
9	578.6		20	39	19	16	14	21	.6	***
	1.4		3 '	6	5	3	2	2	3	*
10	601.6	1423*	369	423	431	417	363		148	WA 1
	0.6	30	125	₹ 30	30	25	2011	20	14	
11	658.3	374 ×	•* !**	488	471	445	373 ·	238	191	
	0.5	30	. 1	30	31	26	22	16	13	
12	711.6	257*		228	268	200	162	108	85	
	0.7	25	4	15	19	14	11	7	7	·
13	744.5	184*	188*	191	157	153	117	95	70	
	0.7	20	20	14	12	11	9	6	5	
14	771.7	513*	499 *	660	557	492	476	330	237	
•	0.6	60	40	38	35	28	26	18	15	
15	794.2	58 *	75 *	31	35	43	31	68	14	
	0'.8	20	1.0	. 8	14	5	3	5	2	
16	912.6	40 ×	75 *		33	36	34	23	. 22	
	0.8	15	20		4	3	4	3	2	
17	930.3	18*	29*		4	8	4	11.	8	
	0.8	3.0	3.0		1.	1	2	2	3	
18	1035.8	47*	54;	60	32) _{F.} J.	145	22	17	
. /	0.6	10	6	6 -)4.	5	5	2	2	•

Table	2.	(continued)	3.1
30010	'	(COII OTITACA)	<i>i</i> 1

Level	Energy		Differential Cross Section									
		25°	35°	45°	55°	65°	75°	85°	105°			
19	1056.9	248	349	339	370	351	326	228	154	2		
*# .	0.8	20	23	.24	23	21	20	13	. 9			
20	.1076.9	23	33	28	17	14	21	24	5			
* .	1.4	3	5	14	4	14.	5	2	1			
51	1102.4	124	147	157	161	151	149	111	62			
	0.9	10	13.	11	10	. 11	14	7	6			
22	1118.2	70	80'	79	79 *	75	55	75	27	3 i		
	0.9	8	. 8	7	15	7	5	5	. 5			
.23	1137.0	80	108	108	, 75 *	75	55 [.]	74	35	WA		
	1.0	8	9	8	15	9	13	7	5			
24	1149.9	33 *	29	43	67 *	26	37	24	29			
	1.4	10	5	6	15	14	14	14	5			
25	1169.1	33 *	36	19		8	6	12	: 3 ···	AW		
	1.0	. 10	4	7+		3	1	14	2			
26 .	1191.8	40 *	92	115	•	87	79	65	58			
	0.8	20	8 .	8		. 8	5	. 7	5			
27	1212.0		. 28	60		33	30 °	38	16	4		
	1.0	. Nag	5 ·	7		5	4,	3	3			
28	1227.1		26	21		5	5	10	14			
	1.7		5	8		3	3	. 5	2			
29	1245.6		33	24		29	25	24	23			
	0.6		5	3) j.	. 5	3	3			

Table 2. (continued)

Level	Energy		Di	lffere	ntial (cross	Section	ı		Comments		
		25°	35°	45°	55°	65°	75°	.85°	105°			
30.	1262.4		22	31	15*	17	19	19	}	-		
	0.6		5	4	10	3	3	2	7			
31	1279.9		25 *	27	36 *	7	10,7	13.	5			
	0.8		10	3	15	2	3	.2 .				
32	1295.4		38*	48	59 *	55	53	38	,33			
	1.0		10	5	15	5	5	3	<i>y</i> 4			
33	1312.5	;# 	"21 *	21	19*	14	14 (18	17	WA		
	1.4		8	2	10	3	31	, '2 , ,	3	:		
34	1328.0			13	12	7	•	11	3	· · · · · · · · · · · · · · · · · · ·		
	2.2			3	7	2 .	•	3	3 2			
35	1343.0)		103*	71	70	66	60			
	1.3			111	10	17	11	7	12			
36	1352.2	40 ×		7	33 *	43	38	25	19	AW		
	1.0	20	}		15	16	10	6	2			
37	1370.2	42*		26	43*	27	21 «	23	20	*		
	0.9	10		3	8	4	3	4.	2.			
38	1388.0	105*	,	18	26	10	2	* 73	43	5		
	1.5	20		3	<u>,</u>	3	1	2	29			
39	1403.3	18 *		1,4	24	23	17	15	25	6 '		
	0.6	10		3	7	14	3 ·	4	. 27			
40	1418.4	49 *		79	139	89	107	73	63		e ja	
•	0.9	15	6.	6	11	13	13	7	6			
										** *		

