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Abstract
Is it statistically appropriate to monitor evidence for or against a hypothesis
as the data accumulate, and stop whenever this evidence is deemed suffi-
ciently compelling? Researchers raised in the tradition of frequentist infer-
ence may intuit that such a practice will bias the results and may even lead
to “sampling to a foregone conclusion”. In contrast, the Bayesian formalism
entails that the decision on whether or not to terminate data collection is
irrelevant for the assessment of the strength of the evidence. Here we pro-
vide five Bayesian intuitions for why the rational updating of beliefs ought
not to depend on the decision when to stop data collection, that is, for the
Stopping Rule Principle.

I learned the stopping rule principle from Professor Barnard, in
conversation in the summer of 1952. Frankly, I then thought it a
scandal that anyone in the profession could advance an idea so
patently wrong, even as today I can scarcely believe that some
people resist an idea so patently right.

Leonard ‘Jimmie’ Savage, 1962

The Stopping Rule Principle (SRP; Berger & Wolpert, 1988, pp. 74-88) holds that
our statistical conclusions ought to be independent from the choice of when to terminate
data collection. A direct consequence of the SRP is that “It is entirely appropriate to collect
data until a point has been proven or disproven, or until the data collector runs out of time,
money, or patience.” (Edwards, Lindman, & Savage, 1963, p. 193).

To many researchers—and especially those with a solid background in frequentist
statistics—the SRP seems too good to be true. Surely interim peeks at the data induce a
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multiple-comparisons problem that needs to be addressed? Surely researchers who wish to
demonstrate evidence for their favorite theory use the SRP to mislead themselves and their
peers? The impression that the SRP sanctions statistical cheating is engendered by the fact
that the standard frequentist p-value crucially depends on the stopping rule. Specifically, if
the null hypothesis is true then the p-value will meander randomly on the interval from 0 to
1 as the number of observations increases; consequently, persistent researchers can bide their
time and conduct a new analysis after every new batch of data arrives – if the null is true,
the random fluctuations of the p-value guarantee that at some point statistical significance
will be achieved, for any level of α greater than 0. The practice of monitoring the p-value
until it dips below α is known as “sampling to a foregone conclusion” or “optional stopping”.

Despite decades of research, the SRP remains the topic of considerable statistical con-
troversy. Part of the reason is that the stakes are so high. After all, if the SRP is accepted,
this means that (a) researchers gain substantial freedom in conducting their experiments;
(b) the core tenets of frequentist inference are found wanting (as frequentism violates the
SRP). On the other hand, if the SRP is rejected this means that (a) researchers are re-
quired to state their sampling plan in advance of data collection and adhere to it during
data collection; (b) the core tenets of Bayesian inference are found wanting (as Bayesianism
implies the SRP1).

Over the years, Psychonomic Bulletin & Review has featured several papers on the
SRP (e.g., Sanborn & Hills, 2014; Wagenmakers, 2007; Wagenmakers et al., 2018; Yu,
Sprenger, Thomas, & Dougherty, 2014). Of particular relevance here is the article by
Rouder (2014): “Optional stopping: No problem for Bayesians” and the preprint by de
Heide and Grünwald (2018): “Why optional stopping is a problem for Bayesians”.2 The
disagreement that is evident from these titles should give anybody pause: here are influ-
ential statisticians/methodologists—intelligent, mathematically strong, well aware of the
literature on the topic—who appear to take opposing viewpoints on a crucial issue that
seems simple enough: should the SRP be accepted or rejected?

The Stopping Rule Principle

Berger and Wolpert (1988) mention that “The Stopping Rule Principle was first
espoused by Barnard (1947, 1949), whose motivation at the time was essentially a reluctance
to allow an experimenter’s intentions to affect conclusions drawn from data.” (p. 74). Other
references of interest include Anscombe (1963); Barnard, Jenkins, and Winsten (1962);
Bartholomew (1967); Basu (1975); Berger (1985); Berger and Berry (1988); Bernardo and
Smith (1994); Birnbaum (1962); Cornfield (1966b); Edwards et al. (1963); Good (1991);
Kadane, Schervish, and Seidenfeld (1996a, 1996b); Kerridge (1963); Lee (2012); Lindley
(1957); Pratt (1965); Raiffa and Schlaifer (1961); Royall (2000); and Wagenmakers (2007).

