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EPIGRAPH

"If among these errors are some which appear too large to be admissible, then those equa-

tions which produced these errors will be rejected, as coming from too faulty experiments,

and the unknowns will be determined by means of the other equations, which will then give

much smaller errors."

—A.M. Legendre, On the Method of Least Squares. 1805
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ABSTRACT OF THE DISSERTATION

Robust PCA and Robust Linear Regression via Sparsity Regularization

by

Jing Liu

Doctor of Philosophy in Electrical Engineering
(Signal and Image Processing)

University of California San Diego, 2019

Professor Bhaskar D. Rao, Chair

Robustness to outliers is of paramount importance in data analytics. However, many

data analysis tools are not robust to outliers due to their criterion of minimizing the sum of

squared errors. One essential characteristic of the outliers is that they are sparse. A significant

contribution of this thesis is the development of a novel framework that directly uses genuine

`0-‘norm’ to enforce the sparseness of the outliers, while uses `1-norm to address the inlier

noise, and development of algorithms with better recovery guarantees than the state-of-the-art

`1 relaxation approach.

We first study this framework in the Robust Linear Regression setting and propose an

xv



Algorithm for Robust Outlier Support Identification (AROSI) to minimize a novel objective

function. The proposed algorithm is guaranteed to converge in a finite number of iterations to

a local optimum. Under certain conditions, AROSI is guaranteed to have exact recovery when

only sparse outliers are present. Furthermore, the estimation error is bounded when there is

dense inlier noise as well. It can also identify the outliers without any false alarm.

Then, we study this framework in the Robust Principal Component Analysis (PCA)

setting and propose a novel objective that additionally uses nuclear norm to capture the low-

rank matrix. The associated algorithm, termed Sparsity Regularized Principal Component

Pursuit (SRPCP), is shown to converge in a finite number of iterations to a local optimum.

Under certain conditions, SRPCP is guaranteed to have exact recovery in the presence of

sparse outliers only, and bounded error in the noisy case. It can also identify the outliers

without any false alarm. An important byproduct of our analysis is the result that, the widely

used Principal Component Pursuit (PCP) method and its missing entry version are actually

stable to dense inlier noise. We further propose an Iterative Reweighted SRPCP method

that uses log-determinant to capture the low-rank matrix instead, which also converges and

achieves even better performance.

To better enforce the low-rankness, we transform the Robust PCA objective into a

novel Robust Sparse Linear Regression objective with equivalent global optima guarantee.

Then we propose a concise Sparse Bayesian Learning method to solve this new objective, and

the method is shown to encourage the solution to be low-rank and the outliers to be sparse.

To further utilize the sparsity pattern information of the outliers in the Robust PCA problem,

a modification of the above Bayesian method is proposed and analyzed. Empirical studies

demonstrate the superiority of the proposed methods over existing state-of-the-art methods.

xvi



Chapter 1

Introduction

1.1 Motivation and Context

In today’s big data era, outliers are becoming more and more common in various

applications and datasets. The outliers may be caused by the less-controlled large-scale data

collection process, e.g., user rating and crowd-sourcing, or may be caused by the failure of

some cheap sensors in the large-scale sensor network, or due to some malicious tampering

of the system, etc. Robustness to outliers is of paramount importance when extracting

information or learning from big data. Unfortunately, many classical data analysis tools

are not robust to the outliers, e.g., Least Squares regression, Principal Component Analysis

(PCA), and Tensor Decomposition, to name a few. This is due to their criterion of minimizing

the sum of squared errors, which is very sensitive to large fitting residuals. Even a few outliers

can significantly degrade their performance. To illustrate this, we quote an example from a

recent survey [1] shown in Fig. 1.1.

There are different definitions of outliers. Here we focus on the case where some

measurements are corrupted, i.e., with large observation errors. Other type of the outliers

could be a sub-sequence generated by a mechanism (distribution) different from that of the

1



Figure 1.1. (a) PCA in small noise: the SVD solution works. The black line is the
estimated principal component computed using the observed data. (b) PCA in outliers:
the SVD solution fails to correctly find the direction of largest variance of the true data.

normal data, we refer the interested reader to [2] regarding this type of outliers. Robustness to

outlier corruptions is very challenging as we usually have no information about the locations

and values for them. Sometimes we are even not aware of the outliers in the system. In this

thesis, we focus our discussion on the fundamental linear regression and PCA problems, but

the framework developed is very general and can be applied to many data analysis and machine

learning problems, e.g., Tensor Decomposition, Matrix Sensing, and Deep Autoencoders.

2



1.1.1 Robust Linear Regression

In a linear regression setting, the goal is to estimate the linear relationship between

two variables: a ∈ Rn (explanatory variable) and y ∈ R (response variable), from m pairs

of training samples {(yi, ai), i = 1, . . . ,m}, where m > n. The following model is commonly

assumed:

yi = aT
i x + µi, i = 1, . . . ,m (1.1)

or in matrix form: y = Ax + µ, where measurements y = (y1, . . . , ym)T , and matrix A =

[a1, . . . , am]T are known. x ∈ Rn is the model parameter to be estimated, and µ = (µ1, . . . , µm)T

is the observation error. It is also commonly assumed that A has full column rank. In many

linear regression data sets, there are some observations yi known as outliers that have been

corrupted by large observation errors [3]. Such outliers often lead to the failure of Ordinary

Least Square (OLS) estimation [4]. The goal of robust linear regression is to accurately

estimate the model parameter in the presence of these troublesome outliers. Many robust

estimators [5]–[7] have been developed in the spirit of Robust Statistics. Recently, this

problem has received considerable interest from the signal processing community due to its

underlying connections with the rapidly developing Sparse Signal Recovery (SSR) framework,

which aims to recover a sparse solution from an under-determined system of linear equations.

The SSR formulation often splits the observation error µ into two terms: µ = η + e, where

η ∈ Rm is small magnitude bounded inlier noise, and e ∈ Rm represents the large error

component that captures outliers. So model (1.1) becomes:

y = Ax + η + e. (1.2)

In the literature, the following two assumptions are often made about the outliers:

1. Outlier entries often have significantly larger observation errors than inlier entries

3



have, and min{|ei| : ei , 0} > ‖η‖∞.

2. The fraction of outliers in the whole dataset is usually small, so the outlier corrup-

tions vector e is sparse, i.e., most entries in e are zero.

In Robust Statistics, many robust regression estimators aim to limit the influence of

large error entries under the first assumption. The most popular family of these methods is the

M-estimators [7]. For the second assumption, it is often utilized under the principle of fitting

the majority of the data. Least Median of Squares (LMedS) [8], Least Trimmed Squares

(LTS) [5], [6], and Random Sample Consensus (RANSAC) [9] are representative methods.

However, due to the combinatorial nature, these algorithms are impractical for solving high

dimensional problems.

In contrast to the robust statistics approach, most SSR methods merely use the first

assumption in the final reprojection step via thresholding, e.g., [10]. One exception is [11][12],

which developed a general thresholding function based iterative procedure and [11] was shown

to be equivalent to a special class of M-estimators. For the second assumption, the SSR

methods explicitly model the sparsity of outliers, and they deal with the outliers in two major

ways: Projection Approach [13] and Joint Approach [14]. Let V denote the subspace spanned

by the columns of A, and let F ∈ R(m−n)×m be a matrix whose rows form an orthobasis of V⊥.

Then we have FA = 0. The Projection Approach applies F to the measurements and from

(1.2) we obtain

b , Fy = FAx + Fe + Fη = Fe + Fη. (1.3)

The original problem is transferred to the recovery of a sparse vector e, given the under-

determined measurement matrix F and noisy measurements b. Various SSR methods can

be directly applied to solve this problem, such as BSRR [15], [16] which is based on Sparse

Bayesian Learning (SBL) [17], [18], and Second-Order Cone Programming (SOCP) [10]

4



which is based on `1 minimization [19]–[21]. Note that the `1 estimator ( arg minx ‖y − Ax‖1 )

is equivalent to the SOCP case of no dense inlier noise [13]. The Joint Approach reformulates

the original model into y = [A Im×m]
[

x
e

]
+ η, where [A Im×m] is under-determined and the

lower part of
[

x
e

]
is sparse. Many existing SSR methods can be extended to deal with this

formulation via restricting the lower part of
[

x
e

]
to be sparse, e.g., BPRR which is based on `1

minimization [16], `p (0< p ≤ 1) regularization which assumes a super-Gaussian prior for e to

encourage its sparseness [14], [22], Giannakis’s algorithm for robust sensing [23] that utilizes

a log-sum penalty function [24]–[27], Jin’s empirical Bayesian inference-based algorithm

which is extended from SBL [22], and GARD [3] which is based on Orthogonal Matching

Pursuit (OMP) [28][29].

The existing methods often tackle the `0-‘norm’ of e implicitly (e.g., via OMP or SBL),

or through the use of surrogate measures for the `0-‘norm’, such as `1-norm, `p-norm, and

the log-sum function. Besides these methods, the hard thresholding based iterative method

[11] shows its equivalence with a family (infinitely many) of nonconvex penalties for e (one

special case is the `0-‘norm’) to encourage its sparseness, but without any recovery guarantee

and relies on a preliminary robust fit. A natural question is whether it is possible to directly

use and deal with the `0-‘norm’ of e, and obtain even better recovery guarantees than the

state-of-the-art `1 approach? In this thesis, we provide an affirmative answer to this question.

1.1.2 Robust Principal Component Analysis

Principal component analysis (PCA) is arguably one of the most widely used data

analysis methods with numerous applications. However, its performance can significantly

degrade if the data is corrupted by even a few outliers. As mentioned in a recent review [1],

outliers are becoming even more common in today’s big data era. To robustify the PCA, the

idea of limiting the influence of large errors has been used to robustly estimate the covariance

matrix (e.g., [7], [30]), or replace the square penalty on PCA’s reconstruction residual by M-
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estimator’s penalty (e.g., [31]–[36]). Similar idea of Least Trimmed Squares is also proposed

to robustify PCA (e.g., [37], [38]), and suffers from its combinatorial nature.

Recently, many SSR based methods are developed under the name "Robust PCA" [39],

with the goal to recover the low-rank matrix L0 and sparse matrix E0 (which often models the

outlier corruptions) from their composition M (possibly with additional dense noise). This

problem has received a lot of interest in the past decade, with applications ranging from video

analysis, face recognition, to recommendation systems.

1.1.2.1 Regularization Approach

Robust PCA was first studied in the noiseless case [39]–[41], the underlying optimiza-

tion problem is [41]:

min
L,E

rank(L) + λ‖E‖0 s.t. M = L + E, (1.4)

which is known to be NP-hard. To make the problem computationally viable, [39]–[41]

suggest relaxing the rank minimization to nuclear norm minimization and the `0-‘norm’

penalty to an `1-norm penalty, i.e.,

min
L,E
‖L‖∗ + λ‖E‖1 s.t. M = L + E, (1.5)

leading to a convex optimization based approach known as Principal Component Pursuit

(PCP). Interestingly, one can recover both L0 and E0 exactly under certain conditions by

solving this convex program. Since then, many variants have been proposed with the goal

being either lower complexity or better performance. For a comprehensive review, we refer

the interested readers to [42]. We first discuss the regularization based methods and focus on

dealing with the outliers as well as dense inlier noise.

As surrogates for the original `0-‘norm’, the `p-norm and log-sum function on the

sparse outlier term E are adopted in [43].
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In real world applications, besides the sparse ‘corruptions’ E0, there is often small

magnitude dense inlier noise N. The resulting model is:

M = L0 + E0 + N. (1.6)

To address inlier noise, Zhou et al. [44] solved the following relaxed version of (1.5),

known as Stable Principal Component Pursuit (SPCP):

min
L,E
‖L‖∗ + λ‖E‖1 s.t. ‖M − L − E‖F ≤ δ. (1.7)

It was shown that the estimation error can be bounded under certain conditions.

Hsu et al. [45] analyzed the Lagrange form of (1.7):

min
L,E
‖L‖∗ + λ‖E‖1 +

1
2µ
‖M − L − E‖2F . (1.8)

In light of the M-estimators, He et al. [36] proposed replacing ‖E‖1 by implicit

regularizers of robust M-estimators, i.e., ϕ(E), and then solving the following optimization

problem:

min
L,E

µ‖L‖∗ + ϕ(E) +
1
2
‖M − L − E‖2F . (1.9)

Similarly, Chartrand [46] proposed to replace the `1-norm by implicit regularizers

(also called proximal p-norm [46]) of the p-Huber function.

To better approximate the `0-‘norm’, rather than using the `1-norm, Sun et al. [47]

used the capped `1-norm on both the sparse term E and the singular values of L:

min
L,E

1
θ1

∑
i

min{σi(L), θ1} +
1
θ2

∑
i, j

min{|Ei, j|, θ2}

s.t. ‖M − L − E‖F ≤ δ. (1.10)
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In [48] and [49], the following greedy approach was proposed that directly constrains

the `0-‘norm’:

min
L,E
‖M − L − E‖2F s.t. rank(L) ≤ r, ‖E‖0 ≤ k. (1.11)

Also, Ulfarsson et al. [50] proposed to use an `0 penalty to enforce both sparsity and low rank:

min
A,B,E
‖M − ABT − E‖2F + h2‖E‖0 s.t. BT B = Ir. (1.12)

Note that these methods need to specify the rank (and sparsity), which are usually unknown

in practice and hard to specify.

In the context of detecting contiguous outliers in the low-rank representation (termed

DECOLOR), Zhou et al. [38] proposed an objective function whose degenerate form can be

shown equivalent to the following:

‖L‖∗ + β‖E‖0 + λ‖M − L − E‖2F . (1.13)

However, these `0 approaches do not have any recovery guarantee. Inspired by our

robust linear regression method, we extend our framework to the matrix case and propose to

solve the following:

‖L‖∗ + β‖E‖0 + λ‖M − L − E‖1. (1.14)

Compared with (1.8)-(1.10), we use genuine `0-‘norm’ to enforce the sparseness of outliers,

and employ the `1-norm instead of the usual Frobenius norm on the noise term. Compared

with (1.13), the only difference is the replacement of the Frobenius norm by the `1-norm on

the noise term. But this replacement makes a big difference in that it not only significantly

improves the recovery performances, but also enjoys many theoretical guarantees.

Inspired by the superior performance of log-determinant [51], [52] in pursuing the

low-rank structure, we further replace the nuclear norm in (1.14) by the log-determinant,
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propose and analyze an algorithm to minimize the corresponding objective function.

1.1.2.2 Bayesian Approach

In Robust PCA problem, ideally we want to minimize the rank of the low-rank matrix,

but the corresponding objective function is hard to optimize. Though our proposed SRPCP

method manages to use the genuine `0-‘norm’ to enforce the sparseness of the outliers, it still

has to relax the rank function to the nuclear norm or log-determinant on the low-rank matrix.

Recall that rank is the sparsity of the singular values, while nuclear norm and log-determinant

are equivalent to the `1-norm and log-sum function of the singular values. Motivated by the

superior performance of the Sparse Bayesian Learning (SBL) method [18], [53], [54] in the

`0 minimization problem, we explore the Bayesian approach for Robust PCA.

There have already been several Sparse Bayesian Learning methods proposed for

solving the Robust PCA problem. The earliest work [55] proposed to model the low-rank

matrix as L = D(diag(z)diag(s))W , and the sparse matrix as E = B ◦ X , i.e., M =

D(diag(z)diag(s))W +B ◦X +N , where z andB have binary entries obeying a Bernoulli

distribution, and the hyper-parameter of the Bernoulli distribution is further assumed to

be Beta distributed. The s, X and noise N are drawn from Gaussian distribution with

corresponding precision (inverse of the variance) parameters generated from different Gamma

distributions. Finally, the columns ofD andW are assumed Gaussian distributed.

Babacan et al. [56] proposed a slightly simpler model, where the low-rank matrix

L = ABT , and the columns ofA andB are drawn from a Gaussian distribution with each

precision parameter drawn from a Gamma distribution. The elements of the sparse matrix

are simply drawn independently from a Gaussian distribution. Some improvement has been

shown compared to the previous Bayesian approach [55]. However, it is still inferior to

the convex PCP approach. Note that this probabilistic model of the low-rank matrix is also

adopted in some later works [57]–[59].
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Recently, Wipf [60] proposed a even simpler model that directly assumes the columns

of L are independent zero-mean Gaussian vectors which share the same covariance matrix,

while the sparse matrix is modeled similar to Babacan’s work [56]. Slight improvement over

the convex PCP method has been empirically demonstrated. In [61], Jansson et al. assume

vec(L) is zero-mean Gaussian and its covariance matrix is the Kronecker product of two

Wishart distributed matrices. It also demonstrated a slight performance improvement over

the PCP method, but the complexity of the inference is very high. Wipf et al. [62] further

proposed a modification to the model in [60], which assumes vec(L) is zero-mean Gaussian

with covariance matrix obeying a Kronecker-sum structure. However, though the method

starts with a Bayesian setting, the complexity of the inference procedure forces compromises,

leading to the framework to be used as a means to approximate and obtain an interesting

objective function for minimization.

So far, the power of the SBL does not seem to have been fully brought to bear on this

problem. The main difficulty of the current Bayesian approaches is the need to infer many

parameters from the assumed distributions. Too many assumptions limit the generalization of

these methods to different practical situations. Another challenge is the difficulty of inference

with such complicated probabilistic models. Usually MCMC sampling or Variational Bayesian

approximation has to be used. In this thesis, we develop a concise SBL approach that has

minimum assumptions and effectively deals with the requirements of the problem, and also

allows exact inference with lower complexity.

1.2 Thesis Outline and Contributions

This thesis is organized as follows.
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1.2.1 Provable Robust Linear Regression via `0 Regularization

In Chapter 2, we address the robust linear regression problem in the presence of

outliers, which is challenging as the support of outliers is not known beforehand and the

magnitudes of the outliers can be arbitrarily large. We propose an Algorithm for Robust

Outlier Support Identification (AROSI) utilizing a novel objective function that uses `0-‘norm’

to directly enforce the sparseness of the outliers and uses `1-norm to address the inlier noise

term. The optimization procedure naturally utilizes the large observation error assumption of

outliers and directly operates on the `0-‘norm’.

The proposed AROSI algorithm is guaranteed to converge in a finite number of

iterations to a fix point, which is a local optimum. Under certain conditions, we have the

following guarantees for AROSI:

1) Exact recovery of the signal under any parameter setting in the presence of outliers

only, i.e., absence of dense inlier noise (Theorem 2.3).

2) The recovery error is bounded in the noisy case, and the bound is smaller than that of

the `1 estimator (Theorem 2.6).

3) Exact support recovery of outliers when there is no dense inlier noise (Theorem 2.3) as

well as the noisy case (Theorem 2.6.d).

4) The ability to keep all the inliers and remove significant outliers in every iteration

(Theorems 2.3, 2.6-2.7, and Remark 2.2).

5) Even if the number of outliers is greater than the regression breakdown point of the `1

estimator, AROSI can still give exact recovery (no dense inlier noise case, Remarks 2.1

and 2.2) or bounded estimation error (noisy case, Remark 2.5 and Theorem 2.7). It can

tolerate 50% more outliers than the `1 estimator under certain conditions.
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6) AROSI has desirable recovery performance when the rows of design matrix are i.i.d.

from the uniform distribution on the unit sphere.

Extensive empirical comparisons with state-of-the-art methods demonstrate the advantage of

the proposed method.

1.2.2 Robust PCA via `0-`1 Regularization

In Chapter 3, we address the robust PCA problem in the presence of outliers, which is

also challenging as there is no information of the underlying rank of the low-rank matrix and

the sparsity/location of the outliers. We extend our AROSI framework and propose a method

termed Sparsity Regularized Principal Component Pursuit (SRPCP) to solve this problem.

The proposed method utilizes a novel objective function with nuclear norm to capture the

low-rank term, `0-‘norm’ to address the sparse outlier term, and an `1-norm to deal with the

additive noise term. The optimization procedure naturally utilizes the large observation error

assumption of the outliers and directly operates on the `0-‘norm’.

The proposed SRPCP algorithm is guaranteed to converge in a finite number of

iterations to a fix point, which is a local optimum. Under certain conditions, we have the

following guarantees for SRPCP:

1) Exact recovery of the underlying low-rank matrix in the presence of outliers only, i.e.,

absence of dense inlier noise (Theorem 3.2).

2) The recovery error is bounded in the noisy case, and the bound is smaller than that of

the convex PCP method (Theorem 3.4).

3) The ability to keep all the inliers and remove significant outliers in every iteration

(Theorem 3.4).
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An important byproduct of our analysis is the result that the widely used Principal Component

Pursuit (PCP) method and its missing entry version are both stable to dense inlier noise. Note

that they were both designed for the noiseless case.

Inspired by the superior performance of log-determinant [51], [52] in pursuing the

low-rank structure, we propose another objective function which replaces the above nuclear

norm by the log-determinant. The proposed algorithm, termed Iterative Reweighted Sparsity

Regularized Principal Component Pursuit (IR-SRPCP), is also shown to converge. In each

iteration, it solves a weighted nuclear norm regularized robust matrix completion problem.

We propose an ADMM algorithm to solve this nonconvex subproblem, which also converges.

Simulation studies and two image processing applications are provided and they

demonstrate the efficacy of the proposed `0-`1 regularization framework to deal with the

outliers as well as its superiority over the existing regularization methods.

1.2.3 Bayesian Robust PCA

To further push the performance of Robust PCA, in Chapter 4, we first derive and

analyze a new Robust Sparse Linear Regression objective, and prove that it is equivalent to

the fundamental minimizing "rank+sparsity" objective of the Robust PCA problem. This

equivalence guarantee builds the connection between Robust PCA and Robust Sparse Linear

Regression. It offers a new viewpoint for the Robust PCA problem. Many existing methods

and analyses in Robust Sparse Linear Regression (e.g., [23-26]) can be leveraged to solve and

understand the Robust PCA problem, and vice versa. To solve the proposed objective function,

a new Bayesian model and corresponding concise Sparse Bayesian Learning (SBL) approach

are proposed, which has minimum assumptions and effectively deals with the requirements of

the problem and allows exact inference. Convergence guarantee of the proposed algorithm

is provided. The underlying cost function of the proposed Bayesian model is analyzed, and

shown to encourage the solution to be low-rank and the outliers to be sparse.
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To further utilize the sparsity pattern information of the outliers in Robust PCA

problem (i.e., in Sparse and Low-rank decomposition problem, the outliers are usually

assumed to be spread out, i.e., sparse in each column and each row), a modification of

the above Bayesian method is proposed, which leads to further performance improvement.

Empirical studies demonstrate the superiority of the proposed methods over the existing

state-of-the-art methods.

Finally, in Chapter 5, we discuss some other linear and non-linear problems where

the proposed `0 framework can be straightforwardly applied to solve. For example, Robust

Tensor Decomposition, Robust Matrix Sensing, and Robust Deep Autoencoders.
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Chapter 2

Robust Linear Regression via `0

Regularization

Linear regression in the presence of outliers is challenging as the support/magnitude

of the outliers are not known beforehand. Many robust estimators solve this problem via

explicitly or implicitly assuming that outliers are sparse and result in large observation errors.

In this chapter, we propose an Algorithm for Robust Outlier Support Identification (AROSI)

utilizing a novel objective function that uses `0-‘norm’ to directly enforce the sparseness of

the outliers and uses `1-norm to address the inlier noise. The advantage over the `1 relaxation

approach will be shown on both theoretical side and performance side.

2.1 Introduction

In a linear regression setting, the goal is to estimate the linear relationship between

two variables: a ∈ Rn (explanatory variable) and y ∈ R (response variable), from m pairs

of training samples {(yi, ai), i = 1, . . . ,m}, where m > n. The following model is commonly

assumed:
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yi = aT
i x + µi, i = 1, . . . ,m (2.1)

or in matrix form: y = Ax + µ, where measurements y = (y1, . . . , ym)T , and matrix A =

[a1, . . . , am]T are known. x ∈ Rn is the model parameter to be estimated, and µ = (µ1, . . . , µm)T

is the observation error. It is also commonly assumed that A has full column rank. In many

linear regression data sets, there are some observations yi known as outliers that have been

corrupted by large observation errors [3]. Such outliers often lead to the failure of Ordinary

Least Square (OLS) estimation [4]. The goal of robust linear regression is to accurately

estimate the model parameter in the presence of these troublesome outliers. Many robust

estimators [5]–[7] have been developed in the spirit of Robust Statistics. Recently, this

problem has received considerable interest from the signal processing community due to its

underlying connections with the rapidly developing Sparse Signal Recovery (SSR) framework,

which aims to recover a sparse solution from an under-determined system of linear equations.

The SSR formulation often splits the observation error µ into two terms: µ = η + e, where

η ∈ Rm is small magnitude bounded inlier noise, and e ∈ Rm represents the large error

component that captures outliers. So model (2.1) becomes:

y = Ax + η + e. (2.2)

Additional prior information or assumptions are needed in order to solve the problem.

We make the following two reasonable and common assumptions about outliers:

1. Outlier entries often have significantly larger observation errors than inlier entries

have, and min{|ei| : ei , 0} > ‖η‖∞.

2. The fraction of outliers in the whole dataset is usually small, so the outlier corrup-

tions vector e is sparse, i.e., most entries in e are zero.

In Robust Statistics, many robust regression estimators aim to limit the influence of
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large error entries under the first assumption. The most popular family of these methods is the

M-estimators [7]. For the second assumption, it is often utilized under the principle of fitting

the majority of the data. Least Median of Squares (LMedS) [8], Least Trimmed Squares (LTS)

[5], [6], and Random Sample Consensus (RANSAC) [9] are representative methods. LMedS

was introduced by Rousseeuw [8]; it minimizes the median of squared residuals instead of the

mean (or equivalently, sum). To improve estimation efficiency, Rousseeuw further introduced

LTS [5], [6], which aims to minimize
∑h

i=1 r2
(i), where r2

(1) ≤ r2
(2) · · · ≤ r2

(m) are the ordered

squared residuals, and the value of h is set between m
2 and m. RANSAC [9] uses random

sampling to calculate possible model parameters and pick the best among them which can

fit most of the data. However, due to the combinatorial nature, all of these algorithms are

impractical for solving high dimensional problems.

In contrast to the robust statistics approach, most SSR methods merely use the first

assumption in the final reprojection step via thresholding, e.g., [10]. One exception is [11][12],

which developed a general thresholding function based iterative procedure and [11] was shown

to be equivalent to a special class of M-estimators. For the second assumption, the SSR

methods explicitly model the sparsity of outliers. Recently many works [63]–[66] address

the outliers in the SSR framework, where x is also sparse (in the typically overcomplete

dictionary A), and the corruptions may also admit a sparse representation in another general

dictionary [67], [68]. Here we focus on the traditional linear regression problem, where x

is general, A is over-determined and we have no freedom to design A. Under this setting,

the existing SSR methods deal with outliers in two major ways, Projection Approach [13]

and Joint Approach [14]. Let V denote the subspace spanned by the columns of A, and let

F ∈ R(m−n)×m be a matrix whose rows form an orthobasis of V⊥. Then we have FA = 0. The

Projection Approach applies F to the measurements and from (2.2) we obtain

b , Fy = FAx + Fe + Fη = Fe + Fη. (2.3)
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The original problem is transferred to the recovery of a sparse vector e, given the under-

determined measurement matrix F and noisy measurements b. Various SSR methods can

be directly applied to solve this problem, such as BSRR [15], [16] which is based on Sparse

Bayesian Learning (SBL) [17], [18], and Second-Order Cone Programming (SOCP) [10]

which is based on `1 minimization [19]–[21]. Note that the `1 estimator ( arg minx ‖y − Ax‖1 )

was shown to be equivalent to the SOCP case of no dense inlier noise [13]. The Joint Approach

reformulates the original model into y = [A Im×m]
[

x
e

]
+ η, where [A Im×m] is under-determined

and the lower part of
[

x
e

]
is sparse. Many existing SSR methods can be extended to deal

with this formulation via restricting the lower part of
[

x
e

]
to be sparse, e.g., BPRR which is

based on `1 minimization [16], `p (0< p ≤ 1) regularization which assumes a super-Gaussian

prior for e to encourage sparsity [14], [22], Giannakis’s algorithm for robust sensing [23]

that utilizes a log-sum penalty function [24]–[27], Jin’s empirical Bayesian inference-based

algorithm which is extended from SBL [22], and GARD [3] which is based on Orthogonal

Matching Pursuit (OMP) [28][29]. An important finding in sparse recovery theory is that

although finding the sparsest solution from under-determined linear equations is also of a

combinatorial nature, some polynomial-time sparse recovery methods are guaranteed to find

the sparsest solution under certain conditions on the sparsity of e and conditioning of matrix

F [69], [70]. It was shown in [16] that BSRR outperforms LMedS and RANSAC.

The key to successful sparse recovery lies in identifying the support (nonzero entries),

as one can simply add a reprojection step to estimate magnitude later. We propose a novel

objective function and corresponding algorithm to help identify the support of outliers. The

method is developed under the paradigm of the Joint Approach, but there is a fundamental

difference with existing SSR methods. The existing methods often tackle the `0-‘norm’ of e

implicitly (e.g., via OMP or SBL), or through the use of surrogate measures for the `0-‘norm’,

such as the log-sum function or the `p-norm (0< p ≤ 1). Besides these methods, the hard

thresholding based iterative method [11] shows its equivalence with a family (infinitely many)
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of nonconvex penalties for e (plus the `2-norm on the noise term), thus promoting the sparsity

of e (the author noted that this method relies on a preliminary robust fit). In contrast to all

these methods, we explicitly model and operate on the `0-‘norm’ of e, and the optimization

procedure naturally utilizes the large observation error prior, and does not need a preliminary

robust fit. Theoretical guarantees regarding exact recovery or error bounds are derived to

support the efficacy of the method. The overall best performance in terms of the quality of

recovery and lower complexity (over competing methods) further demonstrates the notable

benefits of the proposed method.

