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Abstract

On the Brauer groups of fibrations

by

Yanshuai Qin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Xinyi Yuan, Co-chair

Professor Martin Olsson, Co-chair

Let C be a smooth projective geometrically connected curve over a finite field with function
field K or the spectrum of the ring of integers in a number field K. Let X be a smooth
projective geometrically connected curve over K. Let π : X −→ C be a proper regular model
of X/K. Artin and Grothendieck proved that there is an isomorphism X(Pic0X/K) ∼= Br(X )

up to finite groups. As a result, this implies that the BSD conjecture for Pic0X/K is equivalent
to the Tate conjecture for the surface X when K is in positive characteristic. In this thesis,
we generalize this result to fibrations π : X −→ C of arbitrary relative dimensions fibered
over C, where C is a smooth projective curve over arbitrary finitely generated fields or the
spectrum of the ring of integers in a number field. As a consequence, we reprove the reduction
theorem of the Tate conjecture for divisors due to André and Ambrosi, and give a simpler
proof of a theorem of Geisser who proved it using the étale motivic cohomology theory. We
also reduce Artin’s question on the finiteness of Brauer groups of proper regular schemes to
dimension at most 3.
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Chapter 1

Introduction

1.1 Tate conjectures

In [60], Tate formulated the Tate conjecture [60, Conj. 1], and the rank BSD conjecture [60,
Conj. B+SD], the strong Tate conjecture [60, Conj. 2] and the B+SD+2 conjecture [60,
Conj. B+SD+2] in terms of L-functions. He asked about relations between these conjectures
and proved some equivalences between them for smooth projective varieties over finite fields
(cf. [61, Thm. 2.9]). Let’s first recall Tate’s formulations of these conjectures.

Let X be a smooth projective geometrically connected variety over a finitely generated
field K (i.e. finitely generated over a finite field or Q). By spreading out, one can then
construct a projective and smooth morphism f : X −→ Y of schemes of finite type over Z,
with Y integral and regular, whose generic fiber is X/K. Let |X | (resp. |Y|) denote the set
of closed points of X (resp. Y). For each y ∈ |Y|, let k(y) denote the residue field of y and
qy denote the cardinality of k(y). Set

Py,i(T ) := det(1− σ−1y T |H i
ét(Xȳ,Qℓ)),

Φi(s) :=
∏
y∈|Y|

1

Py,i(q−sy )
. (1.1)

Here σy ∈ Gal(k(y)/k(y)) is the arithmetic Frobenius element and ℓ ̸= char(k(y)) is a prime.
Define the zeta function of X as

ζ(X , s) :=
∏
x∈|X |

1

1− q−sx

,

where qx denotes the cardinality of k(x).
Let ℓ ̸= char(K) be a prime number. Let Ai(X) denote the group of classes of algebraic

cycles of codimension i on X, with coefficients in Q, for ℓ-adic homological equivalence. Let
N i(X) ⊆ Ai(X) denote the group of classes of cycles that are numerically equivalent to zero.
Let d denote the dimension of X. Tate made the following conjectures:
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Conjecture 1.1.1 (T i(X, ℓ)). The cycle class map

Ai(X)⊗Q Qℓ −→ H2i
ét (XKs ,Qℓ(i))

Gal(Ks/K)

is surjective.

Conjecture 1.1.2 (Ei(X, ℓ)). N i(X) = 0, i.e. numerical equivalence is equal to ℓ-adic
homological equivalence for algebraic cycles of codimension i on X.

Conjecture 1.1.3 (BSD). The rank of Pic0X/K(K) is equal to the order of the zero of Φ1(s)
at s = dim(Y).

Conjecture 1.1.4 (T i(X)). The dimension of Ai(X)/N i(X) is equal to the order of the
poles of Φ2i(s) at s = dimY + i.

Conjectures 1.1.1 and 1.1.2 are called the Tate conjecture for X. Conjecture 1.1.3 is
known as the rank part of the BSD conjecture for the Picard variety Pic0X/K . Conjecture
1.1.4 is called the strong Tate conjecture.

Let X be a regular scheme of finite type over Z. Tate made the following conjecture
about the zeta function of X , which is equivalent to T 1(X ) when X is a smooth projective
variety over a finite field.

Conjecture 1.1.5. If X is a regular scheme of finite type over Z, then the order of ζ(X , s)
at the point s = dimX − 1 is equal to rankH0(X ,O∗X )− rankH1(X ,O∗X ).

Tate showed that Conjecture 1.1.5 for an open dense subscheme of X is equivalent to the
conjecture for X itself. So Conjecture 1.1.5 in positive characteristic can be regarded as the
strong Tate conjecture for divisors on non-proper varieties over finite fields. Let X → Y be
a morphism as discussed at the beginning, whose generic fiber is a smooth projective variety
over a global field K. Tate conjectured a relation between the conjectures for X/K that he
made before:

Conjecture 1.1.6. Conjecture 1.1.5 for X ⇔ the BSD conjecture for Pic0X/K + T 1(X).

It is this conjecture of Tate that has motivated our thesis.

1.2 Brauer groups and Tate-Shafarevich groups

In this thesis, we are mainly interested in the Tate conjecture for divisors on X (i.e. T i(X, ℓ)
with i = 1). The conjecture T 1(X, ℓ) was proved for abelian varieties by Tate [62] (over finite
fields), Zarhin [68, 69] (over positive characteristics) and Faltings [17, 18] (over characteris-
tic zero), for K3 surfaces over characteristic zero by André [2] and Tankeev [58, 59], for K3
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surfaces over positive characteristics by Nygaard [45], Nygaard-Ogus [44], Artin-Swinnerton-
Dyer [3], Maulik [34], Charles [7] and Madapusi-Pera [39].

The Tate conjecture for divisors and the BSD conjecture for abelian varieties have the
Brauer groups and the Tate-Shafarevich groups as their obstructions respectively. Next, we
will introduce these groups of obstructions.

For any noetherian scheme X, the cohomological Brauer group

Br(X) := H2(X,Gm)tor

is defined to be the torsion part of the étale cohomology group H2(X,Gm). Let X be
a smooth projective geometrically connected variety over a finitely generated field k and
ℓ ̸= char(k) be a prime. By Kummer’s theory (see Proposition 2.5.2 ), there is a canonical
exact sequence

0 −→ NS(X)⊗Z Qℓ −→ H2(Xks ,Qℓ(1))Gal(ks/k)) −→ VℓBr(Xks)
Gal(ks/k) −→ 0,

where VℓBr(Xks)
Gal(ks/k) is the Tate module of Br(Xks)

Gal(ks/k) tensoring with Qℓ. Since the
algebraic equivalence coincides with the numerical equivalence for divisors up to torsions by
Matsusaka’s theorem, T 1(X, ℓ) is equivalent to VℓBr(Xks)

Gal(ks/k) = 0, which is equivalent to
the finiteness of Br(Xks)

Gal(ks/k)[ℓ∞]. If k is finite, the natural map Br(X)→ Br(Xks)
Gal(ks/k)

has a finite kernel and a finite cokernel, so T 1(X, ℓ) is also equivalent to the finiteness of
Br(X)[ℓ∞].

For an abelian variety A over a global field K, the Tate-Shafarevich group is defined as

X(A) := Ker(H1(K,A) −→
∏
v

H1(Kv, A)),

where Kv denotes the completion of K at a place v. If p = char(K) > 0, Schneider [51]
proved that the BSD conjecture for A is equivalent to the finiteness of X(A)[ℓ∞] for ℓ ̸= p.

1.3 The Artin-Grothendieck Theorem for fibered

surfaces

Let C be a smooth projective geometrically connected curve over a finite field with function
field K or the spectrum of the ring of integers in a number field K. Let X be a 2-dimensional
regular scheme and X −→ C be a proper flat morphism such that the generic fiber X is
smooth and geometrically connected over K. Since the Tate conjecture for X is known,
Conjecture 1.1.6 suggests that there should be a relation between Br(X ) and X(Pic0X/K).
To state Artin-Grothendieck’s theorem, we need to define isomorphic up to finite groups for
two abelian groups.
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For two abelian groups M and N , we say that they are isomorphic up to finite groups if
there exists a sub-quotient M1/M0 of M (resp. N1/N0 of N) such that M0 (resp. N0) and
M/M1 (resp. N/N1) are finite and M1/M0

∼= N1/N0. Let f : M → N be a homomorphism
with a finite cokernel and a kernel isomorphic to an abelian group H up to finite groups, in
this situation, we say that the sequence 0→ H →M → N → 0 is exact up to finite groups.

Theorem 1.3.1 (Artin-Grothendieck). There is an isomorphism X(Pic0X/K) ∼= Br(X ) up
to finite groups.

Artin-Grothendieck’s theorem implies that Conjecture 1.1.6 holds for the case that X is a
smooth surface over a finite field, since T 1(X̄ )⇔ T 1(X̄ , ℓ) (cf. [61]) for a smooth projective
compactification X̄ of X .

1.4 Fibrations of higher relative dimensions

Motivated by the Conjecture 1.1.6 of Tate, we study the relation between these obstructions:
the Brauer group Br(X ), the Tate-Shafarevich group X(Pic0X/K) and the geometric Brauer

group Br(XKs)Gal(Ks/K). We generalize Artin-Grothendieck’s theorem to fibrations of arbi-
trary relative dimensions fibered over smooth projective geometrically connected curves over
finitely generated fields (geometrical case) and the spectrum of the ring of integers in number
fields (arithmetic case). For a torsion abelian group M and a prime p, denote by M(non-p)
the subgroup of elements of order prime to p in M . For a field k, denote by Gk the absolute
Galois group of k.

Theorem 1.4.1 (geometrical case). Let k be a finitely generated field of characteristic p ≥ 0.
Let X be a smooth geometrically connected variety over k and C be a smooth projective
geometrically connected curve over k with function field K. Let π : X −→ C be a dominant
k-morphism such that the generic fiber X is smooth projective geometrically connected over
K. Let K ′ denote Kks and write P for the Picard variety Pic0X/K,red. Define

XK′(P ) := Ker(H1(K ′, P ) −→
∏

v∈|Cks |

H1(Ksh
v , P )).

Then there is an exact sequence up to finite groups

0 −→XK′(P )Gk(non-p) −→ Br(Xks)
Gk(non-p) −→ Br(XKs)GK (non-p) −→ 0.

In the case that k is a finite field and X is projective over k, the above theorem gives the
following result, which generalizes Artin-Grothendieck’s theorem in positive characteristics
to arbitrary relative dimensions.

Corollary 1.4.2. Let π : X −→ C be a proper flat k-morphism, where C is a smooth
projective geometrically connected curve over a finite field k of characteristic p with function
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field K. Assuming that X is smooth projective over k and the generic fiber X of π is smooth
projective geometrically connected over K, then there is an exact sequence up to finite groups

0 −→X(Pic0X/K,red)(non-p) −→ Br(X )(non-p) −→ Br(XKs)GK (non-p) −→ 0.

In Theorem 1.4.1, when k is finite, the canonical maps X(P )(non-p)→XK′(P )Gk(non-p)
and Br(X ) −→ Br(Xks)

Gk have finite kernels and finite cokernels (cf. Proposition 3.2.2 and
[67, Cor. 1.4]). Thus, Corollary 1.4.2 follows directly from Theorem 1.4.1. As a consequence
of Corollary 1.4.2, we reprove a theorem of Geisser:

Theorem 1.4.3 ([23]). T 1(X , ℓ) is equivalent to T 1(X, ℓ) + finiteness of X(Pic0X/K,red)[ℓ∞].

Remark 1.4.4. Geisser’s theorem implies that Conjecture 1.1.6 is true in positive character-
istics. Geisser’s proof used the étale motivic cohomology theory. Comparing with his result,
our result gives a quantitative relation between these obstructions without need to assume
any of these conjectures.

Conjecture 1.1.6 in mixed characteristic may not be accessible in general, nevertheless,
we prove a relation for their obstructions:

Theorem 1.4.5 (arithmetic case). Let π : X −→ C be a proper flat morphism, where C is
Spec(OK) for some number field K. Assume that X is regular and the generic fiber X of
π is projective and geometrically connected over K. Then there is an exact sequence up to
finite groups

0 −→X(Pic0X/K) −→ Br(X ) −→ Br(XK)GK −→ 0.

Remark 1.4.6. For arithmetic schemes of dimension ≥ 3, the above question was first
studied by Tankeev (cf.[55, 56, 57]), and he proved the above result in some special cases.

1.5 Applications

Since Brauer groups are the obstructions of the Tate conjecture for divisors, in combination
with a spreading out argument, Theorem1.4.1 implies the following reduction theorem of the
Tate conjecture due to André [2] and Ambrosi [1]:

Theorem 1.5.1. Let k be a prime field and K be a finitely generated field over k. Let ℓ
be a prime different from char(k). Assuming that T 1(X , ℓ) is true for all smooth projective
varieties X over k, then T 1(X, ℓ) holds for all smooth projective varieties X over K.

Remark 1.5.2. T 1(X, ℓ) for smooth projective varieties over finite fields has been reduced
to T 1(X, ℓ) for smooth projective surfaces X over finite fields with H1(X,OX) = 0 by the
work of de Jong [14], Morrow [40, Thm. 4.3] and Yuan [66, Thm. 1.6].
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In [54], Skorobogatov and Zarkhin conjectured that Br(Xks)
Gk(non-p) is finite for any

smooth projective variety X over a finitely generated field k. In [54, 53], they proved the
finiteness of Br(Xks)

Gk(non-p) for abelian varieties and K3 surfaces over k with char(k) ̸= 2.
By using our Theorem 1.4.1, we reduce the question about the finiteness of Br(Xks)

Gk(non-p)
to the question over prime fields:

Theorem 1.5.3. Let k be a prime field and K be a field finitely generated over k. Then the
following statements are true.

(1) If k = Q and Br(Xks)
Gk is finite for any smooth projective variety X over k, then

Br(XKs)GK is finite for any smooth projective variety X over K.

(2) If k = Fp and the Tate conjecture for divisors holds for any smooth projective variety
over k, then Br(XKs)GK (non-p) is finite for any smooth projective variety X over K.

Artin asked the following question about the finiteness of Brauer groups:

Question 1.5.4 (Artin). Let X be proper scheme over Spec(Z), is the Brauer group Br(X )
finite ?

For a smooth projective variety X over a finite field, we have seen that the finiteness of
Br(X ) is equivalent to the Tate conjecture for divisors on X (cf. [61]). For a proper flat
regular integral scheme X over Spec(Z), taking C = Spec(Γ(X ,OX )), there is a proper flat
morphism (the Stein factorization) π : X −→ C with a generic fiber geometrically connected
over K = K(C). It follows from our Theorem 1.4.5 that the finiteness of Br(X ) is equivalent
to the finiteness of X(Pic0X/K) and the finiteness of Br(XKs)GK . Orr and Skorobogatov [46,

Thm. 5.1] proved that Br(XKs)GK is finite under the assumption of the integral Mumford-
Tate conjecture. Thus, Theorem 1.4.5 implies the following result on Artin’s question for
regular schemes.

Corollary 1.5.5. Assuming the integral Mumford-Tate conjecture and the Tate-Shafarevich
conjecture, then Br(X ) is finite for all proper flat regular schemes over Spec(Z).

By a theorem of André [2] and a result of Ambrosi [1, Cor. 1.6.2.1], the finiteness of
Br(XK̄)GK has been reduced to smooth projective surfaces over K. Thus, Theorem 1.4.5
reduces Artin’s question for regular schemes to arithmetic threefolds:

Theorem 1.5.6. Assuming that Br(X ) is finite for all 3-dimensional regular proper flat
schemes over Z, then Br(X ) is finite for all regular proper flat schemes over Z.

1.6 Outline of Thesis

In Chapter 2, we introduce notations, basic definitions and facts about Brauer groups, which
will be used throughout the article.
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In Chapter 3, we prove Theorem 1.4.1 i.e. the geometrical case of our main results and
its corollaries.

In Chapter 4, we prove Theorem 1.4.5 i.e. the arithmetic case of our main results and its
corollaries. First, we prove a local result for fibrations over a henselian DVR. Then, we use
the local result to deduce Theorem 1.4.5. In the proof of the local result, we use the syntomic
cohomology to compute the flat cohomology H2(X , µpn) and then relate the flat cohomology
H2(X , µpn) to the étale cohomology H2(XK̄ , µpn)GK through the Fontaine-Messing period
morphism. This gives an isomorphism Br(X ) −→ Br(XK̄)GK up to groups of finite exponent.
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Chapter 2

Preliminaries

2.1 Notation and Terminology

Fields

By a finitely generated field, we mean a field which is finitely generated over a prime field.
For any field k, denote by ks (resp. k̄) the separable closure (resp. algebraic closure). Denote
by Gk = Gal(ks/k) the absolute Galois group of k.

Henselization

Let R be a noetherian local ring, denote by Rh (resp. Rsh) the henselization (resp. strict
henselization) of R at the maximal ideal. If R is a discrete valuation ring, denote by Kh

(resp. Ksh) the fraction field of Rh (resp. Rsh).

Varieties

By a variety over a field k, we mean a scheme which is separated and of finite type over
k. For a smooth projective variety X over a field k, we use Pic0X/k to denote the identity

component of the Picard scheme PicX/k. Denote by Pic0X/k,red the underlying reduced closed

subscheme of Pic0X/k.

Cohomology

The default sheaves and cohomology over schemes are with respect to the small étale site.
So H i is the abbreviation of H i

ét.
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Abelian group

For any abelian group M , integer m and prime ℓ, we set

M [m] = {x ∈M |mx = 0}, Mtor =
⋃
m≥1

M [m], M [ℓ∞] =
⋃
n≥1

M [ℓn],

M(non-ℓ) =
⋃

m≥1,ℓ∤m

M [m], TℓM = HomZ(Qℓ/Zℓ,M) = lim←
n

M [ℓn], VℓM = Tℓ(M)⊗Zℓ
Qℓ.

We also set M(non-0) = M . Denote the cardinality of a group M by |M |. A torsion abelian
group M is of cofinite type if M [ℓ] is finite for all prime ℓ. For two abelian groups M and N ,
we say that they are isomorphic up to finite groups if there exist filtrations M0 ⊆M1 ⊆M
and N0 ⊆ N1 ⊆ N such that M0 (resp. N0) and M/M1 (resp. N/N1) are finite and M1/M0

is isomorphic to N1/N0.

2.2 Cohomological Brauer group

In this section, we recall basic definitions and facts about the cohomological Brauer groups.
The main reference for this section is the book [12].

Definition 2.2.1. The cohomological Brauer group of a scheme X is

Br(X) := H2(X,Gm)tor.

In the particular case X = Spec(k), where k is a field, this is same as the classical
description of the Brauer group of a field given by the Galois cohomology:

Br(k) = H2(k, (ks)×).

A morphism of schemes f : X −→ Y gives rise to a morphism:

f ∗ : Hn(Y,Gm) −→ Hn(X,Gm)

For n = 2 this gives a natural map of Brauer groups f ∗ : Br(Y )→ Br(X), which is sometimes
referred to as the restriction map.