Table 2. (continued)

Level	Energy	Differential Cross Section								Comments
		25°	35°	45°	55°	65°	75°	85°	105°	
41	1431.5	43 *		104	113	127	78	107	109.	
· · · · · ·	0.5	15		20	9	14	19	9	8	
142	1444.0	17*		56 *	71	63	61	49	1,14	
•	1.0	10	· . ·	25	6	14	26	7	4	
43	1461.1	4 <u>1</u> *	48 *	90*	80	81 4*	78 ,	67	60	
	0.8	-20	20	15	15	9	6	7	5	
44	1479.2) 1 O*	43*	45*	88	113*	57	51	1+14	7
•	0.9	15	20	20	10	20	8	5	5	
45	1493.0		43*	46 ×	65		36	40	40	,
	1.4	18*	20	20	9	•	10	14	5	
46	1508.0	10	68 *		55		25	32	24	
*	2.2		3'0		11		13	8	4	
47	1519.3	23*	48 *		74		38	44		WA
	, 0.9	10	20		8	1	4	13		
48	1529.2	30*	24 *	V			70	37	74	WA
	0.6	,15	10	÷.			5	18	7	
49	1554.6	32 *	1414 ×		-66		64	55	.52	WA
	0.6	10	15		19		7	14	. 5	
50	1568.9	21*	39 *		42		40	54	41	
	0.7	10	15		25		11	5	5	
51	1583.6	8 *]],*		62		27	15		
	2.6	5	り		19		13) ₁		

Table 2. (continued)

25° 35° 45° 55° 65° 75° 85° 105° 52 1600.1 45* 81* 86* 37 92* 62 53 39 0.9 10 10 30 19 25 5 5 5 53 1616.6 23* 77* 51* 92 35* 28 25 27 1.1 10 10 20 10 20 4 12 4 54 1630.2 36* 48* 64* 45 85* 77 44 55 1.0 10 10 20 8 20 7 8 6 55 1643.6 31* 37 57* 60* 56* 43 42 35 1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27 1.1 5 5 5 8 7	
52 1600.1 45* 81* 86* 37 92* 62 53 39 0.9 10 10 30 19 25 5 5 5 53 1616.6 23* 77* 51* 92 35* 28 25 27 , 1.1 10 10 20 10 20 4 12 4 54 1630.2 36* 48* 64* 45 85* 77 44 55 1.0 10 10 20 8 20 7 8 6 55 1643.6 31* 37 57* 60* 56* 43 42 35 1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27	
53 1616.6 23* 77* 51* 92 35* 28 25 27 , 1.1 10 10 20 10 20 4 12 4 54 1630.2 36* 48* 64* 45 85* 77 44 55 1.0 10 10 20 8 20 7 8 6 55 1643.6 31* 37 57* 60* 56* 43 42 35 1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27	
1.1 10 10 20 10 20 4 12 4 54 1630.2 36* 48* 64* 45 85* 77 44 55 1.0 10 10 20 8 20 7 8 6 55 1643.6 31* 37 57* 60* 56* 43 42 35 1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27	
54 1630.2 36* 48* 64* 45 85* 77 44 55 1.0 10 10 20 8 20 7 8 6 55 1643.6 31* 37 57* 60* 56* 43 42 35 1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27	
1.0 10 10 20 8 20 7 8 6 55 1643.6 1 31* 37 57* 60* 56* 43 42 35 1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27	erio. Nel companyor
55 1643.6 31* 37 57* 60* 56* 43 42 35 1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27	
1.1 7 8 20 8 20 5 6 4 56 1657.4 22* 42 66* 31* 35* 30 34 27	
56 1657.4 22* 42 66* 31* 35* 30 34 27	.8
1.1 5 5 25 8 7 3 4 3	AW
57 1672.7 24* 35 39* 64* 33* 35 26 11	
1.1 6 6 25 20 10 5 3 5	
58 1685.2 48 63 74* 51* 89* 48 51 39	
0.8 6 7 25 15 10 6 4 6	,
59 1702.2 43 50 61* 99* 81* 43 48 32	
0.8 4 5 10 10 5 5 4	
60 1718.1 117 127 91 118 90 48	•
0.8 102 10 12 28 11 7 16	
61 1730.1 8 63 95 109 53 66 47	():
1.6 35 37 30 20 8 5	
62 1742.1 373 43 97 117 64 49 59	9
1.2 23 37 15 10 19 7 5	

Table 3. Optical Model Parameters.