The remainder of the chapter is organized as follows: In Section 2.2, we introduce

the nonconvex objective function and the associated optimization procedure to help identify

the support of outliers to be used in the reprojection step. Section 2.3 gives theoretical

results regarding its convergence, exact recovery or recovery error. We empirically study

the performance of the proposed method and compare with other state-of-the-art methods in

Section 2.4. Conclusions are made in Section 2.5.

Notation: Capital letters denote matrices, e.g., A, while lowercase letters denote

vectors, e.g., e. The ith row of matrix A is denoted by aT
i , while the ith element of vector e

is denoted by ei. The `0-‘norm’1 of e, i.e., ‖e‖0, counts the number of nonzero elements of

e. Bold capital letters are reserved for sets, e.g., S , where S c and |S | denote the complement

and the cardinality of S respectively, and Sk denotes the set S obtained from the kth iteration.

We use AS to denote the |S | × n submatrix of A containing the rows indexed by S . Similarly,

eS denotes the subvector of e containing the entries indexed by S . The indicator function is

denoted as I(·).
1`0-‘norm’is not a norm as it does not satisfy the axioms of a norm.
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2.2 Robust Linear Regression via `0 Regularization

We propose minimizing the following objective function to help identify the support

of outliers.

J(x, e) = ‖y − Ax − e‖1 + α‖e‖0. (2.4)

In the second term, we directly use the `0-‘norm’ to enforce the sparseness in the

outlier corruptions e, rather than relaxing it to the `p-norm (0< p ≤ 1).

We use the alternating minimization “like” approach to minimize the nonconvex

objective function in (2.4). The detailed procedure is summarized in Algorithm 1, where x(k+1)

and e(k+1) denote the updated x and e at the (k + 1) st iteration. Sk is the complementary set

of the support of e(k), which is the index set for “valid” entries of y that are estimated to be

free of outliers in the kth iteration. Here the convergence of J(x, e) means J(x(k+1), e(k+1)) =

J(x(k), e(k)), and Sk = Sk−1 is a sufficient condition for convergence (see Appendix 2.6.1).

Algorithm 1 Algorithm for Robust Outlier Support Identification (AROSI)

Input: y, A, α > 0

Initialization: k = 0, e(0) = 0, S0 = {1, . . . ,m}

While J(x, e) not converged DO:
Iteration k + 1

Step 1 (update x): x(k+1) = arg minx ‖ySk − ASk x‖1;

If ‖ySk − ASk x(k+1)‖1 = ‖ySk − ASk x(k)‖1, further update x(k+1) = x(k).

Step 2 (update e and S): e(k+1)
i =

 0, |(y − Ax(k+1))i| ≤ α

(y − Ax(k+1))i, otherwise

Sk+1 := {i : e(k+1)
i = 0}

k := k + 1

End While
Output: solution x̃

At first glance, it seems more reasonable to use the `2-norm rather than the `1-norm in
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the first term of the objective function (2.4) and in Step 1, especially for Gaussian noise. Here

we emphasize that the minimizer of the objective function (2.4) is not our final solution; it

will be followed by a reprojection step described later. In Step 1 of each iteration, we only

use our estimated “valid” outlier free entries/rows indicated by S to estimate x. However, we

do not expect that all the outliers are identified by the previous iteration; it is very likely that

some outliers have not been removed. So it is safer to use the `1-norm in Step 1, as the `1

estimator is more robust to outliers than OLS. In case there are multiple solutions2 [71] for

minx ‖yS k − AS k x‖1 and x(k) happens to be one of these solutions, we set x(k+1) = x(k) to make

the algorithm more stable.

At the beginning, we have no information about the positions of outliers except that

they are sparse. So we simply initialize e(0) = 0, and index set S0 := {i : e(0)
i = 0} = {1, . . . ,m}.

So in Step 1 of the first iteration, all the data will be used and it is equivalent to the `1 estimator,

which has been justified by many authors (e.g., [13], [72]).

In Step 2, when x is fixed, define r , y − Ax,

min
e

(‖y − Ax − e‖1 + α‖e‖0) = min
e

(‖r − e‖1 + α‖e‖0)

= mine
∑m

i=1(|ri − ei| + αI(ei , 0)) =
∑m

i=1 minei(|ri − ei| + αI(ei , 0))

êi :=


0, |ri| ≤ α

ri, otherwise

∈ arg min
ei

(|ri − ei| + αI(ei , 0)), (2.5)

2In practice, when AS k is full column rank, this rarely happens, and we have not experienced this in our
numerical experiments.
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and

min
ei

(|ri − ei| + αI(ei , 0)) = min(|ri|, α) =


|ri| , |ri| ≤ α

α, otherwise

. (2.6)

We can see from (2.5) that Step 2 directly promotes the sparsity of e via hard thresh-

olding. Any entry of |y - Ax| larger than α will be considered an outlier corrupted entry. In

general, α should be set at least larger than the inlier noise level. Our analysis shows that

under certain reasonable conditions on the model parameters, if α is greater than some certain

threshold, we can guarantee that all the inliers are kept in every iteration. Conservatively, one

may use a very large α, aiming to keep most of the inliers while safely removing some large

outliers. Alternatively, one may use a small α (e.g., 4σ ), aiming to get rid of more outliers,

with the possibility one may also lose more inliers. If there is no prior knowledge of σ, it can

be estimated from the residuals of the `1 estimation (which is also Step 1 of our first iteration)

[6]: σ̂ = 1
0.675median(|r(1)

i | | r
(1)
i , 0).

Reprojection Step for the Joint Approach: Our theoretical results in Section 2.3

show that AROSI can guarantee the exact support recovery of outliers. This motivates us to

add a reprojection step in the end. The reprojection step [73] is widely used in sparse recovery

methods; it often improves the estimation of the magnitudes of the nonzero entries. In the

Projection Approach, as the original problem is transferred to the conventional sparse recovery

problem form, it is straightforward to use reprojection (e.g., [10]). Here we present the

reprojection step for the Joint Approach. Recall that the original model (2.2) is reformulated

as y = [A Im×m]
[

x
e

]
+ η, where the lower part of

[
x
e

]
is sparse. With estimated x or e by some

Joint Approach algorithm, the reprojection step is as follows:

1. Estimate the supportE of e by thresholding |ẽ| or |y− Ax̃|, e.g., Ê := {i : |ẽi| > pσ},

where σ is the standard deviation of the inlier noise, and p is a scaling factor.
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2. Regress y onto the selected columns of [A Im×m], i.e., [A (IÊ)T ] by least squares:

ẑ = arg min
z
‖y − [A (IÊ)T ]z‖2. (2.7)

3. Finally, obtain x̂ = ẑ{1,...,n}, and êÊ = ẑ{n+1,...,end}, which is the estimated outlier

corruption values corresponding to Ê.

In general, setting p is a tradeoff between false alarms and false negatives in identifying

outliers, and so a relatively small p is recommended to have fewer false negatives. If it is

known that the magnitudes of outliers are much larger than inlier noise (or if we are less

concerned about the noise level outliers), a slightly larger p can be employed to decrease

false alarms. When thresholding |y − Ax̃|, since the inlier noise is present in this residual,

the scaling factor p should be greater than 2. While when thresholding |ẽ|, since e is already

separated from the inlier noise in the model, a small p can be employed, e.g., [10] uses p = 1

in their Projection Approach.

A sufficient condition for [A (IÊ)T ] to be full column rank is |Ê| ≤ max(2m(A)−1, 0)

(defined in Definition 2.1, guaranteed by Theorem 2.2). When p→ ∞, |Ê| → 0. In case the

generated [A (IÊ)T ] is under-determined or not full column rank, we can always increase the

scaling factor p to make [A (IÊ)T ] full column rank, thus (2.7) has a unique solution.

The major difference with the reprojection step in the Projection Approach is the

alternative way to estimate the support of e, i.e., via thresholding |y − Ax̃|, if we have more

confidence in estimated x̃ than ẽ. In AROSI, we are more confident about the estimated x̃, as

it is less sensitive to the parameter α than ẽ. So, to estimate the support of e, we threshold

|y − Ax̃|, i.e., Ê := {i : |(y − Ax̃)i| > pσ}.

Complexity: AROSI alternates between `1 estimation (Step 1) and entrywise thresh-

olding (Step 2). So the main computational step (complexity) is `1 estimation in each iteration,

which can be recast as Linear Programming. If AROSI converges in K iterations (usually a
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few iterations), the worst run time estimate will be K times the run time of the `1 estimator. In

fact, the total run time is often less than that. This is not only because some entries are pruned

in Step 1, but also because the result of the previous iteration is used as the initial point for

the current iteration (a.k.a. warm-start). This is usually a good initial point and improves the

speed of `1.

2.3 Theoretical Analysis

In this section, we analyze AROSI (without adding the reprojection step unless

otherwise noted) and establish some theoretical guarantees which support its robustness and

effectiveness. The theoretical results depend on the matrix A, the bounds for the inlier noise,

and the sparsity of the outlier component. The exact conditions are included as part of the

theorem statements. The main results include the following:

1. Exact recovery of the signal under any parameter setting in the presence of outliers

only, i.e., absence of dense inlier noise (Theorem 2.3).

2. The recovery error is bounded in the noisy case, and the bound is smaller than that of

the `1 estimator (Theorem 2.6).

3. Exact support recovery of outliers in both no dense inlier noise case (Theorem 2.3) and

noisy case (Theorem 2.6.d).

4. The ability to keep all the inliers and remove significant outliers in every iteration

(Theorems 2.3, 2.6-2.7, and Remark 2.2).

5. Even if the number of outliers is greater than the regression breakdown point of the `1

estimator, AROSI can still give exact recovery (no dense inlier noise case, Remarks 2.1

and 2.2) or bounded estimation error (noisy case, Remark 2.5 and Theorem 2.7). It can

tolerate 50% more outliers than the `1 estimator under certain conditions.
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6. AROSI has desirable recovery performance when the rows of design matrix are i.i.d.

from the uniform distribution on the unit sphere Sn−1. (Which is shown to have a large

m(A) [74], see Definition 2.1. And further due to the slowly decreasing property of

m(A), i.e., Theorem 2.2.)

2.3.1 Convergence Property

Note that Step 1 of the algorithm deviates from the standard alternating minimization

approach. Thus, the convergence of the algorithm is not assured based on the alternating

minimization framework and needs to be established.

Theorem 2.1. AROSI converges in a finite number of iterations to a fixed point, which is a

local optimum. Moreover, the objective function is strictly decreasing before convergence.

The proof of the theorem is in Appendix 2.6.1.

2.3.2 Characterization of AROSI when Only Outliers Present

Here we discuss the case when there are only sparse outliers present and no dense

inlier noise. Our model in (2.2) degenerates to y = Ax + e. The analysis benefits greatly

from the analysis of the `1 estimator in [72], which is equivalent to the Step 1 of our first

iteration. We further build and extend the work to understand AROSI, based on an important

property stated in Lemma 2.1. We first introduce some definitions and properties regarding

the leverage constants and their related quantity m(A) for matrix A that are important to the

analysis.

Definition 2.1 (from [72]): DefineM = { 1, . . . ,m } as the index set of all the observations.

25



Define for every q ∈ {1, . . . ,m} the leverage constants cq of A as

cq(A) = min
E⊂M
|E|=q

min
g∈Rn

g,0

∑
i∈M\E |a

T
i g|∑

i∈M |a
T
i g|

= min
E⊂M
|E|=q

min
g∈Rn

‖g‖2=1

∑
i∈M\E |aT

i g|∑
i∈M |aT

i g|
,

and m(A) = max{q ∈M | cq(A) > 1
2 }.

Note that [75] provides an algorithm to compute m(A) for any given A. The com-

plexity is O((m
n )(n3 + m2)), which is prohibitive for large m and n, making the computation of

m(A) limited to a small size matrix A.

Proposition 2.1 (from [72]): c0(A) = 1, cm(A) = 0, and for every q ∈ {1, . . . ,m}, cq(A) ≤

cq−1(A).

Proposition 2.2 If m(A) ≥ q, then we must have cq(A) > 1
2 , and m > 2q.

The proof can be found in the supplemental material.

In [72], it is shown that the regression breakdown point of the `1 estimator is m(A)+1.

Since in the iterations of AROSI, it detects and removes ‘outliers’ and uses the remaining

entries to do `1 estimation, two fundamental questions arise: When deleting some entries,

1) will the regression matrix become singular? 2) how does m(A) change (will it suddenly

become 0)? The following Lemma 2.1 and Theorem 2.2 address these concerns.

Lemma 2.1 Let matrix A be full column rank and m(A) ≥ q. Then for any index set

T ⊂M , |T | = t ≤ q, we have that AT c must be full column rank, m(AT c) ≥ q−d0.5te ≥ q− t,

and cq−t(AT c) ≥ cq−d0.5te(AT c) ≥ cq(A) > 1
2 .

The proof of the lemma is in Appendix 2.6.2.

Theorem 2.2. Let matrix A be full column rank and m(A) ≥ q > 0. Then for any index set

T ⊂M , |T | = t ≤ 2q − 1, we have that AT c must be full column rank, m(AT c) ≥ q − d0.5te,

and cq−d0.5te(AT c) ≥ cq(A) > 1
2 .
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The proof utilizes the above Lemma and can be found in the supplemental material.

The above theorem is significant because it characterizes the slowly decreasing prop-

erty of m(A) w.r.t. m (the number of rows of A ), which enables AROSI to go beyond `1

estimation and deal with more outliers, as we will show later.

Now we first introduce our main theorem of exact recovery when ‖e‖0 ≤m(A).

Theorem 2.3. AROSI running with any α > 0 will find x exactly if ‖e‖0 ≤ m(A). If

additionally α < min{|ei| : ei , 0}, AROSI will find both x and e exactly.

Proof: Proved as a special case of Theorem 2.6 with η = 0.

Actually when ‖e‖0 ≤m(A), AROSI running with any α > 0 recovers x exactly in

every iteration, so it will converge in 2 iterations.

The above theorem shows the robustness of AROSI in two contexts: First, it succeeds

in a wide range of parameter settings; Second, it is robust to the undetected outliers (even if α

is set too large such that only a few outliers are detected). This robustness is a result of the

slowly decreasing property of m(A) w.r.t. m. When only sparse outliers are present, we want

the first term in the objective function (2.4) to be 0, as there is no dense inlier noise. We need

to put infinitely large weight on the first term, or equivalently, set α→ 0+ in the second term.

So α < min{|ei| : ei , 0} will be satisfied. Then we can recover both x and e exactly under the

given condition. When α→ 0+, minimizing the objective function (2.4) is equivalent to the

following problem:

min
e, x
‖e‖0 s.t. y = Ax + e, (2.8)

which is the problem of interest when there is no dense noise, under the principle of fitting

most of the data, and which would give exact recovery under mild conditions [16]. To

minimize our objective function (2.4) with α→ 0+, AROSI starts with minx ‖y − Ax‖1, which

is proven to give exactly the same solution as (2.8) under certain conditions [13][16]. The

above analysis gives a justification for our objective function (2.4) and AROSI.
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Next, we deal with the case where ‖e‖0 > m(A).

Suppose ‖e‖0 ≤m(A) is not satisfied for the `1 estimator, which is also Step 1 in our

first iteration. In the following steps we remove some entries that may contain both inliers

and outliers. If the number of remaining outliers ‖eS k‖0 ≤m(AS k), we can recover x exactly

(see quoted Theorem in Appendix 2.6.3).

The key question is whether it is possible that ‖eS k‖0 ≤ m(AS k), given that ‖e‖0 >

m(A). Theorem 2.2 shows the slowly decreasing property of m(A), which makes it possible.

Remark 2.1 Suppose that ‖e‖0 > m(A) ≥ q, and that when AROSI converges at the (k+1) st

iteration, |Sc
k | = t, i.e., we have removed t entries. Among these t entries, p × t of them are

outliers, so ‖eS k‖0 = ‖e‖0 − p × t. When t ≤ 2q − 1, from Theorem 2.2, we know that AS k is

full column rank and m(AS k) ≥ q− d0.5te. So if ‖e‖0 − p× t ≤ q− d0.5te, i.e., p ≥ ‖e‖0+d0.5te−q
t ,

we can guarantee the exact recovery of x. When t > 2q − 1, then a sufficient condition for

exact recovery of x is that AS k has full column rank and p = ‖e‖0
t , i.e., all the outliers are within

the t removed entries.

The exact recovery test in Section 2.4.2 demonstrates that there are cases where the

`1 estimator fails (this must be the case ‖e‖0 > m(A) according to the quoted theorem in

Appendix 2.6.3) while AROSI gives exact recovery.

Remark 2.2 In case both large outliers and moderate outliers exist, as a special case of

Theorem 2.7 with η = 0, we show that under certain conditions AROSI can recover x exactly

even if there are up to b1.5 ×m(A)c outliers. More specifically, when 0 < m(A) ≤ ‖e‖0 ≤

m(A)+b t
2c, where 1 ≤ t ≤m(A), defineG := {indices of m(A) largest entries of |e|}, P :=

{indices of t largest entries of |e|}. If min{|ei| : i ∈ P } >
2
∑

i∈E\G |ei |

cm(A)(A)−0.5 , then any α satisfying∑
i∈E\G |ei |

cm(A)(A)−0.5 < α < min{|ei| : i ∈ P } −
∑

i∈E\G |ei |

cm(A)(A)−0.5 guarantees the exact recovery of x from the

second iteration, and it will converge in no more than three iterations. It is natural to think

about this guarantee in comparison with the so called “masking effect” [76], where some
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extreme outliers (e.g., those indexed by P ), help hide another group of mild but perhaps more

structured outliers (e.g., indexed by E\G), which are usually more difficult to detect. AROSI

effectively identifies and removes those extreme outliers, and more importantly, is resistant to

the remaining unidentified outliers and recovers x exactly.

2.3.3 Both Dense Noise and Sparse Outliers Present

Now we deal with the more general case where both dense inlier noise and sparse

outliers exist. In the first subsection, we establish the error bound for AROSI. Then we

characterize the behaviors of AROSI in the second subsection.

2.3.3.1 Recovery Error Bound

We first quote a definition and theorem from [75] regarding the `1 estimation error

bound, and present our Corollary 2.1, which establishes the bound for AROSI.

Definition 2.2 (from [75]): Given an arbitrary q ∈ {0, 1, . . . ,m}, we call a set B a possibly

extreme set if there exists a set L,L ⊇ B, |L| = m − q, such that the following holds:

∑
i∈B

⋃
Lc

|aT
i v| ≥

∑
i∈(L\B)

|aT
i v|, (2.9)

where v is any of the singular vectors corresponding to the smallest singular value of the

|B| × n submatrix AB of A : ‖ABv‖2 = σmin(AB)‖v‖2. We define Qq to be the set of all

possibly extreme sets for a given q.

Theorem 2.4. (from [75]) Let y = Ax+e+η,E = supp(e), the `1 estimation error is bounded

as follows:

‖x`1 − x‖2 ≤
(

max
B∈Q|E|

1
σmin(AB)

)
‖η‖2. (2.10)

29



It can be proved that if |E| ≤m(A), then ∀B ∈ Q|E|, σmin(AB) > 0.

Now we are ready to establish the error bound for AROSI.

Corollary 2.1 In the (k + 1) st iteration of AROSI, define the index set R := E ∩ Sk. If

|R| ≤m(ASk), and ASk has full column rank, then the following holds for x(k+1) :

‖x(k+1) − x‖2 ≤ ( max
B
′
∈Q

′

|R|

1
σmin((ASk)B′ )

)‖ηSk‖2, (2.11)

where σmin((ASk)B′ ) > 0, ∀B
′

∈ Q′
|R|. HereQ′q follows the same definition in Definition 2.2,

except that A is replaced by ASk , and m is replaced by the number of rows of ASk .

Proof : This is apparent from Theorem 2.4, as x(k+1) is the `1 estimate on the model

ySk = ASk x + eSk + ηSk , andR = E ∩ Sk corresponds to supp(eSk).

Remark 2.3 R := E ∩ Sk is the index set of outliers that remained in Sk. Note that

Corollary 2.1 does not need the initial condition |E| ≤ m(A). It only needs the number of

remaining outliers |R| ≤ m(ASk), which can be guaranteed by |E| ≤ m(A) and proper α

(see Remark 2.4) for any k ∈ Z≥0. Even if |E| > m(A), it is still possible that |R| ≤m(ASk)

for any k ∈ Z≥1, e.g., under the condition of Theorem 2.7 (details can be found in the proof).

Then a natural question of interest is whether the bound for AROSI is better than that

of the `1 estimator. The following theorem provides a positive answer.

Theorem 2.5. Let y = Ax + e + η, E = supp(e), |E| = q ≤m(A). In the (k + 1) st iteration

of AROSI, if Ec ⊆ Sk, then ‖x(k+1) − x‖2 is bounded as in (2.11), and the bound is smaller

than or equal to the bound in (2.10).

The proof of the theorem is in Appendix 2.6.5.

Theorem 2.5 is applicable for any iteration. The condition Ec ⊆ Sk required by Theo-

rem 2.5 can be guaranteed with proper α, given |E| ≤m(A), as we will see in Theorem 2.6.a,
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and it follows immediately that the bound for Theorem 2.6.c is smaller than or equal to the

bound for `1 estimation error provided in Theorem 2.4.

2.3.3.2 Characterization of AROSI in Noisy Case

In this subsection, we first present Lemma 2.2, which describes the behavior of AROSI

in any iteration and is an important step in deriving our main results in Theorems 2.6 and 2.7.

Lemma 2.2 Let y = Ax + e + η and E = supp(e) satisfying |E| = q ≤ m(A). Denote

r(k+1)
Sk

= ySk − ASk x(k+1). If Sk ⊇ E
c for a particular k, then we must have ASk full column rank,

m(ASk) ≥ q− |Sc
k |, and ‖(e +η)Sk − r(k+1)

Sk
‖1 ≤

√
m−q‖η‖2

cq(A)−0.5 . Also ∀i ∈ Ec, |r(k+1)
i | ≤ ‖η‖∞+

√
m−q‖η‖2

cq(A)−0.5 .

The proof of the theorem is in Appendix 2.6.6.

Now we are in position to present our main results in the noisy case. Theorem 2.6

shows that when ‖e‖0 ≤m(A), the estimation error of AROSI (with proper α ) is bounded,

and from Theorem 2.5 we know its bound is smaller than or equal to the `1 estimation error

bound.

Theorem 2.6. Let y = Ax + e + η, E = supp(e) and |E| = q ≤m(A). Define C1 =
√

m−q‖η‖2
cq(A)−0.5 ,

C2 = max(C1,
2
√

m−q‖η‖2σmax(AE)
σmin(AEc ) ), C3 =

σmax(AE)
σmin(AEc )C1. For any α > ‖η‖∞ + C1, AROSI guarantees

that:

1) All the inlier entries (indexed by Ec ) are kept in every iteration (i.e., Ec ⊆ Sk for any

k ∈ Z≥0 );

2) Significant outlier entries indexed by P := {i : |ei| > α + ‖η‖∞ + C3} are identified and

removed in every iteration (i.e., P ⊆ Sc
k+1 for any k ∈ Z≥0 );

3) ‖x(k+1) − x‖2 is bounded for any k ∈ Z≥0.

Moreover, if min{|ei| : ei , 0} > 2‖η‖∞ + C1 + C2, then any α satisfying ‖η‖∞ + C1 <

α < min{|ei| : ei , 0} − ‖η‖∞ −C2 for AROSI guarantees that:
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4) AROSI converges in 3 iterations, and the support of e is recovered exactly;

5) After the reprojection step ( whose threshold is within the range (‖η‖∞ + C1,min{|ei| :

ei , 0} − ‖η‖∞ −C2) ) , we have ‖x̂ − x‖2 ≤ ‖ηEc‖2/σmin(AEc).

The proof of the theorem is in Appendix 2.6.7.

Remark 2.4 In Theorem 2.6.e, x is equivalent to the least squares solution on all the inlier

entries. The bound is tight and is better than the bound in (2.10) (details in the proof).

Theorem 2.6 is an exciting result for the noisy case: If the large magnitude corruptions are

sparse ( ‖e‖0 ≤ m(A) ), with proper value of α (which depends on the inlier noise level,

matrix A, and the sparsity of outliers, and does not depend on the magnitude of outliers),

we can guarantee that all the inliers are kept in every iteration. At the same time, all the

removed entries are guaranteed to be outliers. This shows another aspect of AROSI robustness:

under certain conditions there are no false alarms when identifying and removing outliers

during iterations. Purely removing some outliers often leads to better signal estimation in

our Step 1 ( x(k+1) = arg minx ‖ySk − ASk x‖1 ) than the `1 estimation, especially as we can also

guarantee (by Lemma 2.2) that ASk is full column rank and the number of remaining outliers

(|E| − |Sc
k |) ≤m(ASk) for any k ∈ Z≥1. In addition, we can also guarantee that the significant

outliers, which are usually the most troublesome ones, are identified and removed in every

iteration. Further, if the magnitudes of the corruptions are all large enough, we can even

guarantee all the outliers are removed in every iteration. Finally, note that we showed that the

estimation error is bounded in every iteration.

The following Remark 2.5 and Theorem 2.7 demonstrate that even if ‖e‖0 > m(A)

(recall that m(A) + 1 is the regression breakdown point of the `1 estimator [72]), AROSI can

still provide a bounded estimation error.

32



Remark 2.5 When ‖e‖0 > m(A), we have provided a sufficient requirement in Remark 2.1

to satisfy the condition of Corollary 2.1, thus guaranteeing that the estimation error of x by

AROSI is bounded in the noisy case.

In the following theorem, we establish conditions under which AROSI is guaranteed

to handle more than m(A) outliers.

Theorem 2.7. Suppose y = Ax + e + η, E = supp (e), 0 < m (A) ≤ |E| = q ≤m (A) +
⌊

t
2

⌋
,

where 1 ≤ t ≤m (A). DefineG :=
{
indices of m (A) largest entries of |e|

}
,

P :=
{
indices of t largest entries of |e|

}
, q1 = m (A) , q2 = m (AP c) ,

w1 = max(
√

m−q1‖η‖2+
∑

i∈E\G |ei |

cq1 (A)−0.5 ,
√

m−q‖η‖2
cq2 (APc )−0.5 ),w2 = max(

√
m−q1‖η‖2+

∑
i∈E\G |ei |

cq1 (A)−0.5 ,
σmax(AP )

√
m−q‖η‖2

σmin(AEc )×(cq2 (APc )−0.5) ).

If min {|ei| : i ∈ P } > 2‖η‖∞+w1+w2, then any α satisfying ‖η‖∞+w1 < α < min {|ei| : i ∈ P }−

‖η‖∞ − w2 for AROSI guarantees that:

1) All the inlier entries (indexed by Ec ) are kept in every iteration (i.e., Ec ⊆ Sk for any

k ∈ Z≥0 );

2) Significant outlier entries indexed by P are identified and removed in every iteration

(i.e., P ⊆ Sc
k+1 for any k ∈ Z≥0 );

3) ‖x(k+1) − x‖2 is bounded for any k ∈ Z≥1.

The proof of the theorem is in Appendix 2.6.8.

As our first iteration is equivalent to `1 estimation, we can not guarantee the estimation

error is bounded when there are more than m(A) outliers. However, we can guarantee it is

bounded in the following iterations.

The basic idea underlying behind Theorem 2.7 is based on the following intuition:

when there are ‖e‖0 > m(A) outliers, if the smallest ‖e‖0 −m(A) of them are moderate,

we can treat them as very noisy inliers, so the number of outliers reduces to m(A). Then

according to Theorem 2.6, we can use a large α to safely remove the very large outliers.
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2.4 Empirical Studies

For relatively small size matrix A, we can compute m(A) using the algorithm provided

in [75], this gives us an opportunity to further study the behavior of m(A) w.r.t. m (the number

of rows of A). On the other hand, although we provided some theoretical guarantees/bounds

for AROSI, they often involve cq(A), which itself is hard to compute. In this section, we

empirically study the performance of AROSI (including the reprojection step unless noted) as

well as the following state-of-the-art methods, where the complexity analysis is presented for

m > n.

1. `1 estimator [13]: x`1 = arg minx ‖y − Ax‖1. We also add a reprojection step for

comparison. The complexity in practice is O(m3) [77].

2. Second-Order Cone Programming (SOCP) [10], which is a direct application (via the

Projection Approach) of `1 minimization sparse recovery [19]–[21] to model (2.3).

There is a reprojection step in the end. The complexity of this method is O(m3) [78].

3. Ideal solution where we know e exactly: xIdeal = arg minx ‖y − e − Ax‖2.

4. Oracle solution [10] where we know the support of e exactly: xOracle = arg minx ‖yS −

ASx‖2, where S := {i : ei = 0} is the index set of all the inliers.

5. Bayesian Sparse Robust Regression (BSRR) [15], which is a direct application (via the

Projection Approach) of Sparse Bayesian Learning to model (2.3). The complexity of

each iteration is O(m3). We add a reprojection step in the end.

6. Generalized M-estimators with Bisquare weighting function [7], [79]–[82]. It is solved

via Iteratively Reweighted Least Squares (IRLS), and the complexity of each iteration

is O(mn2). We set its tuning constant c = 3 to generate better results than the default

value.
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7. `1 regularization algorithm [14], [22], which solves minx,e ‖y − Ax − e‖22 + λ‖e‖1, where

the parameter λ is set as
σ
√

2log(m)
3 according to [22]. It can be solved using the approach

described in [3], where the complexity is O(m3) per iteration [3]. We add a reprojection

step in the end.

8. Greedy Algorithm for Robust Denoising (GARD) [3], which aims to minimize the

number of outliers via OMP by restricting the selection over columns of Im×m :

minx,e ‖e‖0 s.t. ‖y − [A Im×m][ x
e ]‖22 ≤ ε

2.

The total complexity is O( K3

2 + (m + 3K)n2 + 3Kmn), where K is the total number of

iterations. We add a reprojection step in the end.

9. Thresholding-based Iterative Procedure for Outlier Detection (Θ-IPOD) [11], which

iterates between least squares regression and hard thresholding. We initialize it by `1

estimation, and set the threshold to 5σ. The algorithm’s pre-computation costs O(mn2),

and each iteration costs O(mn). We add a reprojection step in the end.

