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Abstract
On the Brauer groups of fibrations
by
Yanshuai Qin
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Xinyi Yuan, Co-chair

Professor Martin Olsson, Co-chair

Let C' be a smooth projective geometrically connected curve over a finite field with function
field K or the spectrum of the ring of integers in a number field K. Let X be a smooth
projective geometrically connected curve over K. Let 7 : X — C be a proper regular model
of X/K. Artin and Grothendieck proved that there is an isomorphism II1(Pic% /i) = Br(X)
up to finite groups. As a result, this implies that the BSD conjecture for Pic5 /K 1s equivalent
to the Tate conjecture for the surface X when K is in positive characteristic. In this thesis,
we generalize this result to fibrations 7 : X — ' of arbitrary relative dimensions fibered
over C', where C is a smooth projective curve over arbitrary finitely generated fields or the
spectrum of the ring of integers in a number field. As a consequence, we reprove the reduction
theorem of the Tate conjecture for divisors due to André and Ambrosi, and give a simpler
proof of a theorem of Geisser who proved it using the étale motivic cohomology theory. We
also reduce Artin’s question on the finiteness of Brauer groups of proper regular schemes to
dimension at most 3.
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Chapter 1

Introduction

1.1 Tate conjectures

In [60], Tate formulated the Tate conjecture [60, Conj. 1], and the rank BSD conjecture [60,
Conj. B+SD], the strong Tate conjecture [60, Conj. 2| and the B+SD+2 conjecture [60,
Conj. B+SD+2] in terms of L-functions. He asked about relations between these conjectures
and proved some equivalences between them for smooth projective varieties over finite fields
(cf. [61, Thm. 2.9]). Let’s first recall Tate’s formulations of these conjectures.

Let X be a smooth projective geometrically connected variety over a finitely generated
field K (i.e. finitely generated over a finite field or Q). By spreading out, one can then
construct a projective and smooth morphism f : X — ) of schemes of finite type over Z,
with ) integral and regular, whose generic fiber is X/K. Let |X| (resp. |Y|) denote the set
of closed points of X' (resp. )). For each y € |)|, let k(y) denote the residue field of y and
gy denote the cardinality of k(y). Set

P,i(T) := det(1 — a;lT\Hgt(Xg, Qy)),
1

D,(s) == Pquy_s)

ye|Y|

(1.1)

Here 0, € Gal(k(y)/k(y)) is the arithmetic Frobenius element and ¢ # char(k(y)) is a prime.
Define the zeta function of X as

C(X7S) = H #

[
z€|X| U

where ¢, denotes the cardinality of k(x).

Let ¢ # char(K) be a prime number. Let A’(X) denote the group of classes of algebraic
cycles of codimension i on X, with coefficients in Q, for /-adic homological equivalence. Let
N¥(X) C A(X) denote the group of classes of cycles that are numerically equivalent to zero.
Let d denote the dimension of X. Tate made the following conjectures:
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Conjecture 1.1.1 (T%(X,()). The cycle class map

ANX) ®9 Qr — HZ (Xks, QZ(Z‘»Gal(KS/K)
18 surjective.

Conjecture 1.1.2 (E'(X,()). NY(X) = 0, i.e. numerical equivalence is equal to (-adic
homological equivalence for algebraic cycles of codimension © on X.

Conjecture 1.1.3 (BSD). The rank of Picg{/K(K) is equal to the order of the zero of ®4(s)
at s = dim()).

Conjecture 1.1.4 (T%(X)). The dimension of A'(X)/N*(X) is equal to the order of the
poles of ®yi(s) at s = dim )Y + 4.

Conjectures 1.1.1 and 1.1.2 are called the Tate conjecture for X. Conjecture 1.1.3 is
known as the rank part of the BSD conjecture for the Picard variety Picg(/K. Conjecture
1.1.4 is called the strong Tate conjecture.

Let X be a regular scheme of finite type over Z. Tate made the following conjecture
about the zeta function of X', which is equivalent to T'(X) when X is a smooth projective
variety over a finite field.

Conjecture 1.1.5. If X is a reqular scheme of finite type over Z, then the order of ((X,s)
at the point s = dim X — 1 is equal to rank H*(X, O%) — rank H (X, O%).

Tate showed that Conjecture 1.1.5 for an open dense subscheme of X is equivalent to the
conjecture for X itself. So Conjecture 1.1.5 in positive characteristic can be regarded as the
strong Tate conjecture for divisors on non-proper varieties over finite fields. Let X — ) be
a morphism as discussed at the beginning, whose generic fiber is a smooth projective variety
over a global field K. Tate conjectured a relation between the conjectures for X/K that he
made before:

Conjecture 1.1.6. Conjecture 1.1.5 for X < the BSD conjecture for Picg(/K + THX).

It is this conjecture of Tate that has motivated our thesis.

1.2 Brauer groups and Tate-Shafarevich groups

In this thesis, we are mainly interested in the Tate conjecture for divisors on X (i.e. T%(X, )
with ¢ = 1). The conjecture T? (X, £) was proved for abelian varieties by Tate [62] (over finite
fields), Zarhin [68, 69] (over positive characteristics) and Faltings [17, 18] (over characteris-
tic zero), for K3 surfaces over characteristic zero by André [2] and Tankeev [58, 59], for K3
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surfaces over positive characteristics by Nygaard [45], Nygaard-Ogus [44], Artin-Swinnerton-
Dyer [3], Maulik [34], Charles [7] and Madapusi-Pera [39].

