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ORIGINAL ARTICLE

Pharmacodynamic genome-wide association study identifies
new responsive loci for glucocorticoid intervention in asthma
Y Wang1,7, C Tong1,7, Z Wang1, Z Wang2, D Mauger1, KG Tantisira3, E Israel3, SJ Szefler4, VM Chinchilli1, HA Boushey5, SC Lazarus5,
RF Lemanske6 and R Wu1

Asthma is a chronic lung disease that has a high prevalence. The therapeutic intervention of this disease can be made more
effective if genetic variability in patients’ response to medications is implemented. However, a clear picture of the genetic
architecture of asthma intervention response remains elusive. We conducted a genome-wide association study (GWAS) to identify
drug response-associated genes for asthma, in which 909 622 SNPs were genotyped for 120 randomized participants who inhaled
multiple doses of glucocorticoids. By integrating pharmacodynamic properties of drug reactions, we implemented a mechanistic
model to analyze the GWAS data, enhancing the scope of inference about the genetic architecture of asthma intervention. Our
pharmacodynamic model observed associations of genome-wide significance between dose-dependent response to inhaled
glucocorticoids (measured as %FEV1) and five loci (P= 5.315 × 10− 7 to 3.924 × 10− 9), many of which map to metabolic genes
related to lung function and asthma risk. All significant SNPs detected indicate a recessive effect, at which the homozygotes for the
mutant alleles drive variability in %FEV1. Significant associations were well replicated in three additional independent GWAS
studies. Pooled together over these three trials, two SNPs, chr6 rs6924808 and chr11 rs1353649, display an increased significance
level (P= 6.661 × 10− 16 and 5.670 × 10− 11). Our study reveals a general picture of pharmacogenomic control for asthma
intervention. The results obtained help to tailor an optimal dose for individual patients to treat asthma based on their genetic
makeup.

The Pharmacogenomics Journal advance online publication, 20 January 2015; doi:10.1038/tpj.2014.83

INTRODUCTION
Asthma is a chronic lung disease characterized by recurring periods
of wheezing, chest tightness, shortness of breath and coughing
mediated through airway inflammation.1 Given its substantial
societal cost,2 the discovery of any therapeutic intervention to treat
this disease, especially severe asthma, has been a long-standing
public health concern.3,4 Recent developments in molecular genetics
provide an unprecedented opportunity to understand the genetic
causes of asthma and identify targets that can be used to control
the syndrome.4,5 More importantly, a systematic, large-scale survey
of associations between common DNA sequence variants and
disease has succeeded in identifying a set of specific genes that
influence asthma.6–8 These asthma-associated genetic variants
identified, distributed on various chromosomes, are found to affect
this lung disease through altering key biochemical pathways that
are related to lung function.9,10

Although there is no doubt that the identification of genes for
disease risk facilitates the development of effective medications
for its treatment,11 the efficient application of such medications
will rely on our knowledge about pharmacogenomic effects on
drug disposition, drug metabolism and drug response, given the
fact that inter-individual variation exists in response to a particular
drug.12,13 However, until recently, most pharmacogenomic studies
have been carried out using candidate gene approaches. Specific

genes that encode enzymes involved in drug metabolism as well
as drug targets, typically receptors or enzymes, have been
identified. A successful example of candidate gene studies is the
identification of genes that control the effect of anticoagulant
drugs, such as warfarin.14 Some pharmacogenomic studies have
also identified genes responsible for adverse drug reactions,12

including those that encode metabolic enzymes and those that
are related to the immune system and mitochondrial functions. In
a recent review, Tse et al.15 described candidate genes and
pathways detected thus far to control variability in response to
three classes of asthma medications, β-adrenergic receptor
agonists, inhaled corticosteroids and leukotriene modifiers.
Since 2007, genome-wide association studies (GWAS) have

increasingly emerged as a powerful tool for pharmacogenomic
studies. Significant associations through GWAS have been
detected for the response to interferon-α,16–18 clopidogrel19 and
warfarin,20–22 as well as for adverse drug reactions related to
statin-induced myopathy23 and flucloxacillin-induced liver injury.24

