
UC Davis
UC Davis Previously Published Works

Title
Probabilistic Deterministic Finite Automata and Recurrent Networks, Revisited

Permalink
https://escholarship.org/uc/item/44p2z8m4

Journal
Entropy, 24(1)

ISSN
1099-4300

Authors
Marzen, Sarah E
Crutchfield, James P

Publication Date
2022

DOI
10.3390/e24010090

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/44p2z8m4
https://escholarship.org
http://www.cdlib.org/

����������
�������

Citation: Marzen, S.E.; Crutchfield,

J.P. Probabilistic Deterministic Finite

Automata and Recurrent Networks,

Revisited. Entropy 2022, 24, 90.

https://doi.org/10.3390/e24010090

Academic Editors: Lizhong Zheng

and Chao Tian

Received: 26 November 2021

Accepted: 30 December 2021

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Probabilistic Deterministic Finite Automata and Recurrent
Networks, Revisited
Sarah E. Marzen 1,*,† and James P. Crutchfield 2,*,†

1 W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College,
Claremont, CA 91711, USA

2 Complexity Sciences Center, Physics Department, University of California at Davis, One Shields Avenue,
Davis, CA 95616, USA

* Correspondence: marzen.sarah@gmail.com (S.E.M.); chaos@ucdavis.edu (J.P.C.)
† These authors contributed equally to this work.

Abstract: Reservoir computers (RCs) and recurrent neural networks (RNNs) can mimic any finite-
state automaton in theory, and some workers demonstrated that this can hold in practice. We
test the capability of generalized linear models, RCs, and Long Short-Term Memory (LSTM) RNN
architectures to predict the stochastic processes generated by a large suite of probabilistic deterministic
finite-state automata (PDFA) in the small-data limit according to two metrics: predictive accuracy
and distance to a predictive rate-distortion curve. The latter provides a sense of whether or not the
RNN is a lossy predictive feature extractor in the information-theoretic sense. PDFAs provide an
excellent performance benchmark in that they can be systematically enumerated, the randomness
and correlation structure of their generated processes are exactly known, and their optimal memory-
limited predictors are easily computed. With less data than is needed to make a good prediction,
LSTMs surprisingly lose at predictive accuracy, but win at lossy predictive feature extraction. These
results highlight the utility of causal states in understanding the capabilities of RNNs to predict.

Keywords: time series prediction; finite state machines; hidden Markov models; recurrent neural
networks; reservoir computers; long short-term memory

1. Introduction

Many real-world tasks rely on prediction. Given past stock prices, traders try to predict
if a stock price will go up or down, adjusting investment strategies accordingly. Given past
weather, farmers endeavor to predict future temperatures, rainfall, and humidity, adapting
crop and pesticide choices. Manufacturers try to predict which goods will appeal most to
consumers, adjusting raw materials purchases. Self-driving cars must predict the motion of
other objects on and off the road. Furthermore, when it comes to biology, evidence suggests
that organisms endeavor to predict their environment as a key survival strategy [1–3]. One
simple metric often used to evaluate the quality of our predictive algorithms is simply the
accuracy of our predictions—how well we can predict what will happen next given what
has happened previously.

However, we also care about the cost of formulating and communicating a prediction
of the next symbol in some sequence of symbols, either to another person or from one part
an organism to another. Costs of formulation might include the time, memory, and/or
energy taken to compute a prediction. Once the prediction is made, it is often communicated
to some other downstream region that will use the prediction to take an action. This
communication requires some amount of channel capacity, and channel capacity can be
energetically expensive. All other concerns equal, one is inclined to employ a predictor
with a lower transmission rate [4].

Here, we focus solely on communication, ignoring costs in formulating the prediction.
As such, note that transmission rate is unrelated to sample complexity or time complexity.

Entropy 2022, 24, 90. https://doi.org/10.3390/e24010090 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24010090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-4466-5410
https://doi.org/10.3390/e24010090
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010090?type=check_update&version=1

Entropy 2022, 24, 90 2 of 13

Rather, we allow for an unbounded number of samples in testing (thus avoiding the ques-
tion of generalization error) and an unbounded time to train and compute predictions, and
merely ask: what channel capacity do we need to faithfully communicate the predictions?

Simultaneously optimizing the objectives—high predictive accuracy and low code
rate—leads to predictive rate-distortion [5–7]. The predictive rate-distortion curve separates
combinations of achievable rates and distortions from unachievable rates and distortions.
The closer a lossy predictive compressor is to the curve, the better. This diagnosis has been
used, for example, to suggest that salamander retinal ganglion cells are near-optimal lossy
predictors of visual input [8].

Surprisingly, we do not yet know how well recurrent neural networks perform relative
to the predictive rate-distortion curve, though rate-distortion curves have been used to
explain and calibrate the performance of artificial feedforward neural networks [9,10].
Note that recurrent neural networks allow us to store information, in principle, about
semi-infinite pasts, while feedforward neural networks only allow for storage of finite
pasts. The following calibrates the performance of various predictors (generalized linear
models, reservoir computers, and recurrent neural networks) using the predictive rate-
distortion curve. We stimulate predictors with output of probabilistic deterministic finite
automata (PDFA), also called unifilar hidden Markov models in information theory [11].
The PDFAs used in the following are simple, in that their statistical complexity [12] and
excess entropy [13,14] are finite and relatively small. The following explores PDFAs since
optimal predictors of the time series they generate are easily computed [12], and the
tradeoffs between code rate and predictive accuracy (encapsulated by the predictive rate-
distortion function) are easily computed as well [7].

