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ARTICLE

C9ORF72 GGGGCC repeat-associated non-AUG
translation is upregulated by stress through eIF2α
phosphorylation
Weiwei Cheng1, Shaopeng Wang1, Alexander A. Mestre1, Chenglai Fu 2, Andres Makarem1, Fengfan Xian1,

Lindsey R. Hayes3, Rodrigo Lopez-Gonzalez4, Kevin Drenner5, Jie Jiang5, Don W. Cleveland5 & Shuying Sun1

Hexanucleotide repeat expansion in C9ORF72 is the most frequent cause of both amyotrophic

lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we demonstrate that the

repeat-associated non-AUG (RAN) translation of (GGGGCC)n-containing RNAs into poly-

dipeptides can initiate in vivo without a 5′-cap. The primary RNA substrate for RAN trans-

lation of C9ORF72 sense repeats is shown to be the spliced first intron, following its excision

from the initial pre-mRNA and transport to the cytoplasm. Cap-independent RAN translation

is shown to be upregulated by various stress stimuli through phosphorylation of the α subunit

of eukaryotic initiation factor-2 (eIF2α), the core event of an integrated stress response (ISR).

Compounds inhibiting phospho-eIF2α-signaling pathways are shown to suppress RAN

translation. Since the poly-dipeptides can themselves induce stress, these findings support a

feedforward loop with initial repeat-mediated toxicity enhancing RAN translation and sub-

sequent production of additional poly-dipeptides through ISR, thereby promoting progressive

disease.
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C9ORF72 hexanucleotide repeat expansion is the most
common cause of sporadic and familial amyotrophic lat-
eral sclerosis (ALS) and frontotemporal dementia (FTD)

1, 2. This mutation connects ALS/FTD to a heterogeneous class of
repeat expansion-associated neurological diseases3, 4. RNA-
mediated toxicity is believed to be one major disease-causing
mechanism when the repeats are located in non-coding regions5–
7.

There are two alternative but not mutually exclusive hypoth-
eses for gain-of-toxicity from the RNA isoform of C9ORF72 with
the repeat expansion in the first intron8, 9. First, RNA foci formed
by hexanucleotide repeats that could sequester RNA-binding
proteins (RBPs) and disrupt RNA processing. Second, toxicity
may derive from aberrant accumulation of dipeptide repeat

(DPR) proteins produced by repeat-associated non-AUG (RAN)
translation in all reading frames. Both possibilities may converge
on dysfunction of nucleocytoplasmic transport as a driver of
disease pathogenesis10–13. Aggregation of all five DPRs (poly-GA,
poly-GR, poly-PA, poly-PR, and poly-GP) translated from both
sense GGGGCC14–18 and antisense CCCCGG14, 19–21 repeat-
containing RNAs have been identified in C9ORF72 patients.
When overexpressed by AUG-driven translation of poly-
dipeptides but using degenerate codons so as to eliminate the
RNA repeats in yeast10, cultured cells22–30, fly23, 24, 31, 32, and
mouse12, 33, several of the DPR proteins generate various toxic
effects. Therefore, an approach to decrease the levels of these
toxic polydipeptides by inhibiting RAN translation holds great
therapeutic promise. Moreover, methods to reduce DPRs without
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changing accumulation of the RNA repeats may enable dissecting
the pathogenic pathways mediated by RNA vs. dipeptides.

The translation of most eukaryotic mRNAs involves recogni-
tion of a 5′7-methylguanosine (m7G) cap, formation of a pre-
initiation complex, scanning on the mRNA to an AUG start
codon, and assembly of the 80S ribosome to initiate translation34.
RAN translation bypasses the requirement for an initiating AUG
and has been found in several repeat expansion disorders,
including myotonic dystrophy (CUG and CAG repeats35; CCUG
and CAGG repeats36), spinocerebellar ataxia type 8 (CAG
repeats)35, Fragile X-associated tremor/ataxia syndrome (CGG37

and CCG repeats38), and Huntington’s disease (CAG repeats)39.
Previous work on CGG repeats located in the 5′ untranslated
region (UTR) of FMR1 reported that RAN translation requires
cap-dependent ribosomal scanning in vitro40. However, one
unique feature of the C9ORF72 expansion is that the repeat is
located in an intron, which is normally excised intranuclearly into
a lariat structure, debranched and degraded by exonucleases41.
Correspondingly, after splicing, all intron-derived RNAs will not
have the co-transcriptionally added 5′-m7G cap that is required
for typical translation initiation. How then does RAN translation
occur?

Many viral RNAs and a handful of cellular RNAs can start
translation in a cap-independent manner by bypassing the
requirement of some of the initiation components, utilizing
instead an internal ribosome entry site (IRES)-mediated
pathway42, 43. IRESes are usually complex RNA structures that
directly recruit certain translation initiation factors to the internal
sites within RNA transcripts and have been proposed to direct
ribosome assembly without RNA scanning42, 43. Such translation
may act as a “fail-safe” mechanism to maintain or promote
translation of selected cellular RNAs under stress conditions
when cap-dependent translation is downregulated, thereby
restoring cellular homeostasis through what is known as the
“integrated stress response” (ISR)44. Previous work has demon-
strated that RAN translation is strongly influenced by the sec-
ondary structure of the repeat RNA35, 39. Whether the translation
of C9ORF72 expanded intronic repeats is analogous to this type of
translation and how RAN translation responds to stress has not
been established. This is of particular relevance to ALS/FTD as
stress responses and stress granule alteration have been increas-
ingly associated with adult-onset progressive neurodegenerative
diseases45.