All these studies may help shed light on the genetic control
mechanisms of drug response and their clinical implications.
Unlike a case in mapping complex diseases, GWAS of drug

response is often characterized by a small size of samples12 so that
there may be insufficient power to detect small or moderate size
effects. One approach to overcome this limitation is the use of
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family-based data25–29 and has recently been applied to asthma
treatment response.30 However, the vast majority of clinical trials
of drug response do not involve DNA collection in non-trial family
participants. Here, we present an alternative approach by
incorporating the pharmacodynamic principle of drug response
into a pharmacogenetic GWAS. The basic idea of such incorpora-
tion is to model drug effect-dose relationships through mathe-
matical equations based on repeated measures of drug response
at multiple dosages.30 By estimating and testing those mathema-
tical parameters that define the effect-dose curves, one can
determine how a specific gene affects drug effects at each dose or
across a range of doses. Because of its statistical parsimony, that is,
the number of curve parameters is always less than the number of
doses,31–34 the incorporation of mathematical equations can
potentially increase the power of detecting significant associa-
tions, compared with traditional GWAS analysis based on a simple
phenotype-genotype relationship. Although the theory of this
incorporation has well been established in the previous
studies,30–34 here we have for the first time reported a systematic
implication of this theory for practical pharmacogenetic studies in
asthma intervention.
The pharmacodynamic approach was applied to analyze a

pharmacological GWAS trial derived from SNP Health Association
Asthma Resource projects (SHARP),35–37 leading to the identifica-
tion of five significant SNPs responsible for pulmonary response
after asthma treatment. Associations between these SNPs and the
same phenotype were well confirmed by analyzing three
additional GWAS. To investigate how small sample sizes,
characteristic of pharmacogenomics studies, impact on the
estimation of genetic effects and the power of gene detection,
we performed computer simulation by mimicking the data
structure of SHARP. We found that the implementation and use
of a pharmacodynamic model can overcome, to some extent, the
limitation of small sample sizes in pharmacological GWAS.

MATERIALS AND METHODS
Statistical design
Consider a clinical trial composed of n participants used for a
pharmacological GWAS, in which each of the participants is genotyped
for SNPs throughout the entire genome. These participants receive the
administration of a drug under a multitude of doses, at each of which a
pharmacological parameter that reflects drug effect is measured. Under
this design, each participant (say i) has a series of dose-dependent
pharmacological phenotypic data, expressed as yi= (yi(Cil), …, yi(CiMi )),
where (Ci1,…, CiMi ) are Mi doses of administration participant i receives. We
allow different participants to possibly receive different number of doses in
the clinical trial.
It is likely that drug response as a complex trait is controlled by many

genes, each with a different effect. The GWAS is motivated to identify all
possible genes and estimate each gene’s effects on drug response.
Assuming that there is such a gene with three genotypes and, also,
considering the influence on drug response by other covariates, such as
race, sex, life style and age, the phenotypic value of participant i at dose m
can be described by a regression model, expressed as,

yi Cimð Þ ¼
X3
j¼1

zijgj Cimð Þ þ
XK
k¼1

αkμik þ
XL
l¼1

XSl
s¼1

xilsvls þ ei Cimð Þ ð1Þ

where gj(Cim) is the genotypic value of participant i who carries SNP
genotype j at dose Cim; zij is an indicator variable of participant i defined as
1 if this participant carries a genotype considered and 0 otherwise; uik is
the value of the kth (k=1, …, K) continuous covariate for participant i; αk is
the effect of the kth continuous covariate; vls is the effect of the lth (l= 1,
…, L) discrete covariate at its sth (s=1, …, Sl) level; xils is the indicator
variable that describes the sth level of the lth discrete covariate for
participant i and ei(Ciτ) is a random error.
We implement a maximum likelihood approach to estimate the

parameters involved in model (1). The likelihood of all participants is

constructed as:

L ¼
X3
j¼1

Xnj
i¼1

f j yið Þ ð2Þ

where nj is the number of participants with genotype j; and fj(yi) is
assumed to follow a multivariate normal distribution with mean vector for
genotype j as:

μj9i ¼ gj Ci1ð Þ þ
XK
k¼1

αkμik þ
XL
l¼1

Xsl
s¼1

xilsvls; :::; gj CiMið Þ þ
XK
k¼1

αkvik þ
XL
l¼1

Xsl
s¼1

xilsbls

 !