This work builds on seminal results establishing that both reservoir computers
(RCs) [15,16] and recurrent neural networks (RNNs) [17] can reproduce any dynamical
system, when given a sufficient number of nodes. Further work gave example RNNs
that faithfully reproduce finite state automata, to the point that RNN nodes mimicked
the automata states [18], and established bounds on the required RNN complexity [19].
One would conjecture, then, that Long Short-Term Memory (LSTM) architectures—an
easily-trainable RNN variety [20,21]—should easily learn to predict the outputs of PDFAs.
The further question we ask is: do these models not only predict, but predict efficiently?

We use predictive rate-distortion curves to calibrate the performance of three time
series predictors: generalized linear models (GLMs) [22], RCs [15,16], and LSTMs [20].
Unsurprisingly, LSTMs are generally more efficient than reservoirs, which are generally
more efficient than GLMs. Perhaps unsurprisingly, LSTMs are less accurate than both
methods, seemingly due to overfitting. Surprisingly, despite the simplicity of the generated
stochastic time series, we find that all tested prediction methods can fail to attain maximal
predictive accuracy (measured by the probability of being correct) by as much as 50% and
often need higher rates than necessary to attain maximal predictive performance. However,
existing methods for inferring PDFAs [23] can correctly infer the PDFA and generate the
optimal predictor with orders-of-magnitude less data. This leads us to conclude that
prediction algorithms that first infer causal states [6,23–25] can surpass trained RNNs if
the time series in question has (approximately) finite causal states, sometimes also called
predictive state representations [26].

In Section 2, we describe how rate-distortion functions can provide a benchmark
for prediction algorithms. In Section 3, we describe PDFAs, GLMs, RCs, and LSTMs. In
Section 4, we describe our results. Section 5 summarizes our conclusions.

2. Rate-Distortion Benchmarks for Prediction Algorithms

Typically, when one talks about recurrent neural networks, one considers a setup as
in Figure 1 (top). Input is sent to the network, which updates its state based on both the
input and its previous state. The network’s state is then used to make a prediction. The
only metric that characterizes the final performance of the network, post-training, is the
prediction accuracy—how well it predicts future symbols given past symbols.

Entropy 2022, 24, 90 3 of 13

Input RNN Prediction

Input RNN Prediction Channel

Figure 1. At (top), a typical setup for a recurrent neural network (or any other predictor): input is
sent to the recurrent neural network, which makes a prediction about future inputs. At (bottom), our
setup for a recurrent neural network in which predictions must be made and the prediction must be
communicated losslessly through the channel.

We now augment that setup slightly. Consider a channel over which the prediction
must be communicated, as in Figure 1 (bottom). Now there are two metrics that characterize
the network’s performance, post-training: the predictive accuracy and the required channel
capacity. In the particular setup of Figure 1 (bottom), the required channel capacity must be
at least the entropy of the predictions [4]. If one is allowed longer blocklengths, meaning
that one can communicate several predictions at once using the channel, the required
channel capacity somewhat diminishes.

One can now trace out a plane of the two metrics, prediction accuracy and channel
capacity, and ask which combinations of the two are achievable. The curve that separates
the achievable combinations from the unachievable combinations is called the predictive
rate-accuracy curve, very closely related to the predictive rate-distortion curve. See Figure 2.

Let R be the random variable representing our representation of the past that we use
to predict the future, and r be its realization. When the accuracy is the conditional mutual
information I[

−→
X ;
←−
X |R], the predictive rate-accuracy function is exactly the predictive

information curve [5,6]. Finding representations that lie on the information curve motivates
slow feature analysis [27], recovers canonical correlation analysis [28], and identifies the
minimal sufficient statistics of prediction—the causal states [5]. Predictive information
curves have even been used to evaluate the predictive efficiency of salamander retinal
neural spiking patterns [8].

Here, however, we work only with binary processes, and we adopt the stance that
predictive accuracy could be taken to be the probability that one’s prediction is correct.
Accordingly, we force our representation r ∈ {0, 1} to be a prediction, and calculate
accuracy via:

a(rt, xt+1) = 1− δrt ,xt+1 ,

which implies:

E[a] = ∑
←−x t

p(←−x t) ∑
rt=xt+1

p(rt|←−x t)p(xt+1|←−x t) .

The choice of distortion or accuracy measure is an important one, and determined by one’s
particular application.

Entropy 2022, 24, 90 4 of 13

Achievable

Unachievable

Rate (bits)

Ac
cu

ra
cy

Figure 2. A sample predictive rate-accuracy curve, which is dependent not on how we process the
time series but only on intrinsic properties of the time series. It is quite possible, and typical, to have
zero rate and a nonzero predictive accuracy, and so the meeting of the x-axis and y-axis is not at the
origin. The rate can run between zero and one bit for the binary-valued time series we study here.
The starred point, which encodes the rate and accuracy of a minimal optimal predictor, has a rate of
the single-symbol Shannon entropy of the time series and a predictive accuracy that depends in a
complicated way on the specific time series. (Note the slight difference between this communication
setup and that of standard predictive rate-distortion.) It is possible to have rates larger than the rate
of the starred point, up to and including one bit.

