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Abstract

Polydopamine is one of the simplest and most versatile approaches to functionalizing material 

surfaces, having been inspired by the adhesive nature of catechols and amines in mussel adhesive 

proteins. Since its first report in 2007, a decade of studies on polydopamine molecular structure, 

deposition conditions, and physicochemical properties have ensued. During this time, potential 

uses of polydopamine coatings have expanded in many unforeseen directions, seemingly only 

limited by the creativity of researchers seeking simple solutions to manipulating surface chemistry. 

In this review, we describe the current state of the art in polydopamine coating methods, describe 

efforts underway to uncover and tailor the complex structure and chemical properties of 

polydopamine, and identify emerging trends and needs in polydopamine research, including the 

use of dopamine analogs, nitrogen-free polyphenolic precursors, and improvement of coating 

mechanical properties.
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1. INTRODUCTION

Polydopamine (PD) is a uniquely adaptable and simple surface functionalization method, 

being the first single-step, material-independent surface chemistry when it was first reported 

in 2007.1 Since its introduction, PD has emerged as one of the most powerful tools available 

for modification of surfaces, achieving this status as a result of versatility, simplicity, and 

broad potential use in the biomedical, energy, consumer, industrial, military, and other 

sectors. In this review, we will summarize the evolution of the PD method since it was first 

reported ten years ago. We begin by describing the origin and basic features of PD, which 

arose as an outcome of mussel adhesive protein research. Next, we compare PD coatings to 

other commonly employed surface modification methods, followed by an account of how 

approaches to PD deposition have evolved from the original “recipe” to the current state-of-

the-art PD preparation methods. We then provide a synopsis of the substrates and materials 

found to be amenable to modification with PD, and introduce selected emerging applications 

for these coatings. Finally, we conclude with a forward-looking statement on the 

opportunities and challenges in further development and implementation of PD and PD-like 

coatings.

2. INSPIRATION AND GENERAL FEATURES OF PD

The invention of PD originated from previous studies on one of Nature’s most celebrated 

families of wet adhesive biomolecules- the mussel adhesive proteins. These proteins, 

especially the mytilus foot proteins-3 and −5 (Mfp-3 and −5) located in the distal portion of 

the mussel byssus where the byssal foot engages the substrate surface,2–4 have two key 

features that inspired PD: (1) high catechol (3,4-dihydroxybenzene) content due to the 

presence of 3,4-dihydroxy-L-phenylalanine (DOPA); and (2) high primary and secondary 

amine content due to lysine (Lys) and histidine residues. The high concentration and 

intimate association of DOPA and Lys/ His was noted early on by Waite and co-workers as a 

remarkable feature of Mfp-5,3 leading to speculation that the combination of catechol and 

amine is a special one as it relates to interfacial adhesion. Early exploitation of 

catecholamines as building blocks for bioinspired materials include the synthesis of DOPA-

Lys poly(amino acids),5 the tethering of catechol moieties to amine-rich polymers such as 

poly(ethylenimine)6,7 and chitosan8,9 and the use of short DOPA-Lys peptides as anchors for 
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immobilization of antifouling polymers at solid–liquid interfaces.10 Although low molecular 

weight catecholamines such as dopamine were not considered in the context of adhesion 

prior to 2007, the coexistence of catechol and amine functional groups that is such a 

distinctive feature of mussel adhesive proteins is now understood to be a powerful 

combination (only recently was the physicochemical basis for the interfacial adhesive 

synergy between catechol and amine investigated in detail11).

The widespread adoption of PD originates from its simplicity, low cost and adaptability in a 

variety of science and applied engineering contexts. While variations of the coating method 

exist as discussed below, in its simplest manifestation coating an object with PD involves 

nothing more than simply immersing it in an aqueous alkaline solution of dopamine for an 

adjustable period of time (Figure 1). Spontaneous deposition of a conformal PD coating 

occurs during incubation, and this primary coating can be used without further modification 

or used as a “primer” onto which a subsequent secondary coating is applied. The 

composition and properties of the secondary coating is highly tailorable, therefore giving 

rise to the tremendous versatility and broad range of applications enjoyed by PD coatings. 

Dopamine·HCl is a commercially available and relatively inexpensive reagent (3.2 USD per 

gram when purchasing from Sigma-Aldrich). For little cost, one can make a one-liter 

solution of dopamine (1 mg/mL) that can be sprayed12 or used as an aqueous bath for dip-

coating large surface areas.