Here we demonstrate that a GGGGCC repeat-containing
spliced intron is exported to the cytoplasm and serves as the main
RNA template for C9ORF72 sense repeat translation. This
translation is shown to be 5′-cap-independent, but with an

initiation efficiency lower than the cap-dependent translation.
Cap-independent RAN translation is shown to be upregulated by
various stress stimuli that drive phosphorylation of the α subunit
of eukaryotic initiation factor-2 (eIF2α), the core event of ISR.
Further, expression of the TDP-43 prion-like domain promotes
stress granule formation, elevates eIF2α phosphorylation, and
enhances RAN translation. The stress-induced RAN translation
upregulation can be reduced by small molecule compounds
inhibiting the phospho-eIF2α pathway. Our results identify how
translation initiation is triggered by expanded repeat-containing
RNAs and establish that one or more initial stresses arising from
repeat-mediated toxicity may trigger a feedforward loop to gen-
erate more and more toxic DPRs that contribute to irreversible
neurodegeneration.

Results
(GGGGCC)n RAN translation can initiate without 5′-cap. In
order to understand the C9ORF72 repeat-associated translation
initiation in vivo, we developed a series of stable cell lines
expressing dual-luciferase reporters, one whose encoded protein
can be produced only through RAN translation (Nanoluc Luci-
ferase or NLuc) and one whose product is generated by AUG-
and cap-dependent canonical translation (Firefly Luciferase or
FLuc). To monitor RAN translation efficiency in a timely manner
in vivo, we constructed tetracycline-inducible reporters and
engineered each reporter in a single genomic locus in HeLa Flp-In
cells using a site-directed recombinase (Flip)46. We fused around
(GGGGCC)70 repeats with NLuc lacking an AUG start codon and
containing a C-terminal MYC tag (C9R-NLuc) in-frame with
either poly-GA or poly-GP (Figs. 1a, d). We also included 99nt of
the intronic sequences before the expanded repeats in the
C9ORF72 pre-mRNA to maintain the context for RAN transla-
tion of C9ORF72 repeats. Multiple stop codons in all three
reading frames were included 5′ to the repeats to prevent any
leakage from canonical translation. We used NLuc without an
AUG or the (GGGGCC)70 repeats (Neg-NLuc) as negative con-
trols to define the assay background (Figs. 1a, d), and an FLuc
reporter with an AUG start codon (AUG-FLuc) as a positive
internal control (Figs. 1a, d).

We first generated monocistronic reporter genes to encode
RAN translation or canonical translation from separate RNA
transcripts. We integrated C9R-NLuc into the inducible Flp-In
reporter site and used retroviral integration for AUG-FLuc to
generate stable cell lines expressing both (Fig. 1a). In this system,
both transcripts will have the m7G caps and poly(A) tails. The
C9R-NLuc in both GA and GP reading frames showed much

Fig. 1 RAN translation of C9ORF72 hexanucleotide repeats can initiate with and without 5′-cap. a Schematic of monicistronic dual-luciferase reporters for
RAN translation and canonical AUG translation. b HeLa Flp-In cells were induced to express translation reporters by doxycycline for 24 h. Relative RAN
translation products from Frame-GA and Frame-GP were compared to no-repeat control. NLuc signals were normalized to FLuc in each sample. c
Immunoprecipitation using MYC antibody from cells expressing Neg-NLuc or C9R-NLuc, followed by immunoblotting with GA or GP antibody. d Schematic
of bicistronic reporters for cap-independent RAN translation and AUG translation. e Relative RAN translation products from Frame-GA and Frame-GP were
compared to no-repeat control. NLuc signals were normalized to FLuc in each sample. f Immunoprecipitation using MYC antibody from bicistronic reporter
cells followed by immunoblotting with GA or GP antibody. g Schematic timeline of siRNA transfection and induction of luciferase reporters in HeLa Flp-In
cells. h Reporter cells were transfected with non-targeting siRNA or siRNA against cap-binding protein eIF4E. Immunoblotting of eIF4E showed the
knockdown efficiency. GAPDH was blotted as internal control. i Expression of AUG-FLuc translation (left) and C9R-NLuc RAN translation (right) reporters
in presence of eIF4E siRNA compared to non-targeting siRNA control. *P< 0.05, **P< 0.005, ***P< 10–6, two-tailed t-test. j Reporter cells were treated
with mTOR inhibitor Torin 1 for 24 h. Immunoblotting of phospho-4E-BP1 using antibodies recognizing different phosphorylation sites. β-actin was blotted
as internal control. k Expression changes of AUG-FLuc and C9R-NLuc in bicistronic reporter cells under mTOR pathway inhibition by Torin 1 treatment. **P
< 0.005, ***P< 0.0005, two-tailed t-test. l The relative translation levels of C9R-NLuc (Frame-GA and Frame-GP) with and without a functional 5′-cap.
HeLa cells were transfected with in vitro transcribed monocistronic C9R-NLuc and Neg-NLuc RNA with either 5′-m7G cap or ApppG cap analog. The NLuc
luciferase was normalized to RNA level in each condition, and each sample was compared with 5′-m7G capped C9R-NLuc in frame-GA (set as 100). Data
are mean± SEM from three biological replicates
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higher levels of activity than Neg-NLuc, confirming non-AUG
translation driven by the (GGGGCC)70 repeats (Fig. 1b).
Immunoprecipitation for the MYC epitope encoded in either
GA or GP frames followed by immunoblotting with GA or GP
antibodies revealed products corresponding to the expected size
of GA70-NLuc or GP70-NLuc (Fig. 1c), outcomes suggesting a
translation initiation site close to the beginning of the repeats.