ð3Þ
and covariance matrix

X
i
¼

σ2
1 ¼ σ1Mi

^ ^
σMi1 � � � σ2

Mi

0
@

1
A ð4Þ

We incorporated the pharmacodynamic model to estimate the
genotypic values of a particular genotype j at different dosages,30

as shown in (equation 2). Emax equation38 that specifies drug
effect E at a particular dose C is thought to be one of the most
pharmacodynamics models, expressed as:

E Cð Þ ¼ E0 þ EmaxCH

EC50
H þ CH ð5Þ

where E0 is the baseline, Emax is the asymptotic (limiting) effect, EC50
is the drug concentration that results in 50% of the maximal effect,
and H is the slope parameter that determines the slope of the
concentration-response curve. The larger H, the steeper the linear
phase of the log-concentration effect curve. The phenotypic
longitudinal data were normalized to remove the baseline so that
drug effect at different levels of dosage is defined by three
parameters. By estimating these parameters for different SNP
genotypes, we could draw the curves of drug response for each
genotype and test how different genotypes vary in the form of curve.
We used the Emax (equation 5) to model dose-dependent genotypic

values for each SNP genotype j by pharmacological parameters (Emaxj,
EC50j, Hj). In addition, considering the autocorrelation feature of the
random error, we used the autoregressive regression model to estimate
the across-dose covariance structure. Other approaches for modeling
covariance structure are available in the literature,39–42 allowing a choice of
the best fit model for a practical data set.

Hypothesis tests
Whether a particular gene affects drug response can be tested by a log-
likelihood ratio approach. This can be done on the basis of two alternative
hypotheses:

H0: Emaxj; EC50j ;Hj
� �� Emaxj; EC50j ;Hj

� �
: ð6Þ

H1: at least one of the equalities above does not hold
Under each hypothesis, we calculate the likelihood and further calculate

their ratio. This ratio is thought of being χ2 distributed with six degrees of
freedom.
After a gene is confirmed to be significant among its three genotypes,

we will further test how this gene acts to affect drug response. The action
of a gene can be additive, dominant or recessive. Wu et al.30 provided a
general procedure to test the mode of action under a pharmcodynamic
model. A SNP is first analyzed by a genotypic model, that is, testing
differences among three genotypes based on hypothesis test (6), followed
by the additive and dominant/recessive tests. We used model selection
criteria, such as BIC, to choose an optimal model.

Samples
The research with human participants has been approved by Penn State
College of Medicine's Review Board. Table 1 summarizes key population
characteristics of several trials used for GWAS analysis. In the dose of
inhaled corticosteroids with equisystemic effects (DICE) trial,35 120
randomized participants (post-pubertal to 60 years of age) were recruited
with mild-to-moderate asthma, defined as 12% change in forced expiratory
volume in 1 s (FEV1) or ⩽ 8mgml− 1 methacholine provocative concentra-
tion causing a 20% drop in FEV1 (PC20) and baseline FEV1 65–90% of
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predicted. During enrollment, AM (before 0930 hours) plasma cortisol
concentration of ⩾ 5mcg dl− 1 need to be attained. After a 1-week run-in
period, participants were randomized to one of six active inhaled
corticosteroid (ICS) delivery systems (or the corresponding placebo). After
each week of treatment, participants remained at the study center for an
overnight stay and then received a medication supply with a doubled dose
for the subsequent week. This process continues until there are a total of
four dosages. At each of the dosages, participants were measured for the
percent predicted value of the pre-bronchodilator forced expiratory
volume in 1s (%FEV1).
The IMPACT trial35 includes 225 adult asthma participants (in age 18–65

years with mild, persistent asthma) with FEV1 ⩾ 70% of predicted,
displaying either ⩾ 12% or 4200ml improvement following albuterol
inhalation or bronchial hyper-reactivity (methacholine PC20o16mgml− 1).
All participants were instructed to take open-label budesonide or
prednisone as guided by the symptom-based action plan. The run-in
and treatment phases both ended with a 14-day period of intense
combined therapy. Salmeterol off corticosteroids (SOCS)36 and salme-
terol ± inhaled corticosteroids (SLIC) trials37 include 79 and 106 asthma
participants, respectively, which were conducted in tandem with a
common 6-week run-in period on inhaled corticosteroid therapy
(Table 1). At the end of the run-in period, the milder patients were
allocated to SOCS (FEV1480% predicted, PEF variability≈20%) and the
more moderate patients allocated to SLIC. The %FEV1 was measured for
the three trials above.
In four trials, DICE, IMPACT, SOCS and SLIC, subjects were genotyped for

909 622 SNPs throughout the entire genome. Genotyping was performed
on Affymetrix 6.0 arrays. SNP genotypes were obtained after stringent
quality-control filters.