The formation of PD coatings occurs by oxidative polymerization of dopamine, the details 

of which remain an active area of investigation. In fact, many features of PD formation and 

structure remain unknown. For this reason, and because other research and review papers 

with detailed mechanisms have been recently published,13–19 we will provide only a brief 

overview of existing theories of PD formation and structure here (Figure 2). There is little 

doubt that the initial driving force for PD formation is the oxidation of dopamine by 

dissolved oxygen at alkaline pH of the solution, as elimination of oxygen from the solution 

slows or eradicates PD formation. The oxidation product, dopamine-quinone, undergoes a 

nucleophilic intramolecular cyclization reaction leading eventually to the formation of 5,6-

dihydroxyindole. In most existing theories of PD formation, these two compounds, 

dopamine-quinone and 5,6-dihydroxyindole (DHI), are key building blocks for PD, albeit 

through various proposed pathways. On one hand, it has been postulated that PD is 

composed entirely of noncovalent assemblies of dopamine, dopamine-quinone and DHI, 

whereas other hypotheses hold that these molecules polymerize to form a heteropolymer 

composed of catecholamine, quinone and indole repeat units. Alternatively, it has been 

suggested that PD is a eumelanin-like material composed of oligomeric building blocks 

generated spontaneously by further oxidation of DHI and coupling through 2–2′, 4–7′, 2–

4′, and/or 2–7′ linkages. It should be mentioned that there is currently no consensus on the 

PD formation mechanism, and the proposed noncovalent and covalent pathways elaborated 

above should not be viewed as mutually exclusive, as it is possible and perhaps even 

probable that both covalent “polymerization” and “self-assembly” pathways contribute to 

PD formation.20 In addition, M. d’Ischia and co-worker found pyrrolecarboxylic acid 

(PCA), an oxidative degraded form of PD, with uncyclized dopamine/dopamine-quinone 

and cyclized DHI units when forming PD (Figure 3a).17 Ding et al. reported that 

(DHI) /PCA trimer complex can also be one of building blocks of PD18. This trimer is 
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associated with others by noncovalent interactions to form the PD (Figure 3b). Additional 

uncertain aspects of PD formation that should be addressed by future studies, relate to how 

the aforementioned events occurring in solution lead to spontaneous deposition of a 

conformal coating on solid surfaces, and how the composition of the coating is the same as 

the product that can be isolated from the surrounding solution.

3. PD IN COMPARISON TO OTHER COATING METHODS

The unique ability of PD to be deposited as a conformal thin film onto virtually all types, 

shapes and sizes of organic and inorganic surfaces through a simple dip coating process 

distinguishes it from other approaches to surface modification. Before the discovery of PD 

coatings, the three dominant methods in surface modification chemistry were self-assembled 

monolayer (SAM),21–23 layer-by-layer (LbL) assembly,24,25 and plasma treatment.26–28 In 

SAMs, end-functionalized alkanethiol molecules form ordered monolayers on noble metal 

surfaces through highly specific metal–thiolate bonds22 and therefore require matching 

surface–adsorbate chemistries. On the other hand, gas-phase plasma surface chemistry 

modifications are only transient because the modified surface properties change with time.

It is worthwhile to briefly compare PD and LbL coating methods (Figure 1), as both 

methods are arguably the most versatile and rely on adsorption of coating components at 

solid–liquid interfaces. Despite some similarities, there remain some important differences 

between PD and LbL coatings in terms of mode-of-action, properties, and substrate 

versatility. First, PD in its simplest form is a synthesis-free method in which the coating can 

be built in one step without the need to procure or synthesize sophisticated polymers or other 

coating components (ad-layer components notwithstanding). In contrast, polymers used in 

LbL methods are often synthesized specifically with a view toward LbL use or to provide a 

new function, and the deposition processes often involve many coating cycles. Second, 

formation of PD coatings involves in situ polymerization starting from its “monomer” 

dopamine, which is covalently/noncovalently polymerized at later stages (see above). 

Therefore, PD coatings are ideally suited for coating of 3D porous materials by infusion and 

in situ polymerization due to the low molecular weight of the dopamine building block. In 

contrast, polymers used in LbL assembly are typically high molecular weight and therefore 

will diffuse rather slowly into 3D substrates with small pores. Third, thickness of layers 

formed by LbL assembly can be easily controlled from a few nanometers to several 

micrometers by varying the number of deposition cycles, which in some cases can be 

hundreds of cycles. However, PD deposition is a kinetic process with a saturation limit of 

typically less than 50 nm due to dopamine depletion from the coating solution (it is possible 

to deposit additional PD layers onto a pre-existing PD layer). Fourth, the PD layer exhibits 

intrinsic chemical reactivity originating from the presence of catecholquinone moieties and 

radical species to which molecules with nucleophilic groups such as amine- (R-NH2) and 

thiolate- (R-S−) spontaneously react with PD (details are explained in section 5.2).29,30 Also, 

the PD coating is redox active, allowing electroless metallization and on surface synthesis of 

metal nanoparticles.31–33 In contrast, polymers specially prepared to provide such functions 

are needed for LbL coatings.
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Although the range of substrates amenable to PD and LbL methods have substantial overlap, 

it is generally accepted that PD is a more suitable method to modify a broader array of 

surfaces, including materials that are normally difficult to coat (e.g., low surface energy 

solids). For example, without adaptation of the basic approach, PD can easily functionalize 