Next, we used a bicistronic reporter to test whether the RAN
translation of C9 repeats can occur independent of a 5′-cap. In
this approach, the first cistron (AUG-FLuc) is translated from the
5′ end by canonical cap- and AUG-dependent initiation and is
terminated by stop codons placed in all reading frames. This is
followed by the second ORF encoding C9R-NLuc, which is
translated only if the repeats can recruit ribosomes by a cap-
independent mechanism (Fig. 1d). Comparing to Neg-NLuc, the
C9R-NLuc again showed significantly higher expression levels,
indicating that the RAN translation of C9 repeats can initiate
without 5′-cap (Fig. 1e), although at an efficiency lower than the
cap-dependent version. Immunoprecipitation/immunoblotting
revealed similar translation products as were produced from the
monocistronic reporters (Fig. 1f).

To test that NLuc and FLuc are indeed encoded from the same
RNA transcript, rather than NLuc encoded by a separate
monocistronic RNA (e.g., produced by a cryptic promoter), we
transfected reporter cells with an siRNA targeting FLuc-coding
sequences. The FLuc siRNA efficiently reduced luciferase activity
and RNA levels of both FLuc and NLuc (Supplementary Fig. 1a,b).
It is noted that reduction of Fluc luciferase activity was slightly
more than the reduction in RNA, possibly due to both RNA
degradation and translational repression caused by the FLuc-
targeting siRNA. In any case, the reduction of NLuc luciferase
activity (and the RNA encoding it) was comparable to that
for FLuc (Supplementary Fig. 1a, b), demonstrating the two
luciferases are translated from one RNA transcript.

To further confirm the cap-independent translation of C9R-
NLuc in the bicistronic reporter, we induced reporter expression
after siRNA knockdown of the eukaryotic translation initiation
factor 4E (eIF4E; Figs. 1g, h), the cap-binding protein that
facilitates initiation complex assembly and mRNA scanning34. As
expected, reduction of eIF4E decreased AUG-FLuc translation in
both systems and the C9R-NLuc in the monocistronic reporter
(Fig. 1i). However, there was no reduction of C9R-NLuc in the
bicistronic reporter (Fig. 1i), indicating that the 5′-cap and the
cap-binding protein eIF4E are not essential for the translation
initiation of (GGGGCC)70 repeats in vivo.

In addition, the cap-dependent translation initiation is
stimulated by cytokines or growth factors for cell growth and
proliferation through the mammalian target of rapamycin
(mTOR) signaling pathway via the eIF4E-binding protein (4E-
BP)47. 4E-BP1 binds to eIF4E and prevents recruitment of the
translation machinery to mRNA. Activation of the mTOR
pathway induces hyperphosphorylation of 4E-BP1, disrupts its
eIF4E-binding activity, and therefore enhances the cap-dependent
translation47. We therefore used mTOR inhibitor as an
alternative approach to inhibit cap-dependent translation and
tested how RAN translation is affected. We treated cells with
Torin 1, an inhibitor directly targeting the mTOR catalytic site
and inhibiting phosphorylation of both mTORC1 and
mTORC2 substrates47. As expected, treatment with Torin 1
reduced 4E-BP1 phosphorylation (Fig. 1j) and decreased the
AUG-FLuc translation and the C9R-NLuc in the monocistronic
reporter (Supplementary Fig. 1c), but there was no reduction of
C9R-NLuc in the bicistronic reporter (Fig. 1k), highly consistent
with the eIF4E knockdown results (Fig. 1i).

We further examined the cap-independent (GGGGCC)70
translation and quantitatively compared the relative translation

initiation efficiency with and without 5′-cap using in vitro
synthesized RNA. We generated the monocistronic C9R-NLuc
and Neg-NLuc RNA by in vitro transcription containing either
the normal 5′-m7G cap or the non-functional cap analog ApppG,
and transfected into cells. We observed that C9R-NLuc RNA
produced significantly higher amount of protein (luciferase
activity) than Neg-NLuc RNA, even without a functional cap
(Fig. 1l), confirming the capability of cap-independent translation
from (GGGGCC)70 repeats. Cellular IRES-mediated translation is
typically less efficient than cap-dependent translation42. The
comparison in our test cells revealed that cap-independent repeat
RNA translation initiation is about 20–30% efficiency of the cap-
dependent translation (Fig. 1l).

Cap-independent RAN translation is upregulated upon stress.
We next tested whether stress affected RAN translation of the
(GGGGCC)70 repeats using either low-dosage sodium arsenite-
induced oxidative stress or MG132-induced unfolded protein
stress48. Six hours after addition of either stressor and induction
(with doxycycline) of the reporter genes, the levels of newly
synthesized FLuc and NLuc luciferases were measured (Fig. 2a).
The relative NLuc and FLuc RNA levels were constant with and
without stress when encoded by the bicistronic genes or when
expressed from monocistronic reporter genes (Supplementary
Fig. 2a). Therefore, any differences in the luciferase activities
directly represent differences in translation efficiency. As expec-
ted44, AUG-FLuc expression from canonical translation was
reduced under stress conditions (Fig. 2b). C9R-NLuc translation
was reduced modestly in monocistronic reporters (Supplemen-
tary Fig. 2b), but markedly upregulated in the bicistronic repor-
ters (Fig. 2b). As the elevation was not observed in the cap-
dependent reporter, it is unlikely due to the protein stability
changes, but rather to be caused by stress-induced upregulation of
cap-independent RAN translation. In addition, mirroring RAN
translation elevation, both arsenite and MG132 induced forma-
tion of stress granules (Fig. 2c), compartments for storage of
stalled translation machinery under stress45, and activated eIF2α
phosphorylation in reporter cells (Fig. 2d).