The Kummer exact sequence

The Brauer group is linked to étale cohomology with finite coefficients by the Kummer exact
sequence on X

0 −→ µℓn −→ Gm
ℓn−→ Gm −→ 0.

Here ℓ is a prime invertible on X and n is a positive integer. The associated long exact
sequence of cohomology gives an exact sequence

0 −→ Pic(X)/ℓn −→ H2(X,µℓn) −→ Br(X)[ℓn] −→ 0.
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One can drop the restriction that ℓ is invertible on X by using the fppf site Xfppf instead of
Xét. For any integer n ≥ 1, the sequence

0 −→ µn −→ Gm
n−→ Gm −→ 0

is exact on Xfppf . Since Gm is a smooth group scheme, there is a canonical isomorphism

H i
ét(X,Gm)

∼→ H i
fppf(X,Gm),

it gives rise to an exact sequence

0 −→ Pic(X)/n −→ H2(X,µn) −→ Br(X)[n] −→ 0.

Localization of Brauer groups

Let X be a regular, integral, noetherian scheme. Let j : Spec(F ) −→ X be the generic point
of X. There is a natural exact sequence of sheaves on the small étale site Xét, which describes
the embedding of the group of invertible regular functions into the group of non-zero rational
functions as the kernel of the divisor map:

0 −→ Gm,X −→ j∗Gm,F −→
⊕
D∈X1

iD∗Zk(D) −→ 0.

Here X1 denotes the set of divisors on X and iD : Spec(k(D)) ↪→ X is the embedding of the
generic point of D.

Proposition 2.2.2. Let X be a regular, integral, noetherian scheme. Then the groups
Hn(X,Gm) are torsion for n ≥ 2. In particular, the Brauer group Br(X) is a torsion
group.

Proof. This follows from the long exact sequence associated to the short exact sequence
above and the lemma below.

Lemma 2.2.3. Let X be a scheme. Let L be a field and let f : Spec(L)→ X be a morphism.
We have the following properties:

(i) H1(X, f∗Z) = 0;

(ii) H1(X, f∗Gm) = 0;

(iii) R1f∗Z = 0;

(iv) R1f∗Gm = 0.

If F is an étale sheaf on Spec(L), then, for any i ≥ 1,

(v) the sheaf Rif∗F is a torsion sheaf;
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(vi) if, in addition, X is quasi-compact and quasi-separated, then the group H i(X, f∗F ) is
a torsion group.

Lemma 2.2.4. Let X be a regular, integral, noetherian scheme. Let j : Spec(F ) −→ X be
the generic point of X. There is an exact sequence

0 −→ Br(X) −→ H2(X, j∗Gm) −→
⊕
D∈X1

H1(k(D),Q/Z).

Proof. This follows from the long exact sequence associated to the short exact sequence of
sheaves

0 −→ Gm,X −→ j∗Gm,F −→
⊕
D∈X1

iD∗Zk(D) −→ 0

and the lemma above. See [12, Lemma. 3.5.4] for the detailed proof.

Proposition 2.2.5. Let X be a regular, integral, noetherian scheme. Let j : Spec(F ) −→ X
be the generic point of X. the natural map Br(X)→ Br(F ) is injective. For any non-empty
open subset U ⊂ X, the natural map Br(X)→ Br(U) is also injective.

Proof. By the lemma above, it suffices to show that the natural map induced by the isomor-
phism j∗j∗Gm,F

∼= Gm,F

H2(X, j∗Gm,F ) −→ H2(Spec(F ),Gm)

is injective. The Leray spectral sequence

Ep,q
2 = Hp(X,Rqj∗Gm,F )⇒ Hp+q(Spec(F ),Gm)

gives an exact sequence

H0(X,R1j∗Gm,F ) −→ H2(X, j∗Gm,F ) −→ Ker(H2(Spec(F ),Gm)→ H0(X,R2j∗Gm,F )).

By Lemma 2.2.3, H0(X,R1j∗Gm,F ) = 0. This shows the injectivity.

Purity for the Brauer group

In this section, we recall the purity for Brauer group(cf. [12, §3.7] for proofs).

Theorem 2.2.6. Let X be an excellent, regular, integral, noetherian scheme, let Z ⊂ X
be a closed subset of codimension c. Let U ⊂ X be the open set X − Z. Let ℓ be a prime
invertible on X

(i) If c ≥ 2, then the restriction map Br(X)[ℓ∞]→ Br(U)[ℓ∞] is an isomorphism.
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(ii) If c = 1 and D1, ..., Dm are the connected components of the regular locus of Z of
codimension 1, then the Gysin exact sequences

H2(X,µℓn) −→ H2(U, µℓn) −→
m⊕
i=1

H1(Di,Z/ℓn)

for all n ≥ 1 give rise to exact sequences

0 −→ Br(X)[ℓ∞] −→ Br(U)[ℓ∞] −→
m⊕
i=1

H1(Di,Qℓ/Zℓ),

0 −→ Br(X)[ℓ∞] −→ Br(U)[ℓ∞] −→
m⊕
i=1

H1(k(Di),Qℓ/Zℓ).

Theorem 2.2.7 ([6]). Let X be a regular, integral, noetherian scheme. Let U ⊂ X be an
open subset whose complement is of codimension at least 2. Then the restriction map

Br(X) −→ Br(U)

is an isomorphism

Theorem 2.2.8 ([6]). Let X be a regular, integral, noetherian scheme with function field F .
Then Br(X) ⊂ Br(F ) is the subgroup ⋂

x∈X1

Br(OX,x),

where X1 denotes the set of generic points of divisors in X.

The restriction and corestriction maps

Let f : Y → X be a finite locally free morphism of constant rank d of schemes. This means
that locally for the Zariski topology on X the morphism is of the form Spec(B)→ Spec(A),
where B a free A-module of finite rank d.

The norm of an element b ∈ B is the determinant of the matrix that gives the multi-
plication by b on B with respect to some A-basis of B. It does not depend on the basis.
The norm is multiplicative. We obtain a map of quasi-coherent sheaves f∗OY → OX . The
composition of the canonical map OX → f∗OY with f∗OY → OX sends u to ud. Recall that
the étale sheaf Gm,X is defined by setting Gm,X(U) = Γ(U,OU)∗ for any étale morphism
U → X, and similarly for Gm,Y . Thus, we obtain natural morphisms of étale sheaves

Gm,X −→ f∗Gm,Y −→ Gm,X ,
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whose composition sends u to ud. By the finiteness of f , the functor f∗ from the category of
étale sheaves on Y to the category of étale sheaves on X is exact (cf.[36, Cor. II.3.6]). Thus
the Leray spectral sequence gives an isomorphism Hn(X, f∗Gm,Y )

∼→ Hn(Y,Gm,Y ) which
identifies the canonical map f ∗ with Hn(X,Gm,X) → Hn(X, f∗Gm,Y ). We thus obtain the
restriction and corestriction maps

Hn(X,Gm,X)
ResY/X−→ Hn(Y,Gm,Y )

CorY/X−→ Hn(X,Gm,X)

whose composition is multiplication by d. Here the restriction ResY/X is the canonical map
f ∗. For n = 2, we obtain the restriction and corestriction maps of Brauer groups

ResY/X : Br(X) −→ Br(Y ), CorY/X : Br(Y ) −→ Br(X)

Proposition 2.2.9. Let f : Y → X be a finite locally free morphism of constant rank of
schemes. Let i : X ′ → X be a morphism and let Y ′ = X ′ ×X Y . Let j : Y ′ → Y be the
natural projection. The following diagram commutes:

Br(Y )
j∗ //

CorY/X

��

Br(Y ′)

CorY ′/X′

��
Br(X) i∗ // Br(X ′)

Proof. See [12, Propostion. 3.8.1].

Brauer groups of Dedekind schemes

In this section, we give some examples about Brauer groups of regular schemes of dimension
at most 1.

Proposition 2.2.10 (Azumaya). Let R be a henselian local ring with residue field k.

(i) The embedding of the closed point Spec(k)→ Spec(R) induces an isomorphism
Br(R)

∼→ Br(k).

(ii) If R is a strictly henselian local ring, that is, if k is separably closed, then Br(R) = 0.

Proof. See [12, Thm. 3.4.2].

Corollary 2.2.11. Let R be a henselian noetherian local ring with maximal ideal m. Let R̂
be the m-adic completion of R. Then the natural map Br(R)→ Br(R̂) is an isomorphism.

Proposition 2.2.12. Let R be an excellent discrete valuation ring with field of fractions K
and residue field k of characteristic p.

(i) If k is separably closed, then Br(K)(non-p) = 0. If k is algebraically closed, then
Br(K) = 0.
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(ii) If k is finite and char(K) = 0, then Br(R) = 0 and Br(K) ∼= Q/Z.

Proof. By Theorem 2.2.6 (ii), Br(R)[ℓ∞]
∼→ Br(K)[ℓ∞] for any ℓ ̸= p. Since Br(R) ∼= Br(k) =

0, Br(K)[ℓ∞] = 0. This proves Br(K)(non-p) = 0. For the case that k is algebraically closed,
see [12][Thm. 1.2.15] for the proof.

If k is finite, Br(R) ∼= Br(k) = 0 by [12][Thm. 1.2.13]. There is a Hochschild–Serre
spectral sequence

Ei,j
2 = H i(k,Hj(Ksh,Gm)) =⇒ H i+j(K,Gm).

It gives a long exact sequence

0→ H1(k, (Ksh)×)→ H1(K,Gm)→ H0(k,H1(Ksh,Gm))

→ H2(k, (Ksh)×)→ ker(Br(K)→ Br(Ksh))→ H1(k,H1(Ksh,Gm))

Since H1(K,Gm) = 0 and Br(Ksh) = 0,

Br(K) ∼= H2(k, (Ksh)×).

By (Ksh)× ∼= (Rsh)× × Z, it suffices to show that H2(k,Z) ∼= Q/Z and H2(k, (Rsh)×)=0.
Taking Galois cohomology for the exact sequence of Gk-modules with trivial actions

0 −→ Z −→ Q −→ Q/Z −→ 0,

we get H2(k,Z) ∼= H1(k,Q/Z) ∼= Q/Z. Let π be a generator of the maximal ideal in R. The
exact sequence

0 −→ (1 + πRsh) −→ (Rsh)× −→ (ks)× −→ 0

induces a long exact sequence of Galois cohomology. Since H i(k, (ks)×) = 0 for i = 1, 2 , the
induced morphism

H2(k, (1 + πRsh)) −→ H2(k, (Rsh)×)

is an isomorphism. Since (1 + πnRsh)/(1 + πn+1Rsh) ∼= ks and H i(k, ks) = 0 for i > 0, the
natural map

H2(k, (1 + πmRsh)) −→ H2(k, (1 + πnRsh))

is an isomorphism for any m > n ≥ 1. Let Mn denote 1 + πnRsh. If p = πeu for some
u ∈ (Rsh)×, it follows from Hensel’s lemma that for any y ∈Mn+e, the equation xp = y has a
unique solution x in Mn if n is sufficiently large. So pMn = Mn+e for some n > 1. It follows
that

H2(k,Mn)
p−→ H2(k,Mn)

is an isomorphism. So H2(k,Mn)[p] = 0. Since Mn
ℓ→ Mn is an isomorphism for any ℓ ̸= p,

H2(k,Mn)[ℓ] = 0. This proves H2(k,Mn) = 0 for some n > 0. So H2(k, (Rsh)×) = 0.
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Proposition 2.2.13. Let X be a smooth geometrically connected curve over a separably
closed field k of characteristic p. Then Br(X)(non-p) = 0. Moreover, if k is algebraically
closed, then Br(X) = 0.

Proof. Let ℓ ̸= p be a prime, the Kummer exact sequence gives

0 −→ Pic(X)/ℓn −→ H2(X,µℓn) −→ Br(X)[ℓn] −→ 0.

If X is projective, the second arrow is an isomorphism, so Br(X)[ℓn] = 0. If X is not
projective, H2(X,µℓn) = 0 by the Poincaré duality. This also gives Br(X)[ℓn] = 0. So
Br(X)(non-p) = 0. If k is algebraically closed, then the function field K(X) is a C1-field
(c.f. [12][Thm. 1.2.14]) whose Brauer group vanishes. By Proposition 2.2.5, Br(X) also
vanishes.

Proposition 2.2.14. Let OK be the ring of integers in a number field K, there is a canonical
exact sequence

0 −→ Br(K) −→
⊕
v∈MK

Br(Kv) −→ Q/Z −→ 0.

Here MK denotes the set of all places of K and Kv is the completion of K at v. Let X
denote Spec(OK). As a result, Br(X) is finite.

Proof. The first claim is a consequence of the global class field theory (cf. [35, Chap. II,
Prop. 2.1]). By [12, Thm. 3.6.1(ii)], the natural map

Br(K)/Br(OX,v) −→ Br(Kv)/Br(Ov)

is injective. By Theorem 2.2.8, there is an exact sequence

0 −→ Br(X) −→ Br(K) −→
⊕
v∈Mf

K

Br(K)/Br(OX,v),

where M f
K is the set of finite places. It gives

0 −→ Br(X) −→ Br(K) −→
⊕
v∈Mf

K

Br(Kv)/Br(Ov).

By Proposition 2.2.12, Br(Ov) = 0 for all v ∈M f
K . This gives

0 −→ Br(X) −→ Br(K) −→
⊕
v∈Mf

K

Br(Kv).

Thus Br(X) ↪→
∏

v Br(Kv), where the product is taken for all infinite places. Since Br(R) =
Z/2, so Br(X) is finite.
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2.3 Picard variety and Neron-Severi group

Here we review some definitions and basic properties about the Picard group, the Neron–
Severi group, and the Picard functor.

Let X be a projective scheme over a field k. Denote by Pic0(X) the subgroup of Pic(X)
of algebraically trivial line bundles (cf. [31, Definition 9.5.9]).

Definition 2.3.1. The Neron-Severi group NS(X) of X is the quotient Pic(X)/Pic0(X).

Note that a line bundle over X is algebraically trivial if and only if it is algebraically
trivial over Xks . Therefore,

NS(X) = Im(Pic(X)→ NS(Xks)).

By [19, n◦232, §6] or [4, §8.2, Thm. 3], the Picard functor PicX/k is represented by a

group scheme, locally of finite type over k. Denote by Pic0X/k the identity component of (the

group scheme representing) PicX/k. By [31, Lem 9.5.1], Pic0X/k is a group scheme of finite
type over k, open and closed in PicX/k. If X is geometrically normal, by [31, Prop. 9.5.3,

Thm. 9.5.4], Pic0X/k is actually projective over k. In this case, by [19, n◦236-16, Cor. 3.2],

the reduced structure (Pic0X/k)red of Pic0X/k is an abelian variety over k.

Definition 2.3.2. Let X be a smooth projective variety over k. The Picard variety Pic0X/k,red

of X/k is the reduced scheme (Pic0X/k)red.

There are canonical injections

Pic(X) −→ PicX/k(k), Pic0(X) −→ Pic0X/k(k).

They are isomorphisms if X(k) is non-empty or k is separably closed. See [4, §8.1, Prop. 4]
and [31, Prop 9.5.10, Thm 9.2.5].

By [50, Exp. XIII, Theorem 5.1], NS(Xs) is a finitely generated abelian group. Thus, we
have

Proposition 2.3.3. The Neron-Severi group NS(X) is finitely generated.

Poincaré reducibility theorem

Theorem 2.3.4 ([41]). If A is an abelian variety and Y is an abelian subvariety of A. Then,
there is an abelian subvariety Z of A such that Y ∩ Z is finite and Y + Z = A. In other
words, X is isogenous to Y × Z.

Proof. See [41, §19, Thm. 1].
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Lemma 2.3.5. Let X be a smooth projective geometrically connected variety over a infinite
field k. Let C ⊂ X be a smooth projective geometrically connected curve obtained by taking
hyperplane sections repeatedly. Then there exists an abelian subvariety B of Pic0C/k such that
the induced morphism

Pic0X/k,red ×B −→ Pic0C/k

is an isogeny.

Proof. By the Lefschetz hyperplane theorem, the induced map

H1(Xks ,Qℓ(1)) −→ H1(Cks ,Qℓ(1))

is injective. Since H1(Xks ,Qℓ(1)) ∼= VℓPic0X/k,red and H1(Cks ,Qℓ(1)) ∼= VℓPic0C/k, the induced
map

VℓPic0X/k,red −→ VℓPic0C/k

is injective. It follows that the kernel of Pic0X/k,red −→ Pic0C/k is finite. Let Y be the

image of Pic0X/k,red −→ Pic0C/k. Set A = Pic0C/k. Y is an abelian subvariety of A, by the
theorem above, there exists Z ⊂ A such that Y × Z → A is an isogeny. Taking B = Z,
Pic0X/k,red ×B → Pic0C/k is an isogeny.

2.4 Colliot-Thélène and Skorobogatov’s pull-back

trick

In this section, we will recall a pull-back trick developed by Colliot-Thélène and Skorobogatov
in their paper [11]. This pull-back trick play the essential role in the proof our main theorems.

Lemma 2.4.1. Let X be a smooth projective geometrically connected variety over a field k.

(i) There exist a finite separable extension k′/k and smooth projective geometrically con-
nected curves C1, ..., Cm ⊂ Xk′ and an abelian subvariety B ⊂

∏m
i=1 Pic0Ci/k′

such that
the induced morphism of ks-points

Pic(Xks)×B(ks) −→
m⊕
i=1

Pic(Ci,ks)

has a kernel and a cokernel of finite exponent.

(ii) There exist smooth projective integral curves C1, ..., Cm ⊂ X over k and a Gk-module
B with a Gk-equivariant map B → ⊕m

i=1Pic(Ci,ks) such that the induced Gk-morphism

Pic(Xks)×B −→
m⊕
i=1

Pic(Ci,ks)

has a kernel and a cokernel of finite exponent.
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Proof. For the proof of (i), see [67, p17]. Let C1, ..., Cm be curves as in (i). As a k-scheme,
Ci is a smooth projective integral curve over k. The induced morphism

Pic0X/k,red −→
m∏
i=1

Pic0Ci/k

has a finite kernel. By the argument in the proof of Lemma 2.3.5, there exists a morphism
of abelian varieties B′ −→

∏m
i=1 Pic0Ci/k

such that the induced morphism

Pic0X/k,red ×B′ −→
m∏
i=1

Pic0Ci/k

is an isogeny. It follows that the natural map

Pic(Xks)×B′(ks) −→
m⊕
i=1

Pic(Ci,ks)

has a kernel of finite exponent and a cokernel M of finite dimension after tensor with Q.
There exists a Gk-submodule N ⊂

⊕m
i=1 Pic(Ci,ks) such that NQ

∼→ MQ. We may assume
that N is finitely generated over Z. It suffices to show that

Pic(Xks)⊕B′(ks)⊕N −→
m⊕
i=1

Pic(Ci,ks)

has a kernel and a cokernel of finite exponent. It is easy to see that the induced map

NS(Xks)Q ×NQ −→ (
m⊕
i=1

NS(Ci,ks))Q

is surjective. So

NS(Xks)×N −→
m⊕
i=1

NS(Ci,ks)

has a finite cokernel. This implies that

Pic(Xks)⊕B′(ks)⊕N −→
m⊕
i=1

Pic(Ci,ks)

has a cokernel of finite exponent. Let (a, b, c) be an element in the kernel. Since NQ
∼→MQ,

c ∈ Ntor. Since |Ntor| is finite, |Ntor|(a, b, c) lies in the kernel of

Pic(Xks)×B′(ks) −→
m⊕
i=1

Pic(Ci,ks)

which is of finite exponent.
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Next, we use the pull-back trick above to prove Colliot-Thélène and Skorobogatov’s
theorem. In Chapter 3 and 4, we will extend this technique to prove our main theorems.