The Tate conjecture for divisors and the BSD conjecture for abelian varieties have the
Brauer groups and the Tate-Shafarevich groups as their obstructions respectively. Next, we
will introduce these groups of obstructions.

For any noetherian scheme X, the cohomological Brauer group

Br(X) := H*(X,G)or

is defined to be the torsion part of the étale cohomology group H?*(X,G,,). Let X be
a smooth projective geometrically connected variety over a finitely generated field k and
¢ # char(k) be a prime. By Kummer’s theory (see Proposition 2.5.2 ), there is a canonical
exact sequence

0 — NS(X) ®z Qp — H*(X}s, @Z(l»Gal(ks/k)) SN WBr(st)Gal(ks/k) 0,

where V;Br (X} )% **/%) is the Tate module of Br(Xjs)%2**/%) tensoring with Q. Since the
algebraic equivalence coincides with the numerical equivalence for divisors up to torsions by
Matsusaka’s theorem, 7% (X, ¢) is equivalent to V;Br(Xys)“(**/¥) = 0, which is equivalent to
the finiteness of Br(Xj. )G2/**/k)[¢>°]. Tf k is finite, the natural map Br(X) — Br(Xj. )%k /k)
has a finite kernel and a finite cokernel, so T'(X, /) is also equivalent to the finiteness of
Br(X)[¢>].

For an abelian variety A over a global field K, the Tate-Shafarevich group is defined as

m(A) = Ker(H' (K, A) — [[ H'(K.. 4)),

where K, denotes the completion of K at a place v. If p = char(K) > 0, Schneider [51]
proved that the BSD conjecture for A is equivalent to the finiteness of II1(A)[¢>°] for ¢ # p.

1.3 The Artin-Grothendieck Theorem for fibered
surfaces

Let C' be a smooth projective geometrically connected curve over a finite field with function
field K or the spectrum of the ring of integers in a number field K. Let X be a 2-dimensional
regular scheme and X — C be a proper flat morphism such that the generic fiber X is
smooth and geometrically connected over K. Since the Tate conjecture for X is known,
Conjecture 1.1.6 suggests that there should be a relation between Br(X') and Hl(Picg(/K).
To state Artin-Grothendieck’s theorem, we need to define isomorphic up to finite groups for
two abelian groups.
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For two abelian groups M and N, we say that they are isomorphic up to finite groups if
there exists a sub-quotient M; /My of M (resp. Ni/Ny of N) such that M, (resp. Np) and
M/M, (resp. N/Ny) are finite and M; /My = N;/Ny. Let f: M — N be a homomorphism
with a finite cokernel and a kernel isomorphic to an abelian group H up to finite groups, in
this situation, we say that the sequence 0 - H — M — N — 0 is ezact up to finite groups.

Theorem 1.3.1 (Artin-Grothendieck). There is an isomorphism IH(Picg(/K) >~ Br(X) up
to finite groups.

Artin-Grothendieck’s theorem implies that Conjecture 1.1.6 holds for the case that X is a
smooth surface over a finite field, since T"(X) & T"(X, /) (cf. [61]) for a smooth projective
compactification X of X.

1.4 Fibrations of higher relative dimensions

Motivated by the Conjecture 1.1.6 of Tate, we study the relation between these obstructions:
the Brauer group Br(X), the Tate-Shafarevich group I11(Pic% /i) and the geometric Brauer
group Br(Xj. )G /K) We generalize Artin-Grothendieck’s theorem to fibrations of arbi-
trary relative dimensions fibered over smooth projective geometrically connected curves over
finitely generated fields (geometrical case) and the spectrum of the ring of integers in number
fields (arithmetic case). For a torsion abelian group M and a prime p, denote by M (non-p)
the subgroup of elements of order prime to p in M. For a field k, denote by G} the absolute
Galois group of k.

Theorem 1.4.1 (geometrical case). Let k be a finitely generated field of characteristic p > 0.
Let X be a smooth geometrically connected variety over k and C be a smooth projective
geometrically connected curve over k with function field K. Let m : X — C be a dominant
k-morphism such that the generic fiber X is smooth projective geometrically connected over
K. Let K' denote Kk® and write P for the Picard variety Picg(/KJed. Define

Wy (P) = Ker(H'(K',P) — [] H' (K" P)).
vE|Cls |
Then there is an exact sequence up to finite groups
0 — Mg/ (P)% (non-p) — Br(X: ) (non-p) — Br(Xgs)“ (non-p) — 0.

In the case that k is a finite field and X is projective over k, the above theorem gives the
following result, which generalizes Artin-Grothendieck’s theorem in positive characteristics
to arbitrary relative dimensions.

Corollary 1.4.2. Let 1 : X — C be a proper flat k-morphism, where C is a smooth
projective geometrically connected curve over a finite field k of characteristic p with function
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field K. Assuming that X is smooth projective over k and the generic fiber X of w is smooth
projective geometrically connected over K, then there is an exact sequence up to finite groups

0— HI(Picgf/ered)(non-p) — Br(X)(non-p) — Br(Xg: )% (non-p) — 0.