RAN translation is upregulated by phospho-eIF2α upon stress.
One key component mediating cellular stress with translation
regulation is the translation initiation factor eIF2α. During ISR,
diverse stress signals converge at a single phosphorylation event
on serine 51 of eIF2α. This can lead to global protein synthesis
reduction, paradoxically coupled with elevated translation of a
subset of mRNAs (Fig. 3a). This includes mRNAs containing
short upstream open reading frames (uORFs) in the 5′ UTRs with
translation re-initiation at downstream coding sequences, and
IRES-containing mRNAs with cap-independent translation44. We
therefore tested whether the stress-induced RAN translation
elevation is mediated through eIF2α phosphorylation.

We first examined whether treatment of cells with small
molecule inhibitors of the eIF2α pathway can block stress-
induced translation changes. ISRIB is a recently identified
compound that is believed to block downstream signaling of
phospho-eIF2α without changing the level of eIF2α phosphoryla-
tion49 (Fig. 3a). GSK2606414 (PERKi) inhibits PRKR-like ER
kinase (PERK)50, one of the kinases activated by unfolded protein
response (UPR) and phosphorylating eIF2α51 (Fig. 3a). Treat-
ment with either of these two inhibitors (Fig. 3b) markedly
inhibited arsenite- and MG132-induced stress granule formation
(Figs. 3c, d). Translation alterations induced by either arsenite or
MG132 were substantially reversed (Fig. 3e), indicating that
phospho-eIF2α is indeed involved in stress-induced RAN
translation elevation.
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To test whether the mTOR signaling pathway is involved in the
stress-induced translation changes, we examined the phosphor-
ylation status of multiple sites of 4E-BP1 by immunoblotting. We
observed that phosphorylation of Thr37/46, but not Thr70 or
Ser65, decreased upon arsenite treatment (Supplementary Fig. 2c).
As it has been shown that the combination of phosphorylation
events at all these sites is essential to change the 4E-BP1
association (with eIF4E52 and Thr37/46 alone having no effect on
translation53), it is unlikely that the stress-induced RAN
translation and AUG translation changes in our assay are due
to the mTOR signaling pathway.

To test whether eIF2α phosphorylation is sufficient to promote
RAN translation, we also expressed either wild-type or phospho-
mimetic mutant S51D (serine 51 to aspartic acid) of eIF2α at
modest levels in our reporter cell lines (Fig. 3f, supplementary
Fig. 2d). Wild-type eIF2α enhanced reporter translation in
general, as expected (Supplementary Fig. 2e). The S51D mutant
had minimum effect on AUG-FLuc and on the monocistronic
C9R-NLuc expression, but specifically promoted C9R-NLuc
expression in the bicistronic reporter (Fig. 3g, Supplementary
Fig. 2e). As the relative RNA levels were not altered (Supple-
mentary Fig. 2f), these findings demonstrate that the phospho-
mimetic S51D mutant of eIF2α enhances cap-independent RAN
translation. Furthermore, treatment with ISRIB inhibited S51D-
stimulated RAN translation (Fig. 3h). Collectively, these data

demonstrate that eIF2α phosphorylation is the key component
regulating RAN translation under ISR.

In addition, we also compared the stress response of RAN
translation with the IRES translation of cellular RNAs. Activating
transcription factor 4 (ATF4) is an important genetic regulator of
the UPR and it has been well established that translation
initiation of ATF4 mRNA is activated by stress-induced eIF2a
phosphorylation54. In the canonical isoform, this is mediated by
re-initiation at coding regions downstream of two uORFs in the 5′
UTR55. An alternatively spliced isoform contains a highly
structured region in the 5′UTR, which is responsible for internal
ribosome entry of cap-independent translation and stress-
induced upregulation56. Correspondingly, after replacing the C9
repeats in our bicistronic reporter with the 5′UTR of the longer
ATF4 mRNA isoform, we observed that translation of NLuc was
still upregulated by arsenite addition or eIF2α S51D expression,
with this elevation suppressed by ISRIB treatment (Supplemen-
tary Fig. 2g). Collectively, these data indicate that C9 repeat-
driven RAN translation and IRES translation are elevated by
stress through similar mechanisms.