most metal oxides and noble metals as well as low energy surfaces such as 

polytetrafluoroethylene, polydimethylsiloxane, polystyrene, poly(lactic-co-glycolic) acid, 

polycarbonate, poly-(caprolactone), graphene, carbon nanotubes. A more compre-hensive 

list of materials functionalized by PD is summarized in Table 1. Notably, even extremely 

low energy surfaces including superhydrophobic/superomniphobic surfaces34 can be modi-

fied with PD. Synergistic salt displacement at solid and liquid interfaces by catechol and 

amine groups11 is one of important mechanisms why PD exhibits coating capability to such 

a broad spectrum of materials surfaces listed in Table 1. Also, PD layers utilizes a variety of 

multiple binding mechanisms such as catechol-metal coordinations, electrostatic 

interactions, π−π interactions, hydrogen bonds, and covalent reactions (e.g., catechol-NH-

R/catechol-S-R) depending upon chemistry of materials surfaces.16,35–40 However, 

influences of solid substrates on PD thickness and homogeneity of coatings require further 

studies. In contrast to the LbL method, the PD method requires no significant surface 

preparation and aggressive cleaning of substrates prior to coating deposition. Finally, it 

should be emphasized that the PD and LbL coating methods in some cases may be 

complementary toolkits. For example, catechol or catecholamine moieties which are the 

building blocks of PD, have been chemically tethered or end-functionalized to polymers for 

use in LbL. Stability and substrate versatility are enhanced when catechol-conjugated 

polymers are used in LbL depositions.6

The two unique properties of a polydopamine coating, substrate flexibility combined with a 

variety of ad-layer properties by covalent/coordinate/noncovalent linkages with other 

molecules, allow virtually unlimited access to functional properties. The list of applications 

of PD is rapidly growing and seems to be limited only by the creativity of researchers using 

the method. A partial listing of PD applications demonstrated in just last 10 years include 

surfaces for stem and differentiated cell culture,85,131–134 cell patterning,135–137 

microfluidics,138,139 antimicrobial surfaces,46,140,141 scaffold functionalization for tissue 

engineering,142–144 bioimaging,145,146 theragnostic,31,147,148 photothermal therapy,149,150 

PLGA (nano)-particles66,151 and capsules for drug delivery,125,129,130 

hydroxyapatite91,92,152 or calcium carbonate surface mineralization,94,153,154 artificial 

spores,155,156 immobilization of photocatalysts and/or interplay between PD and 

photocatalysts,157–159 Li-ion battery membranes,42,160–162 Li–air battery electrolytes,163,164 

Li–sulfur battery cathode materials,165 Zn–air cathode materials,166 oil/water separation,
167–169 atomic transfer radical polymerization,77,170,171 water detoxification,86,172 

carbonization,173–175 membrane separation technologies,176–178 organocatalysts,179,180 and 

numerous others. It is certain that the scope of PD research and utilization will expand 

further in the years to come.

4. PD COATING METHODS

Many of the advancements that have occurred during the first decade of PD research relate 

to modifications of the coating recipe that was originally published in 2007. In this section 
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we describe some of these key developments with an emphasis on choice of buffer and 

solvent, the use of chemical oxidants, utilization of external stimuli, and a description of a 

one-pot method that reduces the number of steps needed for functional coatings.

4.1. Choice of Buffer and Solvent.

The original method of PD coating employed 2 mg/mL of dopamine hydrochloride 

(synonyms: 3-hydroxytyramine hydrochloride; 2-(3,4-dihydroxyphenyl)ethylamine) 

dissolved in Tris buffer, pH 8.0–8.5.1 Dopamine concentration is an important tool in 

controlling deposition kinetics and roughness of surfaces. Recently, dopamine with a low 

concentration (<0.5 mg/mL) was used to functionalize nanostructures (i.e., particle,147,181 

tube,182 and fiber 68) because low concentration of dopamine could effectively reduce PD 

particle formation by self-polymerization and interparticle aggregation, and such aggregates 

inevitably increase roughness of PD coatings.181 For instance, Au nanoparticles coated with 

dopamine (0.1 mg/ mL) are stable as monodisperse nanoparticles, but small aggregates of 

particles are observed at 0.4 mg/mL dopamine concentration.181 Likewise, a convenient 

method to minimize surface roughness is to decrease substrate immersion time to about 1–3 

h in Tris buffer,183 and the coating process can be repeated twice or three times if desired to 

control thickness.155 Vincent Ball and co-workers clearly reveal concentration effects on the 

kinetics of PD deposition, thickness, roughness, and surface energy.184 The maximal film 

thickness is increased linearly with dopamine concentrations from 0.1 to 5 mg/mL (i.e., 20 

nm for 0.5 mg/mL, 25 nm for 1 mg/mL, and 25–40 nm for 2 mg/mL). In contrast, the 

thickness of PD varies at high concentrations of dopamine (3 and 5 mg/mL). In general, the 

thick PD films are rough compared with roughness of thin ones, and the surface energy of 

PD is independent with dopamine concentrations. In addition to concentrations, the maximal 

film thickness increases from pH 5 to 8.5 of dopamine solutions. However, during PD 

formation Tris17 and unreacted dopamine20 are unavoidably incorporated into the coating, 

which may alter the physicochemical properties of the coating and alter further chemical 

reactions. To avoid Tris buffer incorporation,185–187 amine- free organic buffers (e.g., bicine) 

or inorganic (e.g., phosphate) buffers can be used instead, but the codeposition of PD 

nanoaggregates can be more problem-atic than when Tris buffer is used.