Theorem 2.4.2 ([11]). Let X be a smooth, projective, geometrically integral variety over a
field k. Then the cokernel of the natural map Br(X) → Br(Xks)

Gk has a cokernel of finite
exponent.

Lemma 2.4.3. Let L ⊂ ks be a finite separable extension of a field k of degree d. Let X be
a k-scheme. The following diagram commutes:

Br(X)
ResXL/X //

��

Br(XL)

��

CorXL/X // Br(X)

��
Br(Xks)

Gk
i // Br(Xks)

GL σ // Br(Xks)
Gk

Here i is the inclusion map and σ(x) =
∑

i σi(x), where σi ∈ Gk are coset representatives of
Gk/GL. The composition of maps in each row of the diagram is the multiplication by d.

Proof. See [12, Lemma 5.4.13].

The Hochschild–Serre spectral sequence

Let X be a smooth projective geometrically connected variety over a field k. There is a
Hochschild–Serre spectral sequence

Ei,j
2 = H i(k,Hj(Xs,Gm)) =⇒ H i+j(X,Gm).

It gives a long exact sequence of seven terms

0→ H1(k, (ks)×)→ Pic(X)→ PicX/k(k)→ Br(k)

→ ker(Br(X)→ Br(Xks)
Gk)→ H1(k,Pic(Xks))→ H3(k,Gm).

By Hilbert’s theorem 90, H1(k, (ks)×) = 0. Assuming that X(k) ̸= ∅, let Y = Spec(k)→ X
be a k-point of X, there is a commuative diagram

H1(k,Pic(Xks)) //

��

H3(k,Gm)

��
H1(k,Pic(Yks)) // H3(k,Gm)

The first vetrical map is 0 and the second vertical map is an isomorphism, so the first row
vanishes. This gives
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Proposition 2.4.4. Let X be a smooth projective geometrically connected variety over a
field k. Assuming that X(k) ̸= ∅, there is an exact sequence

0 −→ Br(k) −→ ker(Br(X)→ Br(Xks)
Gk) −→ H1(k,Pic(Xks)) −→ 0.

Consider the following canonical maps and exact sequences induced by the Hochschild–
Serre spectral sequence,

d1,12 : E1,1
2 −→ E3,0

2 ,

d0,23 : E0,2
3 −→ E3,0

3 ,

d0,22 : E0,2
2 −→ E2,1

2 .

E2 −→ E0,2
4 −→ 0,

0 −→ E0,2
4 −→ E0,2

3

d0,23−→ E3,0
3 ,

0 −→ E0,2
3 −→ E0,2

2

d0,22−→ E2,1
2 .

Assuming that X(k) ̸= ∅, d1,12 = 0 and d3,02 = 0. Thus, E3,0
3 = E2,0

2 . By the similar pull-back
argument, d0,23 = 0. So, E0,2

4 = E0,2
3 . This gives

Lemma 2.4.5. Let X be a smooth projective geometrically connected variety over a field k.
Assuming that X(k) ̸= ∅, there is an exact sequence

Br(X)→ Br(Xks)
Gk −→ H2(k,Pic(Xks)).

Proof of Theorem 2.4.2

Proof. By Lemma 2.4.3 and Lemma 2.4.1, without loss of generality, we can assume that
X(k) ̸= ∅ and there exists C1, ..., Cm ⊂ X defined over k satisfying the condition in Lemma
2.4.1. Consider the commutative diagram

Br(Xks)
Gk

��

// H2(k,Pic(Xks))

��
⊕iBr(Ci,ks)

Gk // ⊕iH
2(k,Pic(Ci,ks))

By the lemma above, it suffices to show that the image of the first row is of finite exponent.
Since

Pic(Xks)×B(ks) −→
m⊕
i=1

Pic(Ci,ks)

has a finite kernel and a finite cokernel, the natural map

H2(k,Pic(Xks)×B(ks)) −→
m⊕
i=1

H2(k,Pic(Ci,ks))

has a kernel of finite exponent. This implies that the second column in the diagram has a
kernel of finite exponent. Since Br(Ci,ks) = 0 for all i, a diagram chasing implies that the
image of the first row is of finite exponent.
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2.5 Tate conjecture and Brauer group

In this section, we will recall some facts about the Tate conjecture for divisors which already
appeared in the literature.

Lemma 2.5.1. Let X be a smooth projective geometrically connected variety over a field k.
The natural map

NS(X) −→ NS(Xks)
Gk

has a finite kernel and a finite cokernel.

Proof. The map
NS(X) −→ NS(Xks)

Gk

is injective by definition. For its cokernel, take Gk-invariants of the exact sequence

0 −→ Pic0(Xks) −→ Pic(Xks) −→ NS(Xks) −→ 0.

We have an exact sequence

Pic(Xks)
Gk −→ NS(Xks)

Gk −→ H1(k,Pic0(Xks)).

The last arrow has a finite image, since NS(Xks) is finitely generated and H1(k,Pic0(Xks))
is torsion. Then it suffices to prove that Pic(X) → Pic(Xks)

Gk has a torsion cokernel. The
Hochschild–Serre spectral sequence

H i(k,Hj(Xks ,Gm)) =⇒ H i+j(X,Gm)

induces an exact sequence

Pic(X) −→ Pic(Xks)
Gk −→ Br(k) −→ Br(X).

The cokernel of the first map is torsion, since Br(k) is torsion.

Proposition 2.5.2. Let X be a smooth projective geometrically connected variety over a
field k, then we have

(a) For any prime ℓ ̸= char(k), the exact sequence of Gk-representations

0 −→ NS(Xks)⊗Z Qℓ −→ H2(Xks ,Qℓ(1)) −→ VℓBr(Xks) −→ 0

is split. Taking Gk-invariant, there is an exact sequence

0 −→ NS(X)⊗Z Qℓ −→ H2(Xks ,Qℓ(1))Gk −→ VℓBr(Xks)
Gk −→ 0.

(b) For sufficiently large prime ℓ ̸= char(k), the exact sequence of Gk-modules

0 −→ NS(Xks)/ℓ
n −→ H2(Xks ,Z/ℓn(1)) −→ Br(Xks)[ℓ

n] −→ 0

is split for any n ≥ 1.
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(c) For all but finitely many ℓ, there is an exact sequence

0 −→ NS(X)⊗Z Qℓ/Zℓ −→ H2(Xks ,Qℓ/Zℓ(1))Gk −→ Br(Xks)
Gk [ℓ∞] −→ 0.

Proof. Let d denote the dimension of X. Let Z1(Xks) denote the group of 1-cycles on Xks ,
it admits a natural Gk action. Since τ -equivalence is same as the numerical equivalence for
divisors (cf., e.g. SGA 6 XIII, Theorem 4.6), thus the intersection pairing

NS(Xks)Q × Z1(Xks)Q −→ Q

is left non-degenerate. Since NS(Xks) is finitely generated, so there exists a finite dimensional
Gk-invariant subspace W of Z1(Xks)Q such that the restriction of the intersection pairing to
NS(Xks)Q ×W is left non-degenerate. Since Gk-actions factor through a finite quotient of
Gk, we can choose W such that the pairing is actually perfect. Let WQℓ

denote the subspace
of H2d−2(Xks ,Qℓ(d− 1)) generated by cycle classes of W . Then the restriction of

H2(Xks ,Qℓ(1))×H2d−2(Xks ,Qℓ(d− 1)) −→ H2d(Xks ,Qℓ(d)) ∼= Qℓ

to NS(Xks)Qℓ
×WQℓ

is also perfect. So we have

H2(Xks ,Qℓ(1)) = NS(Xks)Qℓ
⊕W⊥

Qℓ
.

This proves (a).

There exists a finitely generated Gk-invariant subgroup W0 of Z1(Xks) such that W =
W0 ⊗Z Q. Therefore, there exists a positive integer N such that the base change of the
pairing NS(Xks)×W0 −→ Z to Z[N−1] is perfect. So for any ℓ ∤ N , the intersection pairing

NS(Xks)/ℓ
n ×W0/ℓ

n −→ Z/ℓn

is perfect. Since it is compatible with

H2(Xks ,Z/ℓn(1))×H2d−2(Xks ,Z/ℓn(d− 1)) −→ H2d(Xks ,Z/ℓn(d)) ∼= Z/ℓn.

Thus we have
H2(Xks ,Z/ℓn(1)) = NS(Xks)/ℓ

n ⊕ (W0/ℓ
n)⊥.

This proves (b).

Taking Gk-invariants, we get an exact sequence for all but finitely many ℓ

0 −→ (NS(Xks)/ℓ
n)Gk −→ H2(Xks ,Z/ℓn(1))Gk −→ Br(Xks)

Gk [ℓn] −→ 0.

Taking direct limit, we get

0 −→ (NS(Xks)⊗Z Qℓ/Zℓ)
Gk −→ H2(Xks ,Qℓ/Zℓ(1))Gk −→ Br(Xks)

Gk [ℓ∞] −→ 0.
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To prove (c), it suffices to show that the natural map

NS(X)⊗Z Qℓ/Zℓ −→ (NS(Xks)⊗Z Qℓ/Zℓ)
Gk

is an isomorphism for all but finitely many ℓ. Consider the exact sequence

0 −→ NS(X)⊗Z Zℓ −→ NS(Xks)⊗Z Zℓ −→ NS(Xks)/NS(X)⊗Z Zℓ −→ 0.

For ℓ sufficiently large, the last group will be a free Zℓ-module. Thus, it is split for all but
finitely many ℓ. So tensoring Qℓ/Zℓ, the sequence is still exact. This proves injectivity.
Since the Gk action on NS(Xks) factors though a finite group G, thus, for ℓ prime to |G|,
any element in the (NS(Xks)⊗Z Qℓ/Zℓ)

Gk can be written as
∑

g∈G gx. This implies that the
natural map

NS(Xks)
Gk ⊗Z Qℓ/Zℓ −→ (NS(Xks)⊗Z Qℓ/Zℓ)

Gk

is surjective. Thus, to prove the surjectivity, it suffices to show that

NS(X)⊗Z Qℓ −→ NS(Xks)
Gk ⊗Z Qℓ

is surjective. This follows from Lemma 2.5.1.

Corollary 2.5.3. Let X be a smooth projective geometrically connected variety over a finitely
generated field k. Let ℓ ̸= char(k) be a prime. Then T 1(X, ℓ) is equivalent to the finiteness
of Br(Xks)

Gk [ℓ∞]. If k is finite, it’s also equivalent to the finiteness of Br(X)[ℓ∞].

Proof. The first claim follows from Proposition 2.5.2. If k is finite, there is an exact sequence

H1(X,Pic0X/k) −→ H1(X,Pic(Xks) −→ H1(k,NS(Xks))

By Lang’s theorem, H1(X,Pic0X/k) = 0. H1(k,NS(Xks)) is finite since NS(Xks) is finitely
generated. This shows that H1(X,Pic(Xks) is finite. By Wedderburn’s theorem Br(k) = 0,
it follows from Proposition 2.4.4, the natural map Br(X)→ Br(Xks) has a finite kernel. By
Theorem 2.4.2,

Br(X)[ℓ∞] −→ Br(Xks)
Gk [ℓ∞]

has a finite kernel and a finite cokernel. The second claim follows from the first one.
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Chapter 3

Geometric case

In this chapter, we will prove Theorem 1.4.1 and its corollaries Corollary 1.4.2, Theorem
1.5.1 and Theorem1.5.3.

3.1 The Galois invariant parts of geometric Brauer

groups

In this section, we will show that the Galois invariant part of the geometric Brauer group
of a smooth variety is a birational invariant up to finite groups. This will allow us to shrink
the base of a fibration without changing the question.

The following results in the case of characteristic 0 were proved in [11] (cf. [11, Prop. 6.1
and Thm. 6.2 (iii)]).

Proposition 3.1.1. Let X be a smooth geometrically connected variety over a finitely gen-
erated field k of characteristic p ≥ 0. Let U ⊆ X be an open dense subset. Then the natural
map

Br(Xks)
Gk(non-p) −→ Br(Uks)

Gk(non-p)

is injectie and has a finite cokernel.

Proof. The injectivity follows from that Xks is regular and irreducible. To show that the
cokernel is finite, we need the lemma below. Let Y denote X − U with reduced scheme
structure. By the purity for Brauer groups( Theorem 2.2.7), removing a close subset of
codimension ≥ 2 will not change the Brauer group. Thus, by shrinking X, we may assume
that Y is regular and of codimension 1 in X. Let ℓ ̸= p be a prime. By Theorem 2.2.6, there
is a canonical exact sequence

0 −→ Br(Xks)[ℓ
∞] −→ Br(Uks)[ℓ

∞] −→ H1(Yks ,Qℓ/Zℓ).

It suffices to show that the group

H1(Yks ,Qℓ/Zℓ)
Gk
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is finite and vanishes for all but finitely many ℓ. This follows from the lemma below.

Lemma 3.1.2. Let U be a regular variety over a finitely generated field k. Let ℓ ̸= char(k)
be a prime. Then

H1(Uks ,Qℓ/Zℓ)
Gk

is finite and vanishes for all but finitely many ℓ.

Proof. Firstly, we will show that it suffices to prove the claim for smooth varieties over k.
Notice that we can replace k by a finite separable extension. Thus, we may assume that Uks

is irreducible. Let V be an open dense subset of Uks . By semi-purity (cf. [22, §8]),

H1(Uks ,Z/ℓn) −→ H1(V,Z/ℓn)

is injective. We may assume that V is defined over k. Therefore, it suffices to prove the claim
for an open dense subset. Since Uks and Uk̄ have the same underlying toplological space, by
shrinking Uks , we may assume that (Uk̄)red is irreducible and smooth over k̄. So there exists
a finite extension l/k such that (Ul)red is irreducible and smooth over l. We may assume
that l/k is purely inseparable. Then ls = l ⊗k k

s and Gl = Gk. Let V denote (Ul)red. Thus
Vls = V ×Spec(k) Spec(ks). The k-morphism V −→ U induces a Gk-equivariant isomorphism

H1(Uks ,Z/ℓn) ∼= H1(Vls ,Z/ℓn).

It suffices to prove the claim for V . Thus we may assume that U is smooth and geometrically
connected over k.

By above arguments, we can always replace k by a finite extension and shrink U . By de
Jong’s alteration theorem, we may assume that there is a finite flat morphism f : V −→ U
such that V admits a smooth projective geometrically connected compactification over k.
Since the kernel of

H1(Uks ,Z/ℓn) −→ H1(Vks ,Z/ℓn)

is killed by the degree of f (cf.[12, Prop. 3.8.4]), it suffices to prove the claim for V . Thus
we may assume that U is an open subvariety of a smooth projective geometrically connected
variety X over k. Let Yi be irreducible components of X − U of codimension 1. Let Di be
the regular locus of Yi. By extending k to a finite separable extension, we may assume that
Di is geometrically irreducible. By purity theorem(cf. [22, §8]), there is a canonical exact
sequence

0 −→ H1(Xks ,Z/ℓn) −→ H1(Uks ,Z/ℓn) −→
⊕
i

H0(Di,ks ,Z/ℓn(−1)).

Taking Gk-invariants, we get an exact sequence

0 −→ H1(Xks ,Z/ℓn)Gk −→ H1(Uks ,Z/ℓn)Gk −→
⊕
i

H0(Di,ks ,Z/ℓn(−1))Gk .
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It suffices to show that the size of the first and third group are bounded independent of n
and is equal to 1 for all but finitely many ℓ. Since Di,ks is connected, we have

H0(Di,ks ,Z/ℓn(−1)) = Hom(µℓn ,Z/ℓn).

By the lemma below, the size of the third group is bounded independent of n and is equal
to 1 for all but finitely many ℓ. Since

H1(Xks ,Z/ℓn) ∼= PicX/K [ℓn](−1)

and
0 −→ Pic0X/K,red[ℓn] −→ PicX/K [ℓn] −→ NS(Xks)[ℓ

n]

is exact, it suffices to show that the size of (Pic0X/K,red[ℓn](−1))Gk is bounded independent of

n and is equal to 1 for all but finitely many ℓ. Let A be the dual of Pic0X/K,red. By the Weil
pairing,

Pic0X/K,red[ℓn](−1) ∼= Hom(A[ℓn],Z/ℓn).

Taking Gk-invariants, we get

(Pic0X/K,red[ℓn](−1))Gk ∼= Hom(A[ℓn],Z/ℓn)Gk .

By the lemma below, the claim follows.

Lemma 3.1.3. Let A be an abelian variety over a finitely generated field K of characteristic
p ≥ 0. Let ℓ ̸= p be a prime. Then the sizes of

Hom(A[ℓn],Z/ℓn)GK and Hom(µℓn ,Z/ℓn)GK

are bounded independent of n. Moreover, for all but finitely many ℓ, these two groups vanish
for any n.

Proof. We will only prove the claim for the first group, since the second one follows from
the same arguments. Firstly, we assume that K is finite, then we will use a specialization
technique to reduce the general case to the finite field case.

If K is finite, then we have

Hom(A[ℓn],Z/ℓn)GK = Hom(A[ℓn]GK
,Z/ℓn),

which has the same size as A[ℓn]GK . Then the claim follows from the finiteness of A(K).
In general, choose an integral regular scheme S of finite type over Spec(Z) with function

field K. By Shrinking S, we may assume A/K extends to an abelian scheme A /S. Fix a
closed point s ∈ S. For any ℓ ̸= char(k(s)), we can shrink S such that ℓ is invertible on
S and s ∈ S. Then the étale sheaf A [ℓn] is a locally constant sheaf of Z/ℓn-module since
A [ℓn] is finite étale over S. Thus

H om(A [ℓn],Z/ℓn)
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is also a locally constant sheaf of Z/ℓn-module and its stalk at the generic point can be
identified with

Hom(A[ℓn],Z/ℓn).

Set F = H om(A [ℓn],Z/ℓn), we have

Hom(A[ℓn],Z/ℓn)GK = H0(S,F ) ↪→ H0(s,F ).

Since H0(s,F ) = Hom(As[ℓ
n],Z/ℓn)Gk(s) and k(s) is finite, thus the claim holds for ℓ ̸=

char(k(s)). In the case char(K) = 0, we can choose another closed point s′ such that
char(k(s′)) ̸= char(k(s)), then by the same argument, the claim also holds for ℓ = char(k(s)).
This completes the proof.

3.2 Geometric Tate-Shafarevich group

In this section, first, we will study a geometric version of the Tate-Shafarevich group for
an abelian variety over a function field with a base field k. Then, we will prove that the
Galois fixed part of the geometric Tate-Shafarevich group is canonically isomorphic to Tate-
Shafarevich group up to finite groups in the case that k is a finite field. The idea is reducing
the question to the relation between arithmetic Brauer groups and geometric Brauer groups
which was studied in [11](cf. Theorem 2.4.2).