TDP-43 prion-like domain enhances RAN translation through
ISR. Cytoplasmic mis-localization and inclusion of TDP-43 are
widely present as a pathological feature in almost all ALS and half
of FTD patients, including disease caused by hexanucleotide
expansion in C9ORF729. Dysfunction of TDP-43 has been shown
to induce stress granule formation and eIF2α phosphorylation57.
The prion-like domain at the C-terminal fraction of TDP-43 is
believed to underlie pathogenesis58. We therefore tested whether
expression of this domain influences C9 RAN translation. We
expressed either wild-type TDP-43 or its C-terminal prion-like
domain (TDP43-F4) fused with EGFP59 in our reporter cells.
Consistent with previous findings, wild-type TDP-43 was pre-
dominantly nuclear, while TDP43-F4 showed cytosolic localiza-
tion and inclusions (Fig. 4a). TDP43-F4, but not wild-type TDP-
43, induced stress granules (Figs. 4a, b), accompanied by accu-
mulation of phopho-eIF2α (Fig. 4c). TDP43-F4 also promoted
cap-independent C9R-NLuc translation in our bicistronic
reporter (Fig. 4d), without affecting the corresponding RNA level
(Supplementary Fig. 2h). Treatment with ISRIB and PERKi
compounds inhibited stress granule induction (Fig. 4a, b) and
translation alterations (Fig. 4f), accompanied by reduced
phospho-eIF2α and (when PERKi was added) phospho-PERK
(Fig. 4e). These findings show that TDP-43 dysfunction can
activate ISR pathways and thereafter enhance RAN translation of
C9ORF72 expanded repeats to produce more DPRs.

RAN translation of GGGGCC repeats in C9ORF72 spliced
intron. We next constructed bicistronic, doxycycline-inducible
reporters in which the (GGGGCC)70 repeats were located within
the C9ORF72 first intron. The C9ORF72 exons 1a and 2, as well as
~200 bases of intronic sequences adjacent to the 5′ and 3′ splice
sites were included, and the NLuc-coding sequence was inserted
in the intron 3′ to the (GGGGCC)70 repeats in frame with either
poly-GA or poly-GP. Finally, the FLuc-coding sequences were
fused to exon 2 in frame with the C9ORF72 AUG start codon
(Fig. 5a), and the final construct was integrated into the unique
Flp-In site in our HeLa cells. We verified that the reporter pre-
mRNAs were correctly spliced with an efficiency that was not
affected by the presence of the expanded repeats (Supplementary
Fig. 3a). RAN translation was again observed, with a much higher
C9R-NLuc activity than the no repeat control (Fig. 5b). Immu-
noprecipitation with MYC antibody confirmed the expression of
GA-NLuc or GP-NLuc proteins (Fig. 5c), similar to what was
seen with our previous reporter systems (Fig. 1c, f). Relative RAN
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translation efficiency (determined by normalizing the protein
levels (Luciferase activities) to the corresponding RNA levels)
from the bicistronic splicing reporter was ~15–35% of the cap-
dependent translation from the monicistronic reporter (Fig. 5d),
consistent with the relative translation level of the transfected
RNAs with or without functional 5′-cap synthesized in vitro
(Fig. 1l). The bicistronic reporter showed lowest translation level
(~5% of monocistronic reporter), probably because the position
of the repeats on a transcript influences its activity.

Both the spliced intron RNA and the unspliced pre-mRNA
contain the GGGGCC repeats and could be templates for the
RAN translation of C9R-NLuc. Recognizing that both pre-
mRNAs and excised introns are generally retained in the nucleus,
while translation is widely accepted to be in the cytoplasm, we
therefore fractionated cells to separate nucleus and cytoplasm and
examined the locations of repeat-containing RNAs. We designed
primers across the exon–intron junctions to measure pre-
mRNAs, and primers for NLuc to amplify from both pre-
mRNA and excised intron (Fig. 5a). GAPDH pre-mRNA was
highly enriched in the nucleus, and the mitochondria 12S RNA
MTRNR1 was predominantly in cytoplasm, confirming the

successful fractionation (Fig. 5e). As expected, the C9R-NLuc
reporter pre-mRNA was predominantly localized in the nucleus,
similar to GAPDH pre-mRNA (Fig. 5e, right). For the spliced
reporter mRNA, the ratio in cytosol vs. nuclear fraction was close
to 1 (Fig. 5e). Surprisingly, NLuc amplicon-containing RNAs
accumulated in the cytoplasm to much higher levels than did the
pre-mRNAs (Fig. 5e, right). This evidence suggests that the
spliced repeat-containing intronic RNA, but not the unspliced
pre-mRNA, is highly likely to serve as the main template of RAN
translation after its export to the cytoplasm.

We further applied the translating ribosome affinity purifica-
tion (TRAP) method60, 61 to test which repeat-containing RNAs
are associated with polyribosomes. Retroviral transduction was
used to stably express GFP-tagged RPL10A in our reporter cells.
We then used GFP immunoprecipitation to purify the ribosome
complexes together with the bound RNA substrates from the
cytosolic fraction (Fig. 5f). The intronic NLuc RNA was
associated with ribosomes, while the unspliced pre-mRNA was
depleted after immunoprecipitation of ribosome complexes
(Fig. 5g). This result strongly indicates that the spliced repeat-
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containing intronic RNA, but not the unspliced pre-mRNA, is the
main substrate of RAN translation.

Translation of intronic repeats is enhanced by ISR. We next
tested whether the translation of the intronic repeats was depen-
dent on the 5′-cap. Knockdown of eIF4E by siRNA reduced the
AUG-FLuc to about half, but had little effect on the C9R-NLuc
expression (Fig. 6a, b). Inhibition of the mTOR signaling pathway
by Torin 1 also only reduced the AUG-FLuc translation and did
not change C9R-NLuc translation (Figs. 6c, d), as expected for
cap-independent translation. The intronic C9R-NLuc translation
was upregulated by stress inducers, arsenite and MG132 (Fig. 6e),
without changes in splicing and RNA expression levels of the
NLuc reporter (Supplementary Fig. 3b,c). Consistent with our
biscistronic reporters (Fig. 3e), the eIF2α signaling pathway
inhibitors ISRIB and PERKi reduced stress-induced translation
elevation of the intronic repeats (Fig. 6e). Expression of eIF2α
S51D mutant also enhanced C9R-NLuc expression and this effect
was inhibited by ISRIB (Fig. 6f). Collectively, these data indicate
that when the (GGGGCC)70 repeats are localized in the C9ORF72
intron, the resultant RAN translation is predominantly from the
excised intron, which is cap-independent and is upregulated by
stress through the phospho-eIF2α signaling pathway.