The Bayesian take on the SRP is summarized by O’Hagan and Forster (2004, p. 123):

“Another notable context in which the stopping rule affects classical methods
is sequential inference. (...) There we consider at various stages during an
experiment deciding whether to continue the experiment by obtaining more
data, or to stop and make an inference or decision based on the data available

1But see Steel (2003).
2https://arxiv.org/abs/1708.08278, version 3.
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up to that point. If the decision is to stop at a point where n observations have
been made, then the inference is based upon the posterior distribution of the
unknown parameters, based on the n observations, and is exactly the same as
would have been obtained if a non-sequential experiment had been conducted,
with the intention from the outset having been to take exactly n observations.

However, classical inference based upon the same data would be different if
the non-sequential experiment were performed. If a hypothesis test is required,
for instance, the sequential experiment results in a lower degree of significance
from the same data, because the probability of the first kind of error is inflated
by the chance of rejecting the null hypothesis when it is true at some other stage
of the sequential experiment. The difference between the classical and Bayesian
inference in this context can be quite striking. To a Bayesian it seems absurd
[italics ours] that classical inference when the experiment has stopped after n
observations depends not only on whether a decision was taken at some earlier
stage not to stop the experiment then, but also on whether the decision at this
stage might have been to continue and defer inference to a later stage.”

The intuitive appeal of the SRP can be clarified with concrete examples (see Berger
& Wolpert, 1988, for an entertaining collection) and general arguments. Below we discuss
five intuitive arguments to support the general conclusion drawn by Rouder (2014).

Intuitions for the Stopping Rule Principle

Intuition 1: Why the Rouder Simulation Works

In order to clarify the SRP to an audience of psychologists, Rouder (2014) argued as
follows (pp. 303–304):

“Posterior odds are the probability of competing hypotheses given data. If
updating through Bayes factor is ideal and if the prior odds are accurate, then
the posterior odds should be accurate as well. If a replicate experiment yielded
a posterior odds of 3.5-to-1 in favor of the null, then we expect that the null was
3.5 times as probable as the alternative to have produced the data. We can check
this interpretation with simulations as follows: In repeated simulations, we can
select all those replicate experiments that yield the same posterior odds—say,
3.5-to-1 in favor of the null—and tally how many of these selected experiments
came from the null truth and how many came from the alternative truth. If
the posterior odds are interpretable as claimed, then about 3.5 times as many of
these selected experiments should come from the null than from the alternative.”

This simulation setup appears compelling, and it also forms the basis of the preprint
by de Heide and Grünwald (2018). However, a more careful inspection suggests that this
setup contains a distinctly non-Bayesian element. Specifically, the Rouder simulation does
not condition on what is known (i.e., the data that have been observed) but instead con-
ditions on the value of the Bayes factor. When multiple data sets (all but one of which
are hypothetical) can produce the same Bayes factor, this could mean that the simulation
results are affected by imaginary data sets whose potential for realization depends on the
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stopping rule. Hence, Rouder’s simulation itself could be thought to violate the SRP, the
very principle that it was designed to support.

When we discovered this possible flaw in the Rouder simulations we set out to demon-
strate the problem with concrete examples. To our initial surprise, we came up short every
time. For instance, we would compare two sampling scenarios; in scenario A, the Bayes fac-
tor was monitored until it exceeded either 3 or 1/3. In scenario B, the exact same rule was
followed until the 11th observation, after which the evidence threshold at 1/3 was replaced
with one at 1/100. We then imagined a data set consisting of 10 observations and a BF in
favor of the null just exceeding 3. Clearly, the probability of these data (under H0 versus
H1) is the same under scenarios A and B; but what about the proportion of Bayes factors
coming from H0 that just exceed 3, taken across all of the hypothetical data that could be
observed? We expected this proportion to differ between scenario A and B, but it did not.
The intuition for this invariance is as follows. For each hypothetical data set that yields a
Bayes factor of 3 in favor of H0, the data are 3 times more likely under H0 than under H1.
Changing the sampling plan changes the prevalence of these hypothetical data sets, but as
each of them has a Bayes factor of 3, the end result is unaffected: when the same number
is averaged, the averaging weights are irrelevant.

In sum, despite its dependence on hypothetical data sets that depend on the sampling
plan, the Rouder simulation is nevertheless consistent with the SRP.