RESULTS
Gene detection
We used the pharmacodynamic model to identify genes for drug
response (%FEV1) to inhaled corticosteroids for asthma treatment
by jointing estimating the effect due to covariates, age, BMI, race,
gender and drug type. Dose levels of drugs were normalized to a
range from 0 to 1. We implemented four genetic models to study
the patterns of pharmacological inheritance: (1) genotypic model
detecting the overall effect due to differences among three
SNP genotypes, (2) additive model detecting the effect due to the
substitution of the wild-type allele (common) by the mutant
(minor), (3) dominant model in which the mutant allele is
dominant over the wild-type allele and (4) recessive model in
which the expression of the mutant is masked by the wild-type
allele. We excluded those SNPs from our GWAS analysis with
minor allele frequencyo0.3; this threshold is larger than usual,
aimed to assure sufficient samples for each genotype group given
our modest sample size. To the end, a total of 266 944 SNPs were
involved in the analysis.
The four genetic models were each used to scan SNPs throughout

the entire genome for the DICE trial. After the Bonferroni correction,

five significant SNPs were detected by the genotypic (Supple-
mentary Figure 1A) and recessive model (Supplementary Figure 1D).
The additive and dominant models did not identify significant
associations (Supplementary Figure 1B and 1C). Two SNPs on
chromosomes 8 and 11 were detected by both genotypic and
recessive models, but, according to BIC values calculated, both SNPs
conform to the recessive model better than the genotypic model.
The following loci produce associations of genome-wide significance
with physiological response to glucocorticoid therapy for asthma
(Table 2); rs6924808 on chromosome 6 with wild-type allele C and
mutant T (P=5.315×10−7), rs10481450 on chromosome 8 with
wild-type allele A and mutant T (P=2.614×10−8), rs1353649 on
chromosome 11 with wild-type allele G and mutant A
(P=3.924×10−9), rs12438740 on chromosome 15 with wild-type
allele C and mutant T (P=4.499×10−8), and rs2230155 on
chromosome 15 with wild-type allele C and mutant T
(P=1.798×10−7). To evaluate the influence of population stratifica-
tion, we calculated the ratio of the median of the log-likelihood
ratios among all SNPs analyzed over the critical value of the χ2

distribution at the 0.05 significance level. If this ratio is near, or
slightly less than, 1.0, this indicates that the effect due to population
stratification is ignorable.43 The ratios calculated are 0.82–0.88 for
the genotypic, additive and dominant models used, suggesting that
our results are not largely affected by population structure.

Table 1. Population characteristics of the longitudinal DICE trial and other three independent trials

Characteristic DICE IMPACT SOCS SLIC SOCS/SLIC

No. of subjects 120 251 79 106 31
Inhaled glucocorticoid Budesonide 1) Budesonide

2) Prednisone+
Budesonid+
Zafirlukast

Triamcinolone 1) Triamcinolone
2) Salmetrol+
Triamcinolone

Triamcinolone

Age (year) 30.6±8.1 34.2± 10.8 30.4± 10.9 35.9± 12.4 32.7± 11.4

Sex no. subject(%)
Male 51 (56.7%) 57 (39.0%) 30 (41.1%) 43 (45.3%) 11 (52.4%)
Female 39 (43.3%) 89 (61.0%) 43 (58.9%) 52 (54.7%) 10 (47.6%)

Baseline FEV1 (%) of predicted 79.0± 7.4 88.8± 13.3 85.6± 14.0 67.6± 10.9 73± 15.9
Change in FEV1 (%) 6.5± 10.3 1.3± 7.4 7.3± 11.8 4.5± 9.8 2.6± 16.6

Table 2. Power to correctly identify the pattern of pharmacological
inheritance by the pharmacodynamic model