Choice of solvents is critical in some cases. While the vast majority of reports on PD 

describe the use of aqueous solvents, solvents with low surface tension such as methanol and 

ethanol can be used to modify hydrophobic and/or porous materials such as polyethylene 

(PE) membranes used in Li-ion batteries.42 As we discuss further below, the use of organic 

solvents may be advantageous in other ways, for example enhancing the drying rate of 

treated substrates through fast evaporation, preventing degradation of hydrolyzable 

substrates, coimmobilization of water insoluble molecules, etc.

4.2. Oxidation: Auto- Versus Chemical Oxidation.

Dissolved oxygen is essential for traditional PD formation via auto-oxidation at alkaline pH 

as was qualitatively shown in the original PD coating report.1 Later, direct evidence 

regarding the importance of dissolved oxygen in aqueous solutions was demonstrated for the 

study of microwave accelerated PD coating (see section 4.3 for details).188 Water-soluble, 

inorganic chemical oxidants such as sodium periodate (NaIO4), ammonium 
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per(oxodi)sulfate ((NH4)2S2O8), potassium per-manganate (KMnO4), copper sulfate 

(CuSO4), and Fe(III) have been widely used.12,57,189 Vincent Ball and co-workers reported 

that superhydrophilic-superoleophobic PD coatings are achieved by the oxidants control.189 

In the presence of (NH4)2S2O8 or CuSO4 (above 10 mM oxidant concentrations), the PD 

formation results in heterogeneous coating on surfaces. However, the PD coating generated 

by NaIO4 (the concentration lower than 30 mM) provides homogeneous surfaces. 

Furthermore, the thickness of the PD films in the presence of NaIO4 was 65 nm after 1 h 

incubation, which was far higher than that of CuSO4–catalyzed PD films (43 nm). When 

CuSO4 was used, copper ions (Cu2+) were also found in the PD coating, which is due to the 

chelation properties of the catechol moieties. Over the last several years, use of NaIO4 in PD 

coating has become more widespread. Through optimiza-tion of pH, concentration of 

dopamine, and stoichiometric ratio of [NaIO4]/[dopamine], ultrafast and thick (>50 nm) PD 

coatings were obtained at room temperature.12 Furthermore, hydrophilic coatings were 

obtained in the presence of large excess of NaIO4 due to the formation of carboxylic acid 

groups on surfaces.

4.3. Ultraviolet and Microwave Enhanced PD Coatings.

The generation of radical species by providing external energy such as ultraviolet (UV) light 

can also trigger PD formation as was shown by Levkin and co-workers.190,191 The main 

advantages of using light are to control onset and termination of PD coatings, and to deposit 

patterns of PD on substrates. Furthermore, this light-induced method is effective from 

slightly acidic to basic pH ranges. Thus, when one utilizes acidic conditions and UV light, 

initiation and termination of PD deposition can easily be controlled. The use of UV 

irradiation in conjunction with chemical derivatives of dopamine provides an additional level 

of control. A. del Campo and co-workers used nitro-dopamine derivatives, which exhibit 

photocleavable properties with a leaving group of ortho-nitrophenyl ethyl moiety.192 This 

chemistry provides new ways of controlling surface properties by detaching molecules that 

are tethered from surfaces.

Microwave irradiation of dopamine solution is another useful method to accelerate PD 

coating formation.188 To achieve a PD coating thickness of 18 nm by the conventional 

alkaline PD coating method requires several hours, whereas microwave PD coating method 

takes only 15 min. The fast PD coating kinetics in the microwave technique is claimed to be 

due to enhancement of oxygen tension in the coating solution because of vibration-involved 

heating mechanisms. Interestingly, dis-solved oxygen is ultimately removed in microwave 

heat-induced boiling, which was used to clearly demonstrate the importance of oxygen in 

PD formation.123

4.4. One-Pot PD Coatings.

For surface tethering of molecules containing amine (−NH2) and thiol (−SH) groups to PD, 

the “one pot” method offers a simplified approach to forming PD coatings.143 In the one-pot 

method, dopamine and polymer/biomolecule deposit simultaneously from solution, reducing 

the number of coating steps (Figure 4). An additional advantage of one-pot PD coating is 

that PD aggregation is largely suppressed because of dopamine/target molecule association. 