For AROSI, we fix α as 5σ throughout the experiments unless otherwise noted. In the

reprojection step of BSRR, SOCP, AROSI, Θ-IPOD, GARD and the `1 regularization method,

the threshold is tuned individually from {pσ : p = 1, 2, 3, 4, 5} for each method.

For our experimental setup, below are the general steps:

1. Choose a fraction ρ of grossly corrupted entries and define the number of corrupted

entries as k = round( ρ · m );

2. Generate an m by n standard Gaussian matrix A.

3. Generate x ∈ Rn with i.i.d. N(0, σ2
x) entries. Compute Ax.

4. Select k locations uniformly at random and add corruptions to these locations.
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5. Generate the vector η = ( η1,. . . , ηm ) of smaller errors with ηi i.i.d. N(0, σ2), and add

η to the outcome of the previous step. Obtain y.

6. Estimate x using different methods.

We first set m = 512, σx = 1, and σ = median(|Ax|)/16 as in [10]. The corruption

values are drawn from 0.5×N(12σ, (4σ)2)+0.5×N(−12σ, (4σ)2). For each n ∈ {256, 128, 64},

we repeat Step 2 - Step 6 fifty times for each corruption rate. We denote this setting as

experimental setup A.

Next, we use the experimental setup in [3] (denoted as experimental setup B), where

m = 600, σx = 5, σ = 1, and the rows of matrix A are obtained by uniformly sampling an

n-dimensional hypercube centered around the origin, i.e., Ai j ∼ U(−1, 1). The corruption

values are drawn from {−25, 25} with equal chance. For each n ∈ {170, 100, 50}, we repeat

Step 2 - Step 6 fifty times for each corruption rate.

For evaluation, each estimate is compared with ground truth x. We measure its

Relative `2-Error [83]: ‖x̂ − x‖2/‖x‖2. We also compute the distance between the supports of e

and ê. Denoting the two supports as E and Ê, Ê is estimated by thresholding |ê| or |y − Ax̂|

with pσ, where p is tuned individually for each method. The distance is defined as in [47]:

dist
(
Ê,E

)
=

max{|Ê|,|E|}−|Ê∩E|
max{|Ê|,|E|}

. We denote the average of dist
(
Ê,E

)
over Monte Carlo runs

as the Probability of Error in Support (PES) [83].

2.4.1 Slowly Decreasing Property of m(A)

AROSI uses the submatrix of A to estimate x in every iteration. Besides m(A) itself,

it is also important to know how m(A) changes as m (the number of rows of A) decreases.

For relatively small size matrix A, we gradually delete its rows from the bottom to obtain the

submatrices of A (denoted A{1:m−k}, k = 0, 1, . . . ,m − n) in the experiment, and calculate the

corresponding m(A{1:m−k}).
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Figure 2.1. m(A{1:m−k}) w.r.t. k for a 200 by 4 standard Gaussian matrix A.

We experiment with a randomly generated 200 by 4 standard Gaussian matrix.

Fig. 2.1 shows the calculated m(A{1:m−k}) w.r.t. k as well as the theoretical lower bound

(red line) provided by Theorem 2.2. For the full matrix, m(A)=39. When deleting 10 rows,

m(A{1:m−10})=37, only decreasing by 2 from the original m(A). When deleting 30 rows, we

find a decrease of 6 from the original m(A). Even when half of the total rows (i.e., 100)

are deleted, m(A{1:m−100})=20, a decrease of 19 from the original m(A). It can be seen that

m(A{1:m−k}) decreases very slowly w.r.t. the number of deleted rows k, and it is above our

theoretical lower bound. Note that the theoretical lower bound provided by Theorem 2.2 is

for deleting arbitrary k rows of an arbitrary full column rank matrix A, while the experiment

here only deletes k rows from the bottom of a specific standard Gaussian matrix A.
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Figure 2.2. Percentage of exact support recovery vs. corruption rate.

2.4.2 Exact Recovery Test

In this subsection, we empirically verify the exact recovery performance of AROSI

when only sparse outliers are present, i.e., y = Ax + e. Recall that in the reprojection step,

exact recovery of the support of e will suffice for the exact recovery of both x and e, as long

as [A (IE)T ] is full column rank.

We use the same experimental setup as the Support Recovery Test in [3]. This is

under experimental setup B with n =100, except that there is no dense inlier noise. Fig. 2.2

shows the percentage of exact support recovery for each corruption rate (over 1000 trials)

for each method. The support of BSRR, `1 estimator, Bisquare, AROSI, Θ-IPOD and the `1

regularization method (all without reprojection) is estimated by thresholding |e| or |y − Ax|

with a small numerical constant 1× 10−4. Over 1000 trials, Bisquare keeps fully exact support

recovery up to 29% corruption rate. For BSRR, `1 regularization method, GARD, `1 estimator,

Θ-IPOD, and AROSI, it is up to 11% , 12% , 16% , 42% , 42% , and 44% , respectively.

Θ-IPOD performs similarly to its initialization (`1 estimation), while AROSI demonstrates an

improvement over `1 estimation.

When the corruption rates are 43% and 44%, there are cases where AROSI has exact
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support recovery while the `1 estimator does not. From the quoted theorem in Appendix C,

we know it must be the case that ‖e‖0 > m(A). Since we also use the same `1 estimation in

our first iteration, we do not have a perfect initialization. However, at the end of the iterations,

we are able to identify and remove some outliers through the index set Sk. The number of

remaining outliers is very likely less than m(AS k), thus we get the exact solution. This shows

the advantage of AROSI over the `1 estimator.

2.4.3 Both Dense Noise and Sparse Outliers Present

In this subsection, we test and compare the performance of each method in the noisy

case under experimental setup A. Fig. 2.3 shows the average Relative `2-Error and the PES

from 50 samples vs. corruption rate. In general, AROSI has similar performance to BSRR

and outperforms other methods. We can see that the reprojection step alone does help improve

the performance of the `1 estimator. However, AROSI performs even better, which verifies

that the advantage of AROSI over the `1 estimator is non-trivial. We can also see that, under

the same corruption rate, increasing the signal dimension n makes the recovery harder for all

methods, as the number of unknowns gets larger.

We have also tested on several non-Gaussian regression matrices, which can be found

in the supplemental material. The relative performance of each method is almost unchanged,

except some degradation of the relative performance of the `1 regularization method under

some regression matrices.

2.4.4 Phase Transition Curves

We measure the Phase Transition Curves of each method under experimental setup A.

For each dimension of x and each method, we test each outlier fraction and find the maximum

fraction where the probability of successful recovery (Relative `2-Error less than 1.3× that of
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Figure 2.3. Average relative `2-error (left) and PES (right) vs. corruption rate with
different n (upper: 256; middle: 128; bottom: 64).

Oracle) remains greater than 0.5. Fig. 2.4 shows the Phase Transition Curves of each method.

AROSI outperforms all the other methods.

2.4.5 Different Magnitude of Corruptions

In this subsection, we use experimental setup A but with corruption values drawn

from N(0, (κσ)2) instead (recall that σ = median(|Ax|)/16 ). We gradually increase the
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Figure 2.4. Phase transition curves.

magnitude of corruptions (by increasing κ ) to see how each method behaves. Fig. 2.5 shows

the average Relative `2-Error on 50 samples vs. corruption rate for different scales (κσ) of

corruptions. We can see that, when the magnitude of corruptions is small (e.g., κ = 4 ), even

the least squares works well, and all the robust linear regression methods have very nominal

differences and are slightly better than the least squares (we note that the performance of

AROSI can be slightly improved if we set α larger). As κ is increased further, the robust linear

regression methods begin to show their benefits. We note that when κ increases from 4 to 16,

the performances of the `1 estimator (with or without the reprojection step), Bisquare, SOCP,

and the `1 regularization method degrade. In contrast, BSRR and AROSI are quite resistant to

the larger magnitudes of corruptions.
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Figure 2.5. Average relative `2-error vs. corruption rate for different scales (κσ) of
Gaussian corruptions: a) κ=4; b) κ=8; c) κ=12; d) κ=16.
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2.4.6 Sensitivity to Parameter α of AROSI

SOCP, GARD, `1 regularization method, Θ -IPOD, AROSI, and the initialization of

BSRR all need the knowledge of inlier noise level. In the previous experiments, we assume

we know the standard deviation σ of the inlier noise, and set α = 5σ for AROSI. However, in

practice, the estimated σ may be slightly greater or less than the true σ, which is equivalent

to setting α slightly greater or less than 5σ. We test AROSI with α varying from 2σ to 8σ. In

the reprojection step of AROSI and the `1 estimator, we fix p = 5.

Fig. 2.6 shows the average Relative `2-Error on 50 samples vs. corruption rate for

`1 estimation (with or without the reprojection step) and AROSI with different α, under

experimental setup A with n = 128.

When the corruption rate is moderate (e.g., ≤ 35% when n =128), we have two

observations:

• AROSI often performs better than the `1 estimator even with different α (from 2σ to

8σ ).

• With α ranging from 2σ to 8σ, AROSI has similar performance, which indicates the

method is not very sensitive to small variations of α.

2.4.7 Run Time

In this subsection, we compare run times under experimental setup A. Fig. 2.7 shows

the Average Run Time (seconds) on 100 samples vs. corruption rate with n = 64. We can see

that AROSI is an order of magnitude faster than BSRR.
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Figure 2.6. Average relative `2-error vs. corruption rate for `1 estimator and AROSI
with different α. In the reprojection step of AROSI, p=5.
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Figure 2.7. Log scale average run time vs. corruption rate.
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2.4.8 Real Data

Finally, we compare the performance of each method on a real dataset, the Belgian

Phone data, from the Belgian Statistical Survey (published by the Ministry of Economy). It

contains large outliers as well as moderate outliers, and the swamping/masking effects could

arise. There are 24 measurements. The response is the number of international phone calls

(in millions), and the predictor is the year. It is known afterwards that observations 15-20

are large outliers and observations 14 and 21 are moderate outliers. For such a small size

regression matrix A, using the algorithm provided in [75], we easily get m(A) = 5, which is

unfortunately smaller than the number of the outliers.

To see the difference between each method more clearly, we do not perform the

reprojection step, except for the Projection Approach methods, i.e., for BSRR and SOCP,

the threshold is tuned to obtain the best result. The results are plotted in Fig. 2.8 (a). Most

methods have very similar results on this data, and fit the inliers very well, except for the `1

estimator, SOCP, and the `1 regularization method. We can see that these three methods are

biased by outliers, and the residual of the outlier observation 14 is very small (it is perfectly

masked by large outliers), even smaller than many inlier observations, e.g., observations 1, 2,

22-24. So, even if we add a reprojection step for the `1 estimator and the `1 regularization

method, the outlier observation 14 is hard to get rid of.

Though AROSI is equivalent to the `1 estimator at the beginning, it successfully

eliminates the effect of outliers with a wide range of parameter α. Fig. 2.8 (b) shows the

results of the `1 estimator and AROSI with integer α ranging from 3 to 180, as well as Θ-IPOD

with the same threshold ranging from 3 to 180, all without the reprojection step. We can see

that even with very different α, AROSI still fits the inliers very well, and is better than the `1

estimator. While Θ -IPOD (initialized by the `1 estimator) is sometimes severely biased by

the outliers; it only works better than the `1 estimator when its threshold is set properly such

that the outlier observations 15-20 are all identified at the beginning. When the threshold of
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Figure 2.8. Number of phone calls (million) in the years 1950-1973 fitted by: (a) all
methods (with tuned parameter). (b) Least Squares, `1 estimator, AROSI, and Θ-IPOD

(the parameters of AROSI and Θ-IPOD both vary from 3 to 180).

Θ -IPOD is set larger than 137 (the outlier observations 19 and 20 can still be detected at

the beginning), it will finally converge to the least squares solution. This demonstrates one

important robustness property of AROSI over Θ -IPOD: the tolerance to unidentified outliers.

Table 2.1 documents the details of AROSI regarding its estimated outlier support set

Sc
k and the corresponding m(ASk) at the end of each iteration k under different α, as well

as the estimated x upon convergence (without the reprojection step). AROSI converges in

either 2 or 3 iterations (note that Sc
k = Sc

k−1 implies convergence). The least squares gives the

solution xLS = (5.041,−260.059), which is severely biased by the outliers. The `1 estimator

gives the solution x`1 = (1.580,−78.522). As m(A) = 5, which is smaller than the number

of outliers (there are 6 large outliers and 2 moderate outliers), the performance of the `1

estimator is not guaranteed. However, we can see that with α ranging from 3 to 121, AROSI

successfully identifies some outliers, and more importantly, the number of remaining outliers

contained in Sk−1 is less than the corresponding m(ASk−1), which guarantees the performance
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of AROSI in the last iteration k.

Table 2.1. Behavior of AROSI under different α

1st iter. 2nd iter. 3rd iter. x̂ (no reprojection)
α Sc

1 m(AS1) Sc
2 m(AS2) Sc

3 x̂(1) x̂(2)
3 1,13, 15-24 2 14-21 2 14-21 1.125 -54.000
4 15-24 3 14-21 2 14-21 1.125 -54.000

5-7 15-24 3 15-21 2 15-21 1.115 -53.280
8 15-23 3 15-21 2 15-21 1.115 -53.280
9 15-22 2 15-21 2 15-21 1.115 -53.280

10 15-21 2 15-21 2 CNVG 1.115 -53.280
11-18 15-20 3 15-21 2 15-21 1.115 -53.280
19-96 15-20 3 15-20 3 CNVG 1.115 -53.280
97-99 16-20 3 15-20 3 15-20 1.115 -53.280
100 17-20 4 15-20 3 15-20 1.115 -53.280

101-104 17-20 4 16-20 3 16-20 1.133 -54.233
105-116 17-20 4 17-20 4 CNVG 1.151 -55.309
117-121 18-20 4 17-20 4 17-20 1.152 -55.349
122-131 18-20 4 18-20 4 CNVG 1.173 -56.609
132-137 19-20 5 18-20 4 18-20 1.173 -56.609
138-153 19-20 5 19-20 5 CNVG 1.173 -56.609
154-158 20 5 19-20 5 19-20 1.173 -56.609
159-180 20 5 20 5 CNVG 1.173 -56.609

2.5 Conclusion

We proposed a novel robust linear regression method AROSI based on `0 regular-

ization. It assumes that outliers are sparse and result in large observation errors. Several

properties of AROSI such as convergence, exact recovery or recovery error bound are derived.

Through extensive simulation studies and comparisons with state-of-the-art methods,

we have shown that AROSI achieves the overall best quality of recovery (in terms of exact

recovery, recovery error, outlier support recovery), and it runs much faster than the competing
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methods like BSRR. Comparisons on a real dataset further demonstrate the robustness of

AROSI and its advantage over the `1 estimator, Θ -IPOD, and the `1 regularization method.

Chapter 2, in part, is a reprint of the material as it appears in the paper: J. Liu,

P. C. Cosman and B. D. Rao, "Robust Linear Regression via `0 Regularization," in IEEE

Transactions on Signal Processing, vol. 66, no. 3, pp. 698-713, 1 Feb.1, 2018. The

dissertation author was the primary investigator and author of this paper.

2.6 Appendices

2.6.1 Proof of Theorem 2.1

The proof is divided into the following three parts: a) monotonic decrease in the

objective function prior to convergence, b) convergence in a finite number of steps, and c)

local optimality of the cluster point.

a) Strictly decreasing behavior of J(x(k), e(k)) before convergence

As defined earlier, Sk := {i : e(k)
i = 0}. We now denote its complementary set

Sc
k := {i : e(k)

i , 0}. Define JSk(x, e) ,
∑

i∈Sk
(|(y − Ax − e)i| + αI(ei , 0)) and JSc

k
(x, e) ,∑

i∈Sc
k
(|(y − Ax − e)i| + αI(ei , 0)). So we have J(x, e) = JSk(x, e) + JSc

k
(x, e).

For any i ∈ Sk, e(k)
i = 0. Hence

JSk(x, e(k)) =
∑
i∈Sk

(|(y − Ax − e(k))i| + αI(e(k)
i , 0))

=
∑
i∈Sk

|(y − Ax)i| = ‖ySk − ASk x‖1. (2.12)

In Step 1, since x(k+1) ∈ arg minx ‖ySk − ASk x‖1, we have

JSk(x(k+1), e(k)) ≤ JSk(x(k), e(k)), (2.13)
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where the equality holds if and only if

‖ySk − ASk x(k+1)‖1 = ‖ySk − ASk x(k)‖1. (2.14)

In Step 2, JSk(x(k+1), e) =
∑

i∈Sk
(|(y−Ax(k+1))i−ei|+αI(ei , 0)), and from (2.5) we know

that e(k+1)
i ∈ arg minei(|(y−Ax(k+1))i−ei|+αI(ei , 0)). Thus JSk(x(k+1), e(k+1)) ≤ JSk(x(k+1), e(k)).

Utilizing (2.13) we have JSk(x(k+1), e(k+1)) ≤ JSk(x(k), e(k)).

For any i ∈ Sc
k , e(k)

i , 0. From (2.5)-(2.6), we know that the upper bound for

JSc
k
(x( j), e( j)), j = 1, 2, . . . is α × |Sc

k |, and JSc
k
(x(k), e(k)) equals this upper bound. Hence

JSc
k
(x(k+1), e(k+1)) ≤ JSc

k
(x(k), e(k)).

In sum, we have J(x(k+1), e(k+1)) ≤ J(x(k), e(k)). So the value of the objective function

is non-increasing in each iteration. As the objective function is non-negative, it will always

converge.

If J(x(k+1), e(k+1)) = J(x(k), e(k)), we must have equality to hold in (2.13), which implies

x(k+1) = x(k) according to (2.14) and Step 1. x(k+1) = x(k) ensures e(k+1) = e(k) and S k+1 = Sk.

Similarly S k+1 = Sk implies x(k+2) = x(k+1), and further e(k+2) = e(k+1) and S k+2 = S k+1 and so

on. So (x(k), e(k)) = (x(k+1), e(k+1)) = (x(k+2), e(k+2)) = . . ., which is a fixed point of AROSI.

Thus it follows that the objective function is strictly decreasing before convergence.

b) Convergence in a finite number of iterations

Now, we show that the objective function must converge in a finite number of iterations.

As the number of different index sets Sk is finite (less than 2m ), it suffices to show that the

same index set will not appear again before the objective function converges.

Note that the value of the objective function J(x(k+1), e(k+1)) is determined by x(k+1) (as

e(k+1) is also determined by x(k+1) according to Step 2).

We first show that the same index set can not reappear in nearby iterations before

convergence. Suppose Sp = Sp−1, as x(p) = arg minx ‖ySp−1 − ASp−1 x‖1 = arg minx ‖ySp −
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ASp x‖1, and x(p+1) = arg minx ‖ySp−ASp x‖1, we must have ‖ySp−ASp x(p+1)‖1 = ‖ySp−ASp x(p)‖1,

so the algorithm sets x(p+1) = x(p) in Step 1. Then we must have convergence of the objective

function.

Then it remains to show that the same index set can not reappear in non-consecutive

iterations before convergence.

Before convergence, we have J(x(1), e(1)) > . . . > J(x(p+1), e(p+1)) > ... > J(x(r), e(r)) >

J(x(r+1), e(r+1)) > . . . The corresponding index sets in Step 1 of each iteration are S0, . . . , Sp,

. . . , Sr−1, Sr, . . . We only need to show that Sr , Sp for any r > p + 1. As proved earlier,

any x(r+1) ∈ arg minx ‖ySr − ASr x‖1 ensures J(x(r+1), e(r+1)) ≤ J(x(r), e(r)), see (2.13). Suppose

Sr = Sp, then for any x(p+1) ∈ arg minx ‖ySp − ASp x‖1, x(p+1) ∈ arg minx ‖ySr − ASr x‖1, thus

J(x(p+1), e(p+1)) ≤ J(x(r), e(r)), which is contradictory to J(x(p+1), e(p+1)) > J(x(r), e(r)).

c) Convergence to a local optimum

We now prove that when J(x, e) converges ( J(x(k+1), e(k+1)) = J(x(k), e(k)) ), ( x(k), e(k))

is a local optimum. From (2.4), we have J(x(k), e(k)) = ‖y − Ax(k) − e(k)‖1 + α‖e(k)‖0.

Let (∆x,∆e) be a small deformation vector around ( x(k), e(k)). Then

J(x(k) + ∆x, e(k) + ∆e) = ‖y − A(x(k) + ∆x) − (e(k) + ∆e)‖1 + α‖e(k) + ∆e‖0. (2.15)

Next we will show that J(x(k) + ∆x, e(k) + ∆e) ≥ J(x(k), e(k)) as long as ‖∆e‖1 is small

enough.

Notice that when ‖∆e‖1 is small enough, αI(e(k)
i +∆ei , 0) =


αI(∆ei , 0), e(k)

i = 0

αI(e(k)
i , 0), otherwise

.

So

α‖e(k) + ∆e‖0 = α‖e(k)‖0 + α
∑
i∈Sk

I(∆ei , 0) = α‖e(k)‖0 + α‖∆eSk‖0. (2.16)
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As

‖y − A(x(k) + ∆x) − (e(k) + ∆e)‖1

≥‖ySk − ASk(x(k) + ∆x) − (e(k)
Sk

+ ∆eSk)‖1
(a)
=‖ySk − ASk(x(k) + ∆x) − ∆eSk‖1

≥‖ySk − ASk(x(k) + ∆x)‖1 − ‖∆eSk‖1

(b)
≥‖ySk − ASk x(k+1)‖1 − ‖∆eSk‖1

(c)
=‖ySk − ASk x(k)‖1 − ‖∆eSk‖1

(d)
=‖ySk − ASk x(k) − e(k)

Sk
‖1 − ‖∆eSk‖1

(e)
=‖y − Ax(k) − e(k)‖1 − ‖∆eSk‖1, (2.17)

where step (a) and (d) follow from the fact that e(k)
Sk

= 0, step (b) is from our Step 1, step (c) is

from the convergence, see (2.14), and step (e) is from (2.5).

Substituting (2.16) and (2.17) in (2.15), we have

J(x(k) + ∆x, e(k) + ∆e)

≥‖y − Ax(k) − e(k)‖1 + α‖e(k)‖0 + α‖∆eSk‖0 − ‖∆eSk‖1

=J(x(k), e(k)) + α‖∆eSk‖0 − ‖∆eSk‖1.

As long as ‖∆e‖1 is small enough (as ‖∆eSk‖1 ≤ ‖∆e‖1,then ‖∆eSk‖1 is also small

enough), we will have α‖∆eSk‖0 − ‖∆eSk‖1 ≥ 0, and thus J(x(k) + ∆x, e(k) + ∆e) ≥ J(x(k), e(k)).

So (x(k), e(k)) is a local optimum of J(x, e).

In the extreme case where Sk = ∅, AROSI also sets x(k+1) = x(k). Theorem 2.1 still

holds.
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2.6.2 Proof of Lemma 2.1

Let us first show that AT c must be full column rank for any T ⊂M with |T | = t ≤ q.

As m(A) ≥ q ≥ t, from Proposition 2.2, ct(A) > 1
2 . If t = 0, AT c = A is full column rank. If

t > 0, suppose AT c is not full column rank. Then there exists g ∈ Rn and g , 0, such that

AT cg = 0. Thus ming∈Rn

g,0

∑
i∈T c |aT

i g|∑
i∈M |aT

i g| = 0. This contradicts ct(A) = minT⊂M
|T |=t

ming∈Rn

g,0

∑
i∈T c |aT

i g|∑
i∈M |aT

i g| >
1
2 ,

so AT c must be full column rank.

The following proof is motivated by the proof of Theorem 3.4 in [84].

From Proposition 2.2, we must have m > 2q. Let q
′

= q − d0.5te. As 0 ≤ t ≤ q, we

have 0 ≤ q
′

≤ q, so m > 2q ≥ t + q
′

. For any given index set T ⊂M with |T | = t, and any

index set R ⊂ T c with |R| = q
′

, and any g ∈ Rn, g , 0, define index set L := { indices of

the largest d0.5te entries of |AT g| } , and index set E = R ∪ L. As R ⊂ T c and L ⊂ T , so

R ∩L = ∅, |E| = |R| + |L| = q
′

+ d0.5te = q. We have T = (T \L) ∪L, T c = R ∪ (T c\R),

M = T ∪ T c = (T \L) ∪L ∪R ∪ (T c\R) = (T \L) ∪E ∪ (T c\R), Ec = (T \L) ∪ (T c\R).

As (T \L) ∩ (T c\R) = ∅, we have
∑

i∈T c\R |a
T
i g| =

∑
i∈Ec |aT

i g| −
∑

i∈T \L |a
T
i g|.

Let us first consider the case q > 0.

As m(A) ≥ q = |E|, from Definition 2.1 we know
∑

i∈M\E |a
T
i g|∑

i∈M |aT
i g| ≥ cq(A) with 1

2 <

cq(A) < 1, this leads to
∑

i∈Ec |aT
i g| ≥ cq(A)

1−cq(A)

∑
i∈E |a

T
i g|, where cq(A)

1−cq(A) > 1.

So we have

∑
i∈T c\R

|aT
i g|

≥
cq(A)

1 − cq(A)

∑
i∈E

|aT
i g| −

∑
i∈T \L

|aT
i g|

=
cq(A)

1 − cq(A)
(
∑
i∈R

|aT
i g| +

∑
i∈L

|aT
i g|) −

∑
i∈T \L

|aT
i g|

≥
cq(A)

1 − cq(A)

∑
i∈R

|aT
i g| +

∑
i∈L

|aT
i g| −

∑
i∈T \L

|aT
i g|. (2.18)
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As |T | = t, |L| = d0.5te, by the definition of index set L, we must have

∑
i∈L

|aT
i g| −

∑
i∈T \L

|aT
i g| ≥ 0. (2.19)

So from (2.18) and (2.19), we have

∑
i∈T c\R

|aT
i g| ≥

cq(A)
1 − cq(A)

∑
i∈R

|aT
i g|. (2.20)

As 1
2 < cq(A) < 1, (2.20) implies

∑
i∈T c\R |a

T
i g|∑

i∈T c |aT
i g| ≥ cq(A).

So cq−d0.5te(AT c) = min R⊂T c

|R|=q−d0.5te
ming∈Rn

g,0

∑
i∈T c\R |a

T
i g|∑

i∈T c |aT
i g| ≥ cq(A).

For the case q = 0, t must be zero. So cq−d0.5te(AT c) = c0(AT c) = 1 = cq(A).

In sum, we have cq−d0.5te(AT c) ≥ cq(A). As q − t ≤ q − d0.5te, from Proposition 2.1,

we further have cq−t(AT c) ≥ cq−d0.5te(AT c) ≥ cq(A) > 1
2 . From Definition 2.1, we must have

m(AT c) ≥ q − d0.5te ≥ q − t.

2.6.3 Theorem 2 of [72]

Let x ∈ Rn, e ∈ Rm, and set y = Ax + e, where A ∈ Rm×n is full column rank. Then,

x is the unique solution of the problem ming∈Rn ‖y − Ag‖1 for any ‖e‖0 ≤ q if and only if

q ≤m(A).

2.6.4 Lemma 2.3

The following Lemma facilitates the proof of Lemma 2.2 and Theorem 2.7, and is not

introduced in the main text.

Let y = Ax+e+η andE = supp(e) satisfying |E| = q ≤m(A). Denote r`1 = y−Ax`1 ,

where x`1 = arg minx ‖y − Ax‖1. Then ‖(e + η) − r`1‖1 ≤

∑
i∈Ec |ηi |

cq(A)−0.5 ≤
√

m−q‖η‖2
cq(A)−0.5 .

Proof : Let us first quote an important Lemma, from Lemma 1 of [72]: Let E ⊂M ,
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and y, b∗ ∈ Rm, as well as g∗, g ∈ Rn be arbitrary. Define Ec = M\E. If |E| = q ≤ m(A),

then ‖y − Ag − b∗‖1 − ‖y − Ag∗ − b∗‖1 ≥ (2cq(A) − 1) × ‖(A(g − g∗)‖1 − 2
∑

i∈Ec |yi − aT
i g∗ − b∗|.

Setting b∗ = 0, g = x`1 , and g∗ = x in this Lemma, we have 0 ≥ ‖y−Ax`1‖1−‖y−Ax‖1 ≥

(2cq(A) − 1) × ‖A(x`1 − x)‖1 − 2
∑

i∈Ec |yi − aT
i x| = (2cq(A) − 1) × ‖(A(x`1 − x)‖1 − 2

∑
i∈Ec |ηi|,

where the first inequality is from the optimality of x`1 , and the last equality is from the fact

that yi = aT
i x + ηi, ∀ i ∈ Ec.

As q ≤ m(A), from Proposition 2.2, we have cq(A) > 1
2 . So we have

∑
i∈Ec |ηi |

cq(A)−0.5 ≥

‖A(x`1 − x)‖1 = ‖(y − Ax) − (y − Ax`1)‖1 = ‖(e + η) − r`1‖1.

Using the inequality of the norm, we have
∑

i∈Ec |ηi| ≤
√
|Ec|

√∑
i∈Ec |ηi|

2 ≤
√

m − q‖η‖2.

So ‖(e + η) − r`1‖1 ≤

∑
i∈Ec |ηi |

cq(A)−0.5 ≤
√

m−q‖η‖2
cq(A)−0.5 .

2.6.5 Proof of Theorem 2.5

As |E| = q ≤m(A) andEc ⊆ Sk, we have Sc
k ⊆ E and |R| = |E ∩Sk| = |E| − |S

c
k | ≤

m(ASk), and ASk is full column rank from Lemma 2.2, thus the condition of Corollary 2.1 is

satisfied, ‖x(k+1) − x‖2 is bounded as in (2.11).