There is another way to understand predictive rate-accuracy curves. With an eye
to making contact with nonpredictive rate-distortion theory, we summarize the setup of
predictive rate-accuracy as follows. Semi-infinite pasts are drawn independently from
the same process-dependent distribution and sent to an encoder, which then produces a
prediction or a probability distribution over possible predictions. A predictive distortion
measures how far the estimated predictions differ from correct predictions. Distortion is
often taken, for example, to be the Kullback-Leibler divergence between the true distribu-
tion p(−→x |←−x) over futures −→x conditioned on the past←−x and the distribution p(−→x |r) over
futures conditioned on our representation r [29]. A predictive accuracy might then be some
maximal achievable accuracy minus the predictive distortion. The predictive rate-accuracy
curve R(A), the minimal necessary rate at a given expected accuracy, separates the plane of
rates and predictive distortions into regions of achievable and unachievable combinations.
A slight variant of the rate-distortion theorem gives:

R(A) = min
p(~x|r):E[a]≥A

I[
←−
X ; R] , (1)

where I[·; ·] is the mutual information.

Entropy 2022, 24, 90 5 of 13

3. Background

In what follows, we review time-series generation and the widely-used prediction
methods we compare. We first discuss PDFAs and then prediction methods.

3.1. PDFAs and Predictive Rate-Distortion

We focus on minimal PDFAs—for a given stochastic process, that with the smallest
number of states. A PDFA consists of a set S of states σ ∈ S , a set A of emission symbols,
and transition probabilities p(σt+1, xt|σt), where σt, σt+1 ∈ S and xt ∈ A. The “determinis-
tic” descriptor comes from the fact that p(σt+1|xt, σt) has support on only one state. (This is
“determinism” in the sense of formal language theory [30]—an automaton deterministically
recognizes a string—not in the sense of nonstochastic. It was originally called unifilarity in
the information theoretic analysis of hidden Markov chains [11]. Thus, PDFAs are also
known as unifilar hidden Markov models [12].)

Here, we concern ourselves with minimal and binary-alphabet (A = {0, 1}) PDFAs. In
dynamical systems theory minimal unifilar HMMs (minimal PDFAs) are called ε-machines
and their states σ causal states. Due to the automaton’s determinism, one can uniquely
determine the state from the past symbols with probability 1. Each state is therefore a
cluster of pasts that have the same conditional probability distribution over futures. As
a result, all that one needs to know to optimally predict the future is given by the causal
state [12].

For example, the simple two-state PDFA shown in Figure 3 generates the Even Process:
only an even number of 1’s are seen between two successive 0’s. This leads to a simple
prediction algorithm: find the parity of the number of 1’s since the last 0; if even, we are
in state A, so predict 0 and 1 with equal probability; if odd, we are in state B, so predict 1.
There is only one past for which our prediction algorithm yields no fruit: given the past of
all 1s a single state is never identified. One only knows that the machine is in either state
A or B and the best prediction is a mixture of what the states indicate. Even though that
past occurs with probability 0, it causes the Even Process to be an infinite-order Markov
Process [31]. See Ref. [32] for a measure-theoretic treatment.

A B

1
3 |1

2
3 |0

1|1
Figure 3. Minimal two-state PDFA that generates the Even Process, so-called since there are always
an even number of 1s between 0’s. Arrows indicate allowed transitions, while transition labels p|s
indicate the transition (and so too emission) probabilities p ∈ [0, 1] for the symbol s ∈ A. Given a
current state and next symbol, one knows the next state—the deterministic or unifilar property of
this PDFA.

Causal states and ε-machines can be inferred from data in a variety of ways [6,23,25,33].
The causal states are uniquely useful to calculating predictive rate-distortion curves.

Under weak assumptions, the predictive rate-accuracy function of Section 2 becomes:

R(A) = min
p(r|σ):E[d]≥A

I[S ; R]

with:

E[d] = ∑
σt

p(σt) ∑
xt+1=rt

p(rt|σt)p(xt+1|σt) .

Entropy 2022, 24, 90 6 of 13

See Ref. [7] for the proof. With this substitution—of a finite object (S) for an infinite one
(
←−
X)—the Blahut-Arimoto algorithm can be used to accurately calculate the predictive

rate-accuracy function, in that the algorithm provably converges to the optimal p(r|σ) [34].
The same cannot be said of the predictive information curve [7], which converges to a local
optimum of the objective function, but may not converge to a global optimum.

In practice, we always augment the predictive rate-accuracy function with the rate
and accuracy of the optimal predictor, which is (as described earlier) straightforwardly
derived from the ε-machine. Simply put, we infer the causal state σt from past data and
predict the next symbol to be arg maxxt+1 p(xt+1|σt).

The following tests the various time series predictors on all of the (uniformly sampled)
binary-alphabet ε-machine topologies [35] with randomly-chosen emission probabilities.
Due to the super-exponential explosion of the set of topological ε-machines with number
of states, we only look at binary-alphabet machines with four or fewer (causal) states.
(There are 1338 unique topologies for four states, but over 106 for six states.) The analysis
discards any ε-machine with zero-rate optimal predictor, which can arise depending on the
emission probabilities.

3.2. Time Series Methods

We focus on three methods for time series prediction: generalized linear models
(GLM), reservoir computers (RCs), and LSTMs.

The GLM we use predicts xt from a linear combination of the last k symbols xt−k, xt−k+1,
. . . , xt−1. More precisely, a GLM models the probability of xt being a 0 via:

pGLM(xt = 0|xt−k, . . . , xt−1) =
ewkxt−k+...+w1xt−1+w0

1 + ewkxt−k+...+w1xt−1+w0
. (2)

The model’s estimate of the probability of xt = 1 follows:

pGLM(xt = 1|xt−k, . . . , xt−1) =
1

1 + ewkxt−k+...+w1xt−1+w0
. (3)

We use Scikit-learn logistic regression to find the best weights w0, w1, . . . , wk. Predictions
are then made via arg maxxt pGLM(xt|xt−k, . . . , xt−1).