Representative one-pot coating studies include a comparative and quantitative analysis of 
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protein immobilization for the conventional two-step approach vs the one-pot method,193 a 

tertiary amine coating for nanoscale silicifica-tion,160 and creation of special wettability 

properties such as superomniphilic and omniphobic surface.34 The initial study on one pot 

PD employed macromolecules included poly(vinyl alcohol), hyaluronic acid, dextran, and 

chitosan that have strong interactions with dopamine/PD,143 although future studies will 

likely reveal numerous other polymers that can be employed with this method.

In general, we recommend use of a few milligrams of dopamine per mL of Tris pH 8.5 for 

5–6 h in general purposes of solid substrate modifications. Overnight PD coating should be 

avoided for obtaining smooth surfaces because of generation of microsized PD aggregates. 

Also, a water/ethanol cosolvent recommends for PD coatings on hydrophobic surfaces or 

porous membranes because ethanol’s low surface tension. For ad-layer formations with 

general purposes of molecular immobilizations, one-pot PD coating should be considered 

with the conventional two-step PD coatings to obtain high density molecular 

immobilizations.

5. TAILORING PD FUNCTIONALITY THROUGH BUILDING BLOCK 

DIVERSITY

One of the defining features of PD is undoubtedly the rich array of possibilities for tailoring 

surface properties for various applications. Here we review the two main approaches to 

functional versatility of PD coatings: the use of dopamine chemical derivatives in the 

primary deposition, and secondary ad-layer formation on an underlying PD “primer”.

5.1. Chemical Derivatives of Dopamine.

As shown in Figure 5, dopamine exhibits four possible sites (amine, alkyl and aromatic) for 

chemical derivatization (leaving aside O-substituted dopamine derivatives because they 

eliminate the catechol).194 Perhaps the most obvious example of a dopamine derivative is 

3,4-dihydroxy-L-phenylalanine (DOPA) (R1 = CO2H), a biologically important free amino 

acid that is an intermediate in melanin formation and is decarboxylated to form dopamine in 

vivo. Interestingly, oxidative polymerization of DOPA to form polyDOPA coatings using a 

PD-like method is generally less successful than PD, possibly due to electrostatic repulsive 

interactions between neighboring carboxylic acid groups that may disrupt polymerization 

and/or aggregation of oligomeric polyDOPA subunits during coating formation. 

Nevertheless, polyDOPA coatings were successfully applied to PE, PVDF, and PTFE 

membrane substrates and showed reduced static water-contact angles.195 Subsequently, it 

was shown that most limitations of polyDOPA coating formation on noble metals, polymers, 

and oxides could be overcome through the use of high ionic strength deposition conditions.
196

Norepinephrine (R2 = OH) has been widely used for coating formation, with the unique 

aspect being that conformal poly(norepinephrine) coatings are ultrasmooth, with a uniform 

thickness ∼20 nm.197 In contrast, under similar deposition conditions, the thickness of a PD 

coating ranges from 30–50 nm with a number of PD nanoparticles present. Norepinephrine-

derived coatings have been formed on various materials including Si/SiO2, glass, 
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polystyrene, PDMS, and PTFE,198–201 and on substrates of various morphologies such as 

microchips,202 nanotubes,203 nanoparticles,204 nanofibers,205 and sponges.206 As an 

example of a benefit achieved through the use of chemical derivatives of dopamine, the 

additional hydroxyl group in norepinephrine allows for ring opening polymerization of 

lactone monomers from the surface in a two-step modification, resulting in grafted polyester.
201

Substitutions at the primary amine (R3 position) have been the most widely used functional 

dopamine derivatives. Conjugations to the R3 primary amine intrinsically prevents indole 

formation, affecting the PD formation mechanism,194,207,208 but surface modification may 

occur by catechol-to-catechol conjugation pathway. One functional group for modification at 

the R3 position is 2-bromoisobutyryl bromide for initiating atom transfer radical 

polymerization (ATRP).209 In addition, pyrrole, pyridine, and methacrylate as R3 

substituents have been used in surface functionalizations.52,53,81,96,100,210–212

A representative R4 substituted dopamine is 6-nitrodop-amine, which was mentioned 

previously as being photo-cleavable and used in the preparation of light-responsive smart 

surfaces.192 This compound is primarily used to functionalize surfaces of inorganic 

nanoparticles such as iron oxide and titania.213–217 6-Nitrodopamine is rather oxidation 

resistant compared to dopamine due to the presence of the electro-negative nitro groups. 

This potentially results in maintaining strong binding affinity to nanoparticles.215 Another 

R4-substituted dopamine is 5-hydroxydopamine218 (we describe the use of amine-free 

gallol-derived compounds below in Section 6.2).