Sample size True model Estimated model

Full Recessive Dominant Allelic

100 Full 887 106 7 0
Recessive 1 993 1 5
Dominant 0 0 954 46
Additive 4 63 69 864

200 Full 991 9 0 0
Recessive 14 986 0 0
Dominant 5 0 983 12
Additive 9 10 18 963

400 Full 1000 0 0 0
Recessive 16 984 0 0
Dominant 8 0 990 2
Additive 2 1 1 996

The data were simulated by mimicking the DICE data structure and the
estimates obtained by BIC from 1000 simulation replicates.
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Pharmacodynamic pattern of genetic effects
The pharmacodynamic model allows the estimates of genotype-
specific curve parameters (Emax, EC50, H) that define drug response
(see Supplementary Table 1 for the maximum likelihood estimates
of the parameters and the s.d. of the estimates). Each of these
parameters differs strikingly between two groups of genotypes, the
homozygote for the mutant allele, and a mix of the homozygote for
the wild-type allele and the heterozygote for the two different
alleles, at significant SNPs. The overall influence of these parameters
on variability in glucocorticoid response curve can be seen from
response curves drawn for each genotype group (Figure 1). It can be
observed that individual SNPs fit raw longitudinal data reasonably
well and also different SNPs affect drug response in different ways.
At all significant SNPs, the wild-type allele is dominant over the

mutant for their actions in affecting glucocorticoid response, as
revealed by the recessive model (Table 2). For chr6 rs6924808, the
homozygote (CC) for the wild-type allele C and the heterozygote
(CT) for the wild-type allele and mutant T are more responsive to
changing doses of glucocorticoids than the homozygote (TT) for the
mutant (Figure 1a). At chr8 rs10481450 and chr11 rs1353649, the
homozygotes for the mutant display remarkably greater sensitivity
to drug dose than the genotypes containing the wild-type alleles
(Figures 1b and c). Chr15 rs12438740 and chr15 rs2230155 are
located closely together on the same chromosome, with a high

linkage disequilibrium (r=0.99), exhibit a similar dynamic pattern of
genetic effect (Figures 1d and e); the homozygote for the mutant do
not respond until a particular dose level is reached, whereas the
genotypes containing the wild-type allele appear to be resistant to
increasing dose. Figure 1 shows that some SNPs capture a wide
variation like rs10481450 and rs1353649, whereas the others explain
a narrow variation like rs6924808, rs12438740 and rs2230155. Some
SNPs are sensitive to a small change in low doses of drug, such as
rs6924808, and some display variation after a certain level of dose is
reached, such as rs10481450 and rs12438740. The common feature
of all the SNPs is that different groups of genotypes start to diverge
at a lower level of dose and stabilize their variation during a wide
range of dose.
In sum, the mutant allele produces a pronounced increase in

lung function after glucocorticoid treatment as compared with the
wild-type allele for all SNPs, except for chr6 rs6924808. Overall,
subjects who are homozygous for the mutant allele are 30–300%
larger for %FEV1 values at an intermediate dose of glucocorticoids
than those who are homozygous for the wile-type allele
and heterozygous for the two alleles (Figure 2; Supplementary
Table 2). The differences between these two groups of genotypes
are 30–245% of the mean of all treated subjects. There are striking
differences in the heritability of %FEV1 response to glucocorticoid
therapy explained by individual SNPs (Figure 3). Chr11 rs1353649
accounts for 19–26% of the phenotypic variation, whereas these

Figure 1. Changes in pulmonary response to varying doses of inhaled corticosteroids as defined as prebronchodilator %FEV1 for two different
groups of genotypes (i.e., the mutant homozygote, MM and a mix of the homozygote for the wild-type allele and the heterozygote for the two
different alleles, W_) at five significant SNPs, chr6 rs6924808 (a), chr8 rs10481450 (b), chr11 rs1353649 (c), chr15 rs12438740 (d) and chr15
rs2230155 (e), for the DICE trial detected by the recessive model. Blue thin lines in background are response curves of individual participants
to varying dosages. The original data were normalized by removing the baselines and plotted against relative scales of corticosteroid dosages.
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values are 8–20% for chr8 rs10481450 and chr6 rs6924808 and 2–
5% for chr15 rs12438740 and chr15 rs2230155. All SNPs display a
dynamic change of heritability over dose.