The RC is more powerful in that it uses logistic regression with features that contain
information about symbols arbitrarily far into the past. We employ a tanh activation
function, so that the reservoir’s state advances via:

ht+1 = tanh(Wht + vxt + b) (4)

and initialize W, v, b with i.i.d. normally distributed elements. The matrix W is then scaled
so that it is near the “edge of chaos” [36–39], where RCs are conjectured to have maximal
memory [40,41]. We then use logistic regression with ht as features to predict xt:

preservoir(xt = 0|ht) =
ew>ht+w0

1 + ew>ht+w0
,

preservoir(xt = 1|ht) =
1

1 + ew>ht+w0
.

It is straightforward to devise a weight matrix W and bias b so that preservoir(xt|ht) attains
the restricted linear form of pGLM of Equations (2) and (3). That is, RCs are more powerful
than GLMs, as they use nonlinear functions of semi-infinite pasts for their summary
statistics. We use Scikit-learn logistic regression to find the best weights w0 and w. Note
that the weights W, v, and b are not learned, but held constant; we only train w and w0.
Predictions are made via arg maxxt preservoir(xt|ht).

Finally, we analyze the LSTM’s predictive capabilities. LSTMs are no more powerful
than vanilla RNNs; e.g., those as in Equation (4). However, they are far more trainable in

Entropy 2022, 24, 90 7 of 13

that it is possible to achieve good results without extensive hyperparameter tuning [21].
An LSTM has several hidden states ft, it, ot, ct, and ht that update via the following:

ft = σg(W f xt + U f ht−1 + b f)

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc)

ht = ot � ct ,

where σg is the sigmoid function and σc is the hyperbolic tangent. The variable ct is updated
linearly, therefore avoiding issues with vanishing gradients [42]. Meanwhile, the gating
function ft allows us to forget the past selectively. We then predict the probability of xt
given the past using:

pLSTM(xt = 0|ht) =
ew>ht+w0

1 + ew>ht+w0
,

pLSTM(xt = 1|ht) =
1

1 + ew>ht+w0
. (5)

Weights w and w0 are learned while we estimate parameters W f , U f , b f , Wi, Ui, Wo, Uo, bo, Wc,
Uc, and bc to maximize the log-likelihood. Predictions are made via arg maxxt pLSTM(xt|ht).

Predictive accuracy is calculated by comparing the predictions to the actual values
of the next symbol and counting the frequency of correct predictions. The code rate is
calculated via the prediction entropy [4].

4. Results

An aim here is to thoroughly and systematically analyze the predictive accuracy as
measured by the probability of correctly guessing the next symbol and code rate of our
three time series predictors of a large swath of PDFAs in the small-data limit, in which only
5000 samples are shown to the RNN. To implement this, we ran through Ref. [35]’s topo-
logical ε-machine library—binary-alphabet PDFAs with four states or less and randomly
chosen emission probabilities, in which transition probabilities were drawn from a uniform
distribution. For each PDFA, we generated a length-5000 time series. The first half was
presented to a predictor and used to train its weights. We then evaluated each time series
predictor based on its predictions for the second half of the time series. Predictive accuracy
and code rate were calculated and compared to the predictive rate-distortion function.
Predictive accuracy was calculated as the probability of having a correct prediction; code
rate was calculated empirically as the single-symbol entropy of the predictions [14].

Note that Bayesian structural inference (BSI) provides a useful comparison [23]. In BSI,
we compute the maximum a posteriori (MAP) estimate of the PDFA generating an observed
time series, and use this MAP estimate to build an optimal predictor of the process. BSI can
correctly infer the PDFA essentially 100% of the time with orders-of-magnitude less data
than used to monitor the three prediction methods tested here. Hence, it achieves optimal
predictive accuracy with minimal rate. Our aim is to test the ability of GLMs, RCs, and
RNNs to equal BSI’s previously-published performance.

The time series predictors used have hyperparameters. A variety of orders (k’s) were
used for the GLMs and reservoirs and LSTMs of different sizes (number of nodes) were
tested. Learning rate and optimizer type, including gradient descent and Adam [43], were
also varied for the LSTM, with little effect on results. Regularization was necessary and
utilized in both L1 and L2 forms on all three predictors. As is typical, a validation set
was used to select the strength and type of regularization, and results were reported on a
separate test set. In total, 5000 steps of the time series were simulated, which was small
enough to test how these machine learning methods responded to too little data, but
enough data that the machine learning methods could have picked up on patterns.

Entropy 2022, 24, 90 8 of 13

4.1. The Difference between Theory and Practice: The Even and Neven Process

We first analyze two easily-described PDFAs, deriving RNNs that correctly infer causal
states and, therefore, that match the optimal predictor—the ε-machine. We then compare
the trained GLMs, RCs, and LSTMs to the easily-inferred optimal predictors. In theory, RCs
and LSTMs should be able to mimic the derived RNNs, in that it is possible to find weights
of an RC and LSTM that yield nodes that mimic the causal states of the PDFA. In practice,
surprisingly, RCs and LSTMs have some difficulty.

First, we analyze the Even Process shown in Figure 3. The optimal prediction algorithm
is easily seen by inspection of Figure 3. When we determine the machine is in state A, we
predict a 0 or a 1 with equal probability; if it is in state B, we predict a 1. We determine
whether or not it is in state A or B by the parity of the number of 1s since the last 0. If
odd, it is in state B; if even, it is in state A. The inferred state is easily encoded by the
following RNN:

ht+1 = xt(1− ht) . (6)

If xt is 0, the hidden state of the RNN “resets” to 0; e.g., state A. If xt = 1, then the
hidden state updates by flipping from 0 to 1 or vice versa, mimicking the transitions from
A to B and back. One can show that a one-node LSTM hidden state ht can, with proper
weight choices, mimic the hidden state of Equation (6). With the correct hidden state
inferred, it is straightforward to find w and w0 such that Equation (5) yields optimal (and
correct) predictions.