5.2. Secondary (ad-layer) Functionality.

The second approach for tailoring functionality is to utilize the intrinsic chemical reactivity 

of the surface of PD to deposit an ad-layer. These secondary reactions may exploit 

noncovalent binding interactions, or covalent reactions with molecules containing 

nucleophilic or other reactive groups. Nearly all proteins, peptides, end-functionalized 

oligonucleotides, and a large population of small molecules are amenable to this approach. 

Other molecules, including synthetic polymers, can be modified or synthesized with 

functional groups enabling reactions with PD. Reaction conditions for ad-layer grafting are 

generally the same as PD formation (buffers with basic pH).

Early studies in this area involved thiol- or amine-terminated polymers grafted onto PD-

coated surfaces through thiolcatechol or amine-catechol adducts by Michael-type addition 

reactions and/or Schiff-base formations (Figure 6),1,38–40,46,77,176,219–225 with subsequent 

expansion to bio-molecules (peptides, protein enzymes and oligonucleotides).226,227 

Examples of proteins and peptides successfully immobilized onto PD are numerous and 

include albumin,228,229 lysozyme,230 bone morphogenic protein-2,142,231–233 trypsin,234 

alkaline phosphatase,193 antifreeze proteins,235 collagen,236 collagenase,230 aquaporin,237 

vitronectin (VN2)-derived peptides,238 Arg-Gly-Asp (RGD) peptides,142 epidermal growth 

factor,239 and many others. Ad-layer immobilization of (strept)avidin provides even more 

versatility through strong avidin–biotin reversible interactions.229
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In the case of biomolecules, the promiscuous reactivity of catechols and quinones at the PD 

surface is normally thought to make these reactions poorly specific at best, however a recent 

report of a chemoselective reaction between catechol and the N-terminal amine of proteins 

and peptides suggests opportunities for chemospecific conjugations to PD.240 An interesting 

recent publication described the surprising orientation-specific immobilization of antifreeze 

proteins onto PD surfaces.235 Apparently the amino acid composition exposed on the ice 

binding and nonice binding faces of the protein allowed for selective immobilization in such 

a way as to orient the protein with the nonice binding oriented away from the surface, 

reducing ice formation at the modified surface.235

PD is also a good platform for surface tethering and release of small molecule drugs and 

therapeutic RNAs66,130,241,242 through electrostatic interactions, hydrogen bonds, π–π 
stacking, cation–π interactions.103,141,243–245 For instance, the amount of bound siRNA on 

PD substrates is larger than that of unmodified substrates and shows sustained release 

profiles over at least 7 days.242 In another study, siRNAs were successfully loaded onto 

surfaces of manganese oxide nanoparticles for delivery to target cells.246

6. FUTURE OPPORTUNITIES AND CHALLENGES IN PD COATINGS

With a view toward guiding further development of PD and related coating technologies in 

the coming years, in the section below we describe several areas that we feel are deserving 

of more attention by researchers.

6.1. Improving the Mechanical Properties of PD.

Considering its chemical resemblance to mussel adhesive proteins and its ability to form 

conformal coatings on a multitude of solid surfaces, one would predict that PD coatings 

should function well as mechanically robust coatings. An application of PD in which 

mechanical properties are important is in fiber and particulate composites, where dopamine 

has been used to enhance wetting and adhesion between phases (recently reviewed by 

Ball247). As an example of PD applications in composites, the mechanical properties of 

bioceramics composed of hydroxyapatite and gelatin modified with silane (HAp-Gemosil) 

was improved by incorporation of PD.248 The compressive strength of PD-incorporated 

HAp-Gemosil (HAp-Gemosilamine) at is approximately 100 MPa, higher than that of HAp-

Gemosil (∼80 MPa). Several other recent reports have been published showing the ability of 

PD to enhance mechanical properties of composites.249,250

The application of PD to mechanical composites notwith-standing, the anecdotal experience 

of our laboratories, and that of several others, is that PD coatings in their current form do not 

perform particularly well as mechanical adhesives or in a context that requires resistance to 

delamination or abrasion. This is particularly true on flat surfaces and when PD is applied to 

low-surface-energy materials. Widespread incorporation of PD into products or components 

of devices may be further hindered unless improvements in PD mechanical properties can be 

realized.

Achieving these goals will likely require better under-standings of chemical composition and 

physical properties of PD coatings, which might lead to develop next-generation PD coating 
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with improved mechanical properties. Surprisingly, few investigations of mechanical 

properties of PD have been performed in the past.123,245,251–254 The elastic modulus of PD 

has been measured to be in the GPa range in the dry state,123, 251 suggesting that PD is quite 

rigid. The importance of primary amines in PD adhesion was measured using the surface 

forces apparatus, suggesting that a role for surface salt displacement as well as π–π and 

cation–π interactions in adhesion.245 Moreover, chemical cross-linking of amines in the 

coating offers a mechanism for increasing PD modulus.251 You and co-workers performed 

an investigation of lap shear mechanical adhesion of PD films, characterizing the mechanical 

adhesion of PD while at the same time illustrating how chemical analogs affect adhesion 