Cross validation
We performed an additional analysis to cross-validate the results
detected by randomly splitting the population into two equally sized
sub-groups. In Supplementary Table 3, we summarized the results
about the estimates of parameters from 100 resampling replicates
for each subgroup at a significant SNP rs10481450, in a comparison
with those from the whole population. The parameter estimates of
each subgroup are quite consistent, and they are consistent with
those using the whole population. Although s.e. values of the
estimates for some parameters are large due to a small sample size,
they are reasonably within the space of estimates.

Computer Simulation
The statistical properties of the pharmacodynamic model to
analyze GWAS data were investigated through computer simula-
tion. The simulation mimicked the DICE trial in terms of sample
size, dose level and demographical attributes of participants. The
phenotypic data of drug response were simulated using
parameters estimated for SNP rs10481450 detected from the
DICE trial by assuming normally distributed residuals. The data
were simulated using the genotypic, additive, dominant and
recessive models and then analyzed by each model.
The pharmacological model has good power to detect a correct

pattern of genetic action (Table 2). When a correct model was
used, genotype-specific pharmacodynamic parameters and
covariate effects can be reasonably estimated. Table 3 gives the
estimates of parameters and their sampling errors under different
sample sizes when the genotypic model is assumed. In
Supplementary Table 4, estimates of parameters by the dominant,
recessive and additive models are given. The estimates of three
pharmacological parameters, Emax, EC50 and H, each have a
reasonably small sampling error for each genotype, even
when the sample size is modest (100). The estimation precision
of these parameters increases markedly when sample size
increases to 200 or 400.
Because humans cannot be controlled, like plants or animals, it

is unavoidable to include many covariates, such as different
demographic factors, in human GWAS. These covariates would
often confound the identification of significant genes. However,
the deployment of a multiple regression model that incorporates
covariate effects can filter some of these confounders. As shown in
Table 4, the estimates of genotype-specific pharmacodynamics
parameters are not affected by covariates. Furthermore, model (1)

can provide an estimate of the effects of each covariates including
continuous and discrete. Estimates of some of the covariate
effects are not very precise under a small sample size (100), but
this situation can improve dramatically when the sample size
increases to 400.
Wu et al.30 showed that the pharmacodynamics model displays

increased power of gene detection compared to traditional GWAS

Figure 2. Changes of normalized %FEV1 mean (± s.e.) by the mutant
homozygote (MM) over a mix of the homozygote for the wild-type
allele and the heterozygote for the two different alleles (W_) at an
intermediate dose of glucocorticoids for significant SNPs, chr6
rs6924808 (a), chr8 rs10481450 (b), chr11 rs1353649 (c), chr15
rs12438740 (d), and chr15 rs2230155 (e), for the DICE trial detected
by the recessive model.

Table 3. Means of the estimates of parameters for the
pharmacodynamic approach and their s.e. values (in parentheses)
from simulated data by mimicking the DICE data structure with
different sample sizes based on 1000 simulation replicates (full
genotypic model)

Parameter True Value Sample Size

100 200 400

Emax1 9.934 10.511 (1.653) 10.465 (1.417) 10.332 (1.167)
H1 1.472 1.441 (0.589) 1.435 (0.562) 1.455 (0.517)
EC50(1) 0.069 0.094 (0.089) 0.082 (0.050) 0.076 (0.024)
Emax2 17.637 17.317 (2.539) 17.515 (2.228) 17.668 (1.884)
H2 2.509 2.864 (0.796) 2.723 (0.662) 2.618 (0.477)
E50(2) 0.551 0.544 (0.091) 0.549 (0.068) 0.552 (0.053)
Emax3 19.858 20.185 (2.422) 20.060 (2.019) 19.976 (1.567)
H3 2.2 2.580 (0.955) 2.430 (0.779) 2.340 (0.583)
EC50(3) 0.13 0.144 (0.047) 0.137 (0.028) 0.134 (0.019)
α1 − 0.075 − 0.077

(0.086)
− 0.074
(0.058)

− 0.074
(0.040)

α2 0.113 0.116 (0.109) 0.111 (0.072) 0.112 (0.050)
v11 2.135 2.178 (1.100) 2.150 (0.775) 2.117 (0.527)
v12 − 1.065 − 1.074