As one might then expect, and as Figure 4 confirms, LSTMs tend to have rates that are
close to the optimal (maximal) rate and predictive accuracies that are only slightly below the
optimal predictive accuracy. RCs and GLMs tend to have higher rates and lower predictive
accuracies, but they are still within ∼13% of optimal. We can see this qualitatively just
by examining the predictive rate-accuracy curve in Figure 4: the closer that a point is to
the curve, the more efficiently that predictor predicts. Among the points on the curve,
potentially the most desirable point is the one at the highest achievable accuracy, at the
top right. The points from the LSTMs tend to be closer to the curve and closer to the point
at the top right, followed by RCs, and followed by GLMs. Interestingly, the points from
all processes lie on a one-dimensional curve, speaking to some hidden simplicity in the
relationship between rate and accuracy that likely holds only for binary-valued processes.

0.0 0.2 0.4 0.6

Rate

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
u
ra
cy

GLM

Reservoir

LSTM

Figure 4. Predictive rate–accuracy curve for the Even Process in Figure 3, along with empirical
predictive accuracies and rates of GLMs, RCs, and LSTMs of various sizes: orders range from 1–10
for GLMs, number of nodes range from 1–61 for RCs, and number of nodes range from 1–121 for
LSTMs. Despite the Even Process’ simplicity, there is a noticeable difference between the predictors’
performances and between their performances and the optimal achievable performance.

Entropy 2022, 24, 90 9 of 13

As one might also expect, LSTMs and RCs with additional nodes and GLMs with
higher orders (higher k) have higher predictive accuracies than LSTMs and RCs with fewer
nodes and GLMs with lower orders. However, viewed another way, given the simplicity of
the stimulus—indeed, given that a one-node LSTM can, in theory, learn the Even Process—
the gap from the predictors’ rates and accuracies to the optimal combinations of rate and
accuracy is surprising. It is also surprising that none of the three predictors’ rates fall below
the maximal optimal rate.

Figure 5 introduces a similarly-simple three-state PDFA. If a 1 is observed after a 0, we
are certain the machine is in state B; after state B, we know it will transition to state A; and
then the parity of 0s following transition to state A tells us if it is in state A (even) or state B
(odd). This PDFA is a combination of a Noisy Period-2 Process (between states A and B)
and an Even Process (between states A and C).

A

B C

0.76|1

0.62|10.38|0
1|0

0.24|0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Rate

0.50

0.55

0.60

0.65

0.70

A
cc
u
ra
cy

GLM

Reservoir

LSTM

Figure 5. Predictive rate-accuracy curve for the Neven Process (PDFA shown at left), along with
empirical predictive accuracies and rates of GLMs, RCs, and LSTMs of various sizes: orders range
from 1–10 for GLMs, number of nodes range from 1–61 for RCs, and number of nodes range from
1–121 for LSTMs. Despite Neven Process’ simplicity, there is a noticeable gap between the predictor’s
performance and the optimal performance achievable.

Given the Neven Process’s simplicity, it is unsurprising that we can concoct an RNN
that can infer the internal state. Let ht = (ht,A, ht,B, ht,C) be the hidden state that is (1, 0, 0)
if the internal state is A, (0, 1, 0) if the internal state is B, and (0, 0, 1) if the internal state is
C. By inspection, we have:

ht+1,A = 1− ht,A

ht+1,B = xtht,A

ht+1,C = (1− xt)ht,A .

One can straightforwardly find weights that lead to pLSTM(xt+1|ht) accurately reflecting
the transmission (emission) probabilities. In other words, in theory a three-node RNN (and
an equivalent three-node LSTM) can learn to predict the Neven process optimally.

However, the Neven Process’ simplicity is belied by the gap between the predictors’
accuracy and rate and the predictive rate-accuracy curve. In Figure 5, the point at zero
rate implies that the predictor is spitting out the same symbol, regardless of input. The
worst predictive accuracy falls short of the optimal by ∼15%, and none of the GLMs, RCs,
or LSTMs get closer than ∼97% to optimal. Furthermore, almost all the rates surpass the
maximal optimal predictor rate.

4.2. Comparing GLMs, RCs, and LSTMs

We now analyze the combined results obtained over all minimal PDFAs up to four
states using two metrics. (Again, recall that they are 1338 unique machine topologies.) To
compare across PDFAs, we first normalize the rate and accuracy by the rate and accuracy
of the optimal predictor. Then, we find the distance from the predictor’s rate and accuracy

Entropy 2022, 24, 90 10 of 13

to the predictive rate-accuracy curve, which is similar in spirit to the metric of Ref. [44]
and to the spirit of Ref. [8]. Note that this metric would have been markedly harder to
estimate had we used nondeterministic probabilistic finite automata; that is, those without
determinism (unifiliarity) in their transition structure [7].