strength.252 In addition to providing insight into PD polymerization mechanisms, an 

interesting outcome of this study was that extension of the alkyl chain linker between 

catechol and amine did not affect adhesion strength. New methods of measuring the 

adhesion strength of PD films to substrates may prove useful in screening new PD 

formulations for improved adhesion to substrates.254

6.2. Expanding the Chemical and Biological Diversity of PD-like Coatings.

A recent development in the field involves the use of nitrogen-free phenols and polyphenols 

as coating precursors. Catechol-containing molecules that form coatings include 

hydrocaffeic acid,255,256 alkylcatechol, 257–262 and thiol-terminated catecholic monomers.
263 Gallol (2,3,4-triyhydroxyphenyl) based molecules such as pyrogallol and tannic acid are 

also emerging as useful precursors for coating formation. Surface coatings based on metal 

phenolic networks (MPN) are well-known examples.264,265 In the case of MPN coatings 

based on tannic acid, addition of transition metals such as Fe(III), Cr(III), V(III), Zn(II), or 

Cd(II)266 to tannic acid exhibits material-independent surface coatings by metal 

coordination network formation. Because of the fast metal–ligand coordination kinetics, the 

coating forms rapidly, which is an advantage of MPN. In contrast, PD coating requires 

several hours unless special fast coating processes are used. MPN coatings formed in this 

manner can provide support for surface PEGylation.267 Other important applications of 

MPN coatings formed in this manner can provide support for surface PEGylation.267 Other 

important applications of MPN coatings include protective coating for cell attachment,
268,269 tooth desensitization,270 heavy metal removal,271 and protein immobilization.272,273

Nitrogen-free catechol and gallol-containing precursors are capable of forming coatings in 

the absence of metals via auto-oxidation in a manner that is similar to PD formation. The 

observation of spontaneous adsorption of phenolic compounds from beverages (e.g., tea, 

wine) rich in plant polyphenols onto surfaces led to a significant expansion of potential 

building blocks for spontaneous coating formation.274 This approach was first demonstrated 

with pyrogallol, tannic acid, epigalloca-techin gallate (EGCG), epicatechin gallate (ECG), 

and epigallocatechin (EGC), which form nanoscale coatings in a kinetically controlled auto-

oxidation process that resembles that of PD formation, and then later expanded to at least 15 

natural compounds that are known to form coatings by auto-oxidation.275 Many of the 

inherent advantages of PD, namely simplicity, substrate versatility and multifunctionality, 

are shared by plant polyphenol derived coatings. Some of these coatings have the advantage 

of being colorless, unlike PD coatings.274 Furthermore, some of the biological properties of 

plant polyphenols such as antibacterial activity, antioxidant activity, and other properties are 
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conferred into the coatings. Already there is a rapidly growing body of reports employing 

nitrogen free polyphenol coatings for a variety of purpo-ses.267,273,276–304 An important 

consequence of the enormous biological diversity of plant polyphenols is that hundreds if 

not thousands of natural plant polyphenols can now be considered as coating precursors, 

with a broad range of biological and chemical properties. We anticipate that this large 

biological toolbox of coating precursors will be increasingly exploited in the coming years, 

leading to unforeseen coating properties and applications.

7. CONCLUSIONS

In its first ten years, PD has proven to be one of the most powerful and widespread surface 

coating methods due to its material-independent coating ability, the simplicity of the coating 

deposition process, and the unique and broad ranging capabilities for ad-layer formation 

leading to numerous practical uses. The thickness and PD coating properties can be tailored 

by parameters such as coating time, pH, solvent, dopamine concentration, and chemical 

additives including metal ions. In addition, target molecules such as natural/synthetic 

polymers, proteins, peptides, oligonucleotides, and numerous small molecules including 

drugs) can be readily immobilized by ad-layer formation or through one-pot coating 

methods. The use of chemical analogs of dopamine promises to further expand the 

properties and applications of PD coatings. Important challenges facing the field in the 

future include better understanding of PD formation mechanisms and elucidation of the 

chemical structure of PD, enhancement of mechanical robustness of PD, and extension of 

the general PD coating approach to more chemically diverse building blocks such as the 

nitrogen-free catechol and gallol compounds found in plant tissues. With advancements in 

these areas, it is likely that the family of PD and related coatings will be widely 

implemented in biomedical, energy, consumer products, agricultural, military, and other 

sectors.
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Figure 1. 
Schematic illustration of PD coating method with comparison to LbL coatings. Top: the 

traditional PD method takes place spontaneously in alkaline aqueous solutions, or with the 

addition of oxidants. A subsequent ad-layer (secondary coating) step can be undertaken. 