In Theorem 1.4.1, when k is finite, the canonical maps I11( P)(non-p) — Il (P)%* (non-p)
and Br(X) — Br(&}s)“ have finite kernels and finite cokernels (cf. Proposition 3.2.2 and
[67, Cor. 1.4]). Thus, Corollary 1.4.2 follows directly from Theorem 1.4.1. As a consequence
of Corollary 1.4.2, we reprove a theorem of Geisser:

Theorem 1.4.3 ([23]). T (X, () is equivalent to T*(X, ) + finiteness of W(Pick) x o) [>°]-

Remark 1.4.4. Geisser’s theorem implies that Conjecture 1.1.6 is true in positive character-
istics. Geisser’s proof used the étale motivic cohomology theory. Comparing with his result,
our result gives a quantitative relation between these obstructions without need to assume
any of these conjectures.

Conjecture 1.1.6 in mixed characteristic may not be accessible in general, nevertheless,
we prove a relation for their obstructions:

Theorem 1.4.5 (arithmetic case). Let 7 : X — C be a proper flat morphism, where C' is
Spec(Ok) for some number field K. Assume that X is reqular and the generic fiber X of
T s projective and geometrically connected over K. Then there is an exact sequence up to
finite groups

0 — 1(Pic% ) — Br(X) — Br(Xz)“< — 0.

Remark 1.4.6. For arithmetic schemes of dimension > 3, the above question was first
studied by Tankeev (cf.[55, 56, 57]), and he proved the above result in some special cases.

1.5 Applications

Since Brauer groups are the obstructions of the Tate conjecture for divisors, in combination
with a spreading out argument, Theorem1.4.1 implies the following reduction theorem of the
Tate conjecture due to André [2] and Ambrosi [1]:

Theorem 1.5.1. Let k be a prime field and K be a finitely generated field over k. Let ¢
be a prime different from char(k). Assuming that T*(X,{) is true for all smooth projective
varieties X over k, then T*(X,¢) holds for all smooth projective varieties X over K.

Remark 1.5.2. T'(X, () for smooth projective varieties over finite fields has been reduced
to TY(X,€) for smooth projective surfaces X over finite fields with H*(X,Ox) = 0 by the
work of de Jong [14], Morrow [40, Thm. 4.3] and Yuan [66, Thm. 1.6].
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In [54], Skorobogatov and Zarkhin conjectured that Br(Xjs)“*(non-p) is finite for any
smooth projective variety X over a finitely generated field k. In [54, 53], they proved the
finiteness of Br(Xjs)%*(non-p) for abelian varieties and K3 surfaces over k with char(k) # 2.
By using our Theorem 1.4.1, we reduce the question about the finiteness of Br(Xjs)“* (non-p)
to the question over prime fields:

Theorem 1.5.3. Let k be a prime field and K be a field finitely generated over k. Then the
following statements are true.

(1) If k = Q and Br(Xys)% is finite for any smooth projective variety X over k, then
Br(Xgs)9% is finite for any smooth projective variety X over K.

(2) If k =, and the Tate conjecture for divisors holds for any smooth projective variety
over k, then Br(Xgs)9% (non-p) is finite for any smooth projective variety X over K.

Artin asked the following question about the finiteness of Brauer groups:

Question 1.5.4 (Artin). Let X' be proper scheme over Spec(Z), is the Brauer group Br(X)
finite ?

For a smooth projective variety X over a finite field, we have seen that the finiteness of
Br(&X) is equivalent to the Tate conjecture for divisors on X (cf. [61]). For a proper flat
regular integral scheme X over Spec(Z), taking C' = Spec(I'(X,Oy)), there is a proper flat
morphism (the Stein factorization) 7 : X — C with a generic fiber geometrically connected
over K = K(C). It follows from our Theorem 1.4.5 that the finiteness of Br(X') is equivalent
to the finiteness of II1(Pic% /i) and the finiteness of Br(Xg-)“*. Orr and Skorobogatov [46,
Thm. 5.1] proved that Br(Xgs)“% is finite under the assumption of the integral Mumford-
Tate conjecture. Thus, Theorem 1.4.5 implies the following result on Artin’s question for
regular schemes.

Corollary 1.5.5. Assuming the integral Mumford-Tate conjecture and the Tate-Shafarevich
conjecture, then Br(X) is finite for all proper flat reqular schemes over Spec(Z).

By a theorem of André [2] and a result of Ambrosi [1, Cor. 1.6.2.1], the finiteness of
Br(X%)9% has been reduced to smooth projective surfaces over K. Thus, Theorem 1.4.5
reduces Artin’s question for regular schemes to arithmetic threefolds:

Theorem 1.5.6. Assuming that Br(X) is finite for all 3-dimensional regular proper flat
schemes over Z, then Br(X) is finite for all regular proper flat schemes over Z.

1.6 Outline of Thesis

In Chapter 2, we introduce notations, basic definitions and facts about Brauer groups, which
will be used throughout the article.
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In Chapter 3, we prove Theorem 1.4.1 i.e. the geometrical case of our main results and
its corollaries.