Proposition 3.2.1. Let C be a smooth projective geometrically connected curve defined over
a finitely generated field k of characteristic p ≥ 0. Let K be the function field of C and A
be an abelian variety over K. Denote Kks by K ′. Let U ⊆ C be an open dense subscheme.
Define

XUks
(A) := Ker(H1(K ′, A) −→

∏
v∈|Uks |

H1(Ksh
v , A))

Then the natural map

XCks
(A)Gk(non-p) −→XUks

(A)Gk(non-p)

is injective and has a cokernel of finite exponent.

Proof. By definitions, the injectivity is obvious. It suffices to show that the cokernel is of
finite exponent. By Lemma 2.3.5, there exists an abelian variety B/K such that A × B is
isogenous to Pic0X/K for some smooth projective geometrically connected curve X over K. It

suffices to prove the claim for A = Pic0X/K . Without loss of generality, we may replace k by a
finite extension l/k. This is obvious if l/k is separable. For l/k a purely inseparable extension
of degree pn, the quotient A(Ksls)/A(Ks) is killed by pn. Then H1(K ′, A) −→ H1(Kls, A)
has a kernel and a cokernel killed by pn. It follows that XUks

(A) −→ XUls
(A) has a kernel

and a cokernel killed by some power of p. By the resolution of singularity of surfaces,
X −→ Spec(K) admits a proper regular model π : X −→ C. By extending k, we may



CHAPTER 3. GEOMETRIC CASE 28

assume that X is smooth proper geometrically connected over k. Write V for π−1(U). The
Leray spectral sequence

Ep,q
2 = Hp(Uks , R

qπ∗Gm)⇒ Hp+q(Vks ,Gm)

gives a long exact sequence

H2(Uks ,Gm) −→ Ker(H2(Vks ,Gm) −→ H0(Uks , R
2π∗Gm))

−→ H1(Uks , R
1π∗Gm) −→ H3(Uks ,Gm).

By [24, Cor. 3.2 and Lem. 3.2.1], R2π∗Gm = 0 and H i(Uks ,Gm)(non-p) = 0 for i ≥ 2. Thus,
there is a canonical isomorphism

H2(Vks ,Gm)(non-p) ∼= H1(Uks , R
1π∗Gm)(non-p).

Let j : Spec(K ′) −→ Cks be the generic point. By the spectral sequence

Hp(Uks , R
qj∗(j

∗R1π∗Gm))⇒ Hp+q(K ′,Pic(XKs)),

we have

H1(Uks , j∗j
∗R1π∗Gm) = Ker(H1(K ′,Pic(XKs)) −→

∏
v∈|Uks |

H1(Ksh
v ,Pic(XKs))).

Since Pic(XKs) = Pic0X/K(Ks)⊕ Z as GK-modules, there is a natural isomorphism

H1(Uks , j∗j
∗R1π∗Gm) ∼= XUks

(Pic0X/K).

Without loss of generality, we may shrink U such that π is smooth on π−1(U). By Lemma
3.3.1, the natural map

R1π∗Gm −→ j∗j
∗R1π∗Gm

is an isomorphism on U . It follows that

H2(Vks ,Gm)(non-p) ∼= H1(Uks , R
1π∗Gm)(non-p)

∼= H1(Uks , j∗j
∗R1π∗Gm)(non-p) ∼= XUks

(Pic0X/K)(non-p).

Consider the following commutative diagram

Br(Xks)(non-p) //

��

H1(Cks , j∗j
∗R1π∗Gm)(non-p)

��

//XCks
(Pic0X/K)(non-p)

��
Br(Vks)(non-p) // H1(Uks , j∗j

∗R1π∗Gm)(non-p) //XUks
(Pic0X/K)(non-p)

Since maps on the bottom are isomorphisms, it suffices to show that the natural map

Br(Xks)
Gk(non-p) −→ Br(Vks)

Gk(non-p)

has a finite cokernel. This follows from Proposition 3.1.1.
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Proposition 3.2.2. Notations as in the above proposition. Assuming that k is a finite field,
define

XK′(A) := Ker(H1(K ′, A) −→
∏

v∈|Cks |

H1(Ksh
v , A)).

Then the natural map
X(A)(non-p) −→XK′(A)Gk(non-p)

has a kernel and a cokernel of finite exponent.

Proof. We use the same arguments as in the proof of the previous lemma. It suffices to prove
the claim for A = Pic0Y/K where Y is a smooth projective geometrically connected curve over
k. Y admits a projective regular model Y −→ C. Then we have

Br(Y) ∼= X(Pic0Y/K)

and
Br(Yks) ∼= XK′(Pic0Y/K)

up to finite groups. Thus the question is reduced to show that

Br(Y)(non-p) −→ Br(Yks)
Gk(non-p)

has a finite kernel and a finite cokernel. This follows from Theorem 2.4.2.

Cofiniteness of Brauer groups and Tate-Shafarevich groups

Let ℓ be a prime number. Recall that a ℓ-torsion abelian group M is of cofinite type if M [ℓ]
is finite. This is also equivalent to that M can be written as (Qℓ/Zℓ)

r⊕M0 for some integer
r ≥ 0 and some finite group M0. We also say that a torsion abelian group M is of cofinite
type if M [ℓ∞] is of cofinite type for all primes ℓ. It is easy to see that a morphism M → N
between abelian groups of cofinite type has a kernel and a cokernel of finite exponent if and
only if the kernel and cokernel are finite.

In the following, we will show the cofinitness of geometric Tate-Shafarevich groups and
geometric Brauer groups defined in previous sections.

Lemma 3.2.3. The group XUks
(A)[ℓ∞] defined in the Proposition 3.2.1 is of cofinite type

for any ℓ ̸= p.

Proof. We may shrink U such that A extends to an abelian scheme A over U . By the exact
sequence

0 −→ A [ℓ] −→ A
ℓ−→ A −→ 0

we get a surjection
H1(Uks ,A [ℓ]) −→ H1(Uks ,A )[ℓ].
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Since H1(Uks ,A [ℓ]) is finite, H1(Uks ,A )[ℓ] is also finite. Thus, it suffices to show

H1(Uks ,A ) ∼= XUks
(A).

This follows from A ∼= j∗A, since A is a Néron model of A over U . Here j : Spec(K) −→ U
is the generic point.

Lemma 3.2.4. Let X be a smooth variety over a separable closed field k of characteristic
p ≥ 0. Let ℓ ̸= p be a prime. Then Br(X)[ℓ∞] is of cofinite type.

Proof. The Kummer exact sequence

0 −→ µℓ −→ Gm
ℓ−→ Gm −→ 0

induces a surjection
H2(X,µℓ) −→ Br(X)[ℓ].

Then the claim follows from the finiteness of H2(X,µℓ).

3.3 Proof of Theorem 1.4.1

The left exactness in Theorem 1.4.1

In this section, we will prove the left exactness of the sequence in Theorem 1.4.1 by following
Grothendieck’s arguments in [24, §4].

Lemma 3.3.1. Let U be an irreducible regular scheme of dimension 1 with function field K.
Let π : X −→ U be a smooth proper morphism with a generic fiber geometrically connected
over K. Let j : Spec(K) −→ U be the generic point of U . Then we have

(a) the natural map
R1π∗Gm −→ j∗j

∗R1π∗Gm

is an isomorphism,

(b) the natural map
R2π∗Gm[ℓ∞] −→ j∗j

∗R2π∗Gm[ℓ∞]

is an isomorphism for any prime ℓ invertible on U .

Proof. It suffices to show that the induced maps on stalks are isomorphism. Thus, we may
assume that U = Spec(R) where R is a strictly henselian DVR.

Let X denote the generic fiber. Let s ∈ U be the closed point. Then we have

(R1π∗Gm)s̄ = Pic(X ) and (j∗j
∗R1π∗Gm)s̄ = PicX/K(K).
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Since Xs admits a section s −→ Xs and π is smooth, the section can be extended to a section
U −→ X . Thus X(K) is not empty. So

PicX/K(K) = Pic(X).

Since X is regular, the natural map

Pic(X ) −→ Pic(X)

is surjective and has a kernel generated by vertical divisors. It suffices to show that Xs is
connected. This actually follows from π∗OX = OU (cf. [25, Chap. III, Cor. 11.3]). This
proves (a).

Let I denote GK . For (b), the induced map on the stalk at s is

Br(X )[ℓ∞] −→ Br(XKs)I [ℓ∞].

Since π is smooth and proper, we have

H2(X , µℓ∞) ∼= H2(XKs , µℓ∞) = H2(XKs , µℓ∞)I .

Consider the commutative diagram

0 // Pic(X )⊗Qℓ/Zℓ
//

��

H2(X , µℓ∞) //

��

Br(X )[ℓ∞] //

��

0

0 // NS(XKs)⊗Qℓ/Zℓ
// H2(XKs , µℓ∞) // Br(XKs)[ℓ∞] // 0

Since NS(XKs)⊗Qℓ/Zℓ is I-invariant and Pic(X ) = Pic(X). It suffices to show that

Pic(X)⊗Qℓ/Zℓ −→ (NS(XKs)⊗Qℓ/Zℓ)
I

is surjective. Write NS(XKs)free for NS(XKs)/NS(XKs)tor. The action of I on NS(XKs)
factors through a finite quotient I ′. Consider the exact sequence

0 −→ (NS(XKs)free)
I′ ⊗ Zℓ −→ NS(XKs)I

′ ⊗Qℓ −→ (NS(XK̄)⊗Qℓ/Zℓ)
I

−→ H1(I ′,NS(XKs)free ⊗ Zℓ).

H1(I ′,NS(XKs)free⊗Zℓ) is killed by the order of I ′. Since (NS(XKs)⊗Qℓ/Zℓ)
I = NS(XKs)⊗

Qℓ/Zℓ is divisible, so the image of the last map is zero. By Lemma 2.5.1,

Pic(X)⊗Qℓ −→ NS(XKs)I ⊗Qℓ

is surjective, the claim follows. By the Snake Lemma, the natural map

Br(X )[ℓ∞] −→ Br(XKs)I [ℓ∞]

is an isomorphism.
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Lemma 3.3.2. Let U be a smooth geometrically connected curve over a field k of charac-
teristic p ≥ 0 with function field K. Let π : X −→ U be a smooth proper morphism with a
generic fiber X geometrically connected over K. Let K ′ denote Kks. Define

XUks
(PicX/K) := Ker(H1(K ′,Pic(XKs)) −→

∏
v∈|Uks |

H1(Ksh
v ,Pic(XKs))).

Then there is a canonical exact sequence

0→ (XUks
(PicX/K))Gk(non-p)→ Br(Xks)

Gk(non-p)→ Br(XKs)GK (non-p).

Moreover, the natural map

(XUks
(Pic0X/K,red))Gk −→ (XUks

(PicX/K))Gk

has a kernel and cokernel of finite exponent.

Proof. We may assume that k = ks. The Leray spectral sequence

Ep,q
2 = Hp(U,Rqπ∗Gm)⇒ Hp+q(X ,Gm)

gives a long exact sequence

H2(U,Gm) −→ Ker(H2(X ,Gm) −→ H0(U,R2π∗Gm))

−→ H1(U,R1π∗Gm) −→ H3(U,Gm).

By [24, Lem. 3.2.1], H i(U,Gm)(non-p) = 0 for i ≥ 2. Thus, there is a canonical exact
sequence

0→ H1(U,R1π∗Gm)(non-p)→ H2(X ,Gm)(non-p)→ H0(U,R2π∗Gm)(non-p).

Let j : Spec(K) −→ U be the generic point. By Lemma 3.3.1, there are canonical isomor-
phisms

H1(U,R1π∗Gm)(non-p) ∼= H1(U, j∗j
∗R1π∗Gm)(non-p)

and
H0(U,R2π∗Gm)(non-p) ∼= H0(U, j∗j

∗R2π∗Gm)(non-p).

Since j∗Riπ∗Gm corresponds to the GK-module H i(XKs ,Gm), we get

H1(U, j∗j
∗R1π∗Gm) = XU(PicX/K) and H0(U, j∗j

∗R2π∗Gm) = Br(XKs)GK .

This proves the first claim.
For the second claim, consider the exact sequence

0 −→ Pic0(XKs) −→ Pic(XKs) −→ NS(XKs) −→ 0.
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By Proposition 2.3.3, NS(XKs) is finitely generated. So there exists a finite Galois extension
L/K such that Pic(XL) −→ NS(XKs) is surjective. Taking Galois cohomoloy, we get a long
exact sequence

0 −→ H0(K,Pic0(XKs)) −→ H0(K,Pic(XKs)) −→ H0(K,NS(XKs))

aK−→ H1(K,Pic0(XKs)) −→ H1(K,Pic(XKs)) −→ H1(K,NS(XKs)).

We have a similar long exact sequence for H i(L,−). Since Pic(XL)→ NS(XKs) is surjective,
we have aL = 0 and

H1(L,NS(XKs)) = Hom(GL,NS(XKs)) = Hom(GL,NS(XKs)tor).

aL = 0 implies that the image of aK is contained in

Ker(H1(K,Pic0(XKs)) −→ H1(L,Pic0(XKs)))

which is killed by [L : K]. Similarly, one can show that H1(K,NS(XKs)) is killed by
[L : K]|NS(XKs)tor|. Therefore, the kernel and cokernel of

H1(K,Pic0(XKs)) −→ H1(K,Pic(XKs))

are killed by [L : K]|NS(XKs)tor|. The claim also holds for

H1(Ksh
v ,Pic0(XKs)) −→ H1(Ksh

v ,Pic(XKs)).

By diagram chasings, the kernel and cokernel of

XU(Pic0X/K,red) −→XU(PicX/K)

is of finite exponent. This completes the proof.

The pull-back trick

In this section, we will use Colliot-Thélène and Skorobogatov’s pull-back trick( cf. Chapter
2.4) to reduce the question to cases of relative dimension 1. The approach is similar to the
proof of Theorem 2.4.2.

Let U be a regular integral excellent scheme of dimension 1 with function field K. Let
π : X −→ U be a smooth projective morphism with the generic fiber X geometrically
connected over K. The Leray spectral sequence

Ep,q
2 = Hp(U,Rqπ∗Gm)⇒ Hp+q(X ,Gm)

induces canonical maps
d1,12 : E1,1

2 −→ E3,0
2 ,

d0,23 : E0,2
3 −→ E3,0

3 ,

d0,22 : E0,2
2 −→ E2,1

2 .
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Lemma 3.3.3. Assuming that X(K) is not empty and the natural map Pic(X)→ NS(XKs)
is surjective, then the canonical maps d1,12 and d0,23 vanish and E3,0

3 = E3,0
2 . Moreover, there

exists an open dense subscheme V ⊆ U such that the canonical map d0,22 has an image of
finite exponent when replacing U by V . As a result, the natural map

H2(π−1(V ),Gm) −→ H0(V,R2π∗Gm)

has a cokernel of finite exponent.

Proof. Let s ∈ X(K). Since π is proper, it extends to a section s : U −→ X . Let Ẽp,q
2 denote

the Leray spectral sequence for the identy map U −→ U . Then s induces a commutative
diagram

E1,1
2

d1,12 //

��

E3,0
2

��

Ẽ1,1
2

// Ẽ3,0
2

The second column is an isomorphism since E3,0
2 = H3(U,Gm) = Ẽ3,0

2 . Since Ẽ1,1
2 = 0, thus

d1,12 = 0. By definition, d3,02 = 0, it follows that E3,0
3 = E3,0

2 . By the same arguments, we
have d0,23 = 0.

For the proof of the second claim, we will use the pullback method for finitely many
U -morphisms Yi −→ X where Yi is of relative dimension 1 over U . Let iEp,q

2 denote the
Leray spectral sequence for πi : Yi −→ U . There is a commutative diagram

E0,2
2

d0,22 //

��

E2,1
2

��

⊕i
iE0,2

2
// ⊕i

iE2,1
2

By shrinking U , we can assume that πi is smooth and projective for all i. By Artin’s theorem
[24, Cor. 3.2], R2πi,∗Gm = 0. Thus, to show that d0,22 has an image of finite exponent, it
suffices to show that the second column has a kernel of finite exponent. The second column
is the map

H2(U,R1π∗Gm) −→
⊕
i

H2(U,R1πi,∗Gm).

By Lemma 3.3.1(a), there is a canonical isomorphism

R1πi,∗Gm
∼= j∗j

∗R1πi,∗Gm,

where j : Spec(K) −→ U is the generic point. It suffices to show that there exists an étale
sheaf F on Spec(K) and a morphism F −→ ⊕ij

∗R1πi,∗Gm such that the induced map

j∗R1π∗Gm ⊕F −→
⊕
i

j∗R1πi,∗Gm (3.1)
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has a kernel and a cokernel killed by some positive integer. This will imply that the induced
map

H2(U, j∗j
∗R1π∗Gm)⊕H2(U, j∗F ) −→

⊕
i

H2(U, j∗j
∗R1πi,∗Gm)

has a kernel and a cokernel of finite exponent. Since j∗R1π∗Gm corresponds to the GK-
module Pic(XKs), the claim about the map (3.1) can be interpreted as that there is a
GK-module M and a GK-equivariant map M −→ ⊕iPic(Yi,Ks) such that

Pic(XKs)⊕M −→
⊕
i

Pic(Yi,Ks)

has a kernel and a cokernel of finite exponent. By Lemma 2.4.1, there exist smooth projective
curves Yi in X and an abelian subvariety A of

∏
i Pic0Yi/K

such that the induced morphism

Pic(XKs)× A(Ks) −→
∏
i

Pic(Yi,Ks)

has a finite kernel and a finite cokernel. Taking Yi to be the Zariski closure of Yi in X and
then shrinking U , we get smooth and proper morphisms π : Yi −→ U . This proves the
second claim.

For the last claim, consider the following canonical exact sequences induced by the Leray
spectral sequence,

E2 −→ E0,2
4 −→ 0,

0 −→ E0,2
4 −→ E0,2

3

d0,23−→ E3,0
3 ,

0 −→ E0,2
3 −→ E0,2

2

d0,22−→ E2,1
2 .

Since d0,23 vanishes and d0,22 has an image of finite exponent, it follows that

E2 −→ E0,2
2

has a cokernel of finite exponent. This completes the proof.

Proof of Theorem 1.4.1

Now we prove Theorem 1.4.1. Let U be an open dense subscheme of C such that π is smooth
and projective over U . By Lemma 3.3.2, the natural map

(XUks
(Pic0X/K,red))Gk(non-p)→ Ker(Br(π−1(Uks))

Gk(non-p)→ Br(XKs)GK (non-p))

has a kernel of finite exponent. By Lemma 3.2.3 and 3.2.4, all groups here are of cofinite
type. Thus the kernel is actually finite. By Proposition 3.1.1 and 3.2.1, it suffices to show
that the natural map

Br(π−1(Uks))
Gk(non-p) −→ Br(XKs)GK (non-p)
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has a cokernel of finite exponent.
Firstly, we will prove this under the assumption that X(K) is not empty and the natural

map Pic(X) → NS(XKs) is surjective. We still use X to denote π−1(U). By Proposition
3.1.1, without loss of generality, we can always replace U by an open dense subset. By
Lemma 3.3.1(b), we have

H0(U,R2π∗Gm)(non-p) ∼= H0(U, j∗j
∗R2π∗Gm)(non-p) = Br(XKs)GK (non-p).