	"d" potential	"p" potential
Depth of real potential V_S (MeV)	73	57
Nucleus and charge radius ros, Rc (F)	1.26	1.25
Diffuseness of real potential a (F)	0.87	0.65
Depth of Surface part of imaginary potential W_D (MeV	V) 12	14
Nuclear radius of imaginary potential rol (F)	1.37	1.25
Diffuseness of imaginary potential $a_{\underline{I}}$ (F)	0.7	0.47
and the second of the second o		

Table 4á. Normalized cross sections of the peaks GS, 1, 2, 3, 4, 5, 6, 7 8 and 9. Norm: GS + 1 + 2 + 3 + 4 = > 100

Angular distribution: ℓ = 3 (see Fig. 4a)

The standard deviation is given beneath each value.

Level	Energy	Norma	lized	Differ	ential	Cross	Secti	on .		Average	
		25°	·35°	45°	55°	65°	75°	85°	105° *	. ,	
GS	0.0	15	15	11	13	15	15	13	13	13.6	
		2	1	1	1	1	1	1	2	0.5	
1	30.6	12	9	16	11	17	17	17	.15	14.4	
	0.2	15	. 5	14	6	6	5 .*	10	6	2	
2	37.5	23	29	.16	26	19	18	19	21	21.2	
*	0.4	13	5	3	4	4	4	11	9	2	
3 :	49.2	31	31	34	30	29	30	29	31	30.4	
	0.3	3 .	2 ;	2	2	4	3	; 2	2,	0. 6	
4	63.2	20	16	23	21	20	21	23	21	20.5	
	0.2	2	1	1	2	1.	1	2	1	0.7	
5	161.6	7.0	4.7	6.7	5.7	5.4	5.7	6.8	5.7	6.0	·
	0.3	.6	. 4	.6	•5	. 4	: 4	•5	.6	0.3	
6	284.2	34	34	36	37	34	35	39	31	35.7	
	0.4	2	2	. 2	2	2	2	2	3	0.6	
. 7 .	319.2	3.9	2.3	3.0	2.3	3.0	3.2	4.3	4.2	3.3	· · · · · · · · · · · · · · · · · · ·
i a	0.7	0.3	0.3	0.3	0.3	0.2	0.5	0.3	0.5	0.3	
8	466.6		2.4	2.6	2.7	2.3	2.4	2.3	2.3	2.40	
	1.0		0.3	0.2	0.2	0.3	0.2	0.4	0.3	0.1	
9	578.6		2.1	2.9	1.4	1.2	1.3	2.1+	0.8	1.7	
	1.4		0.3	0.5	0.4	0.2	0.2	0.2	0.4	•7	

Table 4b. Normalized cross sections of the peaks 10, 11, 12, 13, and 14. Norm: 10+13+14=>100 Angular distribution: $\ell=1$ (see Fig. 4b) The standard deviation is given beneath each value.

Level	Energy	Norm	alized	Diffe	rentia	l Cros	s Sect:	ion		Average	
· ·	1	25°	35°	45°	55°	65°	75°	85°	105°		
10	601.6	38 *	35	33	38	39	38	38	33	36.4	
	0.6	3	2	2	3	2	2	3	3	0.9	•
11	658.3	33 [*]		38	41	142	39	35	42	38.5	
	0.5	3		. 2	3	2	2	. 2	3	1.3	
12	711.6	23*		18	. 23	19	17	16	19	19.1	to the second
	0.7	2		1	2	1	1	1	. 2	1.0	
13	744.5	16*	1.8*	15	14	14	12	14	15	14.8	
• :	0.7	2	2	1	1	1	1 /	1	1	0.6	
14	711.7	46*	47 *	52	49	46	50	48	52	48.6	
:	. 0.6	5	6	3	3	3	. 3	. 3	. 3	0.8	
						1				-	