In Chapter 4, we prove Theorem 1.4.5 i.e. the arithmetic case of our main results and its
corollaries. First, we prove a local result for fibrations over a henselian DVR. Then, we use
the local result to deduce Theorem 1.4.5. In the proof of the local result, we use the syntomic
cohomology to compute the flat cohomology H?(X, pu,») and then relate the flat cohomology
H%(X, j1,n) to the étale cohomology H?*(Xg, p1,n)¢% through the Fontaine-Messing period
morphism. This gives an isomorphism Br(X) — Br(Xz)“% up to groups of finite exponent.



Chapter 2

Preliminaries

2.1 Notation and Terminology

Fields

By a finitely generated field, we mean a field which is finitely generated over a prime field.
For any field k, denote by k® (resp. k) the separable closure (resp. algebraic closure). Denote
by G\ = Gal(k®/k) the absolute Galois group of k.

Henselization

Let R be a noetherian local ring, denote by R" (resp. R*") the henselization (resp. strict
henselization) of R at the maximal ideal. If R is a discrete valuation ring, denote by K"
(resp. K*") the fraction field of R" (resp. R*").

Varieties

By a wariety over a field k, we mean a scheme which is separated and of finite type over
k. For a smooth projective variety X over a field k, we use Picg(/k to denote the identity
component of the Picard scheme Picx /. Denote by Pic% Jkrea the underlying reduced closed
subscheme of Pic% Tk

Cohomology

The default sheaves and cohomology over schemes are with respect to the small étale site.
So H' is the abbreviation of H,.
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Abelian group
For any abelian group M, integer m and prime /¢, we set
Mm] = {z € Mlmz =0}, My = | M[m], M=) =[] M),
m>1 n>1

M(uon-t) = | ) M[m], T,M = Homgz(Qy/Z¢, M) = lim M[("], VM = Ty(M) ®z, Q..

m>1,0m n

We also set M (non-0) = M. Denote the cardinality of a group M by |M|. A torsion abelian
group M is of cofinite type if M[{] is finite for all prime ¢. For two abelian groups M and N,
we say that they are isomorphic up to finite groups if there exist filtrations My C M; C M
and Ny C N7 C N such that My (resp. Ny) and M/M; (resp. N/N;) are finite and M7 /M,
is isomorphic to Ny /Ny.

2.2 Cohomological Brauer group

In this section, we recall basic definitions and facts about the cohomological Brauer groups.
The main reference for this section is the book [12].

Definition 2.2.1. The cohomological Brauer group of a scheme X s
Br(X) := H*(X,G.)tor-

In the particular case X = Spec(k), where k is a field, this is same as the classical
description of the Brauer group of a field given by the Galois cohomology:

Br(k) = H*(k, (k)").
A morphism of schemes f: X — Y gives rise to a morphism:
[ HY(Y,G,) — H"(X,G,,)

For n = 2 this gives a natural map of Brauer groups f* : Br(Y) — Br(X), which is sometimes
referred to as the restriction map.

The Kummer exact sequence

The Brauer group is linked to étale cohomology with finite coefficients by the Kummer exact
sequence on X

0 — —>GmL>Gm—>0.
Here ¢ is a prime invertible on X and n is a positive integer. The associated long exact
sequence of cohomology gives an exact sequence

0 — Pic(X) /0" — H*(X, jugn) — Br(X)[¢("] — 0.
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One can drop the restriction that ¢ is invertible on X by using the fppf site Xy,,¢ instead of
X¢. For any integer n > 1, the sequence

0— ptp — G, — G,, — 0
is exact on Xgppe. Since Gy, is a smooth group scheme, there is a canonical isomorphism
i ~ g7
Hét(Xa Gm) - prpf(Xa Gm)a
it gives rise to an exact sequence

0 — Pic(X)/n — H*(X, jt,) — Br(X)[n] — 0.

Localization of Brauer groups

Let X be a regular, integral, noetherian scheme. Let j : Spec(F') — X be the generic point
of X. There is a natural exact sequence of sheaves on the small étale site X, which describes
the embedding of the group of invertible regular functions into the group of non-zero rational
functions as the kernel of the divisor map:

0— Gm,X — j*Gm,F — @ iD*Zk(D) — 0.
Dex1?

Here X' denotes the set of divisors on X and ip : Spec(k(D)) < X is the embedding of the
generic point of D.

Proposition 2.2.2. Let X be a regular, integral, noetherian scheme. Then the groups
H"(X,G,,) are torsion for n > 2. In particular, the Brauer group Br(X) is a torsion

group.

Proof. This follows from the long exact sequence associated to the short exact sequence
above and the lemma below. 0

Lemma 2.2.3. Let X be a scheme. Let L be a field and let f : Spec(L) — X be a morphism.
We have the following properties:

(i) H'(X, f.Z) = 0;
(i) H'(X, f.Gp) = 0;
(111) R*f,Z = 0;
(iv) R*f.G,, = 0.
If F is an étale sheaf on Spec(L), then, for anyi > 1,

(v) the sheaf R'f.F is a torsion sheaf;
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(vi) if, in addition, X is quasi-compact and quasi-separated, then the group H' (X, f.F) is
a torsion group.

Lemma 2.2.4. Let X be a regular, integral, noetherian scheme. Let j : Spec(F) — X be
the generic point of X. There is an exact sequence

0 — Br(X) — H*(X,4.G,) — € H'(k(D),Q/Z).
Dex!