Figure 6 showcases a histogram of the normalized distance to the predictive rate-
accuracy curve, ignoring PDFAs for which the maximal optimal rate is 0 nats. The nor-
malized distance for all three predictor types tends to be quite small, but even so, we
can see differences in the three predictor types. LSTMs tend to have smaller normalized
distances than RCs, and RCs tend to have smaller normalized distances to the predictive
rate-accuracy curve than GLMs. In fact, LSTMs seem to be uniformly better lossy predictive
feature extractors. Trained LSTMs on average have 0.8% normalized distance; RCs on
average have 2.0% normalized distance; and GLMs on average have 4.5% normalized
distance. When looking only at optimized LSTMs, RCs, and GLMs—meaning that the
number of nodes or the order is chosen to minimize normalized predictive distortion—a
few PDFAs still have high normalized predictive distortions of 4.6% for LSTMs, 9.7% for
RCs, and 27.3% for GLMs.

0.0 0.2 0.4 0.6 0.8 1.0

Normalized predictive distortion

10−1

100

101

F
re

qu
en

cy

LSTM

Reservoir

GLM

0.0 0.2 0.4 0.6 0.8 1.0

Normalized distance

10−1

100

101

102

F
re

qu
en

cy

LSTM

Reservoir

GLM

Figure 6. (Left) Histogram of normalized predictive distortions for LSTMs (blue), RCs (orange), and
GLMs (green) using 798 distinct PDFAs. While LSTMs tend to have far higher predictive accuracies,
they also have a much larger probability than reservoirs or GLMs do of having noticeable inaccuracies.
Some recorded normalized predictive distortions were negative, indicating the effects of finite sample
size. (Right) Histogram of normalized distances to the predictive rate-accuracy curve for LSTMs
(blue), RCs (orange), and GLMs (green) using 798 distinct PDFAs. It is apparent that LSTMs are closer
to the predictive rate-accuracy curves than reservoirs and GLMs.

The same trend holds for the percentage difference between the predictive accuracy
and the maximal predictive accuracy, which we call the normalized predictive distortion,
with a crucial modification. Trained LSTMs on average have 21.5% normalized predictive
distortion; RCs on average have 1.8% normalized predictive distortion; and GLMs on
average have 4.2% normalized predictive distortion. When looking only at optimized
LSTMs, RCs, and GLMs—meaning that the number of nodes or the order is chosen to mini-
mize normalized predictive distortion—a few PDFAs still have high normalized predictive
distortions of 50% for LSTMs, 13.5% for RCs, and 25.5% for GLMs. However, perhaps the
most interesting aspect of the Figure 6 is that LSTMs are far more likely than reservoirs or
GLMs to have large normalized predictive distortions, surprisingly.

Unsurprisingly, increasing the GLM order and the number of nodes of the RCs and
LSTMs tends to increase predictive accuracy and decrease the normalized distance.

Our final aim is to understand the PDFA characteristics that cause them to be harder
to predict accurately and/or efficiently. We have two suspects, which are the most natural
measures of process “complexity”. This first is the generated process’ entropy rate hµ,
the entropy of the next symbol conditioned on all previous symbols, which quantifies
the intrinsic randomness of the stimulus. The second is the generated process’ statistical
complexity Cµ, the entropy of the causal states, which quantifies the intrinsic memory in
the stimulus. The more random a stimulus, the harder it would be to predict; imagine

Entropy 2022, 24, 90 11 of 13

having to find the optimal predictor for a biased coin whose bias is quite close to 1/2. The
more memory in a stimulus, the more nodes in a network or the higher the order of the
GLM required, it would seem. We performed a multivariate linear regression, trying to use
hµ and Cµ to predict the minimal normalized predictive distortion and minimal normalized
distance. We find a small and positive correlation for LSTMs, reservoirs, and GLMs for
predicting minimal deviations in accuracy from perfection, with an R2 of 0.189, 0.134, and
0.132, respectively. For all three types of prediction algorithms, statistical complexity Cµ is
positively correlated with deviations in accuracy. Entropy rate is positively correlated with
deviations in accuracy for GLMs and reservoirs but, surprisingly, not LSTMs. Interestingly,
the performance GLMs and RCs is impacted by increased randomness and increased
memory in the stimulus, while the LSTMs’ accuracy has little correlation with entropy rate
and statistical complexity.

For the most part, we find that all three prediction methods–GLMs, RCs, and LSTMs—
tend to learn to predict the PDFA outputs near-optimally, in that prediction accuracies differ
from the optimal prediction accuracy by an average of roughly 5%. LSTMs outperform
RCs, which outperform GLMs. However, we discovered simple PDFAs that cause the best
LSTM to fail by as much as 5%, the best RC to fail by as much as 10%, and the best GLM to
fail by as much as 27%.

Since none of the RNNs achieved perfect prediction accuracy, but the BSI method
did [23], we conclude that existing methods for inferring causal states [6,23,25,33] are useful,
despite the historically dominant reliance on RNNs. For example, as previously mentioned,
Bayesian structural inference correctly infers the correct PDFAs almost 100% of the time,
leading to essentially zero prediction error, on training sets that are orders of magnitude
smaller than those used here [23].

5. Conclusions

We have known for a long time that reservoirs and RNNs can reproduce any dynamical
system [15–17], and we have explicit examples of RNNs learning to infer the hidden states
of a PDFA when shown the PDFA’s output [18]. We revisited these examples to better
understand if the finding of Ref. [18] is typical. How often do RNNs and RCs learn efficient
and accurate predictors of PDFAs, especially given that BSI can yield an optimal predictor
with orders-of-magnitude less training data?