As Sk ⊆ M , for ∀B′ ∈ Q′|R| defined on ASk , it has corresponding index set B

defined on A, and
(
ASk

)
B

′ = AB. From the definition ofQ′|R|, there exists a set L ⊆ Sk (both

defined on A), L ⊇ B, |L| = |Sk| − |R|, such that the following holds:
∑

i∈B
⋃

(Sk\L) |ai
T v| ≥∑

i∈(L\B) |ai
T v|, where v is any of the singular vectors corresponding to the smallest sin-

gular value of the |B| × n submatrix AB (of ASk): ‖ABv‖2 = σmin(AB) ‖v‖2. Then we

have
∑

i∈B
⋃

(M\L) |ai
T v| ≥

∑
i∈B

⋃
(Sk\L) |ai

T v| ≥
∑

i∈(L\B) |ai
T v|. As |L| = |Sk| − |R| =

|Sk| −
(
|E| −

∣∣∣Sck ∣∣∣) = |Sk| +
∣∣∣Sck ∣∣∣ − |E| = m − |E|, from Definition 2.2 we know thatB ∈ Q|E|.

SoQ′|R| (defined in terms of ASk) corresponds to a subset ofQ|E| (defined in terms of A). Thus{(
ASk

)
B

′ : B
′
∈ Q′|R|

}
⊆ {

AB : B ∈ Q|E|
}
. So maxB′

∈Q
′

|R|

1
σmin

(
(ASk)B′

) ≤ maxB∈Q|E|
1

σmin(AB) .

Together with
∥∥∥ηSk

∥∥∥
2
≤ ‖η‖2, this shows that the bound in (2.11) is smaller than or equal to

the bound in (2.10).
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2.6.6 Proof of Lemma 2.2

As Sk ⊇ E
c, so Sc

k ⊆ E and |Sc
k | ≤ |E| = q. From Lemma 2.1 we know that ASk is

full column rank, m(ASk) ≥ q − |Sc
k | and c(q−|Sc

k |)
(ASk) ≥ cq(A) > 1

2 . So

c(q−|Sc
k |)

(ASk) − 0.5 ≥ cq(A) − 0.5 > 0. (2.21)

As Sc
k ⊆ E, so |supp(eSk)| = ‖eSk‖0 = ‖e‖0− |Sc

k | = q− |Sc
k | ≤m(ASk). From Lemma

2.3 and (2.21), we have ‖(e + η)Sk − r(k+1)
Sk
‖1 ≤

√
m−q‖η‖2

c(q−|Sc
k |)

(ASk )−0.5 ≤
√

m−q‖η‖2
cq(A)−0.5 .

For ∀i ∈ Ec ⊆ Sk, ei = 0, |r(k+1)
i | − |ηi| ≤ |ηi − r(k+1)

i | = |(e + η)i − r(k+1)
i | ≤ ‖(e + η)Sk −

r(k+1)
Sk
‖1.

So |r(k+1)
i | ≤ |ηi| + ‖(e + η)Sk − r(k+1)

Sk
‖1 ≤ ‖η‖∞ + ‖(e + η)Sk − r(k+1)

Sk
‖1 ≤ ‖η‖∞ +

√
m−q‖η‖2

cq(A)−0.5 .

2.6.7 Proof of Theorem 2.6

a) In Step 1 of the (k + 1) st (e.g., k = 0, 1, . . . ) iteration, if Sk ⊇ E
c, from Lemma 2.2

we have ∀i ∈ Ec, |r(k+1)
i | ≤ ‖η‖∞ + C1 < α, then e(k+1)

i = 0 according to (2.5). Then

S k+1 := {i : e(k+1)
i = 0} ⊇ Ec.

As S 0 = M ⊇ Ec, we will have Sk ⊇ E
c for any k ∈ Z≥0.

b) As Sk ⊇ E
c for any k ∈ Z≥0, from Lemma 2.2 we have ‖(e+η)Sk−r(k+1)

Sk
‖1 ≤

√
m−q‖η‖2

cq(A)−0.5

for any k ∈ Z≥0. From Lemma 2.1, we know AEc is full column rank and thus σmin(AEc) > 0.

As
√

m−q‖η‖2
cq(A)−0.5 ≥ ‖(e + η)Sk − r(k+1)

Sk
‖1 = ‖(ySk − ASk x) − (ySk − ASk x(k+1))‖1 = ‖ASk(x − x(k+1))‖1

≥ ‖AEc(x − x(k+1))‖1 ≥ ‖AEc(x − x(k+1))‖2 ≥ σmin(AEc)‖x − x(k+1)‖2, we have ‖x − x(k+1)‖2 ≤
√

m−q‖η‖2
σmin(AEc )×(cq(A)−0.5) for any k ∈ Z≥0.

For any k ∈ Z≥0,∀i ∈ P⊆E, we have |ei| − |ηi| −
∣∣∣r(k+1)

i

∣∣∣ ≤ ∣∣∣(e + η)i

∣∣∣ − ∣∣∣r(k+1)
i

∣∣∣ ≤∣∣∣(e + η)i − r(k+1)
i

∣∣∣ ≤ ∥∥∥∥ (
e + η − r(k+1)

)
E

∥∥∥∥
2

=
∥∥∥∥ (y − Ax)E −

(
y − Ax(k+1)

)
E

∥∥∥∥
2

=
∥∥∥∥ AE

(
x − x(k+1)

)∥∥∥∥
2

≤ σmax (AE)
∥∥∥ x − x(k+1)

∥∥∥
2
≤

σmax(AE)
√

m−q ‖ η‖ 2

σmin(AEc )×(cq(A)−0.5) = C3, so
∣∣∣r(k+1)

i

∣∣∣ ≥ |ei| − |ηi| −C3 ≥
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min {|ei|: i ∈ P } − ‖ η‖∞ −C3 >α, then e(k+1)
i , 0 according to (2.5). Then P ⊆ Sck+1 := {i :

e(k+1)
i , 0} for any k ∈ Z≥0.

c) For any k ∈ Z≥0, as Sk ⊇ E
c and |E| = q ≤ m(A), from Theorem 2.5 we know

‖x(k+1) − x‖2 is bounded.

d) In Step 1 of the first iteration, as the condition of Lemma 2.2 is satisfied, we have

‖e + η − r(1)‖1 ≤ C1. So ∀i ∈ E, we have |ei| − |ηi| − |r
(1)
i | ≤ |(e + η)i| − |r

(1)
i | ≤ |(e + η)i − r(1)

i | ≤

‖e + η − r(1)‖1 ≤ C1, thus |r(1)
i | ≥ |ei| − |ηi| − C1 ≥ min{|ei| : ei , 0} − ‖η‖∞ − C1 ≥ min{|ei| :

ei , 0} − ‖η‖∞ −C2 > α. Then e(1)
i , 0 according to (2.5). Then E ⊆ Sc

1 := {i : e(1)
i , 0}. As

α > ‖η‖∞ + C1 guarantees S1 ⊇ E
c, we have S1 = Ec.

In Step 1 of the second iteration, as S1 = Ec, from Lemma 2.2, we have ‖(e +

η)Ec − r(2)
Ec‖1 ≤

√
m−q‖η‖2

c0(A)−0.5 = 2
√

m − q‖η‖2. As ‖(e + η)Ec − r(2)
Ec‖1 = ‖(yEc − AEc x) − (yEc −

AEc x(2))‖1 = ‖AEc(x − x(2))‖1 ≥ ‖AEc(x − x(2))‖2 ≥ σmin(AEc)‖x − x(2)‖2, we have ‖x − x(2)‖2 ≤

2
√

m − q‖η‖2/σmin(AEc).

For ∀i ∈ E, we have |ei|−|ηi|−|r
(2)
i | ≤ |(e+η)i|−|r

(2)
i | ≤ |(e+η)i−r(2)

i | ≤ ‖(e+η−r(2))E‖2 =

‖(y−Ax)E−(y−Ax(2))E‖2 = ‖AEx−x(2))‖2 ≤ σmax(AE)‖x−x(2)‖2 ≤ σmax(AE)× 2
√

m−q‖η‖2
σmin(AEc ) ≤ C2,

thus |r(2)
i | ≥ |ei| − |ηi| −C2 ≥ min{|ei| : ei , 0} − ‖η‖∞ −C2 > α.

Then e(2)
i , 0 according to (2.5). Then E ⊆ Sc

2 := {i : e(2)
i , 0}. As α > ‖η‖∞ + C1

guarantees S2 ⊇ E
c, we must have S2 = Ec.

Finally, S2 = Ec = S1 implies x(3) = x(2), and further S3 = S2 = Ec. So AROSI

converges in 3 iterations and recovers the support of outliers exactly.

e) In the reprojection step, with a threshold in the range of (‖η‖∞+C1,min {|ei|: ei , 0}

− ‖η‖∞ − C2), we have Ê = E and ẑ = arg minz

∥∥∥ y − [A (IE)T ]z
∥∥∥

2
, x̂ = ẑ{1,...,n}. As AEc is

full column rank, [A (IE)T ] must also be full column rank (by inspecting the matrix structure).

Actually, one can verify that the above x̂ is also the unique solution of minx ‖ yEc − AEc x‖ 2,

so x̂= AEc
†yEc= AEc

† (AEc x + ηEc) = x + AEc
†ηEc . We have ‖ x̂ − x‖ 2 =

∥∥∥ AEc
†ηEc

∥∥∥
2
≤∥∥∥ AEc

†
∥∥∥

2 ‖ ηEc‖ 2 =
‖ ηEc ‖ 2
σmin( AEc ) .
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Next, we want to show that the bound here is better than the bound in (2.10). Let v1

be any of the singular vectors corresponding to the smallest singular value of the AEc . Since

AEc is full column rank, we have ‖AEcv1‖2 = σmin(AEc)‖v1‖2 > 0.

In Definition 2.2, we let the set L = Ec, and let the set B be a subset of Ec that

corresponds to the m − q −m(A) (according to Proposition 2.2 it must be positive) smallest

entries of |AEcv1|. Then |B
⋃
Lc| = m −m(A), and |L\B| = m(A). Since cm(A)(A) > 0.5,

we must have (2.9) holds. So the above setB is a possibly extreme set with q, i.e.,B ∈ Q|E|.

Since σmin(AB)‖v1‖2 ≤ ‖ABv1‖2 ≤ ‖AEcv1‖2 = σmin(AEc)‖v1‖2 (where the second inequality

becomes a strict inequality as long as m(A) > 0 ), we have σmin(AB) ≤ σmin(AEc). Then it

follows that the bound in (2.10) is larger or equal to ‖ηEc‖2/σmin(AEc), and is strictly larger

when m(A) > 0.

2.6.8 Proof of Theorem 2.7

a-b) By definition, we have |P | = t ≤ m(A), and P ⊆ G ⊆ E. We can view ei

indexed by E\G (can be an empty set) as part of the noise, i.e., we define the new noise and

corruptions as η
′

i =


ei + ηi, i ∈ E\G

ηi, otherwise

, e
′

i =


ei, i ∈ G

0, otherwise

, then y = Ax + e
′

+ η
′

with

‖e
′

‖0 = |G| = m(A) = q1.

In Step 1 of the first iteration, we have ‖(e+η)−r(1)‖1 = ‖(e
′

+η
′

)−r(1)‖1 ≤

∑
i∈Gc |η

′

i |

cq1 (A)−0.5 from

Lemma 2.3. So ‖(e+η)−r(1)‖1 ≤

∑
i∈Gc |η

′

i |

cq1 (A)−0.5 ≤

∑
i∈Gc |ηi+ei |

cq1 (A)−0.5 ≤

∑
i∈Gc |ηi |+

∑
i∈Gc |ei |

cq1 (A)−0.5 =
∑

i∈Gc |ηi |+
∑

i∈E\G |ei |

cq1 (A)−0.5 ≤
√

m−q1‖η‖2+
∑

i∈E\G |ei |

cq1 (A)−0.5 .

For ∀i ∈ P , we have |ei|−|ηi|−|r
(1)
i | ≤ |(e+η)i|−|r

(1)
i | ≤ |(e+η)i−r(1)

i | ≤ ‖e+η−r(1)‖1 ≤
√

m−q1‖η‖2+
∑

i∈E\G |ei |

cq1 (A)−0.5 ≤ w2, thus |r(1)
i | ≥ |ei| − |ηi| − w2 ≥ min{|ei| : i ∈ P } − ‖η‖∞ − w2 > α. Then

e(1)
i , 0 according to (2.5). Then P ⊆ Sc

1 := {i : e(1)
i , 0}.

For ∀i ∈ Ec, ei = 0, |r(1)
i | − |ηi| ≤ |ηi − r(1)

i | = |(e + η)i − r(1)
i | ≤ ‖(e + η) − r(1)‖1 ≤
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√
m−q1‖η‖2+

∑
i∈E\G |ei |

cq1 (A)−0.5 ≤ w1 . So |r(1)
i | ≤ |ηi|+ w1 ≤ ‖η‖∞ + w1 < α. Then e(1)

i = 0 according to (2.5).

Then Ec ⊆ S1 := {i : e(1)
i = 0}.

Next we will show for the (k + 1) st (e.g., k = 1, 2, . . . ) iteration, if Ec ⊆ Sk and

P ⊆ Sc
k , then we will have Ec ⊆ S k+1 and P ⊆ S c

k+1. Thus Ec ⊆ Sk and P ⊆ S c
k+1 for any

k ∈ Z≥0.

As m(A) ≥ |P |, from Lemma 2.1, we know that AP c is full column rank, and

m(AP c) ≥ m(A) − d0.5 × |P |e. So m(A) ≤ m(AP c) + d0.5 × |P |e. Combined with

|E| ≤m(A)+ b t
2c = m(A)+ b0.5× |P |c, we have |E| ≤m(AP c)+ d0.5× |P |e+ b0.5× |P |c =

m(AP c) + |P |. So

|E| − |P | ≤m(AP c). (2.22)

As P ⊆ Sc
k , so Sk ⊆ P

c. We have Ec ⊆ Sk ⊆ P
c and thus |P c\Sk| ≤ |P

c\Ec| =

|E\P | = |E| − |P | ≤m(AP c) = q2. From Lemma 2.1, we have that ASk is full column rank,

m(ASk) ≥m(AP c) − |P c\Sk| = q2 − |P
c\Sk|, and

cq2−|P c\Sk |(ASk) ≥ cq2(AP c) >
1
2
. (2.23)

Combined with (2.22), we have

m(ASk) ≥|E| − |P | − |P
c\Sk|

=|E\P | − |P c\Sk|

=|P c\Ec| − |P c\Sk|

=(|P c| − |Ec|) − (|P c| − |Sk|)

=|Sk| − |E
c| = |Sk\E

c|. (2.24)
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From Lemma 2.3, we know that

‖((e + η)Sk − r(k+1)
Sk
‖1 ≤

√
m − q‖(η‖2

c|Sk\Ec |(ASk) − 0.5
=

√
m − q‖(η‖2

c|P c\Ec |−|P c\Sk |(ASk) − 0.5
. (2.25)

As |P c\Ec| ≤ q2, so |P c\Ec| − |P c\Sk| ≤ q2 − |P
c\Sk|, and from Proposition 2.1 we

have c|P c\Ec |−|P c\Sk |(ASk) ≥ cq2−|P c\Sk |(ASk). Together with (2.23), we have c|P c\Ec |−|P c\Sk |(ASk)−

0.5 ≥ cq2(AP c) − 0.5 > 0. Combined with (2.25) we have ‖(e + η)Sk − r(k+1)
Sk
‖1 ≤

√
m−q‖η‖2

cq2 (AP c )−0.5 .

For ∀i ∈ Ec ⊆ Sk, ei = 0, |r(k+1)
i | − |ηi| ≤ |ηi − r(k+1)

i | = |(e + η)i − r(k+1)
i | ≤ ‖(e + η)Sk −

r(k+1)
Sk
‖1 ≤

√
m−q‖η‖2

cq2 (AP c )−0.5 ≤ w1. So |r(k+1)
i | ≤ |ηi| + w1 ≤ ‖η‖∞ + w1 < α. Then e(k+1)

i = 0 according

to (2.5). Then Ec ⊆ Sk+1 := {i : e(k+1)
i = 0}.

As |P c\Ec| ≤ m(AP c) and AP c is full column rank, from Lemma 2.1, we know

AEc is also full column rank, so σmin(AEc) > 0. As
√

m−q‖η‖2
cq2 (AP c )−0.5 ≥ ‖(e + η)Sk − r(k+1)

Sk
‖1 =

‖(ySk−ASk x)−(ySk−ASk x(k+1))‖1 = ‖ASk(x−x(k+1))‖1 ≥ ‖AEc(x−x(k+1))‖1 ≥ ‖AEc(x−x(k+1))‖2 ≥

σmin(AEc)‖x − x(k+1)‖2, so we have ‖x − x(k+1)‖2 ≤
√

m−q‖η‖2
σmin(AEc )×(cq2 (AP c )−0.5) .

For∀i ∈ P , we have |ei| − |ηi| −
∣∣∣r(k+1)

i

∣∣∣ ≤ ∣∣∣(e + η)i

∣∣∣ − ∣∣∣r(k+1)
i

∣∣∣ ≤ ∣∣∣(e + η)i − r(k+1)
i

∣∣∣
≤

∥∥∥∥(e + η − r(k+1)
)
P

∥∥∥∥
2

=
∥∥∥∥ (y − Ax)P −

(
y − Ax(k+1)

)
P

∥∥∥∥
2

=
∥∥∥∥AP

(
x − x(k+1)

)∥∥∥∥
2

≤ σmax (AP )
∥∥∥ x − x(k+1)

∥∥∥
2
≤

σmax(AP )
√

m−q ‖ η‖ 2

σmin(AEc )×(cq2 (APc )−0.5) ≤ w2, so
∣∣∣r(k+1)

i

∣∣∣ ≥ |ei| − |ηi| − w2 ≥

min {|ei|: i ∈ P } − ‖η‖∞ − w2 > α, then e(k+1)
i , 0 according to (2.5). Then P ⊆ Sck+1 := {i :

e(k+1)
i , 0}.

c) As for any k ∈ Z≥1, we have m(ASk) ≥ |Sk\E
c| = |E ∩ Sk| from (2.24). Since ASk

is full column rank, the condition of Corollary 2.1 is satisfied. So ‖x(k+1) − x‖2 is bounded.
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Chapter 3

Robust PCA via `0-`1 Regularization

Robustly identifying the underlying low-rank structure in the presence of the outliers

is also very challenging as the support and magnitude of the outliers are not known beforehand.

In this chapter, we first propose a novel objective function where the nuclear norm captures

the low-rank term, `0-‘norm’ addresses the sparse outlier term, and an `1-norm to deal with

the additive noise term. The associated algorithm, termed Sparsity Regularized Principal

Component Pursuit (SRPCP), is guaranteed to recover the underlying low-rank matrix exactly

(or stably) under certain conditions. The advantage over the `1 relaxation approach will be

demonstrated both theoretically and empirically. We further propose an Iterative Reweighted

SRPCP method that uses log-determinant to capture the low-rank matrix instead, which leads

to further performance improvement.

3.1 Introduction

Principal component analysis (PCA) is arguably one of the most widely used data

analysis methods with numerous applications. However, its performance can significantly

degrade if the data is corrupted by even a few outliers. As mentioned in a recent review [1],
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outliers are becoming even more common in today’s big data era. The goal of Robust

PCA [39] is to recover the low-rank matrix L0 and sparse matrix E0 (which often models the

outlier corruptions) from their composition M (possibly with additional dense noise). This

problem has received a lot of interest in the past decade, with applications ranging from video

analysis, face recognition, to recommendation systems. Robust PCA was first studied in the

noiseless case [39]–[41], the underlying optimization problem is [41]:

min
L,E

rank(L) + λ‖E‖0 s.t. M = L + E, (3.1)

which is known to be NP-hard. To make the problem computationally viable, [39]–[41]

suggest relaxing the rank minimization to nuclear norm minimization and the `0-‘norm’

penalty to an `1-norm penalty, i.e.,

min
L,E
‖L‖∗ + λ‖E‖1 s.t. M = L + E, (3.2)

leading to a convex optimization based approach known as Principal Component Pursuit

(PCP). Interestingly, one can recover both L0 and E0 exactly under certain conditions by

solving this convex program. Since then, many variants have been proposed with the goal

being either lower complexity or better performance. For a comprehensive review, we refer

the interested readers to [42]. In this chapter, we focus on modifications to the objective

function to deal with the outliers as well as possible dense inlier noise in order to achieve

better performance. We provide a list of various existing regularization schemes below for

comparison. The interested readers can find further details in the references therein.

As better surrogates for the original `0-‘norm’, the `p-norm and log-sum function on

the sparse outlier term E are adopted in [43]. The corresponding optimization leads to the

reweighted `1-norm utilizing the majorization minimization (MM) framework [85].

In real world applications, besides the sparse ’corruptions’ E0, there is often small
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magnitude dense inlier noise N. The resulting model is:

M = L0 + E0 + N. (3.3)

To address inlier noise, Zhou et al. [44] solved the following relaxed version of (3.2),

known as Stable Principal Component Pursuit (SPCP):

min
L,E
‖L‖∗ + λ‖E‖1 s.t. ‖M − L − E‖F ≤ δ. (3.4)

It was shown that the estimation error can be bounded under certain conditions.

Hsu et al. [45] analyzed the Lagrange form of (3.4):

min
L,E
‖L‖∗ + λ‖E‖1 +

1
2µ
‖M − L − E‖2F . (3.5)

In light of the M-estimators, He et al. [36] proposed replacing ‖E‖1 by implicit

regularizers of robust M-estimators, i.e., ϕ(E), and then solving the following optimization

problem:

min
L,E

µ‖L‖∗ + ϕ(E) +
1
2
‖M − L − E‖2F . (3.6)

Similarly, Chartrand [46] proposed to replace the `1-norm by implicit regularizers

(also called proximal p-norm [46]) of the p-Huber function.

To better approximate the `0-‘norm’, rather than using the `1-norm, Sun et al. [47]

used the capped `1-norm on both the sparse term E and the singular values of L:

min
L,E

1
θ1

∑
i

min{σi(L), θ1} +
1
θ2

∑
i, j

min{|Ei, j|, θ2}

s.t. ‖M − L − E‖F ≤ δ. (3.7)
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In [48] and [49], the following greedy approach was proposed that directly tackles the

`0-‘norm’:

min
L,E
‖M − L − E‖2F s.t. rank(L) ≤ r, ‖E‖0 ≤ k. (3.8)

Also, Ulfarsson et al. [50] proposed to use an `0 penalty to enforce both sparsity and low rank:

min
A,B,E
‖M − ABT − E‖2F + h2‖E‖0 s.t. BT B = Ir. (3.9)

However, these methods need to specify the rank (and sparsity), which are usually unknown

in practice and hard to specify.

In the context of detecting contiguous outliers in the low-rank representation (termed

DECOLOR), Zhou et al. [38] proposed an objective function whose degenerate form can be

shown equivalent to the following:

‖L‖∗ + β‖E‖0 + λ‖M − L − E‖2F . (3.10)

In this chapter, we first study a new objective function proposed in our recent confer-

ence paper [86]:

‖L‖∗ + β‖E‖0 + λ‖M − L − E‖1. (3.11)

This `0-`1 regularization framework is inspired by our robust linear regression work [87]. We

will discuss the relation with our previous works in Section 3.2.A. Compared with (3.5)-(3.7),

we use genuine `0-‘norm’ to enforce the sparseness of the outliers, and employ the `1-norm

instead of the usual Frobenius norm on the noise term. Compared with (3.10), the only

difference is the replacement of the Frobenius norm by the `1-norm on the noise term. But

this replacement makes a big difference in that it not only significantly improves the recovery

performances, but also enjoys many theoretical guarantees as we will see later.

We propose and analyze a new algorithm to minimize the objective function (3.11)
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in Section 3.2. An important byproduct of our analysis is that both PCP and its missing

entry version are shown to be stable to dense noise. Inspired by the superior performance of

log-determinant [51], [52] in pursuing the low-rank structure, in Section 3.3, we replace the

nuclear norm in (3.11) by the log-determinant, propose and analyze an algorithm to minimize

the corresponding objective function. In both cases, our proposed algorithms iteratively detect

and exclude suspected outlier entries and perform robust noisy matrix completion on the

remaining entries. The robustness in each iteration results from the `1-norm on the noise term.

Section 3.4 empirically studies the performance of the proposed methods and verify their

effectiveness via two applications. Conclusions and future work are discussed in Section 3.5.

Notation: Throughout this chapter, bold capital letters denote matrices, e.g., L, where

L(k) denotes the updated L in the kth iteration. The ‖L‖∞, ‖L‖1, and ‖L‖0 denote the `∞-norm,

`1-norm, and `0-‘norm’1 of L seen as a long vector, respectively, while ‖L‖F , ‖L‖∗, and ‖L‖

denote the Frobenius norm, nuclear norm, and the operator norm of the matrix L, respectively.

For a given subset Φ ⊆ [n1] × [n2], |Φ| is its cardinality, PΦ(M) is the matrix obtained by

setting the entries of M that are outside the index set Φ to zero. We use Φ(k) to denote the

updated Φ in the kth iteration.

3.2 Sparsity Regularized Principal Component Pursuit

3.2.1 Algorithm

We consider the following objective function to recover the low-rank component and

sparse component:

J(L,E) = ‖L‖∗ + β‖E‖0 + λ‖M − L − E‖1. (3.12)

To minimize the above nonconvex objective funciton, we propose an alternating

1`0-‘norm’ is not homogeneous and, hence, does not satisfy the axioms of a norm.
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minimization ’like’ approach that alternates between the following two steps:

Step 1: With index set Φ(k) (which depends on E(k)), update

L(k+1) = arg min
L

(‖L‖∗ + λ‖PΦ(k)(M − L)‖1);

Step 2: Fix L(k+1), update

E(k+1) = arg min
E

(β‖E‖0 + λ‖M − L(k+1) − E‖1),

Φ(k+1) = {(i, j)|E(k+1)
i, j = 0}.

The detailed procedure is summarized in Algorithm 1, where L(k+1) and E(k+1) denote

the updated L and E at the (k + 1)st iteration. Φ(k) is the index set of the entries that are

estimated to be free of large outliers in the kth iteration. This algorithm is a modification of

our previous vanilla alternating minimization algorithm [86]. The distinguishing part w.r.t.

our previous algorithm is Step 1, where we exclude the estimated outlier entries for estimating

L. As we will show in the numerical results, this leads to significant improvements in recovery

performance.

At first glance, it seems more reasonable to use the Frobenius norm rather than the

`1-norm in the third term of the objective function (3.12) and in Step 1, especially for Gaussian

noise. This would become exactly the method DECOLOR with objective function (3.10). We

want to point out that, in Step 1 of each iteration, though we aim to exclude outlier entries

for estimating L, we do not expect that all the outliers are identified by the previous iteration.

It is likely that some outliers are not identified making it safer to use the `1-norm in Step

1 than the Frobenius norm, which is very sensitive to large residuals. As we will see in

the numerical studies, this leads to significant improvements over DECOLOR in recovery

performance. It is useful to note that in the noiseless matrix completion literature, there is a

heuristic approach [88] that gradually deletes the suspected outliers in the observed entries
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Algorithm 1 Sparsity Regularized Principal Component Pursuit (SRPCP)
Input: M, β, λ
Initialization: k = 0, E(0) = 0, Φ(0) = {(i, j)|E(0)

i, j = 0}
While J(L,E) not converged DO:
Iteration k + 1

Step 1: L(k+1) = arg minL(‖L‖∗ + λ‖PΦ(k)(M − L)‖1);
If ‖L(k+1)‖∗ + λ‖PΦ(k)(M − L(k+1))‖1 = ‖L(k)‖∗ + λ‖PΦ(k)(M − L(k))‖1,
further update L(k+1) = L(k).

Step 2: update

E(k+1)
i, j =

{ 0, |(M − L(k+1))i, j| ≤
β

λ

(M − L(k+1))i, j, otherwise

Φ(k+1) = {(i, j)|E(k+1)
i, j = 0}

k := k + 1

End While

Output: L and E
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and models the sparsity of remaining outliers via the `1-norm.

Our whole framework can be viewed as a 2D extension of our robust linear regression

framework [87], where we use the genuine `0-‘norm’ to enforce the sparseness of the outliers

and employ an `1-norm on the noise term. In the iterations, we delete the estimated outlier

entries and still use a robust `1-norm for estimating the signal. We refer the interested

readers to [87] for a detailed analysis of the benefits of using this framework under the linear

regression setting.

In case there are multiple solutions for minL ‖L‖∗ + λ‖PΦ(k)(M−L)‖1, and L(k) happens

to be one of these solutions, we set L(k+1) = L(k) to make the algorithm more stable.

At the beginning, we have no information about outliers except that they are sparse.

So we simply initialize E(0) = 0 and the corresponding index set Φ(0) to be all entries. Then in

Step 1 of the first iteration, SRPCP solves the following:

min
L
‖L‖∗ + λ‖M − L‖1, (3.13)

which is equivalent to PCP in (3.2).

Solutions for Each Step:

In Step 1, the subproblem is convex, which is equivalent to the following problem:

minL,E ‖L‖∗ + λ‖PΦ(k)E‖1, s.t. M = L + E. An alternating direction method of multipliers

(ADMM) algorithm was proposed in [89] to solve this, and this problem was shown to be

equivalent to PCP with missing entries [39], [90], [91] in terms of L:

min
L,E
‖L‖∗ + λ‖E‖1, s.t. PΦ(k)M = PΦ(k)(L + E) (3.14)

In Step 2, though the subproblem is not convex, we can directly find the global optimal

solution through elementwise hard thresholding [50], [86], which is detailed in Algorithm 1.

From Step 2 of SRPCP, if any entry of |M − L(k+1)| is larger than β

λ
, this entry will be
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considered as an outlier corrupted entry. In general, β

λ
should be set at least larger than the

inlier noise level. Our analysis shows that under certain conditions on the model parameters,

if β

λ
is greater than some certain threshold, we can guarantee that all the inlier entries are kept

in every iteration and the removed entries are purely outliers. So our preference has been

to set it much larger than the inlier noise level. In practice the parameter λ is fixed, and the

adaptation to the noise level is transferred to parameter β.

Complexity: The main computational cost of SRPCP is Step 1. Assume n1 ≤ n2.

The complexity of ADMM [89] to solve Step 1 is O(n2
1n2

1
ε
) for achieving an error of ε.