Proof. This follows from the long exact sequence associated to the short exact sequence of
sheaves
0— Gm)( — j*Gmf — @ Z'D*Zk(D) — 0
DeXx!

and the lemma above. See [12, Lemma. 3.5.4] for the detailed proof.
[l

Proposition 2.2.5. Let X be a regular, integral, noetherian scheme. Let j : Spec(F) — X
be the generic point of X. the natural map Br(X) — Br(F) is injective. For any non-empty
open subset U C X, the natural map Br(X) — Br(U) is also injective.

Proof. By the lemma above, it suffices to show that the natural map induced by the isomor-
phism j*7.Gp p = Gy p

H?*(X, j.G,, r) — H*(Spec(F),G,,)
is injective. The Leray spectral sequence
EY? = HP(X, R1},G,, r) = H"(Spec(F),G,,)
gives an exact sequence
H(X,R'j.G,, r) — H*(X, .Gy r) — Ker(H?(Spec(F),G,,) = H*(X, R*j,Gyn r)).

By Lemma 2.2.3, H%(X, R'j,G,, r) = 0. This shows the injectivity. O

Purity for the Brauer group

In this section, we recall the purity for Brauer group(cf. [12, §3.7] for proofs).

Theorem 2.2.6. Let X be an excellent, reqular, integral, noetherian scheme, let Z C X
be a closed subset of codimension c. Let U C X be the open set X — Z. Let { be a prime
wnvertible on X

(i) If ¢ > 2, then the restriction map Br(X)[(>°] — Br(U)[¢*°] is an isomorphism.
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(i) If ¢ = 1 and Dy, ..., D,, are the connected components of the regqular locus of Z of
codimension 1, then the Gysin exact sequences

HX(X, pn) — H*(U, pn) — E H'(D3, Z/07)
i=1
for all n > 1 give rise to exact sequences
0 — Br(X)[(*] — Br(U)[(*] — € H'(Di, Q¢/Zy).
i=1

0 — Br(X)[(*] — Br(U)[*] — €D H' (k(D1), Qu/Zy).
i=1
Theorem 2.2.7 ([6]). Let X be a reqular, integral, noetherian scheme. Let U C X be an
open subset whose complement is of codimension at least 2. Then the restriction map

Br(X) — Br(U)
18 an isomorphism

Theorem 2.2.8 ([6]). Let X be a regular, integral, noetherian scheme with function field F'.
Then Br(X) C Br(F) is the subgroup

ﬂ BI‘(OXﬂc),

reX!

where X1 denotes the set of generic points of divisors in X.

The restriction and corestriction maps

Let f:Y — X be a finite locally free morphism of constant rank d of schemes. This means
that locally for the Zariski topology on X the morphism is of the form Spec(B) — Spec(A),
where B a free A-module of finite rank d.

The norm of an element b € B is the determinant of the matrix that gives the multi-
plication by b on B with respect to some A-basis of B. It does not depend on the basis.
The norm is multiplicative. We obtain a map of quasi-coherent sheaves f,Oy — Ox. The
composition of the canonical map Ox — f.Oy with f.Oy — Ox sends u to u. Recall that
the étale sheaf G,, x is defined by setting G,,, x(U) = I'(U, Oy)* for any étale morphism
U — X, and similarly for G,,y. Thus, we obtain natural morphisms of étale sheaves

Gm,X — f*Gm,Y — Gm,Xa
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whose composition sends u to u?. By the finiteness of f, the functor f, from the category of
étale sheaves on Y to the category of étale sheaves on X is exact (cf.[36, Cor. 11.3.6]). Thus
the Leray spectral sequence gives an isomorphism H™(X, f.G,,y) — H"(Y,G,,y) which
identifies the canonical map f* with H"(X,G,, x) — H"(X, f.G,,y). We thus obtain the
restriction and corestriction maps

ReSy/X COI’y/X

Hn(X,GmJ() — Hn(KGm7y) — Hn(X,Gm7x)

whose composition is multiplication by d. Here the restriction Resy,x is the canonical map
f*. For n = 2, we obtain the restriction and corestriction maps of Brauer groups

Resy,x : Br(X) — Br(Y), Cory,x : Br(Y) — Br(X)

Proposition 2.2.9. Let f : Y — X be a finite locally free morphism of constant rank of
schemes. Let i : X' — X be a morphism and let Y = X' xx Y. Let j : Y — Y be the
natural projection. The following diagram commutes:
Br(Y) ——= Br(Y")
lCory/X lCOry//X/

Br(X) —— Br(X’)

Proof. See [12, Propostion. 3.8.1]. O

Brauer groups of Dedekind schemes

In this section, we give some examples about Brauer groups of regular schemes of dimension
at most 1.

Proposition 2.2.10 (Azumaya). Let R be a henselian local ring with residue field k.

(i) The embedding of the closed point Spec(k) — Spec(R) induces an isomorphism
Br(R) = Br(k).

(i) If R is a strictly henselian local ring, that is, if k is separably closed, then Br(R) = 0.
Proof. See [12, Thm. 3.4.2]. ]

Corollary 2.2.11. Let R be a henselian noetherian local ring with mazximal ideal m. Let R

A

be the m-adic completion of R. Then the natural map Br(R) — Br(R) is an isomorphism.

Proposition 2.2.12. Let R be an excellent discrete valuation ring with field of fractions K
and residue field k of characteristic p.