We conducted a rather comprehensive search, analyzing 798 randomly-generated
PDFAs with four states or less. For each PDFA, we trained GLMs, RCs, and RNNs of
varying orders or varying numbers of nodes. Larger orders and larger numbers of nodes
led to more accurate and more efficient predictors. On average, the various time series
predictors have ∼5% predictive distortion. In other words, we are apparently better at
classifying MNIST digits than sometimes predicting the output of a simple PDFA. Again,
existing algorithms [23] can optimally predict the output of the PDFAs considered here with
orders-of-magnitude less training data. (MNIST is a database of handwritten digits.) These
findings lead us to conclude that algorithms that explicitly focus on inference of causal
states [6,23–25] have a place in the currently RNN-dominated field of time series prediction.

More importantly, in this small data limit, overfitting is an issue for LSTMs but not
RCs or GLMs. However, LSTMs are somehow excellent lossy predictive feature extractors
nonetheless. The mechanism behind this is a subject for future research.

Perhaps most importantly, the predictive rate-accuracy framework that we introduce
here or similar such frameworks could be useful for calibrating the performance of time
series predictors. We have added a cost that comparatively little research has focused on:
that of communicating the prediction. Implicitly, we are arguing that predictors which do
not have maximal predictive accuracy but do have small communication costs might be
useful nonetheless.

Author Contributions: S.E.M. and J.P.C. conceptualized the article and wrote the article, and
S.E.M. performed the experiments. All authors have read and agreed to the published version
of the manuscript.

Entropy 2022, 24, 90 12 of 13

Funding: This material is based upon work supported by, or in part by, the Air Force Office of
Scientific Research under award number FA9550-19-1-0411 and the U. S. Army Research Laboratory
and the U. S. Army Research Office under grants W911NF-18-1-0028 and W911NF-21-1-0048.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available upon reasonable request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science 1997, 275, 1593–1599. [CrossRef]
2. Montague, P.R.; Dayan, P.; Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive Hebbian

learning. J. Neurosci. 1996, 16, 1936–1947. [CrossRef]
3. Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field

effects. Nat. Neurosci. 1999, 2, 79. [CrossRef]
4. Berger, T. Rate Distortion Theory; Prentice-Hall: New York, NY, USA, 1971.
5. Still, S.; Crutchfield, J.P.; Ellison, C.J. Optimal causal inference: Estimating stored information and approximating causal

architecture. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 037111. [CrossRef]
6. Still, S. Information bottleneck approach to predictive inference. Entropy 2014, 16, 968–989. [CrossRef]
7. Marzen, S.; Crutchfield, J.P. Predictive Rate-Distortion for Infinite-Order Markov Processes. J. Stat. Phys. 2014, 163, 1312–1338.

[CrossRef]
8. Palmer, S.E.; Marre, O.; Berry, M.J.; Bialek, W. Predictive information in a sensory population. Proc. Natl. Acad. Sci. USA 2015,

112, 6908–6913. [CrossRef]
9. Tishby, N.; Zaslavsky, N. Deep Learning and the Information Bottleneck Principle. arXiv 2015, arXiv:1503.02406.
10. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017, arXiv:1703.00810.
11. Ash, R.B. Information Theory; John Wiley and Sons: New York, NY, USA, 1965.
12. Shalizi, C.R.; Crutchfield, J.P. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. J. Stat. Phys. 2001,

104, 817–879. [CrossRef]
13. Bialek, W.; Nemenman, I.; Tishby, N. Predictability, complexity, and learning. Neural Comput. 2001, 13, 2409–2463. [CrossRef]
14. Crutchfield, J.P.; Feldman, D.P. Regularities Unseen, Randomness Observed: Levels of Entropy Convergence. Chaos 2003,

13, 25–54. [CrossRef] [PubMed]
15. Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation

based on perturbations. Neural Comput. 2002, 14, 2531–2560. [CrossRef]
16. Grigoryeva, L.; Ortega, J.P. Echo state networks are universal. Neural Netw. 2018, 108, 495–508. [CrossRef]
17. Doya, K. Universality of Fully Connected Recurrent Neural Networks; Technology Report; Deptartment of Biology, UCSD: La Jolla,

CA, USA, 1993.
18. Cleeremans, A.; Servan-Schreiber, D.; McClelland, J.L. Finite state automata and simple recurrent networks. Neural Comput. 1989,

1, 372–381. [CrossRef]
19. Horne, B.G.; Hush, D.R. Bounds on the complexity of recurrent neural network implementations of finite state machines. In

Proceedings of the 6th International Conference on Neural Information Processing Systems, Denver, CO, USA, 29 November–2
December 1993; pp. 359–366.

20. Schmidhuber, J.; Hochreiter, S. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
21. Collins, J.; Sohl-Dickstein, J.; Sussillo, D. Capacity and trainability in recurrent neural networks. arXiv 2016, arXiv:1611.09913.
22. Nelder, J.A.; Wedderburn, R.W. Generalized linear models. J. R. Stat. Stoc. A 1972, 135, 370–384. [CrossRef]
23. Strelioff, C.C.; Crutchfield, J.P. Bayesian Structural Inference for Hidden Processes. Phys. Rev. E 2014, 89, 042119. [CrossRef]

[PubMed]
24. Crutchfield, J.P.; Young, K. Inferring Statistical Complexity. Phys. Rev. Let. 1989, 63, 105–108. [CrossRef] [PubMed]
25. Pfau, D.; Bartlett, N.; Wood, F. Probabilistic deterministic infinite automata. Adv. Neural Inf. Process. Syst. 2010, 23, 1930–1938.
26. Littman, M.L.; Sutton, R.S. Predictive representations of state. Adv. Neural Inf. Process. Syst. 2002, 14, 1555–1561.
27. Creutzig, F.; Sprekeler, H. Predictive coding and the slowness principle: An information-theoretic approach. Neural Comput. 2008,

20, 1026–1041. [CrossRef] [PubMed]
28. Creutzig, F.; Globerson, A.; Tishby, N. Past-future information bottleneck in dynamical systems. Phys. Rev. E 2009, 79, 041925.