It suffices to show that the natural map induced by the Leray spectral sequence for π

H2(X ,Gm) −→ H0(U,R2π∗Gm)

has a cokernel of finite exponent. By shrinking U , the claim follows from Lemma 3.3.3.
Secondly, we will show that the question can be reduced to the case that X(K) is not

empty and the natural map Pic(X) → NS(XKs) is surjective. There exists a finite Galois
extenion L/K such that X(L) is not empty and the natural map Pic(XL) → NS(XKs) is
surjective. Let W be a smooth curve over k with function field L. By shrinking U and W ,
the map Spec(L) −→ Spec(K) extends to a finite étale Galois covering map W −→ U . Let
XW −→ W be the base change of X −→ U to W . By the arguments above, the natural map

Br(XW )(non-p) −→ Br(XKs)GL(non-p)

has a cokernel of finite exponent. Let G denote Gal(L/K). The above map is compatible
with the G-action. Taking G-invariant, the natural map

Br(XW )G(non-p) −→ Br(XKs)GK (non-p)

has a cokernel of finite exponent. Then the question is reduced to show that the natural
map

Br(X ) −→ Br(XW )G

has a cokernel of finite exponent. Consider the spectral sequence

Hp(G,Hq(XW ,Gm))⇒ Hp+q(X ,Gm).

Since Hp(G,−) is killed by the order of G, by similar arguments as in Lemma 3.3.3, we can
conclude that the cokernel of

H2(X ,Gm) −→ H2(XW ,Gm)G

is of finite exponent. This completes the proof of the theorem.
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3.4 Applications of Theorem 1.4.1

Proof of Theorem 1.5.3

Firstly, note that if k is finite, by [33, Thm. 2.3], the finiteness of Br(Xks)
Gk(non-p) is

equivalent to the Tate conjecture for divisors on X .
We will prove the finiteness of Br(XKs)GK (non-p) by the induction on the transcendence

degree of K/k. If K/k is of transcendence degree 0, a smooth projective variety over K can
be view as a smooth projective variety over k. So the claim is true by assumptions.

Assume that the claim is true for all extensions l/k of transcendence degree n. Let K/k be
a finitely generated extension of transcendence degree n+1 and X/K be a smooth projective
connected variety over K. By extending K, we may assume that X/K is geometrically
connected. K can be regarded as the function field of a smooth projective geometrically
connected curve C over a field l of transcendence degree n over k. The structure map
X −→ Spec(K) can be extended to a smooth morphism π : X −→ C. By Theorem 1.4.1,

Br(Xls)
Gk(non-p) −→ Br(XKs)GK (non-p)

has a finite cokernel. It suffices to show that Br(Xls)
Gl(non-p) is finite. By Proposition

3.1.1, we may shrink X such that there is an alteration f : X ′ −→ X such that X ′ admits
a smooth projective compactification over a finite extension of l. Replacing l by a finite
extension will not change the question, we may assume that X ′ admits a smooth projective
compactification over l. By shrinking X , we may assume that f is finite flat. Then the
kernel of

Br(Xls)(non-p) −→ Br(X ′ls)(non-p)

is killed by the degree of f and therefore is finite. Since Br(X ′ls)Gl(non-p) is finite by induction,
so Br(Xls)

Gl(non-p) is finite. This completes the proof.

Proof of Theorem 1.5.1

Let ℓ ̸= p be a prime, the the claim in Theorem 1.5.3 also holds when replacing the prime
to p part by the ℓ primary part in the statement. So by the same argument as in the proof
of Theorem 1.5.3, Theorem 1.5.1 is true.

Brauer groups of integral models of abelian varieties and K3
surfaces

Proposition 3.4.1. Let C be a smooth projective geometrically connected curve over a finite
field k of characteristic p > 2. Let π : X −→ C be a projective flat morphism. Let X denote
the generic fiber of π. Assuming that X is regular and XKs is an abelian variety over Ks,
then there is an isomorphism up to finite groups

X(Pic0X/K,red)(non-p) ∼= Br(X )(non-p).
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Proof. By [54, Thm. 1.1], Br(XKs)GK (non-p) is finite, the claim follows directly from Corol-
lary 1.4.5.

Proposition 3.4.2. Let C be a smooth projective geometrically connected curve over a finite
field k of characteristic p. Let π : X −→ C be a projective flat morphism. Assuming that X
is regular and the generic fiber X of π is a smooth projective geometrically connected surface
over K with H1(XKs ,Qℓ) = 0 for some prime ℓ ̸= p, then the natural map

Br(X )(non-p) −→ Br(XKs)GK (non-p)

has a finite kernel and cokernel. As a result, Br(XKs)GK (non-p) is finite if and only if
Br(XKs)GK (ℓ) is finite for some prime ℓ ̸= p.

Proof. Pic0X/K,red = 0 since H1(XKs ,Qℓ) = 0. It follows that

X(Pic0X/K,red) = 0.

Then the claim follows from Corollary 1.4.2.

Corollary 3.4.3. Notations as above, if X/K is a K3 surface and p > 2, then Br(X ) is
finite.

Proof. Since Tate conjecture for X is known, Br(XKs)GK (ℓ) is finite for some prime ℓ ̸= p.
By the above proposition, Br(X )[ℓ∞] is also finite. By [38], Br(X ) is finite.

Proposition 3.4.4. Let X be a K3 surface over a global field K of characteristic p > 2.
Then Br(XKs)GK (non-p) is finite.

Proof. By previous results, it suffices to show that X admits a projective regular model. By
resolution of singularity of threefolds(cf. [9]), X admits a projective regular model.
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Chapter 4

Arithmetic case

In this chapter, we will first prove a local version of Theorem 1.4.5(i.e., Proposition 4.1.1)
for fibrations over a hensenlian DVR. This is the main goal of Section 4.1. Then, we use this
local result to prove Theorem 1.4.5. In section 4.3, we prove Theorem 1.5.6.

4.1 Local results

Introduction

Let R denote a henselian DVR of characteristic 0 with a perfect residue field k of character-
istic p > 0. Let ℓ denote a prime number. Let I denote Gal(K̄/Ksh) the inertia group for
K = Frac(R). The goal of this section is to prove the following proposition:

Proposition 4.1.1. Let π : X −→ S = Spec(R) be a proper flat morphism, where R is a
henselian DVR of characteristic 0 with a finite residue field. Assuming that X is regular and
the generic fiber X is geometrically connected over K = Frac(R), then the natural map

Br(X ) −→ Br(XK̄)GK

has finite kernel and a finite cokernel.

To prove this proposition, we first prove a p-adic analogue of the local invariant cycle
theorem for H2:

Lemma 4.1.2. Let π : X −→ S = Spec(R) be a proper flat morphism with X regular.
Assume that the residue field of R is finite. Let X denote the generic fiber of π. Define:

H2
fppf(XRsh ,Qp(1)) := lim←−

n

H2
fppf(XRsh , µpn)⊗Zp Qp,

then the natural map
H2

fppf(XRsh ,Qp(1)) −→ H2
ét(XK̄ ,Qp(1))I

is surjective.
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As a direct result of the lemma above, we get the local result for fibrations over a strictly
henselian DVR:

Corollary 4.1.3. Let π : X −→ S = Spec(R) be a proper flat morphism with X regular.
Assuming that the residue field of R is finite, then the natural map

Br(XRsh)[p∞] −→ Br(XK̄)I [p∞]

has a kernel of finite exponent and a finite cokernel.

Taking Gk-invariant, we get the p-primary part of the Proposition 4.1.1. The prime-to-p
part of Proposition 4.1.1 can be deduced from the proposition below:

Proposition 4.1.4. Let π : X −→ S = Spec(R) be a proper flat morphism where R is
a henselian DVR with a finite residue field k and a quotient field K. Assume that X is
regular and the generic fiber X of π is smooth projective geometrically connected over K.
Let ℓ ̸= char(k) be a prime. Then the natural map

Br(XRsh)Gk [ℓ∞] −→ Br(XKs)GK [ℓ∞]

has a kernel and a cokernel of finite exponent and is an isomorphism for all but finitely many
ℓ. Moreover, if π is smooth, the map is an isomorphism for all ℓ ̸= char(k).

Proof of Lemma 4.1.2

We will prove Lemma4.1.2 under the assumption that π is a semi-stable projective mor-
phism. The general case can be reduced to this case by de Jong’s alteration theorem [13,
Cor. 5.1]( cf. Lemma 4.1.22).

Recall the definition of semi-stable morphisms.

Definition 4.1.5. Let π : X −→ S = SpecR be a flat separated morphism of finite type.
Assume that X is regular and irreducible. Let Y be the special fiber of π. Let Yi, i ∈ I be
the irreducible components of Y . Put YJ = ∩j∈JYj (scheme-theoretic intersection) for a non
empty subset J of I. We say X is strictly semi-stable over S if the following properties hold:

a) the generic fiber X of π is smooth over K = Frac(R),

b) Y is a reduced scheme, and

c) for each nonempty J ⊆ I, YJ is smooth over k and has codimension #J in X .

We say X is semi-stable over S (or with semi-stable reduction) if the situation etale locally
looks as described above.
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Proposition 4.1.6. Let π : X −→ S = Spec(R) be a semi-stable flat projective morphsim,
where R is a henselian DVR of characteristic 0 with a perfect residue field k of characteristic
p > 0. Let i : Y −→ X be the special fiber and j : U = XK −→ X be the generic fiber. Then
the natural map

τ≤1Rj∗Z/pn(1) −→ Rj∗Z/pn(1)

induces a surjection:

lim←−
n

H2
ét(X , τ≤1Rj∗Z/pn(1))⊗Z Q −→ H2

ét(XK̄ ,Qp(1))GK .

To prove the statement above, we need the following two lemmas:

Lemma 4.1.7. ([8, Cor. 5.2(ii) and Thm. 5.4] ) Notation as above, assume that R is
complete. Equips X with the log-structure defined by the special fiber. Let Sn(r)X be the
(log) syntomic sheaf modulo pn on Yét, there exist period morphisms

αFM
r,n : Sn(r)X −→ i∗Rj∗Z/pn(r)′XK

from logarithmic syntomic cohomology to logarithmic p-adic nearby cycles. Here we set
Z/pn(r)′ := 1

pa(r)
Zp(r)⊗Z Z/pn where a(r) = [r/(p− 1)]. Then we have

(i) for i ≥ r + 1, H i(Sn(r)) is annihilated by pN(r).

(ii) for 0 ≤ i ≤ r, the kernel and cokernel of the period map

αFM
r,n : H i(Sn(r)X ) −→ i∗Rij∗Z/pn(r)′XK

is annihilated by pN for an integer N = N(K, p, r), which only depends on K, p, r.

Remark 4.1.8. For 0 ≤ r ≤ p− 2 and n ≥ 1, it is known that

αFM
r,n : Sn(r)X −→ τ≤ri

∗Rj∗Z/pn(r)XK

is an isomorphism for X a log-scheme log-smooth over a henselian discrete valuation ring R
of mixed characteristic. This was proved by Kato [29, 30], Kurihara [32], and Tsuji [63, 64].
If p > 2, we can take r = 1, it is enough for our application. To deal with the case p = 2,
we need the above general result of Colmez and Niziol.

Lemma 4.1.9 ([15, 43]). Notations as above, define RΓsyn(X , r)n := RΓ(Xét,Sn(r)) and
RΓsyn(X , r) := homlimnRΓsyn(X , r)n. Define H i

syn(X ,Qp(r)) := H i(RΓsyn(X , r))⊗Q. Then
there is a spectral sequence

syn
E
i,j
2 = H i

st(GK , H
j
ét(XK̄ ,Qp(r)))⇒ H i+j

syn (X ,Qp(r)),

which is compatible with the Hochschild-Serre spectral sequence for etale cohomology

ét
E
i,j
2 = H i(GK , H

j
ét(XK̄ ,Qp(r)))⇒ H i+j

ét (X,Qp(r)).
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It degenerates at E2 for XK projective and smooth. In particular, the edge map

H2
syn(X ,Qp(1)) −→ H2

ét(XK̄ ,Qp(1))GK

is surjective.

Proof of Proposition 4.1.6.

Proof. Replacing R by its completion, we can assume that R is complete. By Lemma 4.1.7,
the maps

H i(τ≤1Sn(1)X ) −→H i(Sn(1)X )

and
H i(τ≤1Sn(1)X ) −→H i(i∗τ≤1Rj∗Z/pn(1)′XK

)

have kernel and cokernel annihilated by some pN , where N only depends on π : X −→ S
and is independent of n. So do

H2
ét(Y, τ≤1Sn(1)X ) −→ H2

ét(Y,Sn(1)X )

and
H2

ét(Y, τ≤1Sn(1)X ) −→ H2
ét(Y, i

∗τ≤1Rj∗Z/pn(1)′XK
).

Taking limit, we get an isomorphism

lim←−
n

H2
ét(Y,Sn(1)X )⊗Z Q ∼= lim←−

n

H2
ét(Y, i

∗τ≤1Rj∗Z/pn(1)′XK
)⊗Z Q.

By the proper base change theorem, we have

H2
ét(X , τ≤1Rj∗Z/pn(1)′XK

) ∼= H2
ét(Y, i

∗τ≤1Rj∗Z/pn(1)′XK
).

There is a natural map

H2
syn(X ,Qp(1)) −→ lim←−

n

H2
ét(Y,Sn(1)X )⊗Z Q.

By composition, we get a natural map

H2
syn(X ,Qp(1)) −→ lim←−

n

H2
ét(X , τ≤1Rj∗Z/pn(1)′XK

)⊗Z Q.

By Lemma 4.1.9, the natural map

H2
syn(X ,Qp(1)) −→ H2

ét(XK̄ ,Qp(1))GK

is surjective. By the following commutative diagram

H2
syn(X ,Qp(1))

++

// lim←−n
H2

ét(X , τ≤1Rj∗Z/pn(1)′XK
)⊗Z Q

��
H2

ét(XK̄ ,Qp(1))GK



CHAPTER 4. ARITHMETIC CASE 43

the map
lim←−
n

H2
ét(X , τ≤1Rj∗Z/pn(1))⊗Z Q −→ H2

ét(XK̄ ,Qp(1))GK

is surjective.

Lemma 4.1.10. Assuming that R has a finite residue field, let X be a smooth proper variety
over K. Assuming the conjecture of purity of the weight filtration ([26, Conj. 2.6.5)])(which
is known for dim(X) ≤ 2), then the eigenvalues of the geometric Frobenius action on
H i

ét(XK̄ ,Qp(m))I are Weil numbers of weight ≤ i− 2m.

Proof. By de Jong’s alteration theorem [13, Cor. 5.1], there exists an alteration of X with
semi-stable reduction over R. Without loss of generality, we can assume that there exists a
proper semi-stable morphism π : X −→ Spec(R) whose generic fiber is identified with X/K.

Replace K by its completion. Let K0 ( resp. K1) denote the fraction field of W (k)( resp.
W (k̄)). By the semi-stable comparison theorem, there is a canonical isomorphism

H i
ét(XK̄ ,Qp)⊗Qp Bst

∼= H i
0(X )⊗K0 Bst

compatible with actions of GK , Frobenius ϕ and N and filtrations after tensor K on both
sides, where the ϕ action on right side is given by ϕst⊗ ϕB and N acts by N ⊗ 1 + 1⊗N on
the right side. Set V = H i(XK̄ ,Qp). We also write Dst(V ) for H i

0(X ). Note Dst(V (m)) =
Dst(V )(m). And we have

V (m) = {x ∈ Dst(V (m))⊗K0 Bst|ϕx = x,Nx = 0, 1⊗K0 x ∈ Fil0}.

Since BI
st = K1 and Bcris = Ker(N : Bst −→ Bst), we have

V (m)I = {x ∈ Dst(V (m))⊗K0 K1|ϕx = x,Nx = 0} ∩ Fil0.

Since Nϕ = pϕN on Dst(V (m)), so ϕ keeps (Dst(V (m))N=0. N acts as zero on K1, therefore

V (m)I ⊂ {x ∈ Dst(V (m))N=0 ⊗K0 K1|ϕx = x}.

Assuming k = Fpn , there is a ϕn-equivariant filtration Mi on Dst(V ) determined by N .
Since N acts on Dst(V (m)) same as action on Dst(V ) (identifying the underlying space) and
ϕDst(m) = p−mϕDst , we have

{x ∈ Dst(V (m))N=0 ⊗K0 K1|ϕx = x} = {x ∈ Dst(V )N=0 ⊗K0 K1|ϕn(x) = pmnx}.

ϕn can be written as (ϕn
st ⊗ 1) ◦ (1 ⊗ ϕn

B) as K0-linear maps on Dst(V )N=0 ⊗K0 K1. Set
A = ϕn

st ⊗ 1 and B = 1⊗ ϕn
B, then ϕn = AB = BA. Set

U = {x ∈ Dst(V )N=0 ⊗K0 K1|ϕn(x) = pmnx}.

It is a A and B invariant Qp-linear subspace. Since Dst(V )N=0 ⊆M0, by [26, Conj. 2.6.6(a)],
all eigenvalues of ϕn on Dst(V )N=0 are Weil numbers of weight ≤ i. So there is polynomial
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P (X) ( the product of Galois conjugates of the characteristic polynomial of ϕn) in Q[X] such
that P (ϕn) = 0 on Dst(V )N=0. So P (B−1pmn) = 0 on U . Set G(X) = Xdeg(P )P (pmnX−1),
we have G ∈ Q[X] and G(B) = 0 on U . Actually, the B action on U is same as the
arithmetic Frobenius F ∈ Gal(Ksh/K) action on U . Therefore, H i(XK̄ ,Qp(m))I is a B-
invariant subspace of U . Therefore, G(F ) = 0 on H i(XK̄ ,Qp(m))I . Since all roots of P (X)
are Weil numbers of weight ≤ i, so all roots of G(X) are Weil numbers of weight ≥ 2m−i.

Remark 4.1.11. The conjecture of purity of the weight filtration is known for the case dim
X ≤ 2. For i ≤ 2, by a Lefschetz hyperplane argument, the statement in the theorem can be
reduced to the case dim X ≤ 2, thus it holds for i ≤ 2 unconditionally. In the case that X
has a good reduction, the eigenvalues of the geometric Frobenius action on H i

ét(XK̄ ,Qp(m))I

are Weil numbers of pure weight i− 2m. The above proof is sketched in [27, §5].

Lemma 4.1.12. Let π : X −→ S = Spec(R) be a semi-stable flat projective morphism.
Assume that it is a base change of some X0 −→ S0 = Spec(R0), where R0 is a henselian
DVR with a finite residue field k0 and R = Rsh

0 . Let Tn(1) ∈ Db(Xét,Z/pnZ) be the p-adic
etale Tate twist defined by Kanetomo Sato in [49, §1.3], which is naturally isomorphic to
Gm ⊗L Z/pnZ[−1]. Then the natural map

lim←−
n

H2
ét(X ,Tn(1))⊗Z Q −→ H2

ét(XK̄ ,Qp(1))GK

is surjective.