Our Theorem 3.1 in next subsection guarantees that SRPCP converges in a finite number of

iterations, and we empirically notice that it usually converges in 10 iterations. Therefore the

worst case complexity of SRPCP would be the number of iterations times O(n2
1n2

1
ε
). However,

we use the previous iteration’s L(k) as the warm-start for the ADMM to solve current iteration’s

Step 1. As a result, the actual complexity is less than that. It is worth noting that, to solve

large-scale problems, [89] further proposed factorizing the low-rank matrix into two much

smaller matrices to approximately solve Step 1, with some theoretical guarantees.

3.2.2 Theoretical Analysis

In this subsection, we study the main properties of SRPCP. We first establish its

convergence property. Then, we analyze its behaviors in both the noiseless case and the noisy

case. Finally, we show that both PCP and its missing entry version are stable to dense noise.

3.2.2.1 Convergence Property

The following theorem establishes the convergence of the iterates generated by SRPCP

to a local minimizer.

Theorem 3.1. (Convergence property) SRPCP converges in a finite number of iterations to a

68



fixed point, which is a local optimum. Moreover, the objective function is strictly decreasing

before convergence.

The proof of the Theorem is detailed in Appendix 3.6.1.

3.2.2.2 Noiseless Case Analysis

In this subsection, we analyze the behaviors of SRPCP when there is no inlier noise,

i.e., M = L0 +E0. We first show the exact recovery property of SRPCP under the deterministic

sparsity model. Then, we turn to the random sparsity model, aiming to show the potential

for SRPCP to go beyond PCP. The analysis benefits greatly from the results in [90]. We first

quote the incoherence condition with parameter µ from [39] that is needed for this discussion.

The singular value decomposition of L0 ∈ Rn1×n2 is

L0 = UΣVT =

r∑
i=1

σiuivT
i ,

where r is the rank of L0, σ1, ..., σr are the positive singular values, and U = [u1, ..., ur],V =

[v1, ..., vr] are the matrices of left- and right-singular vectors. Then, the incoherence condition

with parameter µ states that

max
i
‖UT ei‖

2
2 ≤

µr
n1
, max

i
‖VT ei‖

2
2 ≤

µr
n2
, (3.15)

and

‖UVT ‖∞ ≤

√
µr

n1n2
. (3.16)

We also borrow some definitions from [90] for analyzing deterministic outliers/errors:

1) Let d be the maximum number of outliers on each row/column; 2) ‖X‖ ≤ ηd‖X‖∞ for any

matrix X that is supported on the set of outlier entries; 3) Let α =

√
µrd
n1

+

√
µrd
n2

+

√
µrd

max(n1,n2) .

Now we are ready to state the exact recovery property of SRPCP.
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Theorem 3.2. (Exact recovery in noiseless case) If
√

µrd
min(n1,n2)

(
1 +

√
min(n1,n2)
max(n1,n2) + η

√
d

max(n1,n2)

)
≤

0.5, SRPCP with λ ∈ [ 1
1−2α

√
µr

n1n2
, 1−α
ηd −

√
µr

n1n2
] and any β > 0 recovers L0 exactly in two

iterations. If additionally2 β < λmin {|(E0)i, j| : (E0)i, j , 0}, then SRPCP recovers both L0 and

E0 exactly.

The proof of the Theorem is in Appendix 3.6.2. The proof is based on Theorem 3

of [90], which studies the deterministic outliers/errors and erasures, and counts them as the

same. Actually under the condition of Theorem 3.2, both PCP and SRPCP succeed. Next,

we borrow a recovery guarantee for random errors and erasures from [90], and discuss the

potential for SRPCP to go beyond PCP. In the random model, each entry is observed (e.g.,

∈ Φ in (3.14)) with probability at least p0, and each entry is an outlier/error with probability

at most τ.

Theorem 3.3. (Simplified Theorem 2 of [90]) Set n = min{n1, n2}. Assume that the signs

of nonzero entries of E0 are symmetric ±1 Bernoulli random variables independent of all

others. Then, there exist absolute constants C and ρr independent of n, µ, and r such that, with

probability at least 1 −Cn−10, (3.14) with tradeoff parameter λ = 1
32
√

p0n recovers L0 exactly

provided that p0(1 − τ)2 ≥ ρr
µr log6 n

n .

Note that the conclusion of the above theorem holds for a range of values of λ [90]. In the

following discussion, we assume that the λ we set is always in the valid range of values for

exact recovery. As pointed out by [90], one interesting observation is that p0 can approach zero

faster than 1−τ. For Step 1 of our first iteration, we have p0 = 1. Suppose (1−τ)2 < ρr
µr log6 n

n ,

the condition for exact recovery is not satisfied. In Step 2, let the fraction of nonzero entries

in the estimated E(1) be cτ. Then in Step 1 of the second iteration, we exclude these entries

for estimating L. Among these excluded entries, p percent of them are indeed outliers. For

2This additional constraint is not needed if we are aware that there is no inlier noise, since E0 can be
recovered exactly by M − L0.
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Table 3.1. Value of 1 − (1−τ)(1−
√

1−cτ)
cτ for different c and τ

HH
HHHHc

τ
0.01 0.05 0.1 0.2 0.3 0.4

0.5 0.5044 0.5220 0.5442 0.5895 0.6358 0.6833

1 0.5038 0.5189 0.5381 0.5777 0.6189 0.6619

1.5 0.5031 0.5157 0.5317 0.5644 0.5981 0.6325

this subproblem, we can view each entry as being observed with probability 1 − cτ, and each

entry is an outlier/error with probability τ−pcτ
1−cτ . Using the above theorem with this parameter

setting, we have that if

(1 − cτ)
(
1 −

τ − pcτ
1 − cτ

)2
> (1 − τ)2, (3.17)

then we take a forward step toward exact recovery. Exact recovery can be guaranteed w.h.p.

if (1 − cτ)(1 − τ−pcτ
1−cτ )2 ≥ ρr

µr log6 n
n .

For (3.17) to hold, we require p > 1 − (1−τ)(1−
√

1−cτ)
cτ . The following Table 3.1 lists

corresponding values for different c and τ. We can see that the requirement on p is not very

demanding in order to make a forward step toward exact recovery.

For simplicity, we assume that in Step 2, the fraction of nonzero entries in the estimated E(2)

is also cτ. If the fraction of the true outliers among those nonzero entries is larger than p, then

we take a further step toward exact recovery in Step 1 of the third iteration, and so on. In our

numerical experiments (Section 4.5.1), we notice that there are many cases where PCP (the

first iteration of SRPCP) does not give exact recovery, while SRPCP gives exact recovery at

the end of the iterations.

3.2.2.3 Analysis in the Noisy Case

In this subsection, we analyze the behaviors of SRPCP when there is dense inlier

noise, i.e., M = L0 + E0 + N. To simplify analysis and presentation, we assume that the

matrices are all square and write n = n1 = n2 in this subsection. The conclusions can be
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extended to the general rectangular matrices. We first introduce some definitions from [40],

which first establishes the deterministic guarantee for PCP.

Given a matrix pair X0 = (L0,E0), let the space Ω be the set of all matrices that have

support contained within the support of E0:

Ω = {Z ∈ Rn×n|supp(Z) ⊆ supp(E0)} ⊂ Rn×n.

Let PΩ denote the orthogonal projection onto this space. Then PΩ(M) is the matrix

obtained by setting the entries of M that are outside the support of E0 to zero. The subspace

orthogonal to Ω is denoted Ωc, and it consists of matrices with complementary support, i.e.,

supported on supp(E0)c. The projection onto Ωc is denoted PΩc .

Let r = rank(L0), and let L0 = UΣVT denote the compact singular value decomposition

of L0, with U,V ∈ Rn×r and Σ ∈ Rr×r. We will let T denote the subspace generated by matrices

with the same column space or row space as L0:

T = {UAT + BVT |A,B ∈ Rn×r} ⊂ Rn×n,

and PT be the projection operator onto this subspace under the inner product < M1,M2 >=

tr(MT
1 M2). We have PT (M) = PUM +MPV −PUMPV . Here PU = UUT and PV = VVT . The

space orthogonal to T is denoted T⊥, and the corresponding projection is denotedPT⊥(M). The

space T⊥ consists of matrices with row-space orthogonal to the row-space of L0 and column-

space orthogonal to the column-space of L0. We have that PT⊥(M) = (In×n−PU)M(In×n−PV).

Define ξ � maxZ∈T,‖Z‖≤1 ‖Z‖∞, and υ � maxZ∈Ω,‖Z‖∞≤1 ‖Z‖. Theorem 3.4 states that the

estimation error of SRPCP is bounded when υξ < 1
8 . As discussed in [90], this condition

implies the condition in Theorem 3.2 holds. The analysis benefits greatly from the analysis of

PCP in the noiseless case [40] and the analysis of SPCP [44] for the noisy case.
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Theorem 3.4. Define C(ξ, υ) =

√
11
12

(1−5ξυ)(1−2ξυ)
ξ2υ

. Suppose υξ < 1
8 , λ ∈ ( ξ

1−5υξ ,
1−4ξυ
υ

), fix any

β > λ[2+
√

2
2 + C(ξ, υ)(

√
n + 3λn)]‖N‖F , SRPCP with input M = L0 + E0 + N guarantees that:

(a) Significant outlier entries at iteration i denoted by G(i) and defined as

G(1) := {(i, j) : |(E0)i, j| >
β

λ
+ [

2 +
√

2
2

+ C(ξ, υ)(
√

n + 3λn)]‖N‖F}

G(k+1) := {(i, j) : |(E0)i, j| >
β

λ
+ [

2 +
√

2
2

+ C(ξ, υ)(
√

n + 3λ
√

n2 − |G(k)|)]‖N‖F}

satisfy G(k) ⊆ supp(E(k)) ⊆ supp(E0), and G(1) ⊆ G(2) ⊆ ...

(b) ‖L(1) − L0‖F ≤ [
√

2
2 + C(ξ, υ)(

√
n + 3λn)]‖N‖F

‖L(k+1) − L0‖F ≤ [
√

2
2 + C(ξ, υ)(

√
n + 3λ

√
n2 − |G(k)|)]‖N‖F

The proof of the Theorem is in Appendix 3.6.3.

Note that we have defined Φ(k) = {(i, j)|E(k)
i, j = 0} in Algorithm 1. So we have

supp(E(k)) = Φc
(k), and G(k) ⊆ Φc

(k).

Remark 3.1 First, (a) guarantees that there is no false alarm when identifying outlier entries

in the noisy case. Further, all the significant outliers (e.g., indexed by G(1)), which are

usually the most troublesome ones, are guaranteed to be identified and excluded for the next

iteration. Note that if the magnitudes of the nonzero entries of E0 are all large enough, e.g.,

G(2) = supp(E0), we can even guarantee the exact support recovery of the outliers.

Second, G(1) ⊆ G(2) ⊆ ... implies |G(1)| ≤ |G(2)| ≤ ..., so more and more outliers can be

guaranteed to be identified and excluded for the next iteration. Then, we immediately see that

the error bound for ‖L(k)−L0‖F is decreasing with iterations. This agrees with the intuition that

correcting erasures (e.g., our excluded entries) with known locations is easier than correcting

errors with unknown locations [90]. We remind the reader that G(1) ⊆ G(2) ⊆ ... does not

imply Φc
(1) ⊆ Φc

(2) ⊆ ...

Third, the bound on ‖L(k) − L0‖F shows that the widely used PCP (our first iteration)

and its missing entry version in (3.14) (which is equivalent to our Step 1 in terms of L) are

actually stable to dense inlier noise! Note that they were both designed and analyzed for the
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noiseless case. The detailed bound for (3.14) can be found in (3.31) in Appendix 3.6.3.

Lastly, note that the parameters λ and β we required do not depend on the magnitudes

of the outliers.

3.3 Iterative Reweighted Sparsity Regularized Principal

Component Pursuit

3.3.1 Algorithm

Recall that in the objective function (3.12), the nuclear norm is the convex surrogate

for the rank. In this section, inspired by the efficacy of nonconvex log-determinant heuristic

[51], [52] for promoting low-rank, we propose the minimization of the following nonconvex

objective function:

J(L,E) =γ log det ((LLT )
1
2 + εI) + β‖E‖0 + λ0‖M − L − E‖1

=γ
∑

i

log(σi(L) + ε) + β‖E‖0 + λ0‖M − L − E‖1 (3.18)

where λ0 is fixed to be 1
√

n , and ε is a small numerical constant.

To minimize the above objective function, we use the same framework as SRPCP and

alternate between the following two steps:

Step 1: With index set Φ(k) (which depends on E(k)), update L(k+1) such that

γ
∑

i

log(σi(L(k+1)) + ε) + λ0‖PΦ(k)(M − L(k+1))‖1

≤γ
∑

i

log(σi(L(k)) + ε) + λ0‖PΦ(k)(M − L(k))‖1;
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Step 2: Fix L(k+1), update

E(k+1) = arg min
E

(β‖E‖0 + λ0‖M − L(k+1) − E‖1),

Φ(k+1) = {(i, j)|E(k+1)
i, j = 0}.

The subproblem in Step 1 is difficult to solve. Using the majorization minimization

(MM) framework, we construct the upper bounding surrogate function for γ
∑

i log(σi(L)+ε)+

λ0‖PΦ(k)(M−L)‖1 at L(k) as γ
∑

i[log(σi(L(k))+ε)+ 1
σi(L(k))+ε

(σi(L)−σi(L(k)))]+λ0‖PΦ(k)(M−L)‖1,

and update L(k+1) such that:

‖L(k+1)‖w,∗ + λ0‖PΦ(k)(M − L(k+1))‖1 ≤ ‖L(k)‖w,∗ + λ0‖PΦ(k)(M − L(k))‖1 (3.19)

where ‖ · ‖w,∗ is the weighted nuclear norm with the weights wi =
γ

σi(L(k))+ε
.

Step 2 is similar to step 2 in SRPCP and has a closed form solution.

Similar to SRPCP, we initialize E(0) = 0 and the corresponding index set Φ(0) to be

all entries. The detailed procedure is summarized in Algorithm 2. Compared with SRPCP

in Algorithm 1, the main difference is Step 1. Here we use the weighted nuclear norm and

iteratively update the weight. So we call it Iterative Reweighted Sparsity Regularized Principal

Component Pursuit (IR-SRPCP).

Solving the subproblem (3.19): Note that in Step 1 of the first iteration, we have the

initial weight vector w = (1, ..., 1), but the L(0) is not defined. However, we can directly

get the optimal solution of the convex problem L(1) = arg minL(‖L‖∗ + λ0‖PΦ(0)(M − L)‖1) =

arg minL(‖L‖∗ + λ0‖M − L‖1). In the following iterations, the subproblem is nonconvex in

general, due to the ascending nature of the weight vector, i.e., w1 ≤ w2 ≤ ... ≤ wd, where d =

min(n1, n2). Notice that ‖L‖w,∗ =
∑

i wiσi =
∑

i wdσi−
∑

i(wd−wi)σi = wd‖L‖∗−
∑

i(wd−wi)σi.

Since (wd − w1) ≥ (wd − w2) ≥ ... ≥ (wd − wd) = 0, the term
∑

i(wd − wi)σi is convex [51].

Therefore the objective in (3.19) can be expressed as the difference of two convex functions:
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Algorithm 2 Iterative Reweighted Sparsity Regularized Principal Component Pursuit (IR-
SRPCP)

Input: M, γ, β

Initialization: k = 0, w = (1, ..., 1), E(0) = 0, Φ(0) = {(i, j)|E(0)
i, j = 0}

While J(L,E) not converged DO:

Iteration k + 1

Step 1: fix E(k) and Φ(k), update L(k+1) such that

‖L(k+1)‖w,∗ + λ0‖PΦ(k)(M − L(k+1))‖1 ≤ ‖L(k)‖w,∗ + λ0‖PΦ(k)(M − L(k))‖1,
update wi =

γ

σi(L(k+1))+ε
.

Step 2: fix L(k+1), update

E(k+1)
i, j =

{ 0, |(M − L(k+1))i, j| ≤
β

λ0

(M − L(k+1))i, j, otherwise

Φ(k+1) = {(i, j)|E(k+1)
i, j = 0}

k := k + 1

End While

Output: L and E
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wd‖L‖∗ + λ0‖PΦ(k)(M − L)‖1 and
∑

i(wd − wi)σi. Thus (3.19) can be guaranteed if we apply

the convex-concave procedure [92], [93] to solve this Difference of Convex (DC) problem.

However, it is known to have a slow convergence rate. We adapt the ADMM approach

proposed in [94] instead to minimize ‖L‖w,∗ + λ0‖PΦ(k)(M − L)‖1, which is equivalent to

minL,E ‖L‖w,∗ + λ0‖PΦ(k)E‖1, s.t. M = L + E. Its augmented Lagrange function is

Γ(L,E,Y, θ) = ‖L‖w,∗ + λ0‖PΦ(k)E‖1+ < Y,M − L − E > +
θ

2
‖M − L − E‖2F .

The detailed ADMM procedure is summarized in Algorithm 3. We call this Weighted

Nuclear Norm Minimization for Robust Matrix Completion (WNNM-RMC). In Algorithm 3,

S λ0
θ(k)

(scalar) = sign(scalar) × max(|scalar| − λ0
θ(k) , 0) is the soft-thresholding operator, while

S w
θ(k)

(Σ) is the generalized soft-thresholding operator with weight vector w [94]: [S w
θ(k)

(Σ)]i,i =

max(Σi,i −
wi
θ(k) , 0). It is worth noting that when we update L with others fixed in Algorithm 3,

the solution is globally optimal [51], [94].

Complexity: Assume n1 ≤ n2. The per-iteration complexity of WNNM-RMC is

O(n2
1n2), but it only requires O(log( 1

ε
)) number of iterations to achieve an error of ε, as we will

see in Theorem 3.6. For the overall method IR-SRPCP, the worst case complexity would be

the number of outer-iterations times O(n2
1n2 log( 1

ε
)). However, we use the previous iteration’s

L(k) as the warm-start for WNNM-RMC to solve current iteration’s Step 1. Hence the actual

complexity is less than that. Empirically, we notice that IR-SRPCP usually converges in

around 10 iterations. For large-scale problems, it is quite promising to use the same bilinear

factorization strategy [89] to approximately solve the Step 1 of IR-SRPCP, which is our future

work.
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Algorithm 3 Weighted Nuclear Norm Minimization for Robust Matrix Completion (WNNM-
RMC)

Input: M, non-descending weight w,Φ

Initialization: θ(0) > 0, k = 0, ρ > 1, L(0), Y(0)

DO:

Iteration k + 1

//update E(k+1) = arg minE Γ(L(k),E,Y(k), θ(k))

E(k+1)
i, j =

{ S λ0
θ(k)

((M + Y(k)/θ(k) − L(k))i, j),(i, j) ∈ Φ

(M + Y(k)/θ(k) − L(k))i, j, otherwise

//update L(k+1) = arg minL Γ(L,E(k+1),Y(k), θ(k))
(U,Σ,V)=svd(M + Y(k)/θ(k) − E(k+1)),
L(k+1) = US w

θ(k)
(Σ)VT ,

//update Y
Y(k+1) = Y(k) + θ(k)(M − L(k+1) − E(k+1))

//update θ
θ(k+1) = ρθ(k)

k := k + 1

While ‖M − L(k+1) − E(k+1)‖F/‖M‖F > tolerance

Output: L

3.3.2 Theoretical Analysis

In this section, we establish the convergence properties of both IR-SRPCP and WNNM-

RMC, and provide some justifications for IR-SRPCP.

Theorem 3.5. (Convergence property of IR-SRPCP) The value of the objective function is

non-increasing in each iteration of IR-SRPCP and it will always converge.

The proof is similar to part a) of the Appendix 3.6.1, and can be found in the supple-
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mental material.

Theorem 3.6. (Convergence property of WNNM-RMC) The sequences {L(k)} and {E(k)}

generated by WNNM-RMC converge Q-linearly. Further, lim
k→∞
‖M − L(k) − E(k)‖F = 0.

The proof is inspired by the proof in [94], and can be found in the supplemental

material.

Theorem 3.6 shows that the iterates L(k) and E(k) of WNNM-RMC approach feasibility,

i.e., L(k) + E(k) → M.

Justifications for IR-SRPCP: Note that the first iteration of IR-SRPCP is the same as the

first iteration of SRPCP. Hence all the guarantees for the first iteration of SRPCP also apply

here. In the following iterations, the only difference between them is the utilization of the

weighted nuclear norm in IR-SRPCP, where the weight is proportional to 1
σi(L(k))+ε

. Intuitively,

for the estimated small singular values, it uses large weights in the next iteration to encourage

them to be 0, thus promoting low-rank. While for the estimated large singular values, it uses

small weights in the next iteration to allow them to be nonzero. This reweighting mechanism

is the same as that of reweighted `1 [95] in sparse recovery, which often achieves superior

performance than the unweighted one. This has also been adopted in [51], [94] for promoting

low-rank, and outperforms the unweighted nuclear norm.

3.4 Empirical Studies

In this section, we first empirically study and compare the proposed methods with

the state-of-the-art methods on the simulated data. Then we demonstrate the effectiveness

of the proposed methods on two applications. The methods we compared are AltProj [96],

IR-PCP [51], [94], Capped Norm [97], PCP [39]–[41], SPCP [44], [98], DECOLOR [38], our

previous SRPCP method [86], and He’s implicit regularizer (GAPG_Welsch) [36] that corre-
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sponds to Welsch M-estimation. We also compare a variant of PCP, termed PCP_LogSum,

which replaces the `1-norm by the Log-sum function as in [43]. Note that the last six methods

all use nuclear norm for the low-rank term. So the comparison of our newly proposed SRPCP

with them can clearly demonstrate the effectiveness of various regularizations in dealing with

the outliers. We additionally compare with the nuclear norm based matrix completion [99],

[100], where the locations of the outliers are known, and purely observe outlier-free entries.

This serves as an oracle solution, and can be viewed as a performance upper bound for nuclear

norm based robust PCA methods. IR-PCP replaces the nuclear norm in PCP by reweighted

nuclear norm (the same as IR-SRPCP) in the iterations. The comparison of our proposed

IR-SRPCP with the IR-PCP method can also demonstrate the benefits of using our framework.

Complexity comparision: Assume n1 ≤ n2. The fast Robust PCA method AltProj

has complexity O(n1n2r2
max log( 1

ε
)), where rmax is an upper bound for the true rank that needs

to be specified. The complexities of PCP, SPCP, and the M-estimator are all O(n2
1n2

1
ε
), which

is the per-iteration complexity of SRPCP, SRPCP_previous, DECOLOR, Capped Norm, and

PCP_LogSum. Both IR-PCP and IR-SRPCP have complexity O(n2
1n2 log(1

ε
)) per iteration.

3.4.1 Comparison on Simulated Data

Our first experimental setup is similar to [97], [98], which is as follows:

1) Given the rank r, the low-rank component L0 is built as L0 = ABT , where A and B are

randomly generated n × r standard Gaussian matrices;

2) Given the fraction ρ (corruption rate) of non-zero entries in E0, the support of E0 is

chosen uniformly at random with size ρn2, and the value of each non-zero entry is

independently drawn from a uniform distribution over the interval [−100, 100];

3) Each entry of the noise N is independently drawn from a Gaussian distribution with

mean 0 and variance σ2.
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4) Finally, generate M = L0 + E0 + N. L0 and E0 from M are estimated using different

methods.

For each r ∈ {1 : 40}, and each ρ ∈ {0.01 : 0.01 : 0.50}, we repeat the above procedure

10 times for σ = 0.01 and 0.1 respectively, and repeat 100 times for the noiseless case (σ = 0).

We fix n = 100, λ = 1/
√

n, and set γ = 40 for both IR-SRPCP and IR-PCP, β = 2 for

SRPCP_previous, SRPCP, and IR-SRPCP, such that the threshold β

λ
= 20. The parameters

of other methods are carefully tuned. For evaluation, the estimated L̂ is compared with the

ground truth via the Relative Error ‖L̂−L0‖F
‖L0‖F

. We report the average Relative Error over all trials

in the log scale as in [94], i.e., 2 log(Average( ‖L̂−L0‖F
‖L0‖F

)). Additionally, since we are interested

in exact recovery in the noiseless case, we measure the percentage of exact recovery over 100

trials. Due to the limitation of precision, we consider exact recovery to be when the Relative

Error is less than 10−5.

a) Noisy case

Fig. 3.1 shows the average Relative Error of different methods in the log scale when

σ = 0.1. Note that in the color scale bar, 0 means 2 log(Average( ‖L̂−L0‖F
‖L0‖F

)) = 0, i.e., the

average Relative Error is 1. The red color therefore indicates very poor recovery. Similarly,

-2 means the average Relative Error is 10−1, indicated by the green color. First, note that PCP

does show its stability against the noise, as we proved. Capped Norm and SRPCP_previous

have performance very similar to PCP. Compared with these three methods, PCP_LogSum

and DECOLOR can tolerate slightly more fractions of outliers when the rank is low, while

tolerate less outliers when the rank is high. On the contrary, the M-estimator performs worse

than PCP when the rank is low, only slightly better when the rank is high. SPCP and AltProj

do not perform better than PCP. Compared with these above mentioned methods, our newly

proposed SRPCP has better performance and can tolerate more outliers. Its performance is

relatively closer to the oracle solution, i.e., Matrix Completion. The superior performance of

Matrix Completion agrees with the intuition that correcting erasures with known locations
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is easier than correcting errors with unknown locations [90]. In Robust PCA, there is no

knowledge of the locations and values of the outliers/errors. While in matrix completion,

the locations of the erasures are known. Finally, comparing IR-SRPCP with IR-PCP, we can

clearly see the improvement achieved using our regularization framework.

The conclusion for the case σ = 0.01 is very similar, except that the advantage

of utilizing iterative reweighted nuclear norm becomes clear, which can be found in the

supplemental material. We have also tested smaller magnitude of outlier corruptions (e.g.,

drawn from U[−20, 20]), and the difference in performance between the methods becomes

smaller, but the relative performance remains unchanged.

In the above benchmark setting, the generated outlier corruptions (∼ U[−100, 100])

are balanced on either side of the low-rank subspace to some extent3. We further test the

case where the outlier corruptions are single-sided, i.e., drawn from U[0, 100], and noise

σ = 0.1. The corresponding results are shown in Fig. 3.2. We can see that the performances

of most methods degrade in this more challenging case. The superiority of the proposed

methods becomes more clear. Note that DECOLOR uses the same optimization scheme as

SRPCP, except that it uses Frobenius norm instead of the `1-norm in Step 1 of Algorithm 1.

This is exactly the `1-norm that makes our SRPCP much more robust than DECOLOR to the

unidentified outliers.

b) Noiseless case

Fig. 3.3 shows the percentage of exact recovery over 100 trials for each method when

outlier corruptions drawn from U[−100, 100]. Recall that a trial is declared success if the

Relative Error is less than 10−5. First, we find that DECOLOR, PCP_LogSum, and the

M-estimator never have 100 percent exact recovery in the experiments. For other methods,

there is a large region in which the recovery is exact. SRPCP_previous has larger success

region than PCP, while it is smaller than the new SRPCP method proposed in this chapter. The

3We thank a reviewer for this observation and suggestion to use single-sided outliers.

82



IR-PCP has much larger success region than PCP, owing to the iterative reweighted nuclear

norm. Our proposed IR-SRPCP has even larger success region than IR-PCP by tolerating

more fraction of outliers. When the rank is 5, PCP has 100 percent exact recovery up to 4%

corruption rate, and it is 4%, 10%, 17%, 31%, 46% for Capped Norm, SRPCP_previous,

SRPCP, IR-PCP, and IR-SRPCP, respectively. The oracle solution has much larger success

region than all the nuclear norm based robust PCA methods, as observed in [39].

3.4.2 Comparison on Text Removal

In this subsection, we follow [57] to conduct a text removal image processing simula-

tion, where the results are directly visible. The ground truth low-rank clean image is a 256 ×

256 matrix with rank equal to 10, whose values are between -1 and 1. We embed black text in

the image, where the values of the text are randomly drawn from U[−1, 0]. The text can be

viewed as sparse outliers. We fix λ = 1/
√

256, and set γ = 10 for both IR-SRPCP and IR-PCP,

β = λ/4 for both SRPCP and IR-SRPCP, such that the threshold β

λ
= 0.25. For evaluation,

we compare the recovered low-rank matrix with the ground truth via `2 error, i.e., ‖L̂ − L0‖F .

As the support (mask) of the text is also of interest, the mask of the text is usually obtained

by thresholding the estimated Ê. We vary the threshold as in [57] to find the maximum

F-measure for each method, where the F-measure is commonly used in pattern recognition

and is defined as: 2(precision · recall)/(precision+recall). Fig. 4.3 shows the results of each

method, where we additionally compare with the BRMF method proposed in [57]. It can be

seen that most methods failed to return a clean low-rank image. Our proposed SRPCP is able

to recover a relatively clean low-rank image and performs best in terms of F-measure and `2

error. DECOLOR also performs well on this task. Our proposed IR-SRPCP performs better

than the IR-PCP method.
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3.4.3 Comparison on Real Data

Lastly, we compare the performance of the methods on first 200 frames of a surveil-

lance video4, where each frame is converted to a column vector, and the integer pixel values

are scaled to the range [-1,1]. The background over the frames is the low-rank component

and the moving objects over the frames can be considered as the sparse component. We fix

λ = 1/
√

max (n1, n2), and set γ = 40 for both IR-SRPCP and IR-PCP, β = λ/10 for both

SRPCP and IR-SRPCP, such that the threshold β

λ
= 0.1. Fig. 4.4 shows the recovered back-

ground (left) and foreground (right) in the first frame. SRPCP and IR-SRPCP successfully

separate the foreground with the background. For other methods, we can see that there are

some ghosting effects in the recovered backgrounds. Note that the lighting at the top of the

video changes over the frames. SRPCP, IR-SRPCP, and the M-estimator consider this as the

foreground.