Discussion
Using a series of inducible reporter cell lines, our work has
provided insights on the mechanism of C9ORF72 (GGGGCC)n
RAN translation in vivo, both at basal level and in response to
stress. Our data indicate that RAN translation of C9ORF72 sense
repeats can initiate with and without a 5′-cap, with the location
and context of the repeat expansion influencing the initiation

mechanism and efficiency. In the context of RNAs derived for the
C9ORF72 gene, we demonstrate that RAN translation of
GGGGCC repeats arises mostly from the uncapped, spliced
intronic RNA. Hence, translation initiation of the C9ORF72
repeats not only bypasses the need for an AUG start codon, but
also does not require the 5′-cap or the cap-binding protein eIF4E.
This cap-independent translation is similar to the IRES-mediated
pathway used widely by many virus RNAs and a handful of
cellular RNAs42, 43. Previous studies have reported that IRES
translation can be regulated by IRES-transacting factors that do
not have known function in canonical translation, especially
under different physiological and pathological conditions42, 43.
RBPs have been shown to modulate IRES translation through
altering the affinity between RNA structures and translation
factors42. Recognizing those precedents, our finding of cap-
independent translation of C9ORF72 repeats strongly suggests
the possibility that specific (as yet unidentified) factors are
recruited by the GGGGCC repeats to facilitate ribosome assembly
and translation initiation without affecting canonical translation.

Our evidence revealed that the cap-independent RAN trans-
lation of the repeats in the excised C9ORF72 first intron is very
likely to be the predominant mechanism in C9ALS/FTD patients,
as the initiation rate is quite efficient, ~15–35% of a 5′-capped
RNA with the same repeat length. Furthermore, recognizing that
previous evidence has reported splicing of the C9ORF72 first
intron is either unaffected62 or only modestly affected63 by the
repeat expansion, the most abundant repeat-containing RNA is
probably the excised intron, which is usually not co-
transcriptionally capped at the 5′ end. Our data showed that
the unspliced pre-mRNA is not exported to, or accumulated
within the cytoplasm and is not associated with ribosomes.
Therefore, cap-independent translation of repeat-containing
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spliced intron is likely to be the major source for DPR produc-
tion, although we note that this does not exclude the possibility
under some circumstances of yet uncharacterized repeat-
containing transcripts that contain a 5′ cap and the cap-
dependent RAN translation might also contribute to the DPR
production. In addition, the GA DPR produced by our C9R-NLuc
reporters was consistently accumulated to a higher level than the
GP DPR in all the reporter systems. This may be because the
translation initiation in frame-GA is more efficient than frame-
GP, or poly-GA is more stable than poly-GP, or the translation
elongation rate is different, influenced by the relative amount of
aminoacyl-tRNAs recognizing different codons.

After splicing, intron-derived RNAs are normally excised into a
lariat structure, debranched and degraded by exonucleases

intranuclearly41. Correspondingly, they cannot have the 5′-m7G
cap and poly(A) tail added co-transcriptionally, and are generally
thought not to be exported to the cytoplasm. However, our data
have identified export of the repeat-containing, spliced C9ORF72
first intron from the nucleus to the cytoplasm. There are multiple
prior examples of excised introns of cellular RNAs exported to
the cytoplasm64, 65, as well as several viruses that are known to
promote export of intron-containing viral RNA transcripts
through selective interaction between structured cis-acting RNA
elements and cellular nuclear export factors66. A recent work
identified that SRSF1 binds GGGGCC repeats and mediates
NXF1-dependent nuclear export67, indicating the importance of
repeat-binding RBPs in determining the distinct molecular des-
tination of RNA repeats.
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Stress responses and stress granule dysfunction have been
increasingly associated with disease pathogenesis of ALS/FTD45.
During ISR, there is global translation reduction accompanied by
increased translation of selective RNAs that are believed to be
important for cell survival under stress54. eIF2α phosphorylation,
whose selective elevation within neurons has been reported in
multiple neurodegenerative diseases61, 68, 69, has also been
reported to be a critical hub for the control of neuronal synaptic
plasticity and memory consolidation70, 71. We have demonstrated
here that activation of this signaling pathway stimulates RAN
translation of C9ORF72 repeats. It is not clear how eIF2α phos-
phorylation enhances RAN translation. One possibility is that
when global translation is reduced, some of the rate-limiting steps
or components become more available to the unconventional
initiation, therefore increasing the RAN translation rate. How-
ever, inhibition of the mTOR pathway decreases canonical
translation but cannot enhance RAN translation, suggesting that
the availability of translation machinery is not the only reason for
upregulation of cap-independent translation. In the adult-onset
progressive neurodegenerative diseases, aging factors and internal
stress stimuli originally arising from the C9ORF72 repeat-
mediated toxicity (including DPR-induced oxidative stress24,

stress granule dysfunction26, 28, altered ER homeostasis72, 73, and
TDP-43 mis-localization11) may trigger a feedforward loop to
upregulate RAN translation and generate an increasing amount of
DPRs that exert more toxicity and eventually lead to neuronal
dysfunction, degeneration, and ultimately death, thereby driving
relentless disease progression (Fig. 6g). A method perturbing this
loop might reduce or delay neurodegeneration and hold ther-
apeutic promise in C9ORF72-ALS/FTD.