(i) If k is separably closed, then Br(K)(non-p) = 0. If k is algebraically closed, then
Br(K) = 0.
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(i1) If k is finite and char(K) = 0, then Br(R) = 0 and Br(K) = Q/Z.

Proof. By Theorem 2.2.6 (ii), Br(R)[¢*°] = Br(K)[(*] for any ¢ # p. Since Br(R) = Br(k) =
0, Br(K)[¢>] = 0. This proves Br(X')(non-p) = 0. For the case that k is algebraically closed,
see [12][Thm. 1.2.15] for the proof.

If k is finite, Br(R) = Br(k) = 0 by [12][Thm. 1.2.13]. There is a Hochschild-Serre
spectral sequence N
Ey = H'(k, H (K*",Gy,)) = H'V(K,Gy,,).

It gives a long exact sequence
0— H'(k,(K*"")*) = H'(K,G,,) = H°(k, H'(K*",G,,))

— H*(k, (K*")) = ker(Br(K) — Br(K*")) — H'(k, H'(K*",G,,))
Since HY(K,G,,) = 0 and Br(K*") = 0,

Br(K) = H*(k, (K*")*).

By (K*")* = (R*")* x 7, it suffices to show that H?(k,Z) = Q/Z and H?*(k, (R*")*)=0.

Taking Galois cohomology for the exact sequence of Gy-modules with trivial actions
0—72Z—Q—Q/Z—0,

we get H?(k,Z) =2 H'(k,Q/Z) = Q/Z. Let 7 be a generator of the maximal ideal in R. The
exact sequence
0 — (1+aR") — (RM)* — (k) — 0

induces a long exact sequence of Galois cohomology. Since H'(k, (k*)*) = 0 for i = 1,2, the

induced morphism
H?(k, (1 +7R*™")) — H*(k, (R°")")

is an isomorphism. Since (1 + 7"R*")/(1 + 7" R*") = k* and H'(k,k*) = 0 for i > 0, the
natural map
H?(k, (1 + 7" R™")) — H?(k, (1 + 7" R™))

is an isomorphism for any m > n > 1. Let M, denote 1 + 7#"R*". If p = w°u for some
u € (R*")* it follows from Hensel’s lemma that for any y € M, ., the equation 27 = y has a
unique solution x in M, if n is sufficiently large. So pM,, = M,,.. for some n > 1. It follows
that

H?(k, M) 2> H*(k, M,,)

is an isomorphism. So H?(k, M,)[p] = 0. Since M, 4 M, is an isomorphism for any ¢ # p,
H?(k, M,)[f] = 0. This proves H?(k, M,) = 0 for some n > 0. So H?(k, (R*")*) = 0. O
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Proposition 2.2.13. Let X be a smooth geometrically connected curve over a separably
closed field k of characteristic p. Then Br(X)(non-p) = 0. Moreover, if k is algebraically
closed, then Br(X) = 0.

Proof. Let ¢ # p be a prime, the Kummer exact sequence gives
0 — Pic(X) /0" — H*(X, ppn) — Br(X)[¢"] — 0.

If X is projective, the second arrow is an isomorphism, so Br(X)[¢"] = 0. If X is not
projective, H?(X, um) = 0 by the Poincaré duality. This also gives Br(X)[¢"] = 0. So
Br(X)(non-p) = 0. If k is algebraically closed, then the function field K (X) is a C;-field
(c.f. [12][Thm. 1.2.14]) whose Brauer group vanishes. By Proposition 2.2.5, Br(X) also
vanishes. O

Proposition 2.2.14. Let Ok be the ring of integers in a number field K, there is a canonical
exact sequence

0 — Br(K @Br ) — Q/Z — 0.

vEME

Here My denotes the set of all places of K and K, is the completion of K at v. Let X
denote Spec(Ok). As a result, Br(X) is finite.

Proof. The first claim is a consequence of the global class field theory (cf. [35, Chap. II,
Prop. 2.1]). By [12, Thm. 3.6.1(ii)], the natural map

Br(K)/Br(Ox,) — Br(K,)/Br(0,)
is injective. By Theorem 2.2.8, there is an exact sequence

0 — Br(X) — Br(K) — @ Br(K)/Br(Ox.,),

Uer
where M} is the set of finite places. It gives
0 — Br(X) — Br(K) — @ Br(K,)/Br(0,).
vEMf

By Proposition 2.2.12, Br(O,) =0 for all v € le( This gives

0 — Br(X) — Br(K) — € Br(K,).

vGM}JQ

Thus Br(X) < [], Br(K,), where the product is taken for all infinite places. Since Br(R) =
Z/2, so Br(X) is finite. O
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2.3 Picard variety and Neron-Severi group

Here we review some definitions and basic properties about the Picard group, the Neron—
Severi group, and the Picard functor.

Let X be a projective scheme over a field k. Denote by Pic’(X) the subgroup of Pic(X)
of algebraically trivial line bundles (cf. [31, Definition 9.5.9]).

Definition 2.3.1. The Neron-Severi group NS(X) of X is the quotient Pic(X)/Pic’(X).

Note that a line bundle over X is algebraically trivial if and only if it is algebraically
trivial over Xjs. Therefore,

NS(X) = Im(Pic(X) — NS(X)).