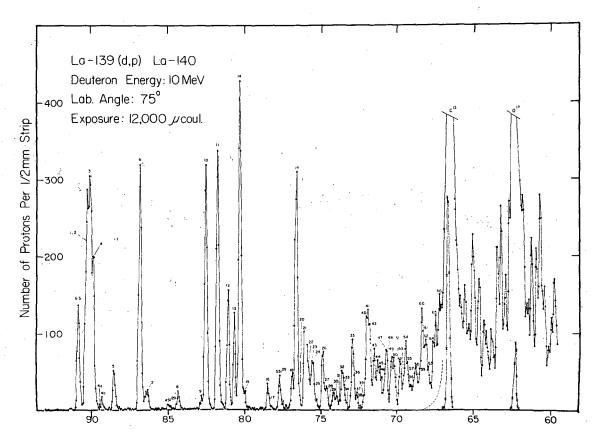
^{*} A background has been subtracted from this peak.

Table 4c. Normalized cross sections of the peaks GS. 1. 2, 3, 4, 5, 6. and 8. Norm: 18 + 19 + 20 + 21 + 22 = > 100Angular distribution: $\ell = 1$ (See Figures 4c and 4d)
The probable error is given beneath each value.

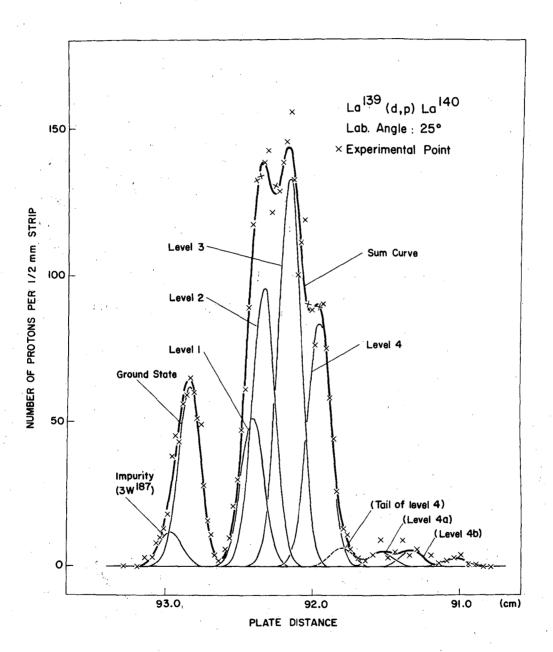
Level	Energy	Norma	lized	Differential		Cross Section			Average		
·		25°	35°	45°	55°	65°	75°	85°	105°		
18	1035.8	9 *	8	9	.5	7	7	5	6	7.0	
	0.6	2	1	1	1	1	1	1	ŗ	0.6	
19 .	1056.9	48	53	51	56	56	55	50	58	53.3	
	0.8	4	4	14	4	3	3.	3	3	1.2	
20.	1076.9	* 4.5	5.0	4.2	2.6	2.2	3.5	5.2	1.9	3. 6	
	1.4	.4	.8	.6	.6	.6	.8	. 4	• 4	. 4	
21	1102.4	24	22	24	24	24	25	24	23	23.9	
* .	0.9	2	2	2	2 .	2 .	2	Ż	2	0.3	
22	1118.2	14	12	12	12*	12	9	16	10	12.3	`
	0.9	2	1	1	2	1	1 .	1	, 2	0.7	

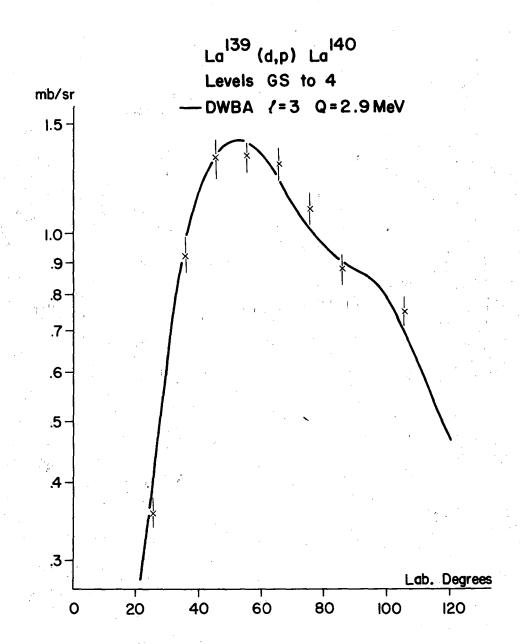
^{*} A background has been subtracted from this peak.