Methods
Plasmids. For monocistronic reporters, the FLuc-coding sequence was cloned into
pBABE (puro) via BamHI and SalI. To generate NLuc reporter, multiple stop
codons in all three reading frames were introduced after the CMV promoter of the
pcDNA5-FRT-TO vector by QuickChange mutagenesis. The NLuc-coding
sequence lacking ATG start codon with C-terminal MYC tag and preceding
C9ORF72 intron sequence (before the repeats) was PCR-amplified and cloned into
the modified pcDNA5-FRT-TO vector by HindIII and XhoI. About (GGGGCC)70
repeat sequence was cloned between intron sequence and NLuc by NotI and blunt
end ligation. The fusion with different reading frames was achieved by inserting
one nucleotide shift during PCR amplification of the NLuc gene. For bicistronic
reporters, the FLuc-coding sequence containing multiple stop condons in three
reading frames was cloned into pcDNA5-FRT-TO vector via KpnI and EcoRV. The
C9R-NLuc and the Neg-NLuc were cut out from the monocistronic reporter by
HindIII and XhoI, DNA blunting the HindIII end, and cloned after FLuc via EcoRI
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feedforward loop with C9ORF72 (GGGGCC)n RAN translation being enhanced by initial repeat-mediated toxicity through eIF2α phosphorylation pathway.
Data are mean± SEM from three biological replicates
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and XhoI sites. For bicistronic splicing reporter, the sequences including C9ORF72
exon 1a, exon 2, and around 200nt intron 1 from each exon–intron junction were
synthesized (Genewiz) and cloned into pcDNA5-FRT-TO vector via NheI and
XhoI sites. We included HindIII and BamHI sites inside the synthesized sequence
close to the repeat expansion location and cloned in the C9R-NLuc and Neg-NLuc
from the monocistronic reporter. For in vitro transcription, the C9R-NLuc and the
Neg-NLuc were cut out from the monocistronic reporter by HindIII and XhoI and
subcloned in pcDNA3.1+ downstream of the T7 promoter. The wild-type eIF2α
cDNA was subcloned into pcDNA 3.1 vector with N-terminal Flag tag via BamHI
and XhoI sites. The S51D mutation was introduced by QuickChange mutagenesis.
The TDP-43 F4 construct was acquired from Addgene (#28197). The wild-type
TDP-43 construct was generated by replacing the F4 fragment with full-length
cDNA via XhoI and BamHI sites. The ATF4 IRES vector was engineered by
inserting the sequence of ATF4 5′UTR with the first 32 codons of ATF456 into the
bicistronic reporter between FLuc and NLuc, fused with the NLuc gene at the
EcoRV site by In-Fusion cloning. To generate the retroviral vector expressing
Rpl10a, the Rpl10a cDNA was cloned into pEGFP-C1 via XhoI and BamHI, and
the EGFP-Rpl10a was subsequently cloned into the pBABE vector via EcoRI and
BamHI.

Cell culture and transfection. HeLa Flp-In cells were grown in DMEM supple-
mented with 10% (v/v) FBS, 100 Uml−1 penicillin and 100 µg ml−1 streptomycin.
HeLa stable cell lines expressing various translation reporters were generated as
described before46. For transfection experiment, the reporter gene expression was
induced with 2 μg ml−1 doxycycline for 24 h prior to sample collection. For mTOR
inhibition, cells were treated with Torin 1 at 1 µM for 24 h. For stress stimuli
experiment, cells were treated with sodium arsenite at 200 µM, or MG132 at 10 µM,
together with reporter induction for 6 h. ISRIB (Sigma) and GSK260641 (PERKi,
Sigma) were added to cells 24 h before harvest at 0.5 and 1 µM. TransIT-LT1
(Mirus) was used to transfect plasmids; Lipofectamine RNAiMAX (Invitrogen) was
used to transfect siRNAs. siGENOME eIF4E siRNA and siGENOME Non-
Targeting siRNA (GE Dharmacon) were transfected at 25 nM. For transfection
experiments, plasmids were transfected 48 h and siRNAs were transfected 72 h
prior to sample collection. The FLuc siRNA (5′-GGACGAGGACGAGCACUUC-
3′) was transfected at 50 nM 24 h after reporter gene induction. 293 Phoenix cells
were used for retrovirus packaging. Virus-infected cells were selected using pur-
omycin (0.5 µg ml−1). EGFP-Rpl10a-expressing cells were further confirmed by
fluorescence-activated cell sorting. Three wells of biological replicates were pre-
pared at each condition for all dual-luciferase reporter experiments. The NLuc and
FLuc luciferase activities were measured by Nano-Glo Dual Luciferase Assay
(Promega) on Tecan Infinite 200 PRO. NLuc levels were normalized to FLuc, or
both were normalized to total protein amounts for each sample. Protein lysates
were quantified by BCA Assay (ThermoFisher Scientific).

In vitro transcription. The pcDNA3.1-NLuc constructs were linearized with XhoI
digestion, and served as the DNA template to synthesize RNA using MEGAscript
T7 transcription kit (Ambion), in presence of either normal m7GpppG cap analog
or non-functional ApppG cap analog (New England Biolabs). Synthesized RNAs
were transfected into cells by Xfect RNA transfection kit (Clontech), and samples
were collected after 24 h.