Secondary reagents are usually amine or sulfhydryl containing nucleophiles such as 

peptides, proteins, oligonucleotides, or nucleophilic natural or synthetic polymers. Bottom: 

the LbL method involves cyclic adsorption of typically polymeric components with 

intermediate rinsing steps. Often, dozens or even hundreds of cycles are used to build the 

coating.
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Figure 2. 
Current theories of polydopamine structure and formation. Auto-oxidation of dopamine 

leads to the formation of dopamine-quinone and 5,6-dihydroxyindole. Proposed mechanisms 

for polydopamine formation range from noncovalent self-assembly of subunits to form 

quinhydrone or trimer assemblies, and covalent coupling of subunits to yield a 

catecholamine/quinone/indole heteropolymer or eumelanin-like oligo-indoles. Adapted with 

permission from refs 13, 15, and 20. Copyright 2013 American Chemical Society, 2014 

American Chemical Society, and 2012 Wiley-VCH.
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Figure 3. 
Pathway of pyrrolecarboxylic acid-involved PD formation. (a) Analysis of oxidative 

degradation products suggests PD formation pathways. Pyrrole-2,3-dicarboxylic acid 

(PDCA) is originated from partially cyclized catecholamine oligomers. Pyrrole-2,3,5-

tricarboxylic acid (PTCA) is an outcome of DHI unit degradation. Reprinted with ref 17. 

Copyright 2013 Wiley-VCH. (b) DHI2/PCA trimer complex as a building block of PD. 

Reprinted with permission from ref 18. Copyright 2014 American Chemical Society.
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Figure 4. 
One-pot PD coatings. The one-pot method for preparing PD coatings utilizes a precursor 

solution containing a mixture of dopamine and molecules to be coimmobilized with PD. The 

method can use either the auto-oxidation approach at basic pH solution or chemical oxidants 

to produce functional substrates.
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Figure 5. 
Chemical structures of dopamine derivatives. Opportunities exist for chemical substitutions 

of dopamine at alkyl (R1, R2), amino (R3), and aromatic (R4) sites, offering the potential for 

tailoring the formation and physicochemical properties of PD coatings.
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Figure 6. 
Ad-layer functionalization with thiol- and amine-containing biomolecules on PD-coated 

substrates. Adapted with permission from refs 38, 39, and 40. Copyright 1999 American 

Chemical Society, 1987 American Society for Biochemistry and Molecular Biololgy, and 

2006 American Chemical Society.
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Table 1.

List of Substrates Successfully Coated with PD

materials (substrates) substrate form ref

polystyrene (PS) 1

nanofiber 41

polyethylene (PE) 1

membrane 42

polypropylene (PP) 43, 44

nanofiber 45

Polycarbonate (PC) 1, 46

polyethylene terephthalate (PET) 1, 47

PET/Ag hybrid fiber 48

polyester 44

poly(dimethylsiloxane) (PDMS) 1, 47

PET/Ag hybrid fiber 48

polyester 44

poly(dimethylsiloxane) (PDMS) 1, 49–53

polytetrafluoroethylene (PTFE,
 Teflon)

54, 55

microtube 56

poly(ether sulfone) membrane 57

polyvinyl alcohol (PVA) nanofiber 58

PVA/polyacrylic acid (PAA) nanofiber 59

poly(vinyldiene fluoride) nanofiber 60

poly(vinylidenefluoride) (PVDF) membrane 61

polyether ether ketone (PEEK) 1, 62

membrane 63

polyurethane (PU) 1

sponge/foam 64, 65

poly(lactic-co-glycolic acid) (PLGA) nanoparticle 66

poly(caprolactone) (PCL) fiber 67

particle 68

scaffold 69, 70

polyimide (PI) 55

cellulose membrane 71

filter paper 72

paper 73

silk fiber 74

nylon membrane 57

graphene 54
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materials (substrates) substrate form ref

graphene oxide (GO) 75, 76

carbon nanotube (CNT) 77, 78

diamond 79

diamond-like carbon 80

SiO2
1, 81

nanoparticle 82

membrane 83

porous scaffold 84

Si3N4
1

glass 1, 85

bead 86

tetraethyl orthosilicate nanofiber (sol–gel) 87

clay 88

quartz 1, 89

fertilizer 90

mica 55

hydroxyapatite 1

crystallization 91, 92

calcium phosphate cement 93

calcium carbonate powder 94

TiO2
1, 95, 96

nanoparticle 97

nanowire 98, 99

nanotube 100, 101

ZrO2 nanocomposite 102

Nb2O3
1

Fe 55

Fe3O4 nanoparticle 103

Pd 1

nanoparticle 104, 105

Pt 1, 106, 107

Cu 1, 108, 109

Ag 1

nanostructure 110

Au 1, 54, 111

ZnO2 nanorod 112

Al 44

Al2O3 nanoparticle 113

Al(OH)3 particle 114
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materials (substrates) substrate form ref

GaAs 1

In2O3/SnO2 (Indium Tin Oxide, ITO) 115

stainless steel 1, 116

porous 117

CdS/CdSe quantum dot 118

virus, E.coli 119, 120

superhydrophobic surface 121

water surface air/water interface 122–124

PD capsule 125–130
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