i	2	3	14	5	6	7	8	9	10
Level Nr.	Energy (keV)	Normal. Intens.	Intens. (2J+1) Rule*	Spin	Expering State N		Calculated Intens.	Rel. Experiment. Intens.	Comments Section V
GS	0.0	13.6 0.5	0.47	3	0.90	0.43	0.38	0.38 0.02	2
1	30.6 0.2	1½.½ 2	0.33	. 2	0.69	0.72	0.16	0.40	9
2	37.5 0.4	21.2 2	0.73	5	1.0	~0	0.73	1.02 0.59 ±0. 0.06 ±0.	
2a	43	Unobserv	red 0.20	. J.	0.81	0.59	0.13	Unobserved	10
3	49.2	30.4 0.6	0.87	6	,1.0	~0	0.87	0.85 0.03	
<u>}</u>	63.2 -0.2	20.5 0.8	0.60	<u>1</u> 4	1.0	~0	0.60	0.58 0.03	14
5	161.6	6.0	0.0	_2	0.72	0.69	0.17	0.17 0.01	. 7
· 6	284.2	35.7 0.6	1.00	7	1.0		1.00	1.00	1
7	319.2 0.7	3.3 0.3	0.0	3	0.43	0.90″	0.09	0.09 0.01	3
8	466.6 1.0	2.4	0.0	1	0.59	0.81	0.07	0.07 < 0.01	8
9	578,6 1.4	1.7	0.06	0	1.0	**************************************	0.06	0.05 0.01	6
<u> </u>									

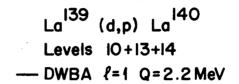

It is assumed that for spin doublets the lower energy number belongs to the $\lg_{7/2}$ proton configuration Col. 3: From Table 4a Col. 8 and 9: Intensity of peak 6 normalized to 1.0. Col. 4: Intensity for pure $\lg_{7/2}$ configuration

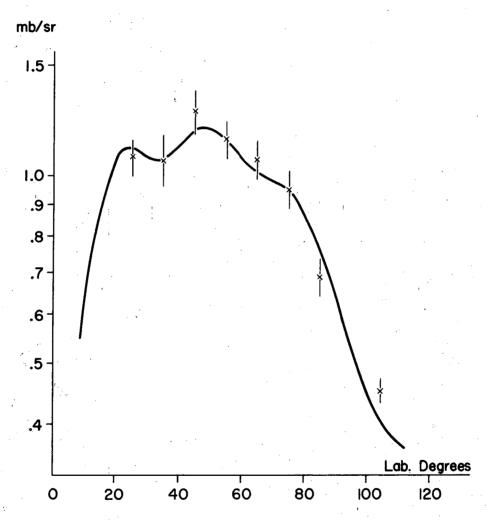
Intensity for pure $\lg_{7/2}$ configuration