By [19, n°232, §6] or [4, §8.2, Thm. 3], the Picard functor Picy . is represented by a
group scheme, locally of finite type over k. Denote by Pic5 s the identity component of (the

group scheme representing) Picy .. By [31, Lem 9.5.1], ﬂg(/k is a group scheme of finite
type over k, open and closed in Picy . If X is geometrically normal, by [31, Prop. 9.5.3,

Thm. 9.5.4], Eg(/k is actually projective over k. In this case, by [19, n°236-16, Cor. 3.2,
the reduced structure (Pic% /i )red Of Pic sk is an abelian variety over k.

Definition 2.3.2. Let X be a smooth projective variety over k. The Picard variety Picg(/k’red
of X/k is the reduced scheme (ﬁg(/k)red.

There are canonical injections
Pic(X) — Picy,(k), Pic’(X) — Pick (k).

They are isomorphisms if X (k) is non-empty or k is separably closed. See [4, §8.1, Prop. 4]
and [31, Prop 9.5.10, Thm 9.2.5].

By [50, Exp. XIII, Theorem 5.1], NS(X*®) is a finitely generated abelian group. Thus, we
have

Proposition 2.3.3. The Neron-Severi group NS(X) is finitely generated.

Poincaré reducibility theorem

Theorem 2.3.4 ([41]). If A is an abelian variety and Y is an abelian subvariety of A. Then,
there is an abelian subvariety Z of A such that Y N Z s finite and Y + Z = A. In other
words, X is isogenous to Y X Z.

Proof. See [41, §19, Thm. 1]. O
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Lemma 2.3.5. Let X be a smooth projective geometrically connected variety over a infinite
field k. Let C' C X be a smooth projective geometrically connected curve obtained by taking
hyperplane sections repeatedly. Then there exists an abelian subvariety B of Picoc /i Such that
the induced morphism

Picg(/k’red x B — Picoc//,c

1S an 1S0geny.
Proof. By the Lefschetz hyperplane theorem, the induced map
HY(Xps, Qe(1)) — H'(Chs, Qu(1))

is injective. Since H'(Xgs, Q¢(1)) = ViPick )y yoq and H'(Cs, Qo(1)) = ViPicgy,, the induced
map
ViPick g rea — ViPicy,

is injective. It follows that the kernel of Picg(/med — Picoc/k is finite. Let Y be the
image of Picg(/k’red — Pic%/k. Set A = Pic%/k. Y is an abelian subvariety of A, by the
theorem above, there exists Z C A such that Y x Z — A is an isogeny. Taking B = Z,
Picg(/kvred x B — Picoc/k Is an isogeny.

O

2.4 Colliot-Thélene and Skorobogatov’s pull-back
trick

In this section, we will recall a pull-back trick developed by Colliot-Thélene and Skorobogatov
in their paper [11]. This pull-back trick play the essential role in the proof our main theorems.

Lemma 2.4.1. Let X be a smooth projective geometrically connected variety over a field k.

(i) There exist a finite separable extension k'/k and smooth projective geometrically con-
nected curves Cy,...,C,, C X and an abelian subvariety B C H:,L Picoci/k/ such that
the induced morphism of k®-points

PlC(st) X B(ks> — épl(}(C’l,ks)

=1
has a kernel and a cokernel of finite exponent.

(ii) There exist smooth projective integral curves Cy,...,Cy, C X over k and a Gi-module
B with a Gy-equivariant map B — @& Pic(C; =) such that the induced Gj-morphism

PlC(st) x B — @PlC(CZ’ks)

=1

has a kernel and a cokernel of finite exponent.
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Proof. For the proof of (i), see [67, p17]. Let Ci,...,C,, be curves as in (i). As a k-scheme,
C; is a smooth projective integral curve over k. The induced morphism

m
. 0 . 0
Pick /jrea — H Pice, i
i=1

has a finite kernel. By the argument in the proof of Lemma 2.3.5, there exists a morphism
of abelian varieties B" — [, Picoci s such that the induced morphism

m
. 0 / . 0
Picy jrea X B° — HPICCi/k
i=1

is an isogeny. It follows that the natural map

Pic(Xys) x B'(k*) — @D Pic(Ci)

i=1

has a kernel of finite exponent and a cokernel M of finite dimension after tensor with Q.
There exists a Gy-submodule N C ., Pic(Cj ) such that Ng = Mg. We may assume
that N is finitely generated over Z. It suffices to show that

Pic(Xy:) @ B'(k*) @ N — €D Pic(Cige)

i=1

has a kernel and a cokernel of finite exponent. It is easy to see that the induced map

NS(Xis)g x Ng — (D NS(Cixe))o

i=1
is surjective. So
NS(st> XN — @NS(CIL’ks)
i=1
has a finite cokernel. This implies that

Pic(Xy:) @ B'(k*) @ N — €D Pic(Cige)
=1

has a cokernel of finite exponent. Let (a, b, c) be an element in the kernel. Since Ng — Mp,
¢ € Nior. Since | Ny, | is finite, |Nior|(a, b, ¢) lies in the kernel of

Pic(Xys) x B'(k*) — @D Pic(Ci)

i=1

which is of finite exponent. n
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Next, we use the pull-back trick above to prove Colliot-Thélene and Skorobogatov’s
theorem. In Chapter 3 and 4, we will extend this technique to prove our main theorems.