[CrossRef] [PubMed]
29. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. arXiv 2000, arXiv:physics/0004057.
30. Hopcroft, J.E.; Ullman, J.D. Introduction to Automata Theory, Languages, and Computation; Addison-Wesley: Reading, MA, USA,

1979.
31. James, R.G.; Mahoney, J.R.; Ellison, C.J.; Crutchfield, J.P. Many Roads to Synchrony: Natural Time Scales and Their Algorithms.

Phys. Rev. E 2014, 89, 042135. [CrossRef] [PubMed]

http://doi.org/10.1126/science.275.5306.1593
http://dx.doi.org/10.1523/JNEUROSCI.16-05-01936.1996
http://dx.doi.org/10.1038/4580
http://dx.doi.org/10.1063/1.3489885
http://dx.doi.org/10.3390/e16020968
http://dx.doi.org/10.1007/s10955-016-1520-1
http://dx.doi.org/10.1073/pnas.1506855112
http://dx.doi.org/10.1023/A:1010388907793
http://dx.doi.org/10.1162/089976601753195969
http://dx.doi.org/10.1063/1.1530990
http://www.ncbi.nlm.nih.gov/pubmed/12675408
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1016/j.neunet.2018.08.025
http://dx.doi.org/10.1162/neco.1989.1.3.372
http://dx.doi.org/10.2307/2344614
http://dx.doi.org/10.1103/PhysRevE.89.042119
http://www.ncbi.nlm.nih.gov/pubmed/24827205
http://dx.doi.org/10.1103/PhysRevLett.63.105
http://www.ncbi.nlm.nih.gov/pubmed/10040781
http://dx.doi.org/10.1162/neco.2008.01-07-455
http://www.ncbi.nlm.nih.gov/pubmed/18085988
http://dx.doi.org/10.1103/PhysRevE.79.041925
http://www.ncbi.nlm.nih.gov/pubmed/19518274
http://dx.doi.org/10.1103/PhysRevE.89.042135
http://www.ncbi.nlm.nih.gov/pubmed/24827220

Entropy 2022, 24, 90 13 of 13

32. Löhr, W. Models of Discrete-Time Stochastic Processes and Associated Complexity Measures. Ph.D. Thesis, University of Leipzig,
Leipzig, Germany, 2009.

33. Shalizi, C.R.; Shalizi, K.L.; Crutchfield, J.P. Pattern discovery in time series, Part I: Theory, algorithm, analysis, and convergence.
J. Mach. Learn. Res. 2002, 10, 60.

34. Csiszár, I. On the computation of rate-distortion functions (corresp.). IEEE Trans. Inf. Theory 1974, 20, 122–124. [CrossRef]
35. Johnson, B.D.; Crutchfield, J.P.; Ellison, C.J.; McTague, C.S. Enumerating Finitary Processes. arXiv 2010, arXiv:1011.0036.
36. Crutchfield, J.P.; Young, K. Computation at the Onset of Chaos. In Entropy, Complexity, and the Physics of Information; Zurek, W.,

Ed.; SFI Studies in the Sciences of Complexity; Addison-Wesley: Reading, MA, USA, 1990; Volume VIII, pp. 223–269.
37. Packard, N.H. Adaptation toward the Edge of Chaos. In Dynamic Patterns in Complex Systems; Kelso, J.S., Mandell, A.J., Shlesinger,

M.F., Eds.; World Scientific: Singapore, 1988; pp. 293–301.
38. Mitchell, M.; Crutchfield, J.P.; Hraber, P. Dynamics, Computation, and the “Edge of Chaos”: A Re-Examination. In Complexity:

Metaphors, Models, and Reality; Cowan, G., Pines, D., Melzner, D., Eds.; Santa Fe Institute Studies in the Sciences of Complexity;
Addison-Wesley: Reading, MA, USA, 1994; Volume XIX, pp. 497–513.

39. Mitchell, M.; Hraber, P.; Crutchfield, J.P. Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations.
Complex Syst. 1993, 7, 89–130.

40. Bertschinger, N.; Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 2004,
16, 1413–1436. [CrossRef]

41. Boedecker, J.; Obst, O.; Lizier, J.T.; Mayer, N.M.; Asada, M. Information processing in echo state networks at the edge of chaos.
Theory Biosci. 2012, 131, 205–213. [CrossRef] [PubMed]

42. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain.
Fuzziness-Knowl.-Based Syst. 1998, 6, 107–116. [CrossRef]

43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
44. Zaslavsky, N.; Kemp, C.; Regier, T.; Tishby, N. Efficient compression in color naming and its evolution. Proc. Natl. Acad. Sci. USA

2018, 115, 7937–7942. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TIT.1974.1055146
http://dx.doi.org/10.1162/089976604323057443
http://dx.doi.org/10.1007/s12064-011-0146-8
http://www.ncbi.nlm.nih.gov/pubmed/22147532
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1073/pnas.1800521115
http://www.ncbi.nlm.nih.gov/pubmed/30021851

	Introduction
	Rate-Distortion Benchmarks for Prediction Algorithms
	Background
	PDFAs and Predictive Rate-Distortion
	Time Series Methods

	Results
	The Difference between Theory and Practice: The Even and Neven Process
	Comparing GLMs, RCs, and LSTMs

	Conclusions
	References