Proof. By the definition of Tn(m), there is a distinguished triangle in Db(Xét,Z/pnZ)

i∗ν
m−1
Y,n [−m− 1] −→ Tn(m) −→ τ≤mRj∗Z/pn(m) −→ i∗ν

m−1
Y,n [−m], (4.1)

where νm
Y,n are generalized Logarithmic Hodge–Witt sheaves which agree with WnΩm

Y,log if Y
is smooth (cf. [49, Lem. 1.3.1]). ν0

Y,n can be identified with⊕
y∈Y 0

iy∗Z/pnZ

where Y 0 is the set of generic points of Y . Taking m = 1 in (4.1) and taking cohomology,
we get an exact sequence

lim←−
n

H2
ét(X ,Tn(1))⊗Z Q −→ lim←−

n

H2
ét(X , τ≤1Rj∗Z/pn(1))⊗Z Q −→ lim←−

n

H1
ét(Y, ν

0
Y,n)⊗Z Q.

Gk0 acts on the above sequence, and we will show the third term is of pure weight 1. Let

Ỹ −→ Y be an alteration such that Ỹ is smooth. It induces a map

H1
ét(Y, ν

0
Y,n) −→ H1

ét(Ỹ , ν0
Ỹ ,n

).
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Since H1
ét(Y, ν

0
Y,n) ↪→ H1

ét(Y
0,Z/pnZ) and H1

ét(Ỹ , ν0
Ỹ ,n

) ↪→ H1
ét(Ỹ

0,Z/pnZ), and the kernel of

H1
ét(Y

0,Z/pnZ) −→ H1
ét(Ỹ

0,Z/pnZ) is killed by some positive integer independent of n, we
have an injection

lim←−
n

H1
ét(Y, ν

0
Y,n)⊗Z Q ↪→ lim←−

n

H1
ét(Ỹ , ν0

Ỹ ,n
)⊗Z Q.

Therefore, the natural map

lim←−
n

H1
ét(Y, ν

0
Y,n)⊗Z Q −→ lim←−

n

H1
ét(Ỹ , ν0

Ỹ ,n
)⊗Z Q

is injective. We might assume that the irreducible components of Y and Ỹ are defined over
k0, therefore H1

ét(Ỹ , ν0
Ỹ ,n

) admits a Gal(k/k0) action. Since Ỹ is smooth over k, we have

ν0
Ỹ ,n

= Z/pnZ. Thus

lim←−
n

H1
ét(Ỹ , ν0

Ỹ ,n
)⊗Z Q = H1

ét(Ỹ ,Qp).

Since H1
ét(Ỹ ,Qp) is of pure weight 1 (cf. [27, §3]), thus lim←−n

H1
ét(Y, ν

0
Y,n)⊗Z Q is also of pure

weight 1.
By Proposition 4.1.6,

lim←−
n

H2
ét(X , τ≤1Rj∗Z/pn(1))⊗Z Q −→ H2

ét(XK̄ ,Qp(1))GK

is surjective. By Lemma 4.1.10, H2
ét(XK̄ ,Qp(1))GK is of mixed weight ≤ 0. Therefore

lim←−
n

H2
ét(X ,Tn(1))⊗Z Q −→ H2

ét(XK̄ ,Qp(1))GK

is surjective.

Proof of Lemma 4.1.2.

Proof. Let f : Xfppf −→ Xét be the morphism between Grothendieck topologies. By [36,
Thm. 3.9], Rif∗Gm = 0 for i > 0. By the Kummer exact sequence of fppf-sheaves

0 −→ µpn −→ Gm
pn−→ Gm −→ 0,

the complex Gm
pn−→ Gm can be viewed as an acyclic resolution of µpn . It gives

Rf∗µpn
∼= Gm ⊗L Z/pnZ[−1].

Since Tn(1) ∼= Gm ⊗L Z/pnZ[−1] (cf. [49, Prop. 4.5.1]), we have

H2
fppf(XRsh , µpn) = H2

ét(XRsh , Rf∗µpn) ∼= H2
ét(XRsh ,Tn(1)).

Then the claim follows from Lemma 4.1.12.
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Proof of Corollary 4.1.3

Lemma 4.1.13. Let π : X −→ S = Spec(R) be a proper flat morphism, where R is an
excellent strictly henselian DVR with an algebraically closed residue field. Let K denote the
quotient field of R. Assuming that X is regular and the generic fiber X is smooth projective
geometrically connected over K, then the map

Br(X ) −→ Br(XKs)GK

has kernel of finite exponent. The claim still holds for the prime to p part if the residue field
of R is only separable closed.

Proof. If dim(X ) ≤ 2, Artin’s theorem [24, Thm.3.1] implies that both groups vanish. In
general, we will use Colliot-Thélène and Skorobogatov’s pull-back trick to reduce it to cases of
relative dimension 1. By Lemma 2.4.1, there are smooth projective geometrically connected
curves Zi ⊂ X, an abelian variety A/K and a GK-equivariant map

Pic(XKs)× A(Ks) −→
⊕
i

Pic(Zi,Ks)

with finite kernel and cokernel. It follows that the natural map

H1(K,PicX/K) −→
⊕
i

H1(K,PicZi/K)

has a kernel of finite exponent. By taking the Zariski closures of Zi in X and then desingu-
larizing it, we may assume that there are πi : Zi −→ S with generic fiber Zi satisfying same
conditions as π and S-morphisms Z −→ X . Consider the commutative diagram

0 // H1(K,PicX/K) //

��

Br(X) //

��

Br(XKs)GK

��
0 //

⊕
i H

1(K,PicZi/K) //
⊕

i Br(Zi) //
⊕

i Br(Zi,Ks)GK

The exact rows come from the spectral sequences

Hp(K,Hq(XKs ,Gm))⇒ Hp+q(X,Gm)

and the fact Hq(K,Gm) = 0, q > 0. Since Br(Zi) = 0, Br(X ) ∩ H1(K,PicX/K) will be
mapped to zero in Br(Zi). Thus, Br(X ) ∩ H1(K,PicX/K) is contained in the kernel of the
first column which is of finite exponent.

Proof of Corollary 4.1.3.

Proof. It follows directly from the above lemma that the natural map

Br(XRsh)[p∞] −→ Br(XK̄)I [p∞]



CHAPTER 4. ARITHMETIC CASE 47

has a kernel of finite exponent. By Proposition 2.5.2, the natural map

H2
ét(XK̄ ,Qp(1))I −→ VpBr(XK̄)I

is surjective. By Lemma 4.1.2, the natural map

VpBr(XRsh) −→ VpBr(XK̄)I

is surjective. Since Br(XK̄)I is of cofinite type, thus

Br(XRsh)[p∞] −→ Br(XK̄)I [p∞]

has a finite cokernel.

Proof of Proposition 4.1.1

We will deduce the finiteness of the kernel and the p-primary part of the cokernel from
Corollary 4.1.3. The prime to p-parts of the kernel and the cokernel was proved by Colliot-
Thélène and Saito in [10, Cor. 2.6]. To prove the finiteness of the cokernel, we will use a
Bertini theorem for strictly semi-stable morphisms over DVRs developed in [28] and Colliot-
Thélène and Skorobogatov’s pull-back trick to reduce it to cases of relative dimension 1.

Lemma 4.1.14. Let π : X −→ S = Spec(R) be a proper flat map, where R is an excellent
henselian DVR with a fraction field K and a finite residue field k of characteristic p. As-
suming that X is regular and the generic fiber X of π is geometrically connected over K,
then there is an exact sequence

Br(X ) −→ Br(XRsh)Gk −→ H2(S,R1π∗Gm),

and the first map of the above sequence has a finite kernel.

Proof. By the Leray spectral sequence

Ep,q
2 = Hp(S,Rqπ∗Gm)⇒ Hp+q(X ,Gm),

we get a long exact sequence

H2(S,Gm) −→ Ker(H2(X ,Gm) −→ H0(S,R2π∗Gm)) −→ H1(S,R1π∗Gm) −→ H3(S,Gm)

By [35, Chap. II, Prop. 1.5], H i(S,Gm) = 0 for all i ≥ 1. Since H0(C,R2π∗Gm) =
Br(XRsh)Gk , we get the desired exact sequence. To show the kernel of the first map is finite,
it suffices to show that H1(S,R1π∗Gm) is finite. We have

H1(S,R1π∗Gm) = H1(Gk,Pic(XRsh)).
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Since the natural map Pic(XRsh) → Pic(XKsh) is surjective and has a finitely generated
cokernel, it suffices to show that H1(Gk,Pic(XKsh)) is finite. Since Br(Ksh) = 0, we have

Pic(XKsh) = PicX/K(Ksh).

Since the cokernel of Pic0X/K(Ksh) → PicX/K(Ksh) is finitely generated, it suffices to show
that H1(Gk,Pic(XKsh)) is finite. This follows from [35, Chap. I, Prop.3.8].

By Lemma 4.1.13, the kernel of the natural map Br(XRsh)→ Br(XK̄) is of finite exponent.
By the above lemma, the kernel of the natural map Br(X ) → Br(XK̄)GK is also of finite
exponent and is actually finite since Br(X) is of cofinite type. To show the natural map
Br(X ) → Br(XK̄)GK has a finite cokernel, by Corollary 4.1.3, it suffices to show that the
natural map

Br(XRsh)Gk −→ H2(S,R1π∗Gm)

has an image of finite exponent. In the case of dim(X ) = 2, this is obvious since Br(XRsh) = 0.
In general, we will need to use a Lefschetz hyperplane argument to reduce this to the case
of relative dimension 1.

Lemma 4.1.15. Let π : X −→ S = Spec(R) be a projective flat morphism, where R
is a strictly henselian DVR of characteristic 0 with an algebraically closed residue field k.
Assume X is strictly quasi-semi-stable over S (cf.[28, Def. 1.1]) and its geometric fiber is
geometrically connected over K. Let Y be the special fiber of π. Write Yred = ∪ni=1Yi as the
union of irreducible components. By definition, Yi are smooth projective connected varieties
over k. Assume m = dim(Y ) ≥ 1. Fix an embedding X ↪→ Pn

S, then there exist hyperplanes
H1, ..., Hm−1 defined over R such that the scheme-theoretic intersections Z = (∩m−1i=1 Hi)∩X
satisfies the same assumption as X −→ S( strictly quasi-semi-stable and has geometrically
connected generic fiber) and Cj = Yj ∩ (∩m−1i=1 Hi) are distinct smooth projective connected
curves.

Proof. If dim(Y ) = 1, the claim is trivial. Assume m = dim(Y ) > 1, by Bertini’s theorem
for quasi-stable-schemes over a DVR [28, Thm. 1.2], there is a hyperplane H over S such
that H intersects Yj and Yi ∩ Yj transversely and H ∩ X is quasi-semi-stable over S. Since
dim(Y ) > 1, we have scheme-theoretic intersections H ∩ Yj and HK̄ ∩ XK̄ are smooth and
connected. Since H intersects Yi∩Yj transversely, H∩Yi are distinct irreducible components
of the special fiber of X ∩ H. By induction, the claim is true for X ∩ H, so there exist
H2, ..., Hm−1 satisfying conditions in the claim for X ∩ H. Then H1 = H,H2, ..., Hm−1 are
desired hyperplanes for X .

Lemma 4.1.16. Let π : Z −→ S = Spec(R) be a proper flat morphism where R is a strictly
henselian DVR with an algebraically closed residue field and Z is regular and is of dimension
2. Assume that the generic fiber of π is smooth and connected. Let C denote the special fiber
and Ci denote irreducible components of C. Then the intersection pairing⊕

i

Q · [Ci]×
⊕
i

Q · [Ci] −→ Q
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has the left and right kernel spanned by [C].

Proof. Since [C] = 0, so C.Cj = 0 for any j. Let D =
∑

xi[Ci] such that D.Cj = 0
for all j. So

∑
xiCi.Cj = 0 for all j. We have D.D = 0, i.e

∑
xixjCi.Cj = 0. We

may assume [C] =
∑

[Ci], since C.Ci = 0. It follows Ci.Ci = −
∑

j ̸=iCi.Cj. Therefore

0 =
∑

xixjCi.Cj =
∑

i<j(2xixj − x2
i − x2

j)Ci.Cj. It follows xi = xj if Ci.Cj > 0. Since C is
connected, so all xi are same, we have D = x[C]. This proves the claim.

Lemma 4.1.17. Let G be a group and M, L are G-modules. We say a G-map f : M −→ L
is almost split if there exists a G-map N −→ L such that M ⊕ N −→ L has kernel and
cokernel of finite exponent. Assume that there is a commutative diagram with exact rows

0 // A1
//

��

B1
//

��

C1
//

��

0

0 // A2
// B2

// C2
// 0

such that the first column, the third column and A2 → B2 are almost split. Then the middle
column is almost split.

Proof. Let A′1 −→ A2, A
′
2 −→ B2 and C ′1 −→ C2 be G-maps such that A′1 ⊕ A1 −→ A2,

A2 ⊕ A′2 −→ B2 and C1 ⊕ C ′1 −→ C2 have kernels and cokernels of finite exponent. We
may assume A′2 ⊆ B2 and C ′1 ⊆ C2. Then A′2 −→ C2 has a kernel and a cokernel of finite
exponent. Let B′ denote the preimage of C ′1 under this map. One can show that B′ −→ C ′1
has a kernel and a cokernel of finite exponent. Replace C ′1 by the image of this map, we may
assume that the map B′ −→ C ′1 is surjective. Let K denote its kernel, so K ⊆ A2 and is of
finite exponent. Consider the diagram

0 // A′1 ⊕ A1 ⊕K //

��

A′1 ⊕B1 ⊕B′ //

��

C1 ⊕ C ′1 //

��

0

0 // A2
// B2

// C2
// 0

where the first and the third column has kernels and cokernels of finite exponent. By the
snake lemma, the second column has kernel and cokernel of finite exponent.

Proposition 4.1.18. Let π : X −→ S = Spec(R) be a projective flat morphism with a
smooth and geometrically connected generic fiber X, where R is a henselian DVR of charac-
teristic 0 with a finite residue field k. Assuming that the base change of π to Rsh is strictly
quasi-semi-stable, then

Br(X ) −→ Br(XRsh)Gk

has a kernel and a cokernel of finite exponent.
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Proof. By Lemma 4.1.14, it suffices to show that the cokernel is of finite exponent. If π is
of relative dimension 1, by Artin’s theorem [24, Thm.3.1], Br(XRsh) = 0, so the claim is true
in this case. For the general case, we will use Colliot-Thélène and Skorobogatov’s pull-back
trick to reduce the problem to the case of relative dimension 1. Consider the commutative
diagram

Z //

π′

��

X
π
��

S
id // S

where π′ is proper flat and of relative dimenson 1. By Lemma 4.1.14, there is commutative
diagram with exact rows

Br(X ) //

��

Br(XRsh)Gk
∂ //

��

H2(S,R1π∗Gm)

a

��
Br(Z) // Br(ZRsh)Gk // H2(S,R1π′∗Gm).

Since Br(ZRsh)Gk = 0, we have Im(∂) ⊆ Ker(a). The idea is to show that Ker(a) is of finite
exponent. Instead of working on one Z, we will find finitely many Zi and show that the
kernel of

H2(S,R1π∗Gm)
∑

ai−→
⊕
i

H2(S,R1π′∗Gm)

is of finite exponent. By the Hochschild–Serre spectral sequence

Hp(Gk, H
q(SpecRsh, R1π∗Gm))⇒ Hp+q(S,R1π∗Gm)),

we get

H2(S,R1π∗Gm) = H2(Gk, H
0(SpecRsh, R1π∗Gm)) = H2(Gk,Pic(XRsh)).

Thus, the map a can be identified with

H2(Gk,Pic(XRsh)) −→ H2(Gk,Pic(ZRsh)).

Let Y denote the special fiber of π and Yi denote its irreducible components. Then there is
an exact sequence ⊕

i

Z · [Yi] −→ Pic(XRsh) −→ Pic(XKsh) −→ 0

The kernel of the first arrow is generated by [Y ], this actually follows from the following long
exact sequence (cf.[24, §6])

H0(XRsh ,Gm) −→ H0(XKsh ,Gm) −→ H1
Y (XRsh ,Gm) −→ H1(XRsh ,Gm) −→ H1(XKsh ,Gm),
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and the facts
H0(XRsh ,Gm) = (Rsh)∗, H0(XKsh ,Gm) = (Ksh)∗

and
H1

Y (XRsh ,Gm) =
⊕
i

Z · [Yi].

Thus, we have

0 −→ (
⊕
i

Z · [Yi])/Z · [Y ] −→ Pic(XRsh) −→ Pic(XKsh) −→ 0.

We will denote (
⊕

i Z · [Yi])/Z · [Y ] by DX . Let Z −→ S be a proper flat morphism with
Z regular and of dimension 2. Let C denote its special fiber and Ci denote irreducible
components of C. Consider the Gk-equivariant intersect pairing

Pic(ZRsh)×DZ −→ Z, (4.2)

by Lemma 4.1.16, the restriction of the pairing to DZ × DZ is perfect after tensor Q. Let
D⊥Z denote the left kernel of the pairing (4.2). Then the map

DZ ⊕D⊥Z −→ Pic(ZRsh)

has a kernel and a cokernel of finite exponent. The kernel can be identified with the left
kernel of the paring DZ×DZ −→ Z which is finite. Since DZ −→ Hom(DZ ,Z) has a cokernel
killed by some positive integer m, for any element v ∈ Pic(ZRsh), v defines an element v∗ in
Hom(DZ ,Z), so there exists an element u ∈ DZ such that mv∗ = u∗. Thus mv − u ∈ D⊥Z .
This proves that the cokernel is killed by m. Thus, DZ −→ Pic(ZRsh) is almost split.

By Lemma 4.1.15, we can choose Z0 by taking hyperplane sections repeatedly such that
DX ∼= DZ0 . By Lemma 2.4.1, we can choose smooth projective integral curves Zi ⊆ X for
i = 1, ..., n such that

Pic(XKs) −→
n⊕

i=0

Pic(Zi,Ks)

is almost split as GK-modules. Taking GKsh invariant, we have

Pic(XKsh) −→
n⊕

i=0

Pic(Zi,Ksh)

is almost split as Gk-modules.
Taking the Zariski closure of Zi in X , then desingularizes it, we get a S-morphsim Zi −→

X such that Zi −→ S is proper flat with generic fiber Zi. Thus, we get the following
commutative diagram



CHAPTER 4. ARITHMETIC CASE 52

0 // DX //

��

Pic(XRsh) //

��

Pic(XKsh) //

��

0

0 //
⊕n

i=0DZi
//
⊕n

i=0 Pic(Zi,Rsh) //
⊕n

i=0 Pic(Zi,Ksh) // 0

By the constructions, the first column, the third column and the second row are almost split,
by Lemma 4.1.17, the second column is also almost split. Therefore,

H2(Gk,Pic(XRsh)) −→
n⊕

i=0

H2(Gk,Pic(Zi,Rsh))

has a kernel of finite exponent. This completes the proof.