(1.407)
− 1.104
(0.966)

− 1.104
(0.681)

v13 − 3.553 − 3.531
(1.427)

− 3.532
(0.944)

− 3.521
(0.668)

v14 3.037 2.978 (1.641) 3.014 (1.124) 3.039 (0.822)
v21 3.855 3.943 (1.666) 3.925 (0.956) 3.872 (0.627)
v22 − 6.059 − 6.031

(2.081)
− 6.039
(1.279)

− 6.044
(0.874)

v23 4.904 5.001 (2.418) 4.943 (1.417) 4.902 (0.998)
v31 − 0.798 − 0.829

(0.699)
− 0.814
(0.464)

− 0.816
(0.322)

ρ 0.754 0.738 (0.027) 0.746 (0.020) 0.750 (0.014)
σ2 71.401 66.294 (6.071) 68.769 (4.415) 69.995 (3.103)

Note: α1 and α2 are the effects due to two continuous covariates, v1, v2 and v3
are the effects due to three discrete covariates each with a different level and ρ
and σ2 are the autoregressive parameters that model the covariance structure.

Figure 3. Dynamic changes of the heritability for %FEV1 over relative
scales of corticosteroid dosages explained by individual SNPs, chr6
rs6924808 (a), chr8 rs10481450 (b), chr11 rs1353649 (c), chr15
rs12438740 (d) and chr15 rs2230155 (e) for the DICE trial.
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analysis based on a single static phenotype. To confirm their
result, we used the simulated data above that mimics the DICE
trial to estimate the empirical power of gene detection at each of
four doses. This power was observed to be substantially lower (by
1.5–8.5 times) than the power of gene detection by the
pharmacodynamics model that makes use of data at all doses at
one time, consistent with Wu et al.’s finding.

Replication
Here, we used three other trials to validate the results. These trials
are the IMProving Asthma Control Trial (IMPACT),35 Salmeterol Off
CorticoSteroids (SOCS) trial,36 and Salmeterol ± Inhaled Corticos-
teroids (SLIC) trials.37 Because of one single dose of corticosteroid
used, we analyzed associations between %FEV1 values and five
significant SNPs detected from DICE using a univariate model
(Table 4). All the five SNPs were found to be significant in the
three trials, except for chr15 rs2230155 being non-significant for
SOCS and chr8 rs10481450 and chr11 rs1353649 being marginally
significant for IMPACT and SOCS, respectively (Table 4). Pooled
together over IMPACT, SOCS, and SLIC of a similar design, all SNPs,
except for chr15 rs2230155, display significant associations with
glucocorticoid response. Figure 4 compares the differences of %
FEV1 between two groups of genotypes, the mutant homozygote
and a mix of the homozygote for the wild-type allele and the
heterozygote for the two different alleles, at each SNP for the
pooled three trials. For chr6 rs6924808 and chr11 rs1353649, such
differences have different directions between the pooled trials
and DICE. When an optimal model, i.e., genotypic model, was

used, these two SNPs produce a very high level of significance for
associations (P= 6.661 × 10− 16 and 5.670 × 10− 11; Table 4).

DISCUSSION
The pharmacodynamic model has successfully detected five loci of
significant effects on response curves of corticosteroids for asthma
by integrating the biochemical processes of drug response into
GWAS. This integration has proven to be statistically more powerful
for gene detection than traditional approaches based on a single
dose.30 The identification of significant SNPs by our model has been
validated by resampling and simulation studies. Furthermore, these
five SNPs demonstrate good replication in three independent
clinical trial populations for the same phenotype. In general, the
mutant alleles at most SNPs tend to increase pulmonary function of
asthma participants by 30–300% after inhaled glucocorticoid
treatment relative to the wild-type alleles, although the expression
of the mutant may be masked by the wild-type allele. In another
study, Tantisira et al.29 found that the mutant homozygote at chr7
rs37972 displays 120–330% decrease of lung function through
glucocorticoid treatment compared with the wild-type homozygote.
In both studies by us and Tantisira et al., the heritabilities of
glucocorticoid response explained by individual SNPs are much
larger than those detected for disease and physiological traits.8–11