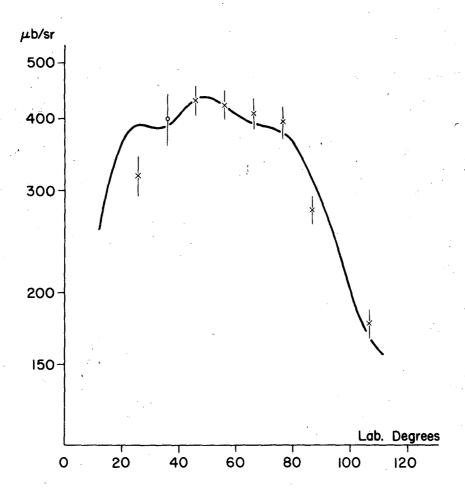

Figure Captions

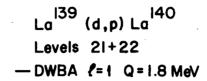

- Fig. 1. Levels in 140 La known from previous investigations.
- Fig. 2. Typical proton spectrum for the reaction ¹³⁹La(d,p) ¹⁴⁰La.
- Fig. 3. Least-squares fit of the high energy part of the 25° proton spectrum from the reaction 139 La(d,p) 140 La.
- Fig. 4. Angular distribution of several different proton groups from the reaction \$\$^{139}La(d,p)\$ \$^{140}La\$. Experimental data are represented by crosses (X) or by an asterisk (*), when a background was subtracted, or by a zero (o) when an impurity component was subtracted. A zero surrounded by an asterisk indicates that both subtractions have been performed.
 - a) Levels at 0, 30, 37, 49, and 63 keV, belonging to the $(\lg_{7/2})_p(2f_{7/2})_n$ configuration.
 - b) Levels at 602, 745 and 772 keV.
 - c) Levels at 1036, 1057 and 1077 keV.
 - d) Levels at 1102 and 1118 keV.
 - e) Levels at 1343 and 1352 keV.
 - f) Levels at 1403, 1418, 1432 and 1444 keV.
 - g) Level at 1461 keV.
 - h) Levels at 1479, 1493, 1508, 1519 and 1529 keV.
 - i) Levels at 1555, 1568 and 1584 keV.
 - j) Levels at 1617, 1630 and 1644 keV.
 - k) Levels at 1657, 1672 and 1685 keV.
 - 1) Levels at 1702 and 1718 keV.
 - m) Levels at 1778 and 1795 keV.
- Fig. 5. Level scheme for ¹⁴⁰La from these experiments. Excitation energies are in keV.

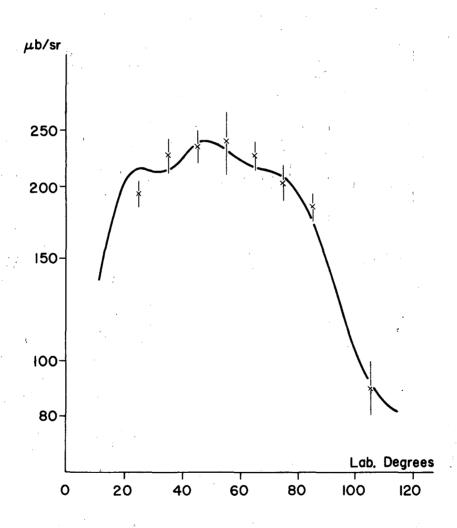
From ref. 8 and 9 Decay Spectroscop			From ref. 12 (d,p)				
J#			Jπ			l	
43 (I-) 30 2- 0 3-	·	30 0	(3-)		0	3	
162 2-		162	(2-)		٠		
		250	(2-)		250	3	
466 (0-,1-	-) ——	466	(0-,1-)				
		600 537	(0-,1-)		600	Ī	
		690			710	ļ	
6							
			;		1020		
1	i d		ļ.	į ,			
				,	1310		
		1430			1370 1310		
		1470			1460		
		1650					
					1800		
Energies in Ke	eV				1950 1880		
La ¹⁴⁰ Level sc	heme						
6					2130		