3.5 Conclusions and Future Work

In this chapter, we proposed SRPCP and IR-SRPCP to recover the low-rank compo-

nent and sparse component from possibly noisy observations. Both methods use the `0-`1

regularization framework to deal with the outliers and noise. Theoretical results are provided

to support the methods. SRPCP has more performance guarantees than IR-SRPCP, e.g., exact

recovery in the noiseless case, while IR-SRPCP demonstrates superior performance in the

simulation studies. Empirical studies show that IR-SRPCP actually has much larger exact

recovery region than SRPCP. One of future directions is to explore the exact recovery property

of IR-SRPCP. Applications on text removal and background modeling further support the

efficacy and advantage of the proposed methods.

4http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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As mentioned before, another future work is to use the same bilinear factorization

strategy [89] to approximately solve the Step 1 of IR-SRPCP for large-scale problems. It’s

also very promising to build the connections between the original solution and the solution

obtained via using bilinear factorization.

Chapter 3, in part, is a reprint of the material as it appears in the paper: J. Liu and B. D.

Rao, "Robust PCA via `0-`1 Regularization," in IEEE Transactions on Signal Processing, vol.

67, no. 2, pp. 535-549, 15 Jan.15, 2019. The dissertation author was the primary investigator

and author of this paper.

3.6 Appendices

3.6.1 Proof of Theorem 3.1

Proof. The proof is divided into the following three parts: a) monotonic decrease in the

objective function prior to convergence, b) convergence in a finite number of steps, and c)

local optimality of the cluster point.

a) Strictly decreasing behavior of J(L(k),E(k)) before convergence

We first define following terms: Φc
(k) = {(i, j)|E(k)

i, j , 0},

JΦ(k)(L,E) , ‖L‖∗ +
∑

(i, j)∈Φ(k)

β‖Ei, j‖0 + λ|(M − L − E)i, j|,

JΦc
(k)

(L,E) ,
∑

(i, j)∈Φc
(k)

β‖Ei, j‖0 + λ|(M − L − E)i, j|,

So J(L,E) = JΦ(k)(L,E) + JΦc
(k)

(L,E).

For any (i, j) ∈ Φ(k),E(k)
i, j = 0. Hence JΦ(k)(L,E

(k)) = ‖L‖∗ +
∑

(i, j)∈Φ(k)
(β‖E(k)

i, j ‖0 +

λ|(M − L − E(k))i, j|) = ‖L‖∗ +
∑

(i, j)∈Φ(k)
λ|(M − L)i, j| = ‖L‖∗ + λ‖PΦ(k)(M − L)‖1.
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In Step 1, since L(k+1) ∈ arg minL(‖L‖∗ + λ‖PΦ(k)(M − L)‖1), we have

JΦ(k)(L
(k+1),E(k)) ≤ JΦ(k)(L

(k),E(k)) (3.20)

where the equality holds if and only if

‖L(k+1)‖∗ + λ‖PΦ(k)(M − L(k+1))‖1 = ‖L(k)‖∗ + λ‖PΦ(k)(M − L(k))‖1. (3.21)

In Step 2, JΦ(k)(L
(k+1),E(k+1)) � ‖L(k+1)‖∗ +

∑
(i, j)∈Φ(k)

(β‖E(k+1)
i, j ‖0 + λ|(M − L(k+1) − E(k+1))i, j|) ≤

‖L(k+1)‖∗+
∑

(i, j)∈Φ(k)
(β‖E(k)

i, j ‖0+λ|(M − L(k+1) − E(k))i, j|) � JΦ(k)(L
(k+1),E(k)),where the inequality

is due to E(k+1)
i, j ∈ arg minEi, j(β‖Ei, j‖0 + λ|(M − L(k+1) − E)i, j|) in Step 2.

Utilizing (3.20) we have

JΦ(k)(L
(k+1),E(k+1)) ≤ JΦ(k)(L

(k),E(k)). (3.22)

For any (i, j) ∈ Φc
(k),E

(k)
i, j , 0. From Step 2, we know that the upper bound for

JΦc
(k)

(L(t),E(t)), t = 1, 2, ... is β × |Φc
(k)|. Hence

JΦc
(k)

(L(k+1),E(k+1)) ≤ β × |Φc
(k)| = JΦc

(k)
(L(k),E(k)). (3.23)

In summary, we have J(L(k+1),E(k+1)) ≤ J(L(k),E(k)), indicating that the value of the

objective function is non-increasing in each iteration. As the objective function is non-negative,

it will always converge.

If J(L(k+1),E(k+1)) = J(L(k),E(k)), we must have equality hold in (3.20), which implies

L(k+1) = L(k) according to (3.21) and Step 1. L(k+1) = L(k) ensures E(k+1) = E(k) and Φ(k+1) =

Φ(k). Similarly Φ(k+1) = Φ(k) implies L(k+2) = L(k+1), and further E(k+2) = E(k+1) and Φ(k+2) =

Φ(k+1) and so on. So (L(k),E(k)) = (L(k+1),E(k+1)) = (L(k+2),E(k+2)) = · · ·, which is a fixed point
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of SRPCP.

Thus it follows that the objective function is strictly decreasing before convergence.

b) Convergence in a finite number of iterations

Now, we show that the objective function must converge in a finite number of iterations.

As the number of different index sets Φ(k) is finite (less than 2n1×n2), it suffices to show that the

same index set will not appear again before the objective function converges. Note that the

value of the objective function J(L(k),E(k)) is determined by L(k) (as E(k) is also determined by

L(k) according to Step 2).

We first show that the same index set can not reappear in consecutive iterations

before convergence. Suppose Φ(p) = Φ(p−1), as L(p) = arg minL(‖L‖∗ + λ‖PΦ(p−1)(M − L)‖1) =

arg minL(‖L‖∗ + λ‖PΦ(p)(M − L)‖1), and L(p+1) = arg minL(‖L‖∗ + λ‖PΦ(p)(M − L)‖1), we must

have ‖L(p+1)‖∗ + λ‖PΦ(p)(M − L(p+1))‖1 = ‖L(p)‖∗ + λ‖PΦ(p)(M − L(p))‖1. So the algorithm sets

L(p+1) = L(p) in Step 1. Then we must have convergence of the objective function.

Then it remains to show the same index set can not reappear in non-consecutive itera-

tions before convergence. Before convergence, we have J(L(1),E(1)) > · · · > J(L(p+1),E(p+1))

> · · · > J(L(r),E(r)) > J(L(r+1),E(r+1)) > · · · The corresponding index sets in Step 1 of

each iteration are Φ(0), · · · ,Φ(p), · · · ,Φ(r−1),Φ(r), · · · We only need to show that Φ(r) , Φ(p)

for any r > p + 1. As proved earlier, any L(r+1) ∈ arg minL(‖L‖∗ + λ‖PΦ(r)(M − L)‖1) en-

sures J(L(r+1),E(r+1)) ≤ J(L(r),E(r)), see (3.20 − 3.23). Suppose Φ(r) = Φ(p), then for any

L(p+1) ∈ arg minL(‖L‖∗ + λ‖PΦ(p)(M − L)‖1),L(p+1) ∈ arg minL ‖L‖∗ + λ‖PΦ(r)(M − L)‖1, thus

J(L(p+1),E(p+1)) ≤ J(L(r),E(r)), which is contradictory to J(L(p+1),E(p+1)) > J(L(r),E(r)).

c) Convergence to a local optimum

We now prove that when J(L,E) converges (J(L(k+1),E(k+1)) = J(L(k),E(k))), (L(k),E(k))

is a local optimum.
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Let (∆L,∆E) be a small deformation matrix around (L(k),E(k)). Then

J(L(k) + ∆L,E(k) + ∆E) = ‖L(k) + ∆L‖∗ + β‖E(k) + ∆E‖0 + λ‖M − (L(k) + ∆L) − (E(k) + ∆E)‖1

(3.24)

Next, we will show that J(L(k) + ∆L,E(k) + ∆E) ≥ J(L(k),E(k)) as long as ‖∆E‖1 is small

enough, thus J(L(k),E(k)) is a local optimum.

For the term β‖E(k) + ∆E‖0, notice that when ‖∆E‖1 is small enough,

β‖E(k)
i, j + ∆Ei, j‖0 =


β‖∆Ei, j‖0, (i, j) ∈ Φ(k)

β‖E(k)
i, j ‖0, otherwise

(3.25)

So β‖E(k) + ∆E‖0 = β‖E(k)‖0 + β
∑

(i, j)∈Φ(k)
‖∆Ei, j‖0.

Plug in (3.24), we have

J(L(k) + ∆L,E(k) + ∆E)

=‖L(k) + ∆L‖∗ + β‖E(k)‖0 + β
∑

(i, j)∈Φ(k)

‖∆Ei, j‖0 + λ‖M − (L(k) + ∆L) − (E(k) + ∆E)‖1

≥‖L(k) + ∆L‖∗ + β‖E(k)‖0 + β
∑

(i, j)∈Φ(k)

‖∆Ei, j‖0 + λ
∑

(i, j)∈Φ(k)

|(M − L(k) − ∆L − E(k) − ∆E)i, j|

(a)
=‖L(k) + ∆L‖∗ + β‖E(k)‖0 + β

∑
(i, j)∈Φ(k)

‖∆Ei, j‖0 + λ
∑

(i, j)∈Φ(k)

|(M − L(k) − ∆L − ∆E)i, j|

≥‖L(k) + ∆L‖∗ + β‖E(k)‖0 + β
∑

(i, j)∈Φ(k)

‖∆Ei, j‖0 + λ
∑

(i, j)∈Φ(k)

|(M − L(k) − ∆L)i, j| − λ
∑

(i, j)∈Φ(k)

|∆Ei, j|

=‖L(k) + ∆L‖∗ + β‖E(k)‖0 + λ‖PΦ(k)(M − L(k) − ∆L)‖1 + β
∑

(i, j)∈Φ(k)

(‖∆Ei, j‖0 −
λ

β
|∆Ei, j|)

(b)
≥‖L(k+1)‖∗ + β‖E(k)‖0 + λ‖PΦ(k)(M − L(k+1))‖1 + β

∑
(i, j)∈Φ(k)

(‖∆Ei, j‖0 −
λ

β
|∆Ei, j|)

(c)
=‖L(k)‖∗ + β‖E(k)‖0 + λ‖PΦ(k)(M − L(k))‖1 + β

∑
(i, j)∈Φ(k)

(‖∆Ei, j‖0 −
λ

β
|∆Ei, j|)
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(d)
=‖L(k)‖∗ + β‖E(k)‖0 + λ‖PΦ(k)(M − L(k) − E(k))‖1 + β

∑
(i, j)∈Φ(k)

(‖∆Ei, j‖0 −
λ

β
|∆Ei, j|)

(e)
=‖L(k)‖∗ + β‖E(k)‖0 + λ‖M − L(k) − E(k)‖1 + β

∑
(i, j)∈Φ(k)

(‖∆Ei, j‖0 −
λ

β
|∆Ei, j|)

=J(L(k),E(k)) + β
∑

(i, j)∈Φ(k)

(‖∆Ei, j‖0 −
λ

β
|∆Ei, j|),

where step (a) and (d) follow from the fact that E(k)
i, j = 0,∀(i, j) ∈ Φ(k), step (b) is from our

Step 1. Step (c) is from (3.21), since we must have equality holds in (3.20) upon convergence.

Step (e) is from our Step 2.

As long as ‖∆E‖1 is small enough (then |∆Ei, j| is also small enough), we will have∑
(i, j)∈Φ(k)

(‖∆Ei, j‖0−
λ

β
|∆Ei, j|) ≥ 0, and thus J(L(k) +∆L,E(k) +∆E) ≥ J(L(k),E(k)). So (L(k),E(k))

is a local optimum.

3.6.2 Proof of Theorem 3.2

Proof. First, as we have mentioned in Section II, our Step 1 gives the same solution of L as

the following problem: minL,E ‖L‖∗ + λ‖E‖1, s.t. PΦ(k)M = PΦ(k)(L + E), which is analyzed in

[90].

In Step 1 of the first iteration, SRPCP solves minL,E ‖L‖∗+λ‖E‖1, s.t.M = L+E. Under

the given condition, it recovers L0 exactly according to Theorem 3 of [90], i.e., L(1) = L0.

Then in Step 2, since M − L(1) = M − L0 = E0, for any β > 0, we have supp(E(1)) ⊆ supp(E0)

and Φc
(1) = {(i, j) : |(E0)i, j| >

β

λ
}.

In Step 1 of the second iteration, SRPCP is equivalent to solving minL,E ‖L‖∗ +

λ‖E‖1, s.t. PΦ(1)M = PΦ(1)(L + E). Where the large outlier entries indexed by Φc
(1) become

erased entries, but the condition for exact recovery required by Theorem 3 of [90] still holds.

So it recovers L0 exactly again, i.e., L(2) = L0. Then SRPCP converges in 2 iterations and

finds L0 exactly.
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If additionally β < λmin {|(E0)i, j| : (E0)i, j , 0}, L(1) = L(2) = L0 will ensure E(1) =

E(2) = E0 according to Step 2. So SRPCP recovers both L0 and E0 exactly.

3.6.3 Proof of Theorem 3.4

Proof. As mentioned before, in Step 1, the subproblem is equivalent to the following problem:

min
L,E
‖L‖∗ + λ‖PΦ(k)E‖1, s.t. M = L + E, (3.26)

where in the first iteration, the index set Φ(0) is all the entries. To make the proof brief, let us

first assume supp(E0)c ⊆ Φ(k) for any k, and use Φ(k) in the proof. In the end we will show

this assumption holds.

We first introduce some additional notations. For any pair X = (L,E), define

‖X‖� � ‖L‖∗ + λ‖PΦ(k)E‖1, ‖X‖F � (‖L‖2F + ‖E‖2F)1/2, and define the projection operator

PT × PΩ : (L,E) 7→ (PT L,PΩE). Define the subspaces Γ � {(W,W)|W ∈ Rn×n} and

Γ⊥ � {(W,−W)|W ∈ Rn×n}, and let PΓ and PΓ⊥ denote their respective projection operators.

Finally, for any linear operator A : Rn×n → Rn×n, we use ‖A‖ to denote the operator norm

sup‖X‖F=1 ‖AX‖F .

Firstly, note that υξ < 1
8 guarantees that ξ

1−5υξ <
1−4ξυ
υ

.

Our proof uses two crucial properties of (L̂, Ê), which is the optimal solution to (3.26).

First, since L̂ + Ê = M = L0 + E0 + N, we have L̂ + Ê− L0 −E0 = N. Second, as (L0,E0 + N)

is also a feasible solution to (3.26) with input M = L0 + E0 + N, we have

‖L̂‖∗ + λ‖PΦ(k)Ê‖1 ≤ ‖L0‖∗ + λ‖PΦ(k)(E0 + N)‖1 ≤ ‖L0‖∗ + λ‖PΦ(k)E0‖1 + λ‖PΦ(k)N‖1. (3.27)

Denote X̂ = X0 +H, where X̂ = (L̂, Ê), X0 = (L0,E0), H = (HL,HS ) = (L̂−L0, Ê−E0).
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We have

HL + HS = (L̂ − L0) + (Ê − E0) = N. (3.28)

Write HΓ = PΓ(H), HΓ⊥ = PΓ⊥(H) for short. We want to bound ‖H‖2F , which can be

expanded as

‖H‖2F = ‖HΓ‖2F + ‖HΓ⊥‖2F = ‖HΓ‖2F + ‖(PT × PΩ)(HΓ⊥)‖2F + ‖(PT⊥ × PΩc)(HΓ⊥)‖2F (3.29)

Since (3.28) gives us ‖HΓ‖F = (‖(HL + HS )/2‖2F + ‖(HL + HS )/2‖2F)1/2 = (‖N/2‖2F +

‖N/2‖2F)1/2 = ‖N‖F/
√

2, it suffices to bound the second and third terms on the right-hand-side

of (3.29).

A. Bound on the third term of (3.29).

First, since supp(E0)c ⊆ Φ(k), we have that Q is the subgradient of λ‖PΦ(k)E‖1 at E0

if and only if PΩ(Q) = λPΦ(k) sign(E0), ‖PΩc(Q)‖∞ ≤ λ. Also, Q ∈ ∂‖L0‖∗ if and only if [40]

PT (Q) = UVT , ‖PT⊥(Q)‖ ≤ 1.

Following the proof of Theorem 2 of [40] (simply replace sign(·) with PΦ(k) sign(·) in

their proof), υξ < 1
8 guarantees that there exists a dual Q satisfies

Q = λPΦ(k) sign(E0) + PΩc(Q) = UVT + PT⊥(Q), (3.30)

and

‖PT⊥(Q)‖ ≤ υ(
λ + ξ

1 − 2ξυ
) < υ(

1−4ξυ
υ

+ ξ

1 − 2ξυ
) = 1 −

υξ

1 − 2ξυ
,

‖PΩc(Q)‖∞ ≤
ξ − λ(1 − 4ξυ)

1 − 2ξυ
+ λ <

ξ − ξ(1−4ξυ)
1−5ξυ

1 − 2ξυ
+ λ = λ −

ξ2υ

(1 − 2ξυ)(1 − 5ξυ)
.

Given υξ < 1
8 , we have υξ

1−2ξυ > 0 and ξ2υ

(1−2ξυ)(1−5ξυ) > 0, thus ‖PT⊥(Q)‖ < 1 and

‖PΩc(Q)‖∞ < λ.
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Following the proof of Proposition 2 of [40], we have that for any subgradient (QL,QS )

of the function ‖L‖∗ + λ‖PΦ(k)E‖1 at (L0,E0),

‖X0 + HΓ⊥‖� − ‖X0‖� � ‖L0 + HΓ⊥

L ‖∗ + λ‖PΦ(k)(E0 + HΓ⊥

S )‖1 − ‖L0‖∗ − λ‖PΦ(k)E0‖1

≥ < QL,H
Γ⊥

L > + < QS ,H
Γ⊥

S >

= < UVT + PT⊥(QL),HΓ⊥

L > + < λPΦ(k) sign(E0) + PΩc(QS ),HΓ⊥

S >

(a)
= < Q − PT⊥(Q) + PT⊥(QL),HΓ⊥

L > + < Q − PΩc(Q) + PΩc(QS ),HΓ⊥

S >

(b)
= < −PT⊥(Q) + PT⊥(QL),HΓ⊥

L > + < −PΩc(Q) + PΩc(QS ),HΓ⊥

S >

= < PT⊥(QL) − PT⊥(Q),PT⊥(HΓ⊥

L ) > + < PΩc(QS ) − PΩc(Q),PΩc(HΓ⊥

S ) >

where step (a) is due to (3.30), step (b) is due to HΓ⊥

L + HΓ⊥

S = 0. Now pick QL such that

PT⊥(QL) = ŨṼT , wherePT⊥(HΓ⊥

L ) = ŨΣ̃ṼT , and pick QS such thatPΩc(QS ) = λsign(PΩc(HΓ⊥

S ))

as in [40], we have

‖X0 + HΓ⊥‖� − ‖X0‖�≥(1 − ‖PT⊥(Q)‖)‖PT⊥(HΓ⊥

L )‖∗ + (λ − ‖PΩc(Q)‖∞)‖PΩc(HΓ⊥

S )‖1

≥
υξ

1 − 2ξυ
‖PT⊥(HΓ⊥

L )‖∗ +
ξ2υ‖PΩc(HΓ⊥

S )‖1
(1 − 2ξυ)(1 − 5ξυ)

(c)
≥

ξ2υ

(1 − 2ξυ)(1 − 5ξυ)
(‖PT⊥(HΓ⊥

L )‖∗ + ‖PΩc(HΓ⊥

S )‖1)

(d)
≥

ξ2υ

(1 − 2ξυ)(1 − 5ξυ)
(‖PT⊥(HΓ⊥

L )‖F + ‖PΩc(HΓ⊥

S )‖F)

≥
ξ2υ

(1 − 2ξυ)(1 − 5ξυ)
(‖PT⊥(HΓ⊥

L )‖2F + ‖PΩc(HΓ⊥

S )‖2F)1/2

=
ξ2υ

(1 − 2ξυ)(1 − 5ξυ)
‖(PT⊥ × PΩc)(HΓ⊥)‖F

where step (c) uses the fact that υ ≥ 1 and υξ < 1
8 , so ξ2υ

(1−2ξυ)(1−5ξυ) ≤
υξ

1−2ξυ . Step (d) uses the
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fact that ‖M‖∗ ≥ ‖M‖F and ‖M‖1 ≥ ‖M‖F for any matrix M ∈ Rn×n.

So, ‖(PT⊥ × PΩc)(HΓ⊥)‖F

≤
(1 − 5ξυ)(1 − 2ξυ)

ξ2υ
(‖X0 + HΓ⊥‖� − ‖X0‖�)

(e)
≤

(1 − 5ξυ)(1 − 2ξυ)
ξ2υ

(‖HΓ‖� + ‖X0 + H‖� − ‖X0‖�)

( f )
≤

(1 − 5ξυ)(1 − 2ξυ)
ξ2υ

(‖HΓ‖� + λ‖PΦ(k)N‖1)

≤
(1 − 5ξυ)(1 − 2ξυ)

ξ2υ
(‖HΓ‖� + λ

√
|Φ(k)| ‖PΦ(k)N‖F)

=
(1 − 5ξυ)(1 − 2ξυ)

ξ2υ
(‖HΓ

L‖∗ + λ‖PΦ(k)H
Γ
S ‖1 + λ

√
|Φ(k)| ‖PΦ(k)N‖F)

(g)
≤

(1 − 5ξυ)(1 − 2ξυ)
ξ2υ

(
√

n‖HΓ
L‖F + λ

√
|Φ(k)| ‖PΦ(k)H

Γ
S ‖F + λ

√
|Φ(k)| ‖PΦ(k)N‖F)

=
(1 − 5ξυ)(1 − 2ξυ)

ξ2υ
(0.5
√

n‖N‖F + 0.5λ
√
|Φ(k)| ‖PΦ(k)N‖F + λ

√
|Φ(k)| ‖PΦ(k)N‖F)

=
(1 − 5ξυ)(1 − 2ξυ)

2ξ2υ
(
√

n‖N‖F + 3λ
√
|Φ(k)| ‖PΦ(k)N‖F)

≤
(1 − 5ξυ)(1 − 2ξυ)

2ξ2υ
(
√

n + 3λ
√
|Φ(k)|)‖N‖F

where step (e) is due to ‖X0 + H‖� ≥ ‖X0 + HΓ⊥‖� − ‖HΓ‖�, step (f) is from (3.27). Step (g)

uses the fact that ‖M‖∗ ≤
√

n‖M‖F for any matrix M ∈ Rn×n.

B. Bound on the second term of (3.29).

Let us first show that ‖PΩPT ‖ ≤
1
4 . For any matrix Z ∈ Rn×n,

‖PΩPT Z‖ = max
‖Y‖F=1

‖PΩPT ZY‖F ≤ max
‖Y‖F=1

‖PΩPT ‖‖ZY‖F = ‖PΩPT ‖‖Z‖.

So ‖PΩPT ‖ ≥
‖PΩPT Z‖
‖Z‖ for any nonzero matrix Z. Since the equality can be achieved

for Z = I, we have

‖PΩPT ‖ = max
Z,0

‖PΩPT Z‖
‖Z‖

= max
Z,0,PT Z,0

‖PΩPT Z‖
‖Z‖

(a)
≤ max
PT Z,0

‖PΩPT Z‖
0.5‖PT Z‖

= max
J∈T,J,0

‖PΩJ‖
0.5‖J‖
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= max
J∈T,‖J‖≤1

2‖PΩJ‖
(b)
≤ 2υξ <

1
4
,

where step (a) is from ‖PT Z‖ ≤ 2‖Z‖, and step (b) is from the proof of proposition 1 in the

Appendix B of [40].

Following the proof of Lemma 6 in [44], we have for any pair X = (L,E), ‖PΓ(PT ×

PΩ)(X)‖2F ≥ 0.5(‖PT (L)‖2F + ‖PΩ(E)‖2F − 2‖PΩPT ‖‖PT (L)‖F‖PΩ(E)‖F). Plug in ‖PΩPT ‖ <
1
4 ,

and use the inequality (a2 + b2 − 0.5ab) ≥ 3
4(a2 + b2), we have ‖PΓ(PT × PΩ)(X)‖2F ≥

3
8(‖PT (L)‖2F + ‖PΩ(E)‖2F) = 3

8‖(PT × PΩ)(X)‖2F . Putting in Section IV.b of [44], we finally

have ‖(PT × PΩ)(HΓ⊥)‖2F ≤
8
3‖(PT⊥ × PΩc)(HΓ⊥)‖2F .

Combined with (3.29), we have

‖HΓ⊥‖2F ≤
11
3
‖(PT⊥ × PΩc)(HΓ⊥)‖2F

‖HΓ⊥‖F ≤

√
11
3
‖(PT⊥ × PΩc)(HΓ⊥)‖F

≤

√
11
12

(1 − 5ξυ)(1 − 2ξυ)
ξ2υ

(
√

n + 3λ
√
|Φ(k)|)‖N‖F

� C(ξ, υ)(
√

n + 3λ
√
|Φ(k)|)‖N‖F

So, ‖L̂ − L0‖F ≤ (‖L̂ − L0‖
2
F + ‖Ê − E0‖

2
F)1/2 = ‖H‖F ≤ ‖HΓ‖F + ‖HΓ⊥‖F

≤
√

2
2 ‖N‖F + C(ξ, υ)(

√
n + 3λ

√
|Φ(k)|)‖N‖F = [

√
2

2 + C(ξ, υ)(
√

n + 3λ
√
|Φ(k)|)]‖N‖F .

So in Step 1, we must have

‖L(k+1) − L0‖F ≤ [

√
2

2
+ C(ξ, υ)(

√
n + 3λ

√
|Φ(k)|)]‖N‖F . (3.31)

In Step 2, E(k+1) will be a trimmed version of M − L(k+1).

In the first iteration, |Φ(0)| = n2, ‖L(1) − L0‖F ≤ [
√

2
2 + C(ξ, υ)(

√
n + 3λn)]‖N‖F .

For ∀(i, j) ∈ G(1), we have
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|(M − L(1))i, j| = |(E0 + N + L0 − L(1))i, j|

= |(E0)i, j + (N)i, j + (L0 − L(1))i, j|

≥ |(E0)i, j| − ‖N‖∞ − ‖L0 − L(1)‖∞

≥ |(E0)i, j| − ‖N‖F − ‖L0 − L(1)‖F

>
β

λ
+ [

2 +
√

2
2

+ C(ξ, υ)(
√

n + 3λn)]‖N‖F − ‖N‖F − ‖L0 − L(1)‖F

≥
β

λ
.

Then E(1)
i, j , 0 for ∀(i, j) ∈ G(1) according to Step 2 of SRPCP, thus G(1) ⊆ supp(E(1)).

For ∀(i, j) ∈ supp(E0)c, we have (E0)i, j = 0,

|(M − L(1))i, j| = |(N)i, j + (L0 − L(1))i, j|

≤ ‖N‖∞ + ‖L0 − L(1)‖∞

≤ ‖N‖F + ‖L0 − L(1)‖F

≤ ‖N‖F + [
√

2
2 + C(ξ, υ)(

√
n + 3λn)]‖N‖F < β

λ
.

Then E(1)
i, j = 0 for ∀(i, j) ∈ supp(E0)c according to Step 2 of SRPCP. So supp(E(1)) ⊆

supp(E0). In sum, we have G(1) ⊆ supp(E(1)) ⊆ supp(E0), which implies |Φ(1)| ≤ n2 − |G(1)|

and supp(E0)c ⊆ Φ(1).

For the second iteration, since supp(E0)c ⊆ Φ(1), we can plug |Φ(1)| ≤ n2 − |G(1)| in

(3.31) to get

‖L(2) − L0‖F ≤ [

√
2

2
+ C(ξ, υ)

(√
n + 3λ

√
n2 − |G(1)|

)
]‖N‖F . (3.32)

For ∀(i, j) ∈ G(2), similar to above, we have

|(M − L(2))i, j| = |(E0 + N + L0 − L(2))i, j|

≥ |(E0)i, j| − ‖N‖F − ‖L0 − L(2)‖F

>
β

λ
+ [

2 +
√

2
2

+ C(ξ, υ)(
√

n + 3λ
√

n2 − |G(1)|)]‖N‖F − ‖N‖F − ‖L0 − L(2)‖F

≥
β

λ
.

Then E(2)
i, j , 0 for ∀(i, j) ∈ G(2) according to Step 2 of SRPCP, thus G(2) ⊆ supp(E(2)).
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For ∀(i, j) ∈ supp(E0)c, we have

|(M − L(2))i, j| = |(N)i, j + (L0 − L(2))i, j|

≤ ‖N‖F + ‖L0 − L(2)‖F

≤ ‖N‖F + [
√

2
2 + C(ξ, υ)(

√
n + 3λ

√
n2 − |G(1)|)]‖N‖F

< β

λ
.

Then E(2)
i, j = 0 for ∀(i, j) ∈ supp(E0)c according to Step 2 of SRPCP. So supp(E(2)) ⊆

supp(E0). In sum, we have G(2) ⊆ supp(E(2)) ⊆ supp(E0), which implies |Φ(2)| ≤ n2 − |G(2)|

and supp(E0)c ⊆ Φ(2).

If not converged in the second iteration, in the following iterations, recursively using

|Φ(k)| ≤ n2 − |G(k)| and supp(E0)c ⊆ Φ(k), like in the second iteration, we get ‖L(k+1) − L0‖F ≤

[
√

2
2 + C(ξ, υ) (

√
n + 3λ

√
n2 − |G(k)|)]‖N‖F , G(k+1) ⊆ supp(E(k+1)) ⊆ supp(E0), |Φ(k+1)| ≤

n2 − |G(k+1)|, and supp(E0)c ⊆ Φ(k+1) for k = 2, 3, · · · .