This may be due to the fact that drug response is evolutionarily a
‘young’ trait, which has not experienced yet a long history of natural
selection as the other traits have.12

High heritability detection should benefit from the statistical merit
of our pharmacodynamic model that was derived from parsimo-
nious modeling of the mean-covariance structures for longitudinal
data of drug response across a series of doses. For example, four
parameters are needed to describe drug response of a genotype at
four dose levels if traditional approaches are used, while the
pharmacodynamic model only uses three parameters to do the
same thing. Moreover, the pharmacodynamic model, such as the
Emax model36 and differential equations,44,45 contains biologically
meaningful aspects of drug response in terms of body–drug
interactions. Applied to GWAS of response to corticosteroids for
asthma intervention, this model can not only facilitate the
interpretation and elucidation of the pharmacogenomics architec-
ture of this important clinical problem, but also increase the
statistical power of significant association detection.
Except for SNP rs6924808 on chromosome 6, the other four

detected are located in the vicinity of candidate genes associated
with cellular functions. It appears that SNP rs10481450 on
chromosome 8 is related to gene TNKS, a PARP member localized
predominantly in the cytosol, that regulates cellular viability and
NAD(+) metabolism46 and gene MSRA that has a function to repair
oxidative damage to proteins to restore biological activity.47 SNP
rs1353649 on chromosome 11 is nearby many candidate genes,
such as DBX1,48 NAV2,49 HTATIP250 and PRMT3,51 some of which

Table 4. Significant SNPs detected for inhaled corticosteroid drug response to asthma treatment from the DICE trials and confirmed in three
additional trials

P-value

Model SNP Chr Position Alleles MAF DICE IMPACT SOCS SLIC Pooled

Recessive rs6924808 6 98465296 C/T 0.477 (T) 5.315 × 10− 7 5.908 × 10− 11 0.034 0.001 6.661 × 10− 16a

Recessive rs10481450 8 9835656 A/T 0.310 (T) 2.614 × 10− 8 0.072 0.057 1.154 × 10− 6 0.023
Recessive rs1353649 11 20210175 A/G 0.320 (A) 3.924 × 10− 9 0.003 0.089 0.024 5.670 × 10− 11a

Recessive rs12438740 15 57303059 C/T 0.348 (T) 4.499 × 10− 8 0.004 0.0003 2.883 × 10− 5 0.040
Recessive rs2230155 15 57297481 C/T 0.350 (T) 1.798 × 10−7 0.043 0.211 0.056 0.132

The chromosomal positions, alleles, minor allele (in parentheses) frequencies (MAF), and significance levels of these SNPs are given. aThese P-values were
obtained from an optimal model, genotypic model.

Figure 4. Changes of %FEV1 mean (± s.e.) by the mutant homo-
zygote (MM) over a mix of the homozygote for the wild-type allele
and the heterozygote for the two different alleles (W_) at an
intermediate dose of glucocorticoids for significant SNPs, chr6
rs6924808 (a), chr8 rs10481450 (b), chr11 rs1353649 (c), chr15
rs12438740 (d), and chr15 rs2230155 (e), for pooled IMPACT, SOCS
and SLIC trials detected by the recessive model. Note that %FEV1
was not normalized because these trials contain only one dose of
glucocorticoids.
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determine nicotine dependence. MYO1E is also a nicotine
dependence-related gene52 in which two associated SNPs,
rs12438740 and rs2230155, on chromosome 15 were identified.
A modest sample size used may overestimate genetic effects of

SNPs. However, our pharmacodynamic model makes use of the
longitudinal feature of phenotypic data measured repeatedly for
the same subjects, which has proven to be powerful for increasing
the precision of parameter estimation.30 Our finding here shows a
promise to utilize the genetic results obtained to predict
individual patients’ performance in asthma intervention. Recent
studies showed that asthma may be affected by DNA methylation
through regulating gene expression.53 It is straightforward to
integrate methylation variants into the model to better reveal the
genetic and epigenetic basis of asthma intervention. To the end,
by incorporating our new model with genetic and epigenetic
observations for asthma6,7 and associated alteration in lung
function by asthma,9,10 we may better determine and design the
optimal doses for individual patients,13 maximizing drug efficacy
for optimal pulmonary function response while minimizing drug
toxicity.
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