Immunoprecipitation. Dynabeads Protein G was washed twice with PBST and
incubated with MYC antibody (Sigma, 05–724) for 1 h at room temperature. The
beads were washed twice in PBST, and once in immunoprecipitation (IP) lysis
buffer (0.3% (v/v) NP-40, 200 mM NaCl, 50 mM Tris, pH 7.4, 1 mM 1,4-Dithio-
threitol (DTT)), 0.1 mM EDTA, and protease-inhibitor cocktail). HeLa cells
induced to express various reporter genes were lysed in IP lysis buffer, and the
DNA sheared by sequential passage through a syringe with 22 and 26 G needles,
three times each. The lysates were clarified by centrifugation at 13,000g for 20 min
at 4 °C. The antibody-coated beads were incubated with the cleared lysates and
incubated for 4 h at 4 °C. After washing three times in lysis buffer, the beads were
resuspended in SDS-containing gel sample buffer and electrophoresed on an SDS-
PAGE gel.

Translating ribosome affinity purification. Cells expressing EGFP-Rpl10a were
collected and lysed in gentle lysis buffer (20 mM HEPES KOH, pH7.4, 10 mM KCl,
3 mM MgCl2, 0.3%(v/v) NP-40, 0.1 mM EDTA, 1 mM DTT, 100 μg ml−1 cyclo-
heximide, protease-inhibitor cocktail, and 200 Uml−1 RNase inhibitor). Lysates
were centrifuged at 2300g for 5 min at 4 °C to separate cytosol and nuclear frac-
tions. The supernatant was transferred to a new tube and the KCl concentration
was adjusted to 150 mM. The lysates were centrifuged again at 13,000g for 20 min
at 4 °C. The GFP antibody-coated Protein G Dynabeads were incubated with the
cleared lysates overnight at 4 °C with rotation. Beads were subsequently washed five
times with high-salt polysome wash buffer (20 mM HEPES pH 7.4, 350 mM KCl, 5
mM MgCl2, 1 mM DTT, 1% Nonidet P-40, and 100 μg mL−1 cycloheximide).
Trizol was directly added to the beads to extract ribosome-bound RNAs. Total and
cytosol RNAs were also extracted, respectively, from the aliquot lysates before and
after cell fractionation.

Immunofluorescence and immunoblotting. Cells were fixed with 4% (v/v) par-
aformaldehyde in phosphate-buffered saline (PBS) for 20 min, permeabilized in
0.2% (v/v) Triton X-100 for 5 min, blocked in 1% bovine serum albumin, and 2%
goat serum for 30 min, incubated with primary antibodies for 1 h, washed with
PBS, and finally incubated with Alexa Fluor 546-conjugated secondary antibodies
(ThermoFisher Scientific). Nuclei were counterstained with 4',6-diamidino-2-
phenylindole (DAPI). Cells were imaged with a fluorescence microscope (Zeiss
Axiophot). For immunoblotting, goat anti-mouse or anti-rabbit IgG horseradish
peroxidase-conjugated antibody (GE Healthcare) was used along with chemilu-
minescent detection reagents (Thermo Scientific). The primary antibodies included
eIF4E (Bethyl, A301-154A, 1:1000), phospho-eIF2α (Cell Signaling, 9721, 1:1000),
eIF2α (Cell Signaling, 9722, 1:1000), phospho-PERK (Santa Cruz, sc-32577,
1:1000), G3BP (BD, 611126, 1:300 for IF), GAPDH (Cell Signaling, 97166, 1:1000),
poly-GA (Rb4334, 1:1000), poly-GP (Rb4336, 1:1000), FLAG (Sigma, F1804,
1:500), phospho-4E-BP1 Thr37/46 (Cell Signaling, 2855, 1:1000), phospho-4E-BP1
Thr70 (Cell Signaling, 9455, 1:1000), phospho-4E-BP1 Ser65 (Cell Signaling, 9451,
1:1000), β-actin (Cell Signaling, 3700, 1:1000), and GFP (Memorial Sloan Kettering
Cancer Center Monoclonal Antibody Core Facility, Htz-GFP19C8). Full scans of
immunoblotting images are provided in Supplementary Fig. 4.

RNA isolation, qRT-PCR and RT-PCR. To isolate total RNA from cells, Trizol
(Invitrogen) and treatment with RQ1 DNase I (Promega) was used. For first-strand
cDNA synthesis, random hexamers were used with High-capacity cDNA reverse
transcription kit (Applied Biosystems).

All qRT-PCR reactions were performed with three biological replicates for each
group and two technical replicates using the iQ SYBR green supermix (Bio-Rad) on
the CFX96 real-time PCR detection system (Bio-Rad). The data were analyzed
using the CFX96 optical system software (Bio-Rad; version 1.1). Expression values
were normalized to GAPDH mRNA. Intergroup differences were assessed by two-
tailed Student’s t-test. Primer sequences are listed in Supplementary Table 1.

For cell fractionation, cells were lysed in gentle lysis buffer (20 mM Tris pH 7.4,
10 mM NaCl, 3 mM MgCl2, 0.3% (v/v) NP-40). Nuclei were pelleted at 2300g for 5
min at 4 °C, and supernatant (cytosol fraction) was transferred to a new tube. The
nuclei were re-suspended in gentle lysis buffer and spun down again to collect the
pellet (nuclear fraction). Trizol was directly added to the two fractions for
subsequent RNA extraction.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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