Finally, it is easy to see that G(1) ⊆ G(2) ⊆ · · · , which implies |G(1)| ≤ |G(2)| ≤ · · · .
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Figure 3.1. Average Relative Error in log scale w.r.t. different rank and corruption rate
(corruptions∼ U[−100, 100]).
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Figure 3.2. Average Relative Error in log scale w.r.t. different rank and corruption rate
(corruptions∼ U[0, 100]).
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Figure 3.3. Percentage of exact recovery over 100 trials w.r.t. different rank and
corruption rate (σ = 0).
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         Input       Ground Truth PCP, F=0.78, error=68.5 BRMF, F=0.88, error=73.2
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Figure 3.4. Recovered text mask (left, measured by F-measure) and low-rank matrix
(right, measured by `2 error) by each method.
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Figure 3.5. Recovered background (left) and foreground (right) by each method.
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Chapter 4

Sparse Bayesian Learning for Robust

PCA

In this chapter, we propose a new Bayesian model to solve the Robust PCA problem -

recovering the underlying low-rank matrix and sparse matrix from their noisy compositions.

We first derive and analyze a new objective function, which is proven to be equivalent to

the fundamental minimizing "rank+sparsity" objective. To solve this objective, we develop

a concise Sparse Bayesian Learning (SBL) method that has minimum assumptions and

effectively deals with the requirements of the problem. The concise modeling allows simple

and effective Empirical Bayesian inference. To further utilize the sparsity pattern information

of the outliers in Robust PCA problem, a modification of the above Bayesian method is

proposed.

4.1 Introduction

Principal component analysis (PCA) is arguably one of the most widely used data

analysis methods with numerous applications. However, its performance can significantly
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degrade if the data is corrupted by even a few outliers. As mentioned in a recent review [1],

outliers are becoming even more common in today’s big data era. The goal of Robust

PCA [39] is to recover the low-rank matrix L ∈ Rn1×n2 and sparse matrix E ∈ Rn1×n2 (which

often models the outlier corruptions) from their composition M ∈ Rn1×n2 (possibly with

additional dense inlier noise). This problem has received a lot of interest in the past decade,

with applications ranging from video analysis, face recognition, to recommendation systems.

Robust PCA was first studied in the noiseless case1 [39]–[41]. The optimization problem

underlying Robust PCA is [41]:

min
L,E

rank(L) + λ‖E‖0 s.t. ‖M −L −E‖F ≤ δ, (4.1)

where δ is the parameter that is determined by the inlier noise variance. When δ = 0, the

problem reduces to the noiseless case. Using the SVD of L, i.e., L = Udiag(s)V T , the

problem in (4.1) is equivalent to the following with d = min(n1, n2):

min
U ,V ,s�0,E

‖s‖0 + λ‖E‖0 s.t. ‖M −Udiag(s)V T −E‖F ≤ δ, (4.2)

U ∈ Rn1×d and V ∈ Rn2×d orthonormal.

Further denoting m = vec(M ), e = vec(E), and Ai = vec(UiV
T

i ), where Ai,Ui and Vi

denote the i-th column of A, U and V respectively, (4.2) can be written in the following

vector form:

min
A,s�0,e

‖s‖0 + λ‖e‖0 s.t. ‖m −As − e‖2 ≤ δ, Ai = vec(UiV
T

i ), ∀i, (4.3)

U ∈ Rn1×d and V ∈ Rn2×d orthonormal.

1Noiseless in this context refers to the absence of inlier noise, standard perturbations, whose density function
does not have heavy tails and is usually modeled as standard additive Gaussian noise.
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It is known that the optimization problem in (4.1) is NP-hard. To make the problem

computationally viable, [39]–[41], [44] suggest relaxing the rank minimization to nuclear

norm minimization and the `0-‘norm’ penalty to an `1-norm penalty. This is known as Principal

Component Pursuit (PCP) [39] in the noiseless case, and Stable Principal Component Pursuit

(SPCP)[44] in the noisy case:

min
L,E
‖L‖∗ + λ‖E‖1 s.t. ‖M −L −E‖F ≤ δ, (4.4)

which is equivalent to

min
A,s�0,e

‖s‖1 + λ‖e‖1 s.t. ‖m −As − e‖2 ≤ δ, Ai = vec(UiV
T

i ), ∀i, (4.5)

U ∈ Rn1×min(n1,n2) and V ∈ Rn2×min(n1,n2) orthonormal.

Interestingly, one can recover both the low-rank matrix and the sparse matrix exactly (or

stably) under certain conditions by solving (4.4) [39]–[41], [44].

However, viewed from a robust linear regression viewpoint (dealing with the sparse

outliers e), there is room for improvement. Recent progress [16], [22] in this area shows that

the Sparse Bayesian Learning (SBL) [17] approach is quite effective and often provides a

much better solution to the `0-‘norm’ problem than the `1 convex relaxation approach when

the underlying A is given. The superior performance of SBL is also well known in the

broader Sparse Signal Recovery (SSR) community [18], [53], [54]. So the question is: can

we leverage the advantage of SBL to solve the Robust PCA problem?

In Chapter 3, a genuine `0-‘norm’ is used on the sparse matrix E and an algorithm

termed Sparsity Regularized Principal Component Pursuit (SRPCP) was proposed to mini-

mize the following objective function:
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min
L,E
‖L‖∗ + β‖E‖0 + λ‖M − L − E‖1. (4.6)

Moreover, it is proved that SRPCP can recover both the low-rank matrix and the sparse

matrix exactly in the noiseless case, and stably in the noisy case, under the same conditions

required by that of PCP. Empirical results also demonstrate that SRPCP has much better

performance than the convex PCP. Though SRPCP manages to use the genuine `0-‘norm’ to

enforce the sparseness of E, it still has to relax the rank minimization objective to the nuclear

norm on the low-rank matrix L. Recall that the nuclear norm is equivalent to the `1-norm

of the singular values, while the rank function is equivalent to the `0-‘norm’ of the singular

values. Nevertheless, SRPCP can be served as a good initialization for our Sparse Bayesian

Learning method, due to its strong theoretical guarantees. In the following, we will focus on

the Bayesian methods. For a comprehensive review on Robust PCA approaches, we refer the

interested reader to [42].

There have already been several Sparse Bayesian Learning methods proposed for

solving the Robust PCA problem. The earliest work [55] proposed to model the low-rank

matrix as L = D(diag(z)diag(s))W , and the sparse matrix as E = B ◦ X , i.e., M =

D(diag(z)diag(s))W +B ◦X +N , where z andB have binary entries obeying a Bernoulli

distribution, and the hyper-parameter of the Bernoulli distribution is further assumed to

be Beta distributed. The s, X and noise N are drawn from Gaussian distribution with

corresponding precision (inverse of the variance) parameters generated from different Gamma

distributions. Finally, the columns ofD andW are assumed Gaussian distributed.

Babacan et al. [56] proposed a slightly simpler model, where the low-rank matrix

L = ABT , and the columns ofA andB are drawn from a Gaussian distribution with each

precision parameter drawn from a Gamma distribution. The elements of the sparse matrix

are simply drawn independently from a Gaussian distribution. Some improvement has been
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shown compared to the previous Bayesian approach [55]. However, it is still inferior to

the convex PCP approach. Note that this probabilistic model of the low-rank matrix is also

adopted in some later works [57]–[59].

Recently, Wipf [60] proposed a even simpler model that directly assumes the columns

of L are independent zero-mean Gaussian vectors which share the same covariance matrix,

while the sparse matrix is modeled similar to Babacan’s work [56]. Slight improvement over

the convex PCP method has been empirically demonstrated. In [61], Jansson et al. assume

vec(L) is zero-mean Gaussian and its covariance matrix is the Kronecker product of two

Wishart distributed matrices. It also demonstrated a slight performance improvement over the

PCP method, but the complexity of the inference is very high. Wipf et al. [62] further proposed

a modification to the model in [60], which assumes vec(L) is zero-mean Gaussian with

covariance matrix obeying Kronecker-sum structure. However, though the method starts with

a Bayesian setting, the complexity of the inference procedure forces compromises, leading

to the framework to be used as a means to approximate and obtain an interesting objective

function for minimization. Nevertheless, the resulting method demonstrates much better

performance than the convex PCP method and Bayesian approaches. We will discuss this

approach in detail, and show that its objective function implicitly uses additional information

of the sparsity pattern of the outliers.

So far, the power of the SBL does not seem to have been fully brought to bear on this

problem. The main difficulty of the current Bayesian approaches is the need to infer many

parameters from the assumed distributions. Too many assumptions limit the generalization of

these methods to different practical situations. Another challenge is the difficulty of inference

with such complicated probabilistic models. Usually MCMC sampling or Variational Bayesian

approximation has to be used.

In this chapter, we first provide a simple model and derive a concise SBL approach in

Section 4.2. The proposed method has minimum assumptions and effectively deals with the
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requirements of the problem. It also admits a simple and exact inference. In Section 4.3, we

analyze this approach in detail. Motivated by the success of [62], in Section 4.4, we further

propose a modified SBL approach that utilizes the sparsity pattern information of the outliers,

in a more principled way. Empirical comparisons with the existing methods are in Section 4.5

and the conclusions are made in Section 4.6.

Notation: Throughout this chapter, bold lowercase letters denote vectors, e.g., s, while

si denotes its ith element. Bold capital letters denote matrices, e.g.,A, whereA(k) denotes the

updatedA in the kth iteration, andAi denotes the ith column ofA. Besides that, vec(A) ∈

Rn1n2×1 is a long vector obtained by stacking the columns of matrix A ∈ Rn1×n2 , whereas

Mat(h) ∈ Rn1×n2 is a matrix obtained by the reverse operation on the vector h ∈ Rn1n2×1. We

sometimes use 〈·〉 to stand for the posterior expectation, and the posterior density involved

should be clear from the context.

4.2 Sparse Bayesian Learning Approach

4.2.1 Objective

Before going into the details of our SBL formulation, let us first consider the funda-

mental problem that our Bayesian approach attempts to solve:

min
A,s,e
‖m −As − e‖22 + λ1‖s‖0 + λ2‖e‖0 s.t.Ai = vec(UiV

T
i ), ‖Ui‖2 = ‖Vi‖2 = 1,∀i,

U ∈ Rn1×d,V ∈ Rn2×d. (4.7)

which is the Lagrange form of

min
A,s,e
‖s‖0 + λ‖e‖0 s.t. ‖m −As − e‖2 ≤ δ,Ai = vec(UiV

T
i ), ‖Ui‖2 = ‖Vi‖2 = 1,∀i,
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U ∈ Rn1×d,V ∈ Rn2×d. (4.8)

Compared with (4.3), we have removed the non-negative constraint on s and the

orthogonality constraint on U and V . This makes our inference procedure much easier2.

More importantly, the following proposition guarantees that this modification does not change

the optimal solution in terms of L(= Udiag(s)V T ) and E.

Proposition 4.1 Set d = min(n1, n2) in (4.2) and (4.8). Then the optimization problems in

(4.1), (4.2) and (4.8) have the same minimal objective value. Furthermore, they have the same

global optimal solution(s) in terms of the low-rank matrix L and the sparse matrix E, where

L = Udiag(s)V T in (4.2) and (4.8).

Proof. Proved as a special case of Proposition 4.2.

As we will see in Section 4.3.4, the complexity of the proposed SBL approach scales

with d2. The following proposition justifies that d can be set to the same order of the rank of

the low-rank matrix, which is usually much less than min(n1, n2).

Proposition 4.2 Set d ∈ [rank(Lopt), min(n1, n2)] in (4.2) and (4.8), where Lopt is the global

optimal solution(s) of (4.1). Then the optimization problems in (4.1), (4.2) and (4.8) have the

same minimal objective value. Furthermore, they have the same global optimal solution(s) in

terms of the low-rank matrix L and the sparse matrix E, where L = Udiag(s)V T in (4.2)

and (4.8).

The proof can be found in the Appendix 4.7.2.

The proposed objective function (4.8) and the above propositions establish a connec-

tion between Robust PCA and Robust Sparse Linear Regression, and offer a new viewpoint

for the Robust PCA problem. Many existing methods and analyses in Robust Sparse Lin-

2Note that the SVD can be generalized to make the entries in s real rather than restricting them to be positive.
One can deal with the sign by modifying the singular vectors appropriately.
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ear Regression (e.g., [63]–[66]) can be leveraged to solve and understand the Robust PCA

problem, and vice versa.

4.2.2 SBL Model

Now we present our SBL approach to tackle (4.7). Our observation model is

m = As + e + n, s.t.Ai = vec(UiV
T

i ), ‖Ui‖2 = ‖Vi‖2 = 1, i = 1, ..., d.

Let us denote the parameter space ofA which satisfies the above constraints/structure as A.

The distinguishing part of our approach compared to the existing SBL approaches is that

we assume A is a deterministic parameter that lies in the space A, without assuming any

distribution on it. This makes our method more general.

Thanks to the removal of the non-negative constraint on s in (4.7), the remaining mod-

eling can now directly follow the well-established SBL procedure. Assume s ∼N(0, Γ),Γ ,

diag(γ). The outlier vector e ∼N(0, Λ), Λ , diag(α), so the elements of e are assumed

to be independent and zero mean Gaussian, and their variances are to be learned. The noise

n ∼ N(0, βI), and all the elements of n share the same variance β. The goal of SBL

(evidence maximization) is to infer the unknown parameters3 (e.g., Â, γ̂, α̂) from the datam.

Then s and e can be estimated via the posterior mean of the respective posterior distributions,

i.e., p(s|m; Â, γ̂, α̂) and p(e|m; Â, γ̂, α̂).

For tractable derivation, define diagonal matrixD = (Λ + βI)−1, and matrix

F = (Γ−1 +ATDA)−1. (4.9)

We have that m is zero mean Gaussian with covariance matrix Σm = AΓAT + Λ + βI ,

3In this work, we specify the value of β instead of inferring it.
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whose inverse is given by

Σ−1
m = (AΓAT + Λ + βI)−1 = D −DAFATD. (4.10)

The posterior distribution of e givenm is Gaussian with

µe|m = µe + ΣemΣ−1
m(m− µm) = ΛΣ−1

mm

= ΛDm−ΛD
(
A

(
F

(
AT (Dm)

)))
. (4.11)

Σe|m = Σe −ΣemΣ−1
mΣme = Λ−ΛΣ−1

mΛ

= Λ−ΛDΛ + ΛDAFATDΛ. (4.12)

The posterior distribution of s givenm is Gaussian with

µs|m = µs + ΣsmΣ−1
m(m− µm) = ΓATΣ−1

mm

= ΓATDm− Γ(ATDA)
(
F

(
AT (Dm)

))
. (4.13)

Σs|m =Σs−ΣsmΣ−1
mΣms = Γ− ΓATΣ−1

mAΓ

=Γ− Γ(ATDA)Γ + Γ(ATDA)F (ATDA)Γ. (4.14)

The posterior cross-covariance between s and e givenm is

Σse|m = FAT (I − βD). (4.15)

Note that the term (ATDA) in (4.13) and (4.14) has already been calculated in (4.9). If γ,α
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are random, as assumed in the next section, the above statistics can be viewed as conditional

statistics, conditioned on γ,α.

4.2.3 Parameter Estimation

Let Ψ = (A,γ,α) represents the whole parameter set that we want to estimate. Our

goal is to maximize p(Ψ|m) ∝ p(m|Ψ)p(Ψ). Here we restrict A ∈ Aand employ Inverse-

gamma prior on each element of γ, i.e., p(γi) = IG(a, b), with b→ 0, while do not assume any

prior (or say use non-informative prior) on α. For the inference, we use the MAP-EM [101]

procedure to optimize p(Ψ|m).

In the E-step, we have the Q-function as

Q(Ψ|Ψ(k)) = Q(A,γ,α|A(k),γ(k),α(k))

=Es,e|m;A(k),γ(k),α(k),β{− log p(m, s, e|A,γ,α, β)}

=Es,e|m;A(k),γ(k),α(k),β{− log p(m|s, e,A, β) − log p(s|γ) − log p(e|α)}

=
1

2β
〈‖m −As − e‖22〉 +

1
2

∑
i

(logγi +
〈s2

i 〉

γi
) +

1
2

∑
i

(logαi +
〈e2

i 〉

αi
) + const

=
1

2β
‖m −A〈s〉 − 〈e〉‖22 + 2 Trace(AΣse|m) + Trace(AΣs|mA

T ) + Trace(Σe|m)

+
1
2

∑
i

(logγi +
〈s2

i 〉

γi
) +

1
2

∑
i

(logαi +
〈e2

i 〉

αi
) + const,

where 〈·〉 stands for the posterior expectation.

In M-step, the objective function to minimize is [Q(Ψ|Ψ(k)) − log p(Ψ)]. More specifi-

cally,

min
γ,α,A∈A

Q(A,γ,α|A(k),γ(k),α(k)) − log p(γ)

= min
γ,α,A∈A

1
2β
‖m −A〈s〉 − 〈e〉‖22 + 2 Trace(AΣse|m) + Trace(AΣs|mA

T ) + Trace(Σe|m)
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+
1
2

∑
i

(logγi +
〈s2

i 〉

γi
) +

1
2

∑
i

(logαi +
〈e2

i 〉

αi
) +

∑
i

((a + 1) logγi) + const. (4.16)

The update rules for α and γ are obtained by taking derivatives:

Update α: αi = 〈e2
i 〉 = µ2

e|m(i) + Σe|m(i, i),∀i.

Update γ: γi = 〈s2
i 〉/(2a + 3) =

(
µ2
s|m(i) + Σs|m(i, i)

)
/(2a + 3),∀i.

Directly updating the whole matrix A under the constraints A ∈ A is difficult.

However, we can update each column of A with other columns fixed and still obey the

constraints A ∈ A. To simplify the presentation, the following discussion assumes that

|〈s1〉| ≥ |〈s2〉| ≥ · · · , and we first update the first column ofA. The actual order is detailed in

Algorithm 1 and will be discussed in Section 4.3.1.

UpdateA1: GivenA(k)
2 ,A

(k)
3 , · · · ,A

(k)
d ,

A(k+1)
1 = arg min

A1=vec(U1V
T

1 )
‖U1‖2=1
‖V1‖2=1

‖m − 〈e〉 −
d∑

i=2

〈si〉A
(k)
i − 〈s1〉A1‖

2
2 + 2 Trace(A1Σse|m(1, :))

+ Trace
(
A1Σs|m(1, 1)AT

1 + 2
d∑

i=2

A(k)
i Σs|m(1, i)AT

1
)

(4.17)

= arg min
A1=vec(U1V

T
1 )

‖U1‖2=1
‖V1‖2=1

‖h −A1‖
2
2 (4.18)

where h =
〈s1〉m−〈s1〉〈e〉−Σ

T
se|m(1,:)−

∑d
i=2[〈s1〉〈si〉+Σs|m(1,i)]A(k)

i

〈s1〉2+Σs|m(1,1) .

At first glance, (4.18) still seems hard to solve. However, utilizing the structure ofA1,

we can transform this problem to the equivalent matrix form:

(U (k+1)
1 ,V (k+1)

1 ) = arg min
U1,V1
‖U1‖2=1
‖V1‖2=1

‖Mat(h) −U1V
T

1 ‖
2
F . (4.19)

The optimal solution is given by the first singular vector pair of Mat(h), and the proof
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can be found in the Appendix 4.7.3. Updating U1 and V1 as a pair is inspired by the success

of K-SVD [102]. But note that in K-SVD, V1 is not restricted to be unit length.

To update the jth column with other columns fixed, the derivation is similar to updating

A1, except that we use the latest updates of the other columns, e.g.,A(k+1)
1 instead ofA(k)

1 .

The whole algorithm is summarized in Algorithm 1. Note that in Step 1, we fixA(k)

and update α and γ to certain precision.

4.2.4 Why the Need for an Extra Prior on γ ?

We now discuss the need for as well as the important role the Inverse-gamma prior

on γ, and non-informative prior on α play. The reason becomes clear if we reformulate our

observation model asm = [A I]


s

e

+n. If no prior on γ is assumed, the elements of s will

be treated equally as the elements of e in the concatenated vector


s

e

. Note that s has much

smaller dimension than e. Then there is always a trivial sparse solution with e = 0 and dense

s. This is similar to setting λ = 1 in (4.1). Putting a prior on γ is analogous to setting the

weight parameter λ in (4.1). In [62], λ is set as 1/max(n1, n2) to ensure that both the low-rank

matrix term and the sparse matrix term scale between 0 and min(n1, n2). However, this fixed

setting appears to only work for certain range of rank and sparsity. Suppose there is knowledge

of the true rank and sparsity, a better choice seems to be λ = min (rank(L0)/‖E0‖0, 1). For

example, if rank(L0) is very small and ‖E0‖0 is relative large, the objective function (4.1)

with this choice of λ will also encourage the solution L̂ to have small rank and the solution Ê

to have large sparsity. This motivates our setting of the parameter of the Inverse-gamma prior

on γ, which will be discussed next.
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Algorithm 1 Sparse Bayesian Learning for Robust PCA

Input: M ∈ Rn1×n2 , noise variance β > 0, and Inverse-gamma prior parameter a

Initialize: U (0) ∈ Rn1×d,V (0) ∈ Rn2×d,γ(0)
i = 1,α(0)

i = 1,∀i, k = 0

While not converged Do
Step 1. FixA(k), repeat updating γ and α to certain precision:

Calculate µs|m,µe|m, diag(Σs|m), and diag(Σe|m) use (4.11),(4.12),(4.13),(4.14);

αi = µ2
e|m(i) + Σe|m(i, i);

γi =
(
µ2
s|m(i) + Σs|m(i, i)

)
/(2a + 3).

Step 2. Fix γ(k+1) and α(k+1), updateA:

Calculate Σse|m,µs|m,µe|m, and Σs|m use (4.11),(4.13),(4.14),(4.15);

〈s〉 , µs|m, 〈e〉 , µe|m;

index=sort([|〈s(k+1)
1 〉|, |〈s(k+1)

2 〉|, · · · , |〈s(k+1)
d 〉|], ’descending’);

for j=1:d

//updateA(k+1)
index( j) usingA(k+1)

index(i), i = 1, · · · , j − 1, andA(k)
index(i), i = j + 1, · · · , d.

j′ , index( j);

h = 1
〈s j′ 〉

2+Σs|m( j′, j′) [〈s j′〉m − 〈s j′〉〈e〉 −ΣT
se|m( j′, :)

−
∑

l∈{index(i):i< j}[〈s j′〉〈sl〉 + Σs|m( j′, l)]A(k+1)
l

−
∑

l∈{index(i):i> j}[〈s j′〉〈sl〉 + Σs|m( j′, l)]A(k)
l ].

(U (k+1)
j′ ,V (k+1)

j′ ) = first singular vector pair of Mat(h);

A(k+1)
j′ = vec(U (k+1)

j′ V (k+1)
j′

T
).

end

k := k + 1.

End While
Output: E = Mat(〈e〉),L = Mat(Â〈s〉)
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4.2.5 Parameter Setting/Initialization and Dimension Trimming

Recall that we assume an Inverse-gamma prior on each element of γ, i.e., p(γi) =

IG(a, b), with b → 0. The main question is how to set the parameter a. Motivated by

the objective function (4.16) in the M-step and the previous discussion, we set a such that

(2a+3) = max
(√
‖E0‖0/rank(L0), 1

)
. Note that here is a square root. Also note that in (4.16),

the log function is used to encourage sparseness instead of the `0-’norm’. Since usually there

is no knowledge of the true rank and sparsity, we estimate them from the data by thresholding

γ(k) and α(k) at the end of Step 1. For the input parameter β, we recommend to set it larger

than the true noise variance, e.g., (3σ)2 or even larger, to accommodate any modeling errors

(interference) especially at the beginning of the iterations.

The initialization of γ(0) and α(0) directly follows the standard SBL. One may simply

initialize them to be a vector of ones if there is no prior knowledge of the scale of the outliers

or singular values. Otherwise, it is recommended to scale the corresponding one vector

accordingly.

Now we discuss the initialization of U (0) ∈ Rn1×d, V (0) ∈ Rn2×d, and the associated

dimension d. For small size problems, we initialize d = min(n1, n2). However, for large-scale

problems, in light of Proposition 4.2, we initialize d as 2 times the rank of some pre-estimated

low-rank matrix, or as maximal target rank. So d is usually on the same order of the rank

r, which greatly reduces the complexity of the proposed method. Note that it is a common

practice to specify the maximal target rank in solving large-scale problems, e.g., [56], [57],

[96]. Since a good initialization of U (0) and V (0) can help accelerate the convergence and

avoid some local minimas. We initialize them as the singular vectors of some pre-estimated

low-rank matrix L̂ ∈ Rn1×n2 . Here the dimension of U (0) is n1 × d, not n1 × rank(L̂). As in

traditional SBL for sparse signal recovery [17], [18], one can prune the columns ofA when

the corresponding γi is smaller than a predefined threshold (e.g., 1 × 10−5), for efficiency

only (since d is reduced). We recommend to prune γ upon the convergence of Step 1 in
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Algorithm 1.

4.3 Analysis of SBL Approach

4.3.1 Analysis and Support of the Updating Procedure for A

To simplify presentation, the following discussion again assumes that |〈s1〉| ≥ |〈s2〉| ≥

· · · , and we first updateA1, thenA2.

We first provide some insight on why updatingA1 works:

LetAtrue = A(k) + ∆A(k), etrue = 〈e〉 + ∆e, strue = 〈s〉 + ∆s, then

m − 〈e〉 = Atrue〈s〉 + η = A(k)〈s〉 + ∆A(k)〈s〉 + η (4.20)

where η = Atrue∆s + ∆e + n that captures the original noise n and the additional modeling

noise due to the estimation error in 〈s〉 and 〈e〉.

Now let us look at the first term in (4.17), which is the dominant term. From (4.20)

we have

m − 〈e〉 −
d∑

i=2

〈si〉A
(k)
i = A(k)

1 〈s1〉 + ∆A(k)〈s〉 + η

= (A(k)
1 + ∆A(k)

1 )〈s1〉 +

d∑
i=2

∆A(k)
i 〈si〉 + η (4.21)

The term
∑d

i=2 ∆A(k)
i 〈si〉 can be viewed as interference. Recall that A(k)

1 + ∆A(k)
1 = Atrue

1 ,

which has a nice rank-one structure, i.e.,Atrue
1 = vec(U true

1 V true
1

T ), and can be roughly found

through rank-one SVD approximation in (4.19) if other interferences and η are relatively

small. While other combinations, e.g.,A(k)
1 + ∆A(k)

2 = A(k)
1 −A

(k)
2 +Atrue

2 = vec(U (k)
1 V

(k)
1

T
−

U (k)
2 V

(k)
2

T
+U2V

T
2 ), usually do not have such nice rank-one structure.
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When updatingA2 with other columns fixed, we use the latest update ofA(k+1)
1 .

IfA(k+1)
1 ≈ Atrue

1 = A(k)
1 + ∆A(k)

1 , we would have from (4.20) that:

m − 〈e〉 −
d∑

i=3

〈si〉A
(k)
i −A

(k+1)
1 〈s1〉 ≈ (A(k)

2 + ∆A(k)
2 )〈s2〉 +

d∑
i=3

∆A(k)
i 〈si〉 + η (4.22)

Note that the interference term ∆A(k)
1 〈s1〉 has disappeared from the right-hand-side of (4.22),

compared with (4.21). Then finding the rank-one structure (A(k)
2 + ∆A(k)

2 ) will be relatively

easier, since the large interference term ∆A(k)
1 〈s1〉 is almost cancelled.

Similar analysis applies for the updating of the other columns. This motivates our

updating orders for the columns of A, which is according to the decreasing order of the

magnitudes of the elements in 〈s〉. Also from the right-hand-side of (4.21), we can see that if

|〈s1〉| is much larger than |〈s2〉|, |〈s3〉|, · · · , it is expected to be easier to identify the desired

rank-one structure (A(k)
1 + ∆A(k)

1 ). In addtion, from (4.22), it is desirable to have the large

interference term ∆A(k)
1 〈s1〉 first cancelled from its right-hand-side. The proposed updating

order is similar to the Successive Interference Cancellation (SIC) strategy that is widely used

in communication systems.

4.3.2 Algorithm Guarantee

Since the proposed algorithm is a MAP-EM algorithm [101], we have the following

guarantee.

Theorem 4.1. Algorithm 1 guarantees that p(Ψ(k+1)|m) ≥ p(Ψ(k)|m) in each iteration.

Proof (Sketch): Recall that Ψ = (A,γ,α). By Theorem 7 of [101], the update of α and γ

in Step 1 of Algorithm 1 guarantees that p((A(k),γ(k+1),α(k+1))|m) ≥ p((A(k),γ(k),α(k))|m).

Also, the update of matrix A in Step 2 further guarantees p((A(k+1),γ(k+1),α(k+1))|m) ≥

p((A(k),γ(k+1),α(k+1))|m).
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4.3.3 Underlying SBL Objective Function

The procedure employed is Type-II MAP, i.e., maximize p(Ψ|m) ∝ p(m|Ψ)p(γ),

which is guaranteed the ascent properties at each step by Theorem 4.1. After applying

−2 log(·) transformation, we can show

minγ,α,A∈A−2 log[p(m|Ψ)p(γ)] = minγ,α,A∈AmT Σ−1
mm + log |Σm| + 2(a + 1) log |Γ| + const

= minγ,α,A∈A{mins,e[ 1
β
‖m−As−e‖22 +sT Γ−1s+eT Λ−1e]+log |Σm|+2(a+1) log |Γ|}+const

= mins,e,A∈A{ 1β‖m−As−e‖
2
2+min

γ,α
[sT Γ−1s + eT Λ−1e + log |Σm| + 2(a + 1) log |Γ|]︸                                                                 ︷︷                                                                 ︸

gS BL(A,s,e)

}+const

The first term is the data-fidelity term, while the remaining gS BL(A, s, e) is our underlying

penalty term. Recall that Σm = AΓAT +Λ+βI . It is known that log-determinant encourages

low-rank [52]. So log |Σm| and log |Γ| push both γ and α to be sparse. As a result of the

variances going to zero, the corresponding entries of s and e will be driven to 0. So, we can

see that the proposed model indeed leads to sparse solutions.

4.3.4 Complexity Analysis

In Step 1, thanks to the matrix inversion lemma used in (4.10), the complexity

of calculating µs|m, µe|m, diag(Σs|m), and diag(Σe|m) is only O(d2n1n2). In Step 2, the

complexity is O(d2n1n2). As mentioned in Section 4.2.5, for large-scale problems, we

initialize d to the same order of the rank r, rather than min(n1, n2). Then the complexity

significantly reduces to O(r2n1n2) in each iteration.