Proposition 4.1.19. Let π : X −→ S = Spec(R) as before. Assuming that π is strictly
semi-stable, then the natural map

Br(X ) −→ Br(XK̄)GK

has a finite kernel and a finite cokernel.

Proof. By Corollary 4.1.3,

Br(XRsh)[p∞] −→ Br(XK̄)GKsh [p∞]

has a kernel and a cokernel of finite exponent. It follows that the map

Br(XRsh)Gk [p∞] −→ Br(XK̄)GK [p∞]

also has a kernel and a cokernel of finite exponent. By the lemma below, the claim also holds
for prime-to-p part. Thus, the natural map

Br(XRsh)Gk −→ Br(XK̄)GK

has a kernel and a cokernel of finite exponent. By Proposition 4.1.18,

Br(X ) −→ Br(XK̄)GK

has a kernel and a cokernel of finite exponent. Since both groups are of cofinite type, so the
kernel and cokernel are actually finite.

To complete the proof of Proposition 4.1.1, we need to remove the strictly semi-stable
assumption. Before removing the strictly semi-stable assumption, we prove Proposition 4.1.4.
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Lemma 4.1.20. Let π : X −→ S = Spec(R) be a proper flat morphism where R is a
henselian DVR with a finite residue field k and a quotient field K. Assume that X is
regular and the generic fiber X of π is smooth projective geometrically connected over K.
Let ℓ ̸= char(k) be a prime. Then

Br(XRsh)Gk [ℓ∞] −→ Br(XKs)GK [ℓ∞]

has a kernel and a cokernel of finite exponent and is an isomorphism for all but finitely many
ℓ.

Proof. Let Y be the special fiber of π and Let Yi be its irreducible components. We may
assume that Yi is geometrically irreducible. By Theorem 2.2.6 there is an exact sequence

0 −→ Br(XRsh)[ℓ∞] −→ Br(XKsh)[ℓ∞] −→
⊕
i

H1(Di,ks ,Qℓ/Zℓ),

where Di is the smooth locus of Yi. It gives an exact sequence

0 −→ Br(XRsh)Gk [ℓ∞] −→ Br(XKsh)Gk [ℓ∞] −→
⊕
i

H1(Di,ks ,Qℓ/Zℓ)
Gk .

By Lemma 3.1.2, H1(Di,ks ,Qℓ/Zℓ)
Gk is finite and vanishes for all but finitely many ℓ.

Consider the spectral sequence

Hp(Ksh, Hq(XKs ,Gm))⇒ Hp+q(XKsh ,Gm).

Since Hp(Ksh,Gm) = 0 for p ≥ 1, we have

0 −→ H1(Ksh,PicX/K) −→ Br(XKsh) −→ Br(XKs)GKsh .

Taking Gk invariants, we get

0 −→ H1(Ksh,PicX/K)Gk −→ Br(XKsh)Gk −→ Br(XKs)GK .

By Theorem 2.4.2, the last map has a cokernel of finite exponent. By [47, Lem. 5.4], the
group H1(Ksh,PicX/K)Gk [ℓ∞] is finite and vanishes for all but finitely many ℓ. This proves
the claim.

Proof of Proposition 4.1.4

Proof. The first claim follows from the lemma above directly. The second claim follows from
Lemma 3.3.1 (b).
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Removing the semi-stable assumption

We need the following two technical Lemmas 4.1.21 and 4.1.22 to remove the semi-stable
assumption.

Lemma 4.1.21. Let f : Y −→ X be a proper morphism between regular noetherian schemes.
Assume that X is irreducible and each irreducible component of Y dominates X and there
is an open dense subset U of X such that f |f−1(U) is a finite etale Galois covering over
U . Let K(X) denote the functions field of X and assume char(K(X)) = 0. Set G =
Aut(f−1(U)/U) = Aut(K(Y )/K(X))op. Then G acts on Br(Y ) and the natural map

Br(X) −→ Br(Y )G

has a kernel and a cokernel of finite exponent.

Proof. Let g ∈ G, g induces a X-rational map Y 99K Y . Since Y −→ X is proper,
by the valuation criterion of properness, g can extend to an open dense subset V ⊂ Y
with codim(Y − V ) ≥ 2.Thus, g induces a map Br(Y ) −→ Br(V ). By Theorem 2.2.7,
Br(Y ) = Br(V ), so G acts on Br(Y ). By Theorem 2.2.8, there is an exact sequence

0 −→ Br(Y ) −→ Br(K(Y )) −→
∏
y∈Y 1

Br(K(Y ))/Br(OY,y),

where Y 1 denotes the set of point of codimension 1. We get the following commutative
diagram

0 // Br(X) //

��

Br(K(X)) //

��

∏
x∈X1

Br(K(X))/Br(OX,x)

��
0 // K // Br(K(Y ))G //

∏
y∈f−1(X1)

Br(K(Y ))/Br(OY,y)

Note all points in f−1(X1) has codimension 1. Since Br(Y )G ⊂ K, it suffices to show that
the first column has a kernel and a cokernel of finite exponent. By the Snake lemma, it
is enough to show that the kernel of the third row is killed by some positive integer. Set
B = OY,y, x = f(y), A = OX,x, K = Frac(A), L = Frac(B). It suffices to show that the kernel
of Br(K)/Br(A) −→ Br(L)/Br(B) is killed by some positive integer that only depends on
[L : K]. We may replace L by its normal closure in K̄, therefore we can assume that L/K
is Galois. By definition, there is an injection

Br(K)/Br(A) ↪→ H3
x(SpecA,Gm) = H3

x(SpecAh,Gm).

Thus, we have
Br(K)/Br(A) ↪→ Br(Kh)/Br(Ah).
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Since char(K) = 0, Br(Kh) = Br(K̂) by the Kummer exact sequence. By Corollary 2.2.11,
Br(Ah) = Br(Â). Thus, we can assume that A and B are complete DVRs. It suffices to
show that the cokernel of Br(A) −→ Br(B)Gal(L/K) is killed by some positive integer that
only depends on [L : K]. By Proposition 2.2.10, Br(A) = Br(k) and Br(B) = Br(l) where k
(resp. l) denotes the residue field of A (resp. B). It suffices to show that the natural map

Br(k) −→ Br(l)Aut(l/k)

has a cokernel killed by some fixed power of [l : k]. If l/k is separable, it follows from
the Hochschild–Serre spectral sequence that the cokernel is killed by [l : k]2. Thus, we
may assume that l/k is purely inseparable, char(k) = p and [l : k] = p. By assumptions,
(ls)p ⊂ ks. Consider the exact sequence

0 −→ (ks)× −→ (ls)× −→ (ls)×/(ks)× −→ 0,

the last group is killed by p. Since Gk = Gl, taking Galois cohomology, it follows from the
long exact sequence of Galois cohomology that the cokernel of Br(k) → Br(l) is killed by
[l : k]. This completes the proof.

Lemma 4.1.22. (Gabber) Let π : X −→ S = Spec(R) be a proper flat morphism, where R
is a henselian DVR of characteristic 0 with a perfect residue field. Let K = Frac(R) and X
denote the generic fiber of π. Assuming that X is regular and X is geometrically connected
over K, then there exists a strictly semi-stable projective morphism π1 : X1 −→ S1 = SpecR1,
where R1 is the ring of integer of some finite Galois extension K1 of K, and an alteration
f : X1 −→ X ×S S1 over S1 such that X1 is irreducible and regular and K(X1)/K(X ) is a
finite Galois extension.

Proof. It follows from [65, Prop. 4.4.1].

Proof of Proposition 4.1.1

Proof. By the previous lemma, there is an alternation f : X1 −→ X satisfying the as-
sumptions in the Lemma 4.1.21. Obviously, X1 ⊗K K̄ −→ XK̄ also satisfies the assump-
tions in the Lemma 4.1.21. Set G = Gal(K(X1)/K(X )). By Lemma 4.1.21, the maps
Br(X ) −→ Br(X1)

G and Br(XK̄) −→ Br(X1 ⊗K K̄)G have a kernel and a cokernel of finite
exponent. Thus, the map

Br(XK̄)GK −→ (Br(X1 ⊗K K̄)GK )G

also has a kernel and a cokernel of finite exponent. Since

X1 ⊗K K̄ =
⊔

σ:K1↪→K̄

(X1)σ,
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so we have
Br(X1 ⊗K K̄)GK = Br((X1)K̄)GK1 .

Since X1 −→ S1 is strictly semi-stable, by Proposition 4.1.19, the natural map

Br(X1) −→ Br((X1)K̄)GK1

has a kernel and a cokernel of finite exponent. It follows that

Br(X1)
G −→ (Br((X1)K̄)GK1 )G

also has a kernel and a cokernel of finite exponent. Then the claim follows from the following
commutative diagram

Br(X ) //

��

Br(XK̄)GK

��
Br(X1)

G // (Br((X1)K̄)GK1 )G

This completes the proof Proposition 4.1.1.

Remark 4.1.23. The strictly semi-stale assumption in the proof of Corollary 4.1.3 can be
removed by the same argument as above.

4.2 Proof of Theorem 1.4.5

Cofiniteness

Proposition 4.2.1. Let X be an integral regular scheme flat and of finite type over Spec(Z).
Then Br(X ) is of cofinite type.

Proof. Let ℓ be a prime. By shrinking X , we may assume that X is a Z[1/ℓ]-scheme. Let
π : X −→ S = Spec(Z[1/ℓ]) the structure morphism. By the Kummer exact sequence, there
is a surjective map

H2(X , µℓ) −→ Br(X )[ℓ].

Thus, it suffices to show that H2(X , µℓ) is finite. By the Leray spectral sequence

Hp(S,Rqπ∗µℓ)⇒ Hp+q(X , µℓ),

it suffices to show that Hp(S,Rqπ∗µℓ) is finite. By [21, Thm. 9.5.1], Rqπ∗µℓ is a constructible
ℓ-torsion sheaf. By [35, Chap. II, Thm. 2.13], Hp(S,Rqπ∗µℓ) is finite.
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Proposition 4.2.2. Let X be a smooth projective geometrically connected variety over a
number field K. Define

X(PicX/K) := Ker(H1(K,PicX/K) −→
∏
v

H1(Kh
v ,PicX/K)).

Then the natural map
X(Pic0X/K) −→X(PicX/K)

has a finite kernel and a cokernel of finite exponent.

Proof. Since X(Pic0X/K) is of cofinite type (cf. [35, Chap. II, Cor. 5.3 and Lem. 5.5]), it
suffices to show that the map has a kernel and a cokernel of finite exponent. By the exact
sequence

0 −→ Pic0X/K −→ PicX/K −→ NS(XK̄) −→ 0

we get a commutative diagram with exact rows

H1(K,Pic0X/K) //

a
��

H1(K,PicX/K) //

b
��

H1(K,NS(XK̄))

c
��∏

v H
0(Kh

v ,NS(XK̄)) ∂ //
∏

v H
1(Kh

v ,Pic0X/K) //
∏

v H
1(Kh

v ,PicX/K) //
∏

v H
1(Kh

v ,NS(XK̄))

Let ā denote the map

H1(K,Pic0X/K) −→
∏
v

H1(Kh
v ,Pic0X/K)/Im(∂)

By the Snake Lemma, there is an exact sequence

Ker(ā) −→ Ker(b) −→ Ker(c).

We also have
0 −→ Ker(a) −→ Ker(ā) −→ Im(∂).

By definition, Ker(a) = X(Pic0X/K) and Ker(b) = X(PicX/K). Thus, it suffices to show that
Im(∂) and Ker(c) are of finite exponent. Since NS(XK̄) is finitely generated, there exists
a finite Galois extension L of K such that Pic(XL) maps onto NS(XK̄). By the inflation-
restriction exact sequence

0 −→ H1(Gal(L/K),NS(XK̄)) −→ H1(K,NS(XK̄)) −→ H1(L,NS(XK̄))

and the fact that H1(Gal(L/K),NS(XK̄)) is killed by [L : K] and H1(L,NS(XK̄)) =
Hom(GL,NS(XK̄)tor) is killed by |NS(XK̄)tor|, we have that H1(K,NS(XK̄)) is also of fi-
nite exponent. It follows that Ker(c) is of finite exponent. To show that Im(∂) is of finite
exponent, it suffices to show that the map

H0(Kh
v ,NS(XK̄))

∂v−→ H1(Kh
v ,Pic0X/K)
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has an image killed by [L : K]. Let w be a place of L over v. Consider the following
commutative diagram with exact rows

H0(Kh
v ,PicX/K) //

��

H0(Kh
v ,NS(XK̄))

∂v //

��

H1(Kh
v ,Pic0X/K)

g

��
H0(Lh

w,PicX/K)
f // H0(Lh

w,NS(XK̄))
∂w // H1(Lh

w,Pic0X/K)

By the choice of L, f is surjective. Thus, ∂w = 0. So Im(∂v) ⊆ Ker(g). By the inflation-
restriction exact sequence, we have that Ker(g) = H1(Gal(Lh

w/K
h
v ),Pic0X/K(Lh

w)) is killed by

[Lh
w : Kh

v ]. Since L/K is finite Galois, so [Lh
w : Kh

v ]|[L : K]. This proves that Im(∂v) is killed
by [L : K].

Lemma 4.2.3. Let π : X −→ S = Spec(R) be a flat morphism with X integral and regular,
where R is a DVR of characteristic 0 with a fraction field K. Let X denote the generic fiber
of K. Then there is an exact sequence

0 −→ Br(X ) −→ Br(X) −→ Br(XKh)/Br(XRh).

Proof. Let Y denote the special fiber of π. It suffices to show

H3
Y (X ,Gm) ∼= H3

Y (XRh ,Gm).

This follows from the Excision theorem (cf.[36, Chap III, Prop. 1.27 and Cor. 1.28]).

Remark 4.2.4. In fact, the exact sequence above still holds if we replace Rh by its com-
pletion. This actually follows from purity of Brauer groups. We may assume that Y is
of codimension 1 with a generic point y. Then there is an injection Br(X)/Br(X ) ↪→
Br(K(X)hy)/Br(Oh

X ,y). Since char(K(X)) = 0, Br(K(X)hy) = Br(K̂(X)y). By Corollary

2.2.11, Br(Oh
X ,y) = Br(ÔX ,y). It is easy to see that the completion does not change if we

replace R by R̂.

Lemma 4.2.5. Let π : X −→ C = Spec(OK) be proper flat morphism with X regular, where
K is a number field. Assuming that the generic fiber X of π is geometrically connected over
K, then the natural map

Br(X)/(Br(X ) + Br(K)) −→
∏
v∈C◦

Br(XKh
v
)/(Br(XOh

v
) + Br(Kh

v ))

has a finite kernel and the group Br(X )∩Br(K) is finite, where C◦ denotes the set of closed
point of C, Oh

v denotes the henselian local ring of C at v and Br(K) denotes the image of
the pullback map Br(K) −→ Br(X).
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Proof. Consider the following commutative diagram

Br(K) //

��

Br(X) //

b
��

Br(X)/Br(K) //

c
��

0

⊕vBr(Kh
v )

f // ⊕vBr(XKh
v
)/Br(XOh

v
) // ⊕vBr(XKh

v
)/(Br(XOh

v
) + Br(Kh

v ))

Let a denote the map

Br(K) −→
⊕
v

Br(Kh
v )/Ker(f).

By the Snake Lemma, there is a long exact sequence

Ker(a) −→ Ker(b) −→ Ker(c) −→ Coker(a)
f̄−→ Coker(b).

By Theorem 2.2.7 and Lemma 4.2.3, Ker(b) = Br(X ). Thus, it suffices to show that Ker(a)
and Ker(f̄) are finite groups. Since

Ker(Ker(a) −→
⊕
v|∞

Br(Kv)⊕Ker(f)) = Ker(Br(K) −→
⊕
v

Br(Kv)),

by Proposition 2.2.14, the map

Ker(a) −→
⊕
v|∞

Br(Kv)⊕Ker(f)

is injective and Coker(a) is of cofinite type. Thus, it suffices to show that Ker(f) is finite
and Coker(f̄) is of finite exponent. Let L/K be finite Galois extension such that X(L) is
not empty. Let P ∈ X(L). Then P defines a K-morphism g : Z := SpecL → X and the
morphism can extend to a C-morphsim g : Z := SpecOL −→ X since π is proper. Consider
the composition⊕

v

Br(Kh
v )

f−→
⊕
v

Br(XKh
v
)/Br(XOh

v
) −→

⊕
v

Br(ZKh
v
)/Br(ZOh

v
).

Obviously, Ker(f) is a subgroup of the kernel of the composition. We want to show that
the kernel of the composition is killed by [L : K]. Then, it will imply that Ker(f) is
killed by [L : K]. The natural map Z −→ C is finite flat of degree [L : K]. Its base
change ZKh

v
−→ SpecKh

v is also finite flat of degree [L : K]. They induce restriction map
resv : Br(Kh

v )→ Br(ZKh
v
) and corestiction map coresv : Br(ZKh

v
)→ Br(Kh

v ). By Proposition
2.2.12, Br(Oh

v ) = 0 for all v ∈ C◦. The composition map above can be identified with the
restriction map ⊕

v

Br(Kh
v )/Br(Oh

v )
⊕vresv−→

⊕
v

Br(ZKh
v
)/Br(ZOh

v
).
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Since the composition (⊕vcoresv) ◦ (⊕vresv) is equal to the multiplication by [L : K], thus,
the kernel of ⊕vresv is killed by [L : K]. This proves that Ker(f) is killed by [L : K]. By
functoriality, the same argument can imply that Ker(f̄) is also killed by [L : K]. To show
that Ker(f) is finite, it suffices to show that for all but finitely many v ∈ C◦, the map

Br(Kh
v ) −→ Br(XKh

v
)/Br(XOh

v
)

is injective. If X(Kh
v ) is not empty, the restiction-corestriction argument above will imply

that the kernel is killed by 1 and therefore is trivial. Thus, it remains to show that X(Kh
v )

is not empty for all but finitely many v. Note that if XOh
v
−→ SpecOh

v is smooth and the
special fiber over v admits a rational point, by hensel’s lemma, XOh

v
admits a section. This

will imply that X(Kh
v ) is not empty. Thus, it suffices to show that for all but finitely many

v, the special fiber over v is smooth and has a rational point. For the proof of this, we refer
it to [52, Lem. 2.1].

Remark 4.2.6. In fact, the above proof shows that the kernel is killed by [L : K] and
Br(X ) ∩ Br(K) is killed by 2[L : K] for any finite extension L/K such that X(L) ̸= ∅.

Theorem 4.2.7. Let π : X −→ C be a proper flat morphism, where C is Spec(OK) for some
number field K. Assume that X is regular and the generic fiber X of π is projective and
geometrically connected over K. Let ℓ be a prime number. Then there are exact sequences
up to finite groups

0 −→X(Pic0X/K) −→ Br(X ) −→ Br(XK)GK

and
0 −→X(Pic0X/K)[ℓ∞] −→ Br(X )[ℓ∞] −→ Br(XK)GK [ℓ∞] −→ 0.