Theorem 2.4.2 ([11]). Let X be a smooth, projective, geometrically integral variety over a
field k. Then the cokernel of the natural map Br(X) — Br(Xs)®* has a cokernel of finite
exponent.

Lemma 2.4.3. Let L C k® be a finite separable extension of a field k of degree d. Let X be
a k-scheme. The following diagram commutes:

ReSXL/X COI‘XL/X

Br(X) Br(X) Br(X)

! | J

Br(Xps )%t —— Br(X}s )¢t —Z> Br(X}.)C*

Here i is the inclusion map and o(x) =Y. 0:(x), where o; € Gy, are coset representatives of
Gr/Gr. The composition of maps in each row of the diagram is the multiplication by d.

Proof. See [12, Lemma 5.4.13]. O

The Hochschild—Serre spectral sequence

Let X be a smooth projective geometrically connected variety over a field k. There is a
Hochschild-Serre spectral sequence

By = H'(k, H(X*,Gyn)) = H™ (X, Gp).
It gives a long exact sequence of seven terms
0 — H'(k, (k*)*) — Pic(X) — Picy (k) — Br(k)

— ker(Br(X) — Br(Xps)%*) — H'(k, Pic(Xys)) — H*(k, G,,).
By Hilbert’s theorem 90, H'(k, (k*)*) = 0. Assuming that X (k) # &, let Y = Spec(k) — X

be a k-point of X, there is a commuative diagram

H(k, Pic(Xy:)) — H3(k, Gy)

| |

H'(k, Pic(Yie)) —— H3(k, G,n)

The first vetrical map is 0 and the second vertical map is an isomorphism, so the first row
vanishes. This gives
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Proposition 2.4.4. Let X be a smooth projective geometrically connected variety over a
field k. Assuming that X (k) # @, there is an exact sequence

0 — Br(k) — ker(Br(X) — Br(Xs)%) — H'(k, Pic(Xjs)) — 0.

Consider the following canonical maps and exact sequences induced by the Hochschild-
Serre spectral sequence,

11, 1,1 3,0
d2 . E2 —> E2 9
0,2 . 10,2 3,0
d3 . E3 —> E3 9
0,2 . 10,2 2,1
d2 . E2 —> E2 .

E? — EY? —0,
102
O EE,Q Eg,? 3 EE?O’

dO,Q
0 — Ey* — EY* 25 B
Assuming that X (k) # @, dy' = 0 and d3° = 0. Thus, E5° = E;°. By the similar pull-back
argument, dy” = 0. So, Ey* = Ey*. This gives
Lemma 2.4.5. Let X be a smooth projective geometrically connected variety over a field k.

Assuming that X (k) # &, there is an exact sequence
Br(X) — Br(Xs)% — H?(k, Pic(X}s)).

Proof of Theorem 2.4.2

Proof. By Lemma 2.4.3 and Lemma 2.4.1, without loss of generality, we can assume that
X (k) # @ and there exists C, ..., C,,, C X defined over k satisfying the condition in Lemma
2.4.1. Consider the commutative diagram

Br(X )" H?(k, Pic(Xys))
@iBr(Ci,kS)Gk _— @ZHQ(k, PlC(Cl’ks))

By the lemma above, it suffices to show that the image of the first row is of finite exponent.
Since

Pic(Xgs) x B(k*) — @D Pic(Cixe)
=1

has a finite kernel and a finite cokernel, the natural map

H?(k, Pic(Xps) x B(k*)) — €D H?(k, Pic(Cis))
i=1
has a kernel of finite exponent. This implies that the second column in the diagram has a
kernel of finite exponent. Since Br(Cj;s) = 0 for all ¢, a diagram chasing implies that the
image of the first row is of finite exponent. O]
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2.5 Tate conjecture and Brauer group

In this section, we will recall some facts about the Tate conjecture for divisors which already
appeared in the literature.

Lemma 2.5.1. Let X be a smooth projective geometrically connected variety over a field k.

The natural map
NS(X) — NS(Xjs )%

has a finite kernel and a finite cokernel.

Proof. The map
NS(X) — NS(X}s)%*

is injective by definition. For its cokernel, take Gj-invariants of the exact sequence
0 — Pic’(Xps) — Pic(Xgs) — NS(Xps) — 0.

We have an exact sequence
Pic(Xps ) — NS(Xps )% — H'(k, Pic® (X))

The last arrow has a finite image, since NS(X}.) is finitely generated and H'(k, Pic®(Xys))
is torsion. Then it suffices to prove that Pic(X) — Pic(X}s)®* has a torsion cokernel. The
Hochschild—Serre spectral sequence

H'(k, H (Xs,Gp)) = H(X,G,,)
induces an exact sequence
Pic(X) — Pic(Xys)®* — Br(k) — Br(X).
The cokernel of the first map is torsion, since Br(k) is torsion. O

Proposition 2.5.2. Let X be a smooth projective geometrically connected variety over a
field k, then we have

(a) For any prime ¢ # char(k), the exact sequence of Gy-representations
0 — NS(Xps) ®z Qr — H*(Xps, Qe(1)) — ViBr(Xps) — 0
15 split. Taking Gi-invariant, there is an exact sequence

0 — NS(X) ®z Q — H*(Xis, Qe(1))“* — ViBr(X:)“* — 0.

(b) For