4.4 Modified SBL Approach

Reflecting on the algorithm at a high level, Algorithm 1 updates α and γ with A

fixed, and then updatesA with α and γ fixed, iteratively. As analyzed before, the proposed

SBL cost function does lead to sparse solutions. However, there is additional information
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that could be further utilized. More specifically, in Robust PCA problem (i.e., Sparse and

Low-rank decomposition), usually the outliers are assumed to be spread out, i.e., sparse in

each row and each column. To utilize this information, in this section, we modify the SBL

cost function when we update α and γ with A fixed, which leads to further performance

improvement.

4.4.1 Algorithm

Recall that our original SBL cost function ismT Σ−1
mm + log |Σm| + 2(a + 1) log |Γ|,

where Σm = AΓAT + Λ + βI is the covariance matrix of m, and log |Σm| pushes both

γ and α to be sparse. In order to use the information that the outliers are sparse in each

row and each column, we replace the term log |Σm| by its sub-blocks, i.e., 0.5
∑

j log |ΣM j | +

0.5
∑

i log |Σ(MT )i |, where ΣM j is the covariance matrix of the jth column ofM , and Σ(MT )i

is the covariance matrix of the ith row of M . As we will show next, this encourages the

outliers being not only sparse, but also sparse in each row and each column.

We have ΣM j = A• jΓA
T
• j + Λ• j + βI , and Σ(MT )i = Ai•ΓA

T
i• + Λi• + βI , where

the A• j , A (1 + ( j − 1)n1 : jn1, :) is a sub-matrix of A that corresponds to jth column

of the low-rank matrix, i.e., L j = A• js. Similarly, Ai• , A (i : n1 : i + (n2 − 1)n1, :) that

corresponds to ith row of the low-rank matrix L. Also, Λ• j , diag (α(1 + ( j − 1)n1 : jn1))

which corresponds to jth column of Mat(α). Similarly, Λi• , diag (α(i : n1 : i + (n2 − 1)n1))

that corresponds to ith row of Mat(α). It’s easy to see that ΣM j is a diagonal block of ΣM . By

Hadamard-Fischer Inequality, we have that log |Σm| ≤
∑

j log |ΣM j |. Similarly, one can show

that log |Σm| ≤
∑

i log |Σ(MT )i |. So, it turns out that 0.5
∑

j log |ΣM j | + 0.5
∑

i log |Σ(MT )i | is

an upper bound of log |Σm|.

Intuitively, the term log |ΣM j | = log |A• jΓA
T
• j + Λ• j + βI | encourages Λ• j to be low-

rank, thus encouraging the outliers in jth column to be sparse. Similarly, the term log |Σ(MT )i |

encourages the outliers in ith row to be sparse.
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Now the question is how to optimize the following modified SBL cost function w.r.t.

α ≥ 0 and γ ≥ 0 whenA is fixed, which is an upper bound of the original SBL cost function.

mT Σ−1
mm + 0.5

∑
j

log |ΣM j | + 0.5
∑

i

log |Σ(MT )i | + 2(a + 1) log |Γ| (4.23)

Following the variational bounding method used in [62], we construct the upper

bounds for the first three terms and minimize the overall upper bound w.r.t. α ≥ 0 and γ ≥ 0.

The details can be found in the Appendix.

Combining these upper bounds, we have

(4.23) ≤(µ(t)
s|m)T Γ−1µ(t)

s|m + (µ(t)
e|m)T Λ−1µ(t)

e|m + (0.5n1 + 0.5n2 + 2a + 2) log |Γ| + log |Λ|

+
∑

j

[0.5diag(Σ(t)
s|M j

)Tγ−1 + diag(Σ(t)
E j |M j

)T diag(Λ−1
• j )]

+
∑

i

[0.5diag(Σ(t)
s|(MT )i

)Tγ−1 + diag(Σ(t)
(ET )i |(MT )i

)T diag(Λ−1
i• )] + Const, (4.24)

where µ(t)
s|m = Γ(t)AT (AΓ(t)AT + Λ(t) + βI)−1m, µ(t)

e|m = Λ(t)(AΓ(t)AT + Λ(t) + βI)−1m

Σ(t)
M j
, A• jΓ

(t)AT
• j + Λ(t)

• j + βI , Σ(t)
(MT )i

, Ai•Γ
(t)AT

i• + Λ(t)
i• + βI

Σ(t)
E j |M j

, Λ(t)
• j −Λ(t)

• j (Σ(t)
M j

)−1Λ(t)
• j , Σ(t)

(ET )i |(MT )i
, Λ(t)

i• −Λ(t)
i• (Σ(t)

(MT )i
)−1Λ(t)

i•

Σ(t)
s|M j
, Γ(t) − Γ(t)AT

• j(Σ
(t)
M j

)−1A• jΓ
(t), Σ(t)

s|(MT )i
, Γ(t) − Γ(t)AT

i• (Σ
(t)
(MT )i

)−1Ai•Γ
(t)

Taking derivatives, we obtain the modified updating rules for α and γ:

Update α: Define ii = i − n1(d i
n1
e − 1) and j j = d i

n1
e,

α(t+1)
i = (µ(t)

e|m(i))2 + Σ(t)
E j j |M j j

(ii, ii) + Σ(t)
(ET )ii |(MT )ii

( j j, j j).

Note that αi corresponds to the element in iith row and j jth column of the matrix

Mat(α).
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Update γ:

γ(t+1) =
(µ(t)
s|m)2 + 0.5

∑
j diag(Σ(t)

s|M j
) + 0.5

∑
i diag(Σ(t)

s|(MT )i
)

2a + 2 + 0.5n1 + 0.5n2

Comparing with the original SBL updating rules of α and γ, the original big posterior

covariance matrix, e.g., Σe|m, is replaced by sum of small posterior covariance matrices

corresponding to the row and the column. This replacement is intuitive since the purpose of

our modified SBL is to enforce the outliers to be sparse in each row and each column.

In summary, the proposed modified SBL approach merely replaces the updating rules

of α and γ in Algorithm 1 by the new updating rules above. At the high level, this approach

first minimizes the modified objective function, which is an upper bound of the original SBL

objective function, to update both α and γ; and then minimizes the original SBL objective to

estimate A via MAP-EM, alternatively. As we will see in the numerical experiments, this

utilization of the sparsity pattern information further improves the recovery performance.

4.4.2 Relation to Previous Work

In [62], it is assumed that the covariance matrix of vec(L) has a Kronecker sum

structure, i.e., Ψr ⊕ Ψc. The resulting objective function is mT Σ−1
mm + log |Σm|, where

Σm = Ψr ⊕Ψc + Λ + βI . However, the high computational complexity leads to breaking the

term log |Σm| into smaller pieces:
∑

j log |Ψc + 1
2Λ• j +

β

2I | +
∑

i log |Ψr + 1
2Λi• +

β

2I |, which

is a lower bound of log |Σm|. Then they use the variational bounding technique to minimize

the associated new objective function. Though this modification of the objective function is

purely for reducing complexity and non-intuitive, it achieves much better performance than

other competing methods. By investigating their objective function, we find that the efficacy

lies in the term
∑

j log |Ψc + 1
2Λ• j +

β

2I |+
∑

i log |Ψr + 1
2Λi• +

β

2I |, which implicitly encourages

the outliers to be sparse in each row and each column.
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Motivated by the above observation, we proposed the modified SBL in this section,

not due to complexity issue. Our modified objective function is an upper bound of the original

objective function, and the terms ΣM j and Σ(MT )i here have physical meanings.

It is also worth mentioning that, the sparsity pattern together with the sparsity level

information of the outliers have been explicitly utilized in a recent Robust PCA work [103],

where a thresholding operator is used to keep each row and each column of the estimated

E having at most p fraction of outliers. However, the parameter p needs to be specified.

While in our modified SBL, the sparsity level of the outliers in each column and each row is

automatically learned from the data, and does not require to be specified.

4.4.3 Complexity Analysis

The only difference between Modified SBL and the original SBL is the updating rules

of γ and α in Step 1. In the original SBL, calculating the posterior mean and variance of

e and s is O(d2n1n2). In the modified SBL, the complexity of calculating µs|m and µe|m is

O(d2n1n2). To calculate diag(ΣE j j |M j j) and diag(Σs|M j), the complexity is O(d2n1), thanks to

the matrix inversion lemma. There are n2 columns in total. It is useful to note that this allows

for a high level of parallelism. Similarly, to calculate diag(Σ(ET )ii |(MT )ii) and diag(Σs|(MT )i),

the complexity is O(d2n2) and there are n1 rows, which can also be parallelized.

Note that in [62], there is a need to calculate the inverse of the n1 × n1 matrix

(Ψc +0.5Λ• j +0.5βI) for n2 columns, and the inverse of the n2×n2 matrix (Ψr +0.5Λi•+0.5βI)

for n1 rows. The complexity of a single matrix inversion there is O(max(n1, n2)3), which is

prohibitive for large scale problems. Note that the matrix inversion lemma unfortunately can

not be applied to reduce their complexity. As a result, the complexity of the method in [62] is

much higher than the proposed methods.
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4.5 Empirical Studies

In this section, we compare the proposed SBL methods with the following state-of-the-

art methods: PCP [39]–[41], SPCP [44], [98], Iterative Reweighted PCP (IR-PCP) [51], [104],

AltProj [96], SRPCP [105], Babacan’s VB-RPCA [56], BRMF [57], and PB-RPCA [62].

We additionally compare with the nuclear norm based noisy matrix completion (MC) [100],

[106], where the locations of the outliers are known, and only outlier-free entries are observed.

This problem is much easier than Robust PCA and serves as an oracle solution [62], [90].

We use the source codes from the authors and the corresponding parameters are carefully

tuned. For the proposed methods, we initialize γ(0) and α(0) to be vector of ones. U (0) and

V (0) are initialized from the singular vectors of the low-rank matrix estimated by SRPCP.

More specifically, denote L̃ as the solution of SRPCP, U (0) and V (0) are initialized as its first

2 × rank(L̃) singular vector pairs. The noise standard deviation is provided to SPCP, SRPCP,

PB-RPCA, VB-RPCA, and the proposed SBL methods. BRMF, AltProj, and VB-RPCA need

the knowledge of the maximal possible rank of L, and it is specified as 2 times the true rank.

4.5.1 Comparison on Simulated Data

The experimental setup is the same as [105] and similar to [97], [98], which is as

follows:

1) Given the rank r, the low-rank component L0 is built as L0 = ABT , where A and B are

randomly generated n × r standard Gaussian matrices;

2) Given the fraction ρ (corruption rate) of non-zero entries in E0, the support of E0 is

chosen uniformly at random with size ρn2, and the value of each non-zero entry is

independently drawn from a uniform distribution over the interval [0, 100];

3) Each entry of the noise N is independently drawn from a Gaussian distribution with
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mean 0 and variance σ2.

4) Finally, generate M = L0 + E0 + N. Estimate L0 and E0 from M using different methods.

We set n = 100, σ = 0.1. For each r ∈ {1 : 40}, and each ρ ∈ {0.01 0.05 : 0.05 : 0.60},

we repeat the above procedure 10 times. For evaluation, the estimated L̂ is compared with the

ground truth via the Relative Error ‖L̂−L0‖F
‖L0‖F

. We report the average Relative Error over all trials

in the log scale as in [105], i.e., 2 log(Average( ‖L̂−L0‖F
‖L0‖F

)). We also compute the distance between

the estimated outlier support and the true support. Denoting the two supports as Ω̂ and Ω, the

Support Distance is defined as in [107]: dist(Ω̂,Ω) =
(
max{|Ω̂|, |Ω|} − |Ω̂ ∩Ω|

)
/max{|Ω̂|, |Ω|}.

The outlier support is determined by thresholding Ê or (M − L̂).

Fig. 4.1 shows the average Relative Error of different methods in the log scale. Note

that in the color scale bar, 0 means 2 log(Average( ‖L̂−L0‖F
‖L0‖F

)) = 0, i.e., the average Relative Error

is 1. So the red color indicates very poor recovery. Similarly, -2 means the average Relative

Error is 10−1, indicated by the green color. Fig. 4.2 shows the average Support Distance of

each method. Note that in the gray scale bar, 0 means exact support recovery, while 1 means

very poor support recovery. It is clear that the proposed SBL methods have significantly better

support recovery than the other methods. In terms of the recovery of the low-rank matrix, we

can see that the proposed SBL method demonstrates an improvement over its initialization

SRPCP. And the modified SBL method has a further improvement and nearly matches the

performance of the oracle Matrix Completion method. In the experiments, we notice that

there are many cases where SRPCP fails, which means the initialization of U (0) and V (0) are

poor, while the proposed SBL methods finally return good estimates.

As discussed in [105], the superior performance of the Matrix Completion agrees with

the intuition that correcting erasures with known locations is easier than correcting errors with

unknown locations [90]. In Robust PCA, there is no knowledge of the locations and values

of the outliers/errors. While in matrix completion, the locations of the erasures are known.
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The proposed modified SBL method utilizes some location information (i.e., sparsity pattern)

of the outliers and therefore pushes its performance towards the oracle Matrix Completion

solution.

The conclusion for the double-sided outlier corruptions (i.e., ∼ U[−100, 100]) is

similar. We have also tested the case where the entries of A and B are randomly drawn from

uniform distribution U[−1, 1]. The relative performance of the compared methods remains

unchanged.
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Figure 4.1. Average Relative Error of each method in log scale w.r.t. different rank and
corruption rate.

125



PCP

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

SBL

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

BRMF

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

IR_PCP

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1
SPCP

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

AltProj

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1
PB_RPCA

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

Matrix Completion

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

SRPCP

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1
Modified SBL

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

VB_RPCA

1 10 20 30 40 50 60

Corruption rate %

40

30

20

10

R
a

n
k

0

0.5

1

Figure 4.2. Average Support Distance of each method w.r.t. different rank and
corruption rate.

4.5.2 Comparison on Text Removal

In this subsection, we follow [57] to conduct a text removal image processing simula-

tion, where the results are directly visible. The experiment settings are the same as in [105].

The ground truth low-rank clean image is a 256 × 256 matrix with rank equal to 10, whose

values are between -1 and 1. We embed black text in the image, where the values of the text

are randomly drawn from U[−1, 0]. The text can be viewed as sparse outliers. For evaluation,

we compare the recovered low-rank matrix with the ground truth via `2 error, i.e., ‖L̂ − L0‖F .

As the support (mask) of the text is also of interest, the mask of the text is usually obtained by
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      Input       Ground Truth PCP, F=0.537, error=81.7

BRMF, F=0.867, error=73.1

SRPCP, F=0.967, error=17.4 SBL, F=0.971, error=17.4 Modified SBL, F=0.972, error=17.4

IR_PCP, F=0.799, error=70.6

AltProj, F=0.890, error=71.9 PB_RPCA, F=0.903, error=76.4

Figure 4.3. Recovered text mask (left, measured by F-measure) and low-rank matrix
(right, measured by `2 error) by each method.

thresholding the estimated Ê. We vary the threshold as in [57], [105] to find the maximum

F-measure for each method, where the F-measure is commonly used in pattern recognition

and is defined as: 2(precision · recall)/(precision+recall). Fig. 4.3 shows the results of each

method. It can be seen that most methods failed to return a clean low-rank image. SRPCP

and the proposed SBL methods are able to recover a relatively clean low-rank image. The

modified SBL method performs best in terms of F-measure and `2 error.

Finally, we remind the reader that, better performance can be expected via training

based text recognition or incorporating the continuity prior [57] of the text. The main purpose

here is to use an example to visually illustrate the effectiveness of the proposed methods.
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Original frame

PCP SPCP

SRPCP

Modified SBL

BRMF

IR_PCPAltProj

SBL

Figure 4.4. Recovered background (left) and foreground (right) by each method.

4.5.3 Comparison on Real Data

Lastly, we compare the performance of the methods on first 200 frames of a surveil-

lance video4, where each frame is converted to a column vector, and the integer pixel values
4http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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are scaled to the range [-1,1]. The background over the frames is the low-rank component and

the moving objects over the frames can be considered as the sparse component. We exclude

the PB-RPCA method for comparison due to its very high computational complexity. The

parameter settings of other compared methods are the same as that in [105]. Fig. 4.4 shows

the recovered background (left) and foreground (right) in the first frame. We can see that there

are some ghosting effects in the recovered background of the competing BRMF Bayesian

method, while the proposed SBL methods separate the foreground with the background very

well. Note that the lighting at the top of the video changes over the frames, which can be

considered as the foreground.

4.6 Conclusion

A concise SBL model is developed in light of a new objective, which is proven to

be equivalent to the fundamental Robust PCA objective. This new model allows simple and

effective Empirical Bayesian inference via MAP-EM. To further utilize the sparsity pattern

information of the outliers, a modified SBL approach is further proposed. Empirical studies

demonstrate the superiority and efficacy of the proposed methods.

Chapter 4, in part, is a reprint of the material as it appears in the papers: J. Liu and B.

D. Rao, "Sparse Bayesian Learning for Robust PCA: Algorithms and Analyses," Submitted,

and J. Liu, Y. Ding and B. Rao, "Sparse Bayesian Learning for Robust PCA," in Proc. IEEE

Int. Conf. Acoust., Speech Signal Process., May. 2019, pp. 4883-4887. The dissertation

author was the primary investigator and author of these papers.
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4.7 Appendices

4.7.1 Construct the Upper Bound for (4.23)

Following the variational bounding method used in [62], we construct the upper

bounds for each term of (4.23). We first have

mT Σ−1
mm ≤

1
β
‖m −As − e‖22 + sT Γ−1s + eT Λ−1e

for any s and e, with equality achieved when e = µe|m = ΛΣ−1
mm, and s = µs|m =

ΓATΣ−1
mm.

For the second term, following the approaches in [18], [62], we have

0.5 log |A• jΓA
T
• j + Λ• j + βI |

=0.5 log |A• jΓA
T
• j| + 0.5 log |Λ• j| + 0.5 log |W(A• jΓA

T
• j,Λ• j)| + C0

≤0.5 log |A• jΓA
T
• j| + 0.5 log |Λ• j| + 0.5 Trace[∇T

(A• jΓA
T
• j)
−1(A• jΓA

T
• j)
−1] + 0.5∇T

Λ−1
• j

diag(Λ−1
• j ) + C1

≤0.5 log |A• jΓA
T
• j| + 0.5 log |Λ• j| + 0.5 Trace[∇T

(A• jΓA
T
• j)
−1(A• jΓA

T
• j)
−1] + ∇T

Λ−1
• j

diag(Λ−1
• j ) + C1

=0.5 log |Γ| + 0.5 log |Λ• j| + 0.5 Trace[∇T
(A• jΓA

T
• j)
−1(A• jΓA

T
• j)
−1] + ∇T

Λ−1
• j

diag(Λ−1
• j ) + C2

=0.5 log |Γ| + 0.5 log |Λ• j| + 0.5 Trace[(Γ(t) − Γ(t)AT
• j(Σ

(t)
M j

)−1A• jΓ
(t))Γ−1] + ∇T

Λ−1
• j

diag(Λ−1
• j ) + C2

=0.5 log |Γ| + 0.5 log |Λ• j| + 0.5diag(Γ(t) − Γ(t)AT
• j(Σ

(t)
M j

)−1A• jΓ
(t))Tγ−1 + ∇T

Λ−1
• j

diag(Λ−1
• j ) + C2.

Here we use the superscript (t) to indicate the previous estimate.

W(A• jΓA
T
• j,Λ• j) , β−1


I I

I I

 +


(A• jΓA

T
• j)
−1 0

0 Λ−1
• j


Σ(t)
M j
, A• jΓ

(t)AT
• j + Λ(t)

• j + βI
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∇(A• jΓA
T
• j)
−1 ,

∂ log |W(A• jΓA
T
• j,Λ• j)|

∂(A• jΓA
T
• j)
−1

∣∣∣∣
(Γ,Λ• j)=(Γ(t),Λ(t)

• j )
= A• jΓ

(t)AT
• j − (A• jΓ

(t)AT
• j)(Σ

(t)
M j

)−1(A• jΓ
(t)AT

• j)

∇Λ−1
• j
, diag

[
∂ log |W(A• jΓA

T
• j,Λ• j)|

∂Λ−1
• j

∣∣∣∣
(Γ,Λ• j)=(Γ(t),Λ(t)

• j )

]
= diag[Λ(t)

• j −Λ(t)
• j (Σ(t)

M j
)−1Λ(t)

• j ] , diag(Σ(t)
E j |M j

)

In the second inequality, we relax the upper bound, which empirically leads to better

performance. And it holds because the term ∇T
Λ−1

• j
diag(Λ−1

• j ) is non-negative.

Similarly, for the third term, we have

0.5 log |Ai•ΓA
T
i• + Λi• + βI |

≤0.5 log |Γ| + 0.5 log |Λi•| + 0.5diag(Γ(t) − Γ(t)AT
i• (Σ

(t)
(MT )i

)−1Ai•Γ
(t))Tγ−1 + ∇T

Λ−1
i•

diag(Λ−1
i• ) + C3,

where Σ(t)
(MT )i

, Ai•Γ
(t)AT

i• + Λ(t)
i• + βI , ∇Λ−1

i•
, diag

[
∂ log |W(Ai•ΓA

T
i• ,Λi•)|

∂Λ−1
i•

∣∣∣∣
(Γ,Λi•)=(Γ(t),Λ(t)

i• )

]
=

diag[Λ(t)
i• −Λ(t)

i• (Σ(t)
(MT )i

)−1Λ(t)
i• ] , diag(Σ(t)

(ET )i |(MT )i
).

4.7.2 Proof of Proposition 4.2

Proof. Since d ∈ [rank(Lopt), min(n1, n2)], it’s not hard to verify that the optimization

problems in (4.1) and (4.2) have the same minimal objective value and global optimal

solution(s) in terms of L and E. So we focus on building the connection between (4.1), (4.2)

and (4.8). Consider the following equivalent optimization problem to that of (4.8):

min
U ,V ,s,E

‖s‖0 + λ‖E‖0 s.t. ‖M −Udiag(s)V T −E‖F ≤ δ, (4.25)

‖Ui‖2 = ‖Vi‖2 = 1,∀i,U ∈ Rn1×d,V ∈ Rn2×d.

Denote f5 as the minimal objective value of (4.2), f7 as the minimal objective value of

(4.25). We will first prove that f5 = f7.

Since (4.2) has additional constraints than (4.25), we must have f5 ≥ f7.

Let (U ∗,V ∗, s∗,E∗) be any global minima of (4.25), so ‖s∗‖0 + λ‖E∗‖0 = f7. By

performing rank-d SVD on (U ∗diag(s∗)V ∗T ) to get Ũ , s̃, and Ṽ , we must have s̃ � 0, ‖s̃‖0 ≤

‖s∗‖0, and Ũ , Ṽ orthonormal. So (Ũ , Ṽ , s̃,E∗) is a feasible solution of (4.2) and thus
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f5 ≤ ‖s̃‖0 + λ‖E∗‖0 ≤ ‖s
∗‖0 + λ‖E∗‖0 = f7.

In sum, we must have f5 = f7. So (4.1), (4.2) and (4.25) share the same minimal

objective value, denoted as f∗.

Then it remains to show (4.2) and (4.25) have the same global optimal solution(s) in

terms of L(= Udiag(s)V T ) and E.

Let the pair (L# = U#diag(s#)V #
T
,E#) be any global optimal solution of (4.2), we

must have ‖s#‖0 + λ‖E#‖0 = f∗. Again, since (4.2) has additional constraints than (4.25),

(L# = U#diag(s#)V #
T
,E#) must be a feasible solution of (4.25). Further, we can claim

it is also the global optimal solution of (4.25), since ‖s#‖0 + λ‖E#‖0 achieves the minimal

objective value f∗. So we have proved that any global optimal solution of (4.2) must also be

the global optimal solution of (4.25).

Now let us prove the opposite direction. Let the pair (L∗ = U ∗diag(s∗)V ∗T ,E∗) be

any global optimal solution of (4.25), we must have ‖s∗‖0 +λ‖E∗‖0 = f∗. Note that (L∗,E∗) is

a feasible solution of (4.1) and rank(L∗) ≤ ‖s∗‖0, so rank(L∗)+λ‖E∗‖0 ≤ ‖s
∗‖0 +λ‖E∗‖0 = f∗.

Since f∗ is the minimal objective value of (4.1), then (L∗,E∗) is actually the global optimal

solution of (4.1). So we proved that any global optimal solution of (4.25) must also be the

global optimal solution of (4.1). As (4.1) and (4.2) have the same global optimal solution(s)

in terms of L(= Udiag(s)V T ) and E, we further have any global optimal solution (L∗,E∗)

of (4.25) must also be the global optimal solution of (4.2).

In sum, (4.2) and (4.25) have the same global optimal solution(s) in terms of the low

rank matrix L and the sparse matrix E, where L = Udiag(s)V T in (4.2) and (4.25).
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4.7.3 Proof for the Optimal Solution of (4.19)

The optimization problem is as follows:

arg min
u,v
‖u‖2=1
‖v‖2=1

‖B − uvT ‖2F . (4.26)

The optimal solution is given by û = U1, v̂ = V1, where U1 and V1 are the first singular

vector pair ofB that correspond to its largest singular value.

Proof.

arg min
u,v
‖u‖2=1
‖v‖2=1

‖B − uvT ‖2F

= arg min
u,v
‖u‖2=1
‖v‖2=1

Trace{(B − uvT )T (B − uvT )}

= arg min
u,v
‖u‖2=1
‖v‖2=1

Trace{BTB − 2vuTB + vuTuvT }

= arg min
u,v
‖u‖2=1
‖v‖2=1

Trace{−2vuTB + vvT }

= arg min
u,v
‖u‖2=1
‖v‖2=1

Trace{−2vuTB} + Trace{vvT }

= arg min
u,v
‖u‖2=1
‖v‖2=1

Trace{−2vuTB} + Trace{vTv}

= arg min
u,v
‖u‖2=1
‖v‖2=1

Trace{−2vuTB} + 1

= arg max
u,v
‖u‖2=1
‖v‖2=1

Trace{vuTB}

= arg max
u,v
‖u‖2=1
‖v‖2=1

Trace{uTBv}
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= arg max
u,v
‖u‖2=1
‖v‖2=1

uTBv (4.27)

Since

max
u,v
‖u‖2=1
‖v‖2=1

uTBv ≤ max
u,v
‖u‖2=1
‖v‖2=1

‖u‖2‖Bv‖2 = max
u,v
‖u‖2=1
‖v‖2=1

‖Bv‖2 ≤ max
u,v
‖u‖2=1
‖v‖2=1

‖B‖‖v‖2 = ‖B‖ (4.28)

Apparently, the maximum value ‖B‖(= σ1) can be achieved by settingu = U1,v = V1

in (4.27).
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Chapter 5

Future Work

The propose `0 regularization framework has numerous applications in many data

analysis and machine learning problems, both linear and non-linear. In this chapter, we briefly

mention a few important problems where the proposed framework can be directly applied to.

5.1 Robust Tensor Decomposition

A tensor is an N-way array. Decompositions of higher-order tensors (i.e., N-way arrays

with N ≥ 3) have applications in psycho-metrics, chemometrics, signal processing, numerical

linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis,

and elsewhere [108]. The classic Tucker decomposition and CANDECOMP/PARAFAC (CP)

decomposition methods are based on the Least Squares criteria and thus suffer from the outliers

in the data. Recently, researchers extended the idea of Robust PCA to the tensor version

(e.g., [109]), where the `1-norm is again used to encourage the sparseness of the outliers. The

`0 regularization framework proposed in this thesis can be straightforwardly applied to this

problem, where the genuine `0-‘norm’ enforces the sparseness of the outliers and the `1-norm

addresses the inlier noise. And it is very promising to achieve better performance and with
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better recovery guarantees than the existing approach.

5.2 Robust Matrix Sensing

Recovering a structured matrix from a small number of linear measurements also

has numerous applications [110]. In many modern applications, the measurements are

often corrupted by the outliers, e.g., due to the interference or the failure of some sensors.

Mathematically, we observe y = A(X) + e + n, where e is the outlier corruption vector, n

models the inlier noise, X is some structured matrix (e.g., low-rank) to be recovered, and

A : Rn1×n2 → Rm is a known linear operator. The proposed `0 regularization framework can

also be straightforwardly applied to address this problem, e.g., via the objective f (X) +α‖e‖0 +

‖y −A(X) − e‖1. Superior performance can be expected over the existing approach [111]

in robust low-rank matrix sensing, which purely relies on the `1-norm to model the outliers.

On the theoretical side, recall that in Robust Linear Regression, we discovered an important

slowly decreasing property of m(A), which measures the resilience to the maximum number

of the outliers. It’s quite promising to find a similar property of m(A) here, which would

then allow us to answer some fundamental questions and establish better recovery guarantees

than the existing methods.

5.3 Robust Deep Autoencoders

Deep Autoencoders play a fundamental role in deep learning. It can be viewed as a

non-linear version of PCA and suffers from the outliers in the training data. Recently, the idea

of Robust PCA is borrowed to address this challenge [112]. Mathematically, they propose to
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solve the following problem:

min
L,E,θ
‖M −E − Dθ(Eθ(L))‖F + λ‖E‖1 (5.1)

where Eθ(·) denotes an encoder, and Dθ(·) denotes a decoder, M is the outlier corrupted

training data, E models the outlier corruptions, and L is the underlying clean data. The

`1-norm is used to enforce the sparseness of the outliers.

The proposed `0 regularization framework can also be straightforwardly applied to

address this problem, e.g., via the following objective:

min
L,E,θ
‖M −E − Dθ(Eθ(L))‖1 + λ‖E‖0 (5.2)

where we directly use the genuine `0-‘norm’ to enforce the sparseness of the outliers, and use

`1-norm to address the inlier noise. And the optimization procedure can be similar to that

of [112]. It’s very promising to achieve much better performance as in the Robust PCA case,

and with convergence guarantee.
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