Proof. By the Hochschild-Serre spectral sequence

Ep,q
2 = Hp(K,Hq(XK ,Gm))⇒ Hp+q(X,Gm)

and the fact H3(K,Gm) = 0 (cf. [37, Prop. 2.7]), we get a long exact sequence

Br(K) −→ Ker(Br(X) −→ Br(XK)GK ) −→ H1(K,PicX/K) −→ 0.

It gives an injective natural map

H1(K,PicX/K) −→ Br(X)/Br(K).

Similarly, we get
H1(Kh

v ,PicX/K) −→ Br(XKh
v
)/Br(Kh

v ).

Consider the following commutative diagram with exact rows

0 // H1(K,PicX/K) //

��

Br(X)/Br(K) b //

��

Br(XK)GK

��∏
v H1(Kh

v ,PicX/K)
a //

∏
v Br(XKh

v
)/(Br(XOh

v
) + Br(Kh

v )) //
∏

v Br(XK)Gv/Br(XOh
v
)
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where Gv denotes Gal(K/Kh
v ). The above diagram gives the following commutative diagram

0 // H1(K,PicX/K) //

f��
Br(X)/Br(K) //

g��
Im(b)

h��
0 //

∏
v H

1(Kh
v ,PicX/K)/Ker(a) //

∏
v Br(XKh

v
)/(Br(XOh

v
) + Br(Kh

v )) //
∏

v Br(XK̄)Gv/Br(XOh
v
)

By the Snake Lemma, we get a long exact sequence

0 −→ Ker(f) −→ Ker(g) −→ Ker(h) −→ Coker(f).

By Lemma 4.2.5, the natural map

Br(X ) −→ Ker(g)

has a finite kernel and a finite cokernel. Thus, to prove the theorem, it suffices to show that
the natural maps

X(Pic0X/K) −→ Ker(f)

and
Ker(h)[ℓ∞] −→ Br(XK̄)GK [ℓ∞]

have finite kernels and cokernels and the natural map

Ker(h) −→ Coker(f)

has a finite image. By Lemma 4.2.9 below, Ker(a) is of finite exponent. Since there is an
exact sequence

0 −→X(PicX/K) −→ Ker(f) −→ Ker(a),

and Ker(f) is of cofinite type ( this follows from that Ker(g) is of cofinite type since Br(X )
is of cofinite type ), we have that the injective map

X(PicX/K) −→ Ker(f)

has a finite cokernel. By Lemma 4.2.2, the natural map

X(Pic0X/K) −→X(PicX/K)

has a finite kernel and finite cokernel. Thus, the map

X(Pic0X/K) −→ Ker(f)

also has a finite kernel and finite cokernel. Since Im(b) is of cofinite type and by Proposition
4.1.1, the target of h is a product of finite groups, thus h will map the maximal divisible
subgroup of Im(b) to zero. Thus, the divisible part of Im(b) is contained in Ker(h). By
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Theorem 2.4.2, Im(b) has a finite index in Br(XK)GK . Thus, they have the same maximal
divisible subgroup. So we have

Ker(h)div = (Br(XK)GK )div.

It follows that the inclusion

Ker(h)[ℓ∞] ↪→ Br(XK)GK [ℓ∞]

has a finite cokernel for any prime ℓ. It remains to be shown that the natural map

Ker(h) −→ Coker(f)

has an image of finite exponent. To prove this, we will use Colliot-Thélène and Skoroboga-
tov’s pull-back trick. The idea is that finding finitely many πi : Zi −→ C of relative dimenion
1 which satisfies the same condition as π and admits a C-morphism Zi −→ X , then use the
functoriality of the map Ker(h) −→ Coker(f) to get a commutative diagram

Ker(h) //

��

Coker(f)

��⊕
i Ker(hi) //

⊕
i Coker(fi)

Since Ker(hi) = 0 ( Br(ZK)GK = 0 ), to prove the claim, it is enough to find Zi such that
the second column has a kernel of finite exponent. Since Ker(ai) is of finite exponent, by the
Snake Lemma, it suffices to to find Zi such that the natural map

Coker(H1(K,PicX/K)→
∏

v H
1(Kh

v ,PicX/K))→
⊕

i Coker(H1(K,PicZi/K)→
∏

v H
1(Kh

v ,PicZi/K))

has a kernel of finite exponent. By Lemma 4.2.10 below, there exist smooth projetive geo-
metrically connected curves Zi ⊂ X satisfying the above condition. To get Zi, we can take
the Zariski closure of Zi in X first and then desingularize it. This completes the proof of the
theorem.

Remark 4.2.8. The above proof actually shows the cokernel of Br(X ) −→ Ker(h) has a
cokernel of finite exponent. Since Im(b) has a finite index in Br(XK)GK , thus the natural
map

Br(XK)GK/Br(X ) −→
∏
v

Br(XK)Gv/Br(XOh
v
)

has a finite kernel. To finish the proof of Theorem 1.4.5, it suffices to show that

(Br(XK)Gv/Br(XOh
v
))[ℓ∞] = 0

for all v when ℓ≫ 0.
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Lemma 4.2.9. Let a denote the map∏
v

H1(Kh
v ,PicX/K) −→

∏
v

Br(XKh
v
)/(Br(XOh

v
) + Br(Kh

v )),

then ker(a) is of finite exponent.

Proof. By Lemma 2.4.1, there exist smooth projective geometrically connected curves Zi ⊂
X over K and an abelian variety A/K with a morphism A −→ ⊕iPic0Zi/K

such that the
induced GK-equivariant map

Pic(XK)× A(K) −→
⊕
i

Pic(Zi,K)

has a kernel and a cokernel killed by some positive integer N . Taking the Zariski closure of Zi

in X and then desingularizing it, we get a C-morphism Zi −→ X . This gives a commutative
diagram

H1(Kh
v ,PicX/K)

av //

��

Br(XKh
v
)/(Br(XOh

v
) + Br(Kh

v ))

��⊕
i H

1(Kh
v ,PicZi/K) //

⊕
v Br(Zi,Kh

v
)/(Br(Zi,Oh

v
) + Br(Kh

v ))

Since Br(Zi,Oh
v
) = 0 (cf. [37, Lem. 2.6]), by definition, the second row is injective. It follows

that ker(av) is contained in the kernel of the first column, which is a subgroup of the kernel
of the map

H1(Kh
v ,PicX/K)⊕H1(K,A) −→

⊕
i

H1(Kh
v ,PicZi/K).

By the long exact sequence of Galois cohomology, it is easy to see the kernel of this map is
killed by N2. This proves N2Ker(a) = 0.

Lemma 4.2.10. Let X be a smooth projective geometrically connected variety over a number
field K. Then, there exist smooth projetive geometrically connected curves Zi ⊂ X such that
the induced map

Coker(H1(K,PicX/K)→
∏

v H
1(Kh

v ,PicX/K))→
⊕

i Coker(H1(K,PicZi/K)→
∏

v H
1(Kh

v ,PicZi/K))

has a kernel of finite exponent.

Proof. We will use the same argument as in the proof of the above lemma. Let Zi and A as
in the above lemma. So we have a GK-equivariant map

Pic(XK)× A(K) −→
⊕
i

Pic(Zi,K)

with a kernel and a cokernel killed by some positive integer N . If we think

Coker(H1(K,−) −→
∏
v

H1(Kh
v ,−))
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as a functor, obviously, it commutes with direct sum. Thus, it suffices to show that for any
morphism of GK-modules P1 −→ P2 with a kernel and cokernel killed by N , the induced
map

Coker(H1(K,P1)→
∏
v

H1(Kh
v , P1))→ Coker(H1(K,P2)→

∏
v

H1(Kh
v , P2))

has a kernel of finite exponent. Consider the following commutative diagram

H1(K,P1)
a //

f
��

H1(K,P2)

g

��

// Coker(a) //

ḡ

��

0

Ker(b) //
∏

v H
1(Kh

v , P1)
b //

∏
v H

1(Kh
v , P2) // Coker(b)

By the assumption, we have that Ker(b) and Coker(a) are killed by N2. By the Snake
Lemma, there is an exact sequence

Ker(ḡ) −→ Coker(f)/Ker(b) −→ Coker(g).

It follows that the kernel of Coker(f) −→ Coker(g) has a kernel killed by N4.

Completion of the proof of Theorem 1.4.5

By Remark 4.2.4, we can replace the henselain local ring by the completed local ring in the
proof of the above theorem. If we exclude finitely many places, the map XOv −→ Spec(Ov)
will be a smooth projective morphism. By the pull-back trick, one can show that

Br(XOv) −→ Br(XOsh
v

)Gk(v)

has a cokernel killed by some positive integer independent of v( cf. the proof of Proposition
4.1.18). In conjunction with Proposition 4.1.4, this will imply that for all but finitely many
v, the natural map

Br(XOv)(non-pv) −→ Br(XKv
)GKv (non-pv)

has a cokernel killed by some positive integer independent of v. Thus, to prove Theorem
1.4.5, by Remark 4.2.8, it suffices to show that the natural map

Br(XOv)(pv) −→ Br(XKv
)GKv (pv)

is surjective for all but finitely many v, where pv is the characteristic of the residue field at
v. We will prove this in the Corollary 4.2.12 below.
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Proposition 4.2.11. Let K/Qp be an unramified finite extension and π : X −→ Spec(OK)
be a smooth projective morphism with generic fiber X. Assuming p ≥ 5, then the natural
map

H2
fppf(X , µpn) −→ H2(XK , µpn)GK

is surjective for any n ≥ 1

Proof. Let Xn denote the OK/p
n-scheme X ⊗Z Z/pn. Fontaine and Messing [20, III. 3.1]

defined a sheaf Sn(r) on the small syntomic site (Xn)syn of Xn. Following definitions and
notations in [16, §2.1], for 0 ≤ r ≤ p− 1, define

Sn(r) := Ker(J [r]
n

1−φr−→ Ocr
n ).

In fact, there is an exact sequence of sheaves on (Xn)syn

0 −→ Sn(r) −→ J [r]
n

1−φr−→ Ocr
n −→ 0.

For our purpose, we only consider the case with r = 1. The syntomic cohomology

H i((Xn)syn,Sn(1))

computes the flat cohomology H i
fppf(X , µpn) (cf. [32] and [49, §1.4 and §4.5]) and the natural

map
H i

fppf(X , µpn) −→ H i(X,µpn)

is compatible with the Fontaine-Messing map

H i((Xn)syn,Sn(1)) −→ H i(X,µpn).

Thus, it suffices to show that the following map induced by the Fontaine-Messing map

H2((Xn)syn,Sn(1)) −→ H2(XK , µpn)GK

is surjective for any n ≥ 1.
Let Y denote the special fiber X1. Following notations in [42, III. 4.10], denote

M2
n := H2((Xn)syn,Ocr

n ) = H2((Y/Wn)cris,OY/Wn) = H2
dR(Xn/Wn),

F rM2
n := H2((Xn)syn,J [r]

n ) = H2((Xn)Zar, σ≥rΩ
•
Xn/Wn

), T 2
n := H2(XK ,Z/p

nZ).

By [20, II. 2.7], (M2
n, F

rM2
n, φr) defined an object of MF

[0,2]
W,tors ⊆ MF

[0,p−1[
W,tors (cf. [42, III.

Prop. 4.11] or [5, Thm. 3.2.3] ). For 0 ≤ r < p− 1, by [42, III. 4.8], the functor T (cf. [42,
III. 4.6] for the definition) induces an isomorphism

αr,M2
n

: (F rM2
n)φr=1 −→ (T 2

n(r))GK .
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By the exact sequence of sheaves on (Xn)syn

0 −→ Sn(1) −→ J [1]
n

1−φ1−→ Ocr
n −→ 0,

taking cohomology, we get a long exact sequence

H2((Xn)syn,Sn(1)) −→ H2((Xn)syn,J [1]
n )

1−φ1−→ H2((Xn)syn,Ocr
n )

−→ H3((Xn)syn,Sn(1)).

Thus, there is a surjective natural map

H2((Xn)syn,Sn(1)) −→ H2((Xn)syn,J [1]
n )φ1=1.

By [42, III. Thm. 5.2], there is a commutative diagram

H2((Xn)syn,Sn(1)) //

ν

��

H2((Xn)syn,J [1]
n )φ1=1

α
1,M2

n

��
H2(X,Z/pnZ(1)) // H2(XK ,Z/pnZ(1))GK

where ν denotes the Fontaine-Messing map. Since the first row is surjective and α1,M2
n

is an
isomorphism, it follows that the natural map

H2((Xn)syn,Sn(1)) −→ H2(XK , µpn)GK

is surjective. This completes the proof.

Corollary 4.2.12. Let π : X −→ Spec(OK) be a proper flat morphism, where K is a number
field. Assume that X is regular and the generic fiber X of π is projective and geometrically
connected over K. For any finite place v, let pv denote the characteristic of the residue field
of OK at v. Then, for all but finitely many places v, the natural map

Br(XOv)[p∞v ]) −→ Br(XKv
)GKv [p∞v ]

is surjective.

Proof. K/Q only ramifies at finitely many places. Thus, by the proposition above, for all
but finitely many v, the natural map

H2
fppf(XOv , µpnv ) −→ H2(XKv

, µpnv )GKv

is surjective for any n ≥ 1. By Proposition 2.5.2, for all but finitely many v, the natural
map

H2(XKv
, µpnv )GKv −→ Br(XKv

)GKv [pnv ]
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is surjective for any n ≥ 1. By the following commutative diagram

H2
fppf(XOv , µpnv ) //

��

Br(XOv)[pnv ]

��
H2(XKv

, µpnv )GKv // Br(XKv
)GKv [pnv ],

for all but finitely many v, the natural map

Br(XOv)[pnv ] −→ Br(XKv
)GKv [pnv ]

is surjective for any n ≥ 1.

Remark 4.2.13. By [48, Thm. 1.10], the corollary implies that for all but finitely many
places v, the pv-primary part of the kernel of the natural map induced by the Brauer-Manin
pairing

Hom(Br(XKv)/Br(K) + Br(XOv),Q/Z) −→ AlbX(Kv)

is trivial.

4.3 Applications

Reduction of Artin’s question

Lemma 4.3.1. Assuming that Br(XK)GK is finite for all smooth projective geometrically
connected surfaces over a number field K, then Br(XK)GK is finite for all smooth projective
geometrically connected varieties over K.

Proof. Let X be a smooth projective geometrically connected variety over a number field K.
Assuming that dim(X) > 2, by a theorem of Ambrosi [1, Cor. 1.6.2.1], there exists a smooth
projective geometrically connected hyperplane section D of X such that the induced map

NS(X)⊗Z Q −→ NS(D)⊗Z Q

is an isomorphism. By Proposition 2.5.2, for any prime ℓ, there is a commutative diagram
with exact rows

0 // NS(X)⊗Z Qℓ
//

��

H2(XK ,Qℓ(1))GK //

��

VℓBr(XK)GK //

��

0

0 // NS(D)⊗Z Qℓ
// H2(DK ,Qℓ(1))GK // VℓBr(DK)GK // 0
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Since the first column is an isomorphism and the second column is injective ( the weak
Lefschetz theorem), by the Snake Lemma, the third column is injective. This implies that
for any ℓ, the ℓ-primary part of the kernel of the map

Br(XK)GK −→ Br(DK)GK

is finite. Since NS(X) and NS(D) are finite groups, thus for sufficiently large ℓ, the induced
map

NS(X)⊗Z Qℓ/Zℓ −→ NS(X)⊗Z Qℓ/Zℓ

is an isomorphism. By the weak Lefschetz theorem for torsion locally constant sheaves, the
induced map

H2(XK ,Qℓ/Zℓ(1)) −→ H2(DK ,Qℓ/Zℓ(1))

is injective. By Proposition 2.5.2, we have a similar diagram as before for torsion coefficients
when ℓ is sufficently large. Thus, natural map

Br(XK)GK [ℓ∞] −→ Br(DK)GK [ℓ∞]

is injective for all but finitely many ℓ. This proves that the kernel of

Br(XK)GK −→ Br(DK)GK

is finite. By induction of the dimension of X, the claim follows.

Theorem 4.3.2. Assuming that Br(XK̄)GK is finite for all smooth projective surfaces and
X(Pic0X/K) is finite for all smooth projective geometrically connected curves, then Br(X ) is
finite for all regular proper flat schemes X over Z.

Proof. Let X be a smooth proper geometrically connected variety over a number field K.
By resolution of singularity in charateristic 0, there is a smooth projective variety X ′ and a
birational morphism X ′ −→ X. Since Brauer group is a birational inviants and Pic0X/K and

Pic0X′/K are isogenous to each other, we may assume that X is projective. If dim(X) ≥ 2,
by Lemma 2.3.5, there is a smooth projective geometrically connected curve Y ⊂ X and an
abelian variety A/K such that Pic0X/K × A is isogenous to Pic0C/K . Thus, the finiteness of

X(Pic0X/K) can be reduced to curves. By the above lemma, the finiteness of Br(XK)GK can

be reduced to surfaces. Let X denote the generic fiber of X . By the assumption, X(Pic0X/K)

and Br(XK)GK are finite. By Theorem 1.4.5, Br(X ) is finite.

Proof of Theorem 1.5.6

Proof. By the theorem above, it suffices to show that Br(XK)GK and X(Pic0X/K) are finite
for all smooth projective geometrically connected surfaces over a number field K under the
assumption. By de Jong’s theorem [13, Cor. 5.1], there is an alteration X ′ −→ X such that
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X ′ admits a flat proper regular integral model over the ring of integers of a number field. By
extending K, we may assume that X ′ is smooth and geometrically connected over K. Then
we have that Pic0X/K −→ Pic0X′/K has a finite kernel since H1(XK ,Qℓ) −→ H1(X ′

K
,Qℓ) is

injective. Thus, the finiteness of X(Pic0X′/K) can imply the finiteness of X(Pic0X/K). Since
K(X ′

K
) is a finite extension over K(XK), by the restriction-corestriction argument, the

induced map Br(K(XK)) −→ Br(K(X ′
K

)) has a kernel of finite exponent. It follows that

Br(XK)GK −→ Br(X ′
K

)GK

has a finite kernel. By the assumption and Theorem 1.4.5, Br(X ′
K

)GK and X(Pic0X′/K) are

finite. Thus, Br(XK)GK and X(Pic0X/K) are also finite. This completes the proof.

Examples

Proposition 4.3.3. Let X be a principal homogeneous space of an abelian variety over a
number field K. Assuming that X/K admits a proper regular model π : X −→ C as in
Theorem 1.4.5, then there is an isomorphism up to finite groups

X(Pic0X/K) ∼= Br(X ).

Proof. By [54, Thm. 1.1], Br(XKs)GK is finite. Then the claim follows directly from Theorem
1.4.5.

Proposition 4.3.4. (Tankeev) Let π : X −→ C a proper flat morphism as in Theorem
1.4.5. Assuming that the generic fiber X is a K3 surface, then Br(X ) is finite.

Proof. Since H1(X,OX) = 0, we have Pic0X/K = 0. By [54, Thm. 1.2], Br(XK)GK is finite.
Then the claim follows directly from Theorem 1.4.5.
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[42] J. Nekovář, Syntomic cohomology and p-adic regulators, preprint (1998).
https://webusers.imj-prg.fr/ jan.nekovar/pu/syn.pdf
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