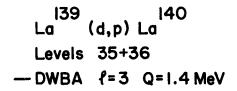


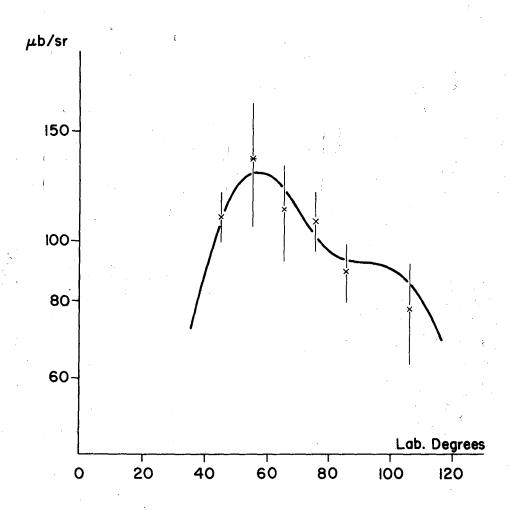

Distance Along Plate-cm

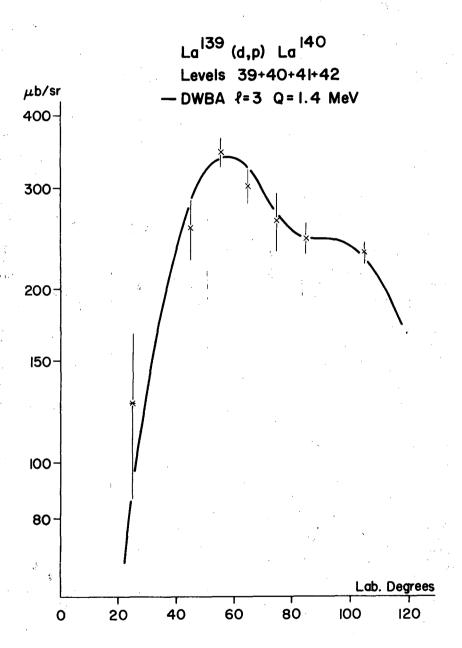


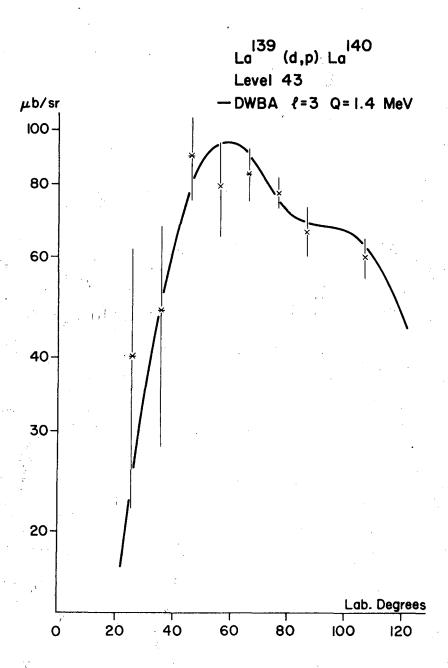


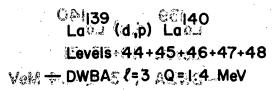

MUB-9621

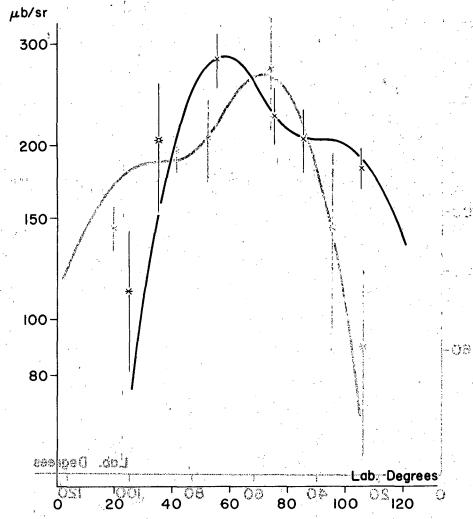


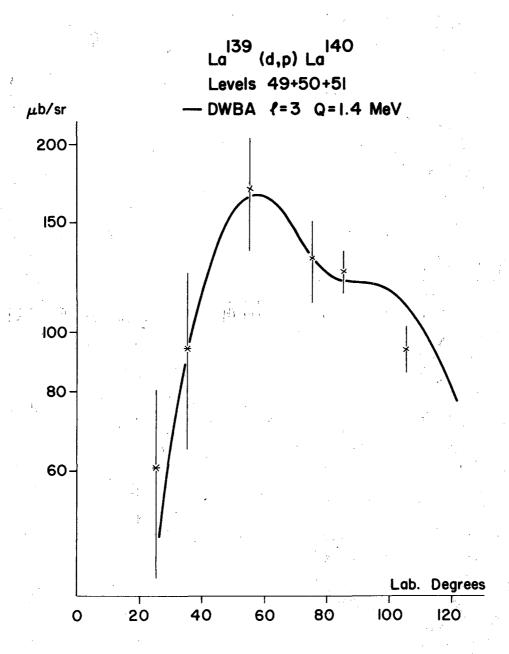


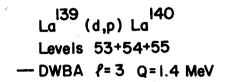


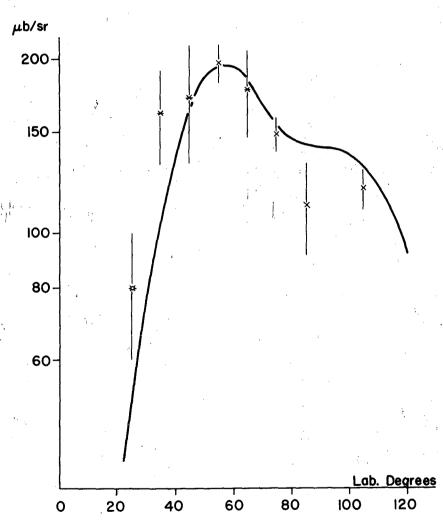


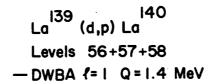


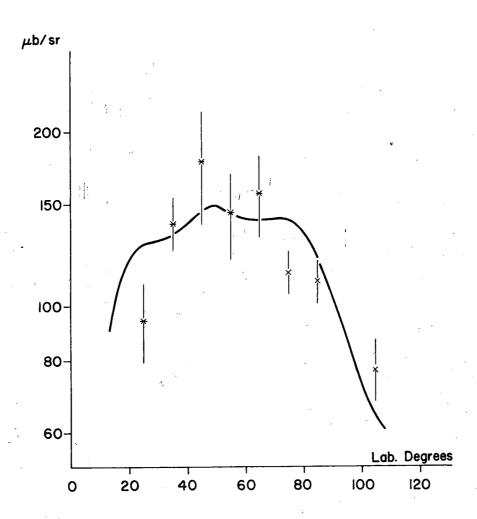


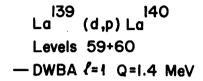


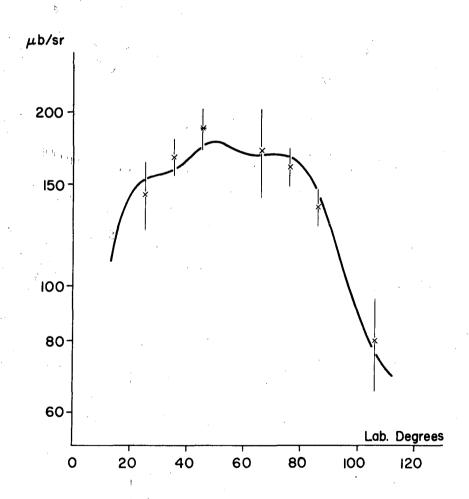


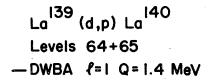


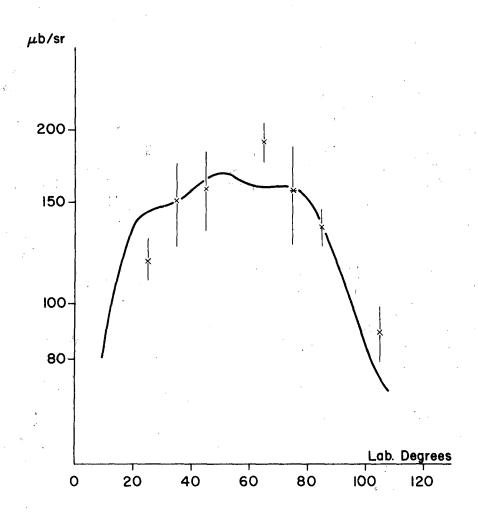












MUB-9618

```
930
913
                                         3
3
794
772
745
                                         3
                                         3
                                         3
3
712
658
                               1403
                              1388
602
579
                              - 1370
       (3)
            0-
                                                          - 1858
- 1844
                                        (3)
(3)
                              - 1328
- 1312
                                                           1826
                                                           1810
467
        3
                              - 1295
                                                           1795
                            <del>, -</del> ,1280
                                                           1778
                              1262
                                                          1758
                              1246
                                                           1742
1730
319
       (3) 3-
                               1227
1212
284
        3
                                                           1718
                               1192
                              -1169
                                                           1673
                                                                    (1)
161
        3
                               1149
                                                                    (3)
(3)
                              1137
                                                           1630
                              -1118
                                                           1617
106
93
                               1102
                                                           1600
                                                           1584
                                                                    3
                              1077
                                                           1569
1555
 63
49
37
30
            4-
6-
5-
2-
                              1057
                                                           1529
1519
1508
                              1036
       3
            3-
        1
            Jπ
                                         1
```

La¹⁴⁰ - Level Scheme from this work (Energies in KeV)

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.