Intuition 2: Learners Always Ignore the Stopping Rule

At its core, Bayesian inference is a theory of learning. All organisms learn from
experience3, and this must be done by updating knowledge in light of prediction errors:
gross prediction errors necessitate large adjustments in knowledge, whereas small prediction
errors require only minor adjustments. In general terms, we then have the following rule
for learning from experience:

Present uncertainty
about the world = Past uncertainty

about the world × Predictive
updating factor

The principle of learning from experience can be made more precise using Bayes’ rule:

p(θ | data)︸ ︷︷ ︸
Posterior beliefs

about θ

= p(θ)︸︷︷︸
Prior beliefs

about θ

× p(data | θ)
p(data)︸ ︷︷ ︸
Predictive

updating factor

. (1)

Here, the Greek letter θ (‘theta’) represents some aspect of the world about which we are
unsure; depending on context, it can be known as a ‘parameter’, a ‘hypothesis’, a ‘model’,
or, in philosophers’ jargon, a ‘proposition’. The equation shows how our prior beliefs are
transformed to posterior beliefs by the predictive updating factor: values of θ that predicted
the data better than average receive a boost in plausibility, whereas values of θ that predicted
the data worse than average suffer a decline (see also Wagenmakers, Morey, & Lee, 2016
and Figure 1).

3Either individually or as a species, through evolution.
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Figure 1 . Bayesian learning can be conceptualized as a cyclical process of updating knowl-
edge in response to prediction errors. The prediction step is deductive, and the updating
step is inductive. For a detailed account see Jevons (1874/1913, Chapters XI and XII).
Figure available at BayesianSpectacles.org under a CC-BY license.

For concreteness, let proposition HB denote ‘the butler murdered the family guest’
and proposition HH denote ‘the housekeeper murdered the family guest’. Assume that we
restrict our inference to these two propositions. When we rewrite Bayes’ rule in its odds
form we have:

p(HB | data)
p(HH | data)︸ ︷︷ ︸
Posterior odds
for HB vs. HH

= p(HB)
p(HH)︸ ︷︷ ︸

Prior odds
for HB vs. HH

× p(data | HB)
p(data | HH)︸ ︷︷ ︸

Predictive
updating factor

. (2)

Suppose we know, from earlier experience in similar cases, that butlers are ten times
more likely to murder family guests than housekeepers. Hence the prior odds are 10:1 in
favor of the butler being the murderer. We could decide to ignore this information, but
one would have to explain why. Regardless of whether one sets the prior odds at 10:1 (to
incorporate prior knowledge) or 1:1 (to avoid prejudice), these odds are updated by the
relative degree to which the data are compatible with the hypotheses under consideration.
For instance, on day 1 of the investigation, the murder weapon is found – it is a heavy
candlestick, one that the brawny butler could wield with ease, but the slight housekeeper
would find difficult to use with the force required to strike a deadly blow. If the butler is
100 times more likely than the housekeeper to use a heavy candlestick for a murder, this
updates the odds to 10 × 100 = 1000 in favor of the butler being the murderer. On day
2, it is discovered that the only fingerprints on the candlestick belong to the butler. This
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is only modest evidence – the butler has handled the candlestick before, so the presence of
those fingerprints is not surprising; the probability of the butler’s fingerprints being on the
candlestick is only somewhat higher under HB (‘the butler is the murderer’) than under
HH (‘the housekeeper is the murderer’). Let’s say the predictive updating factor is 8.
Hence the odds after day 1 are adjusted based on the information after day 2 to yield a
posterior odds of 1000 × 8 = 8000. On day 3, we learn that, at the time of the murder,
the butler was in surgery at a nearby hospital, as a result of having been accidentally shot
by the family guest during a fox hunt earlier that afternoon. Under hypothesis HB, the
fact that the butler was being operated upon in the hospital during the time of the crime
is highly surprising (i.e, p(butler in hospital at time of the murder |HB) ≈ 0), much more
surprising than under the hypothesis that the housekeeper committed the murder. In fact,
we may learn that the housekeeper and the butler are childhood friends, so that the butler’s
shooting provides the housekeeper with motive, and this again changes the odds in favor of
the hypothesis that the housekeeper is the murderer.4

Crucially, at no point during the investigation would a detective take into account the
stopping rule in order to adjust his assessment of the evidence. This utter disregard for the
stopping rule is not unique to detectives solving murder mysteries; it was also on display, for
instance, in Thorndike’s cats when they sought to escape his puzzle boxes; it was there in
the alphaGo program when it taught itself to play Go; it is present in the spam filters that
make email a usable technology; and it is evident in children who learn to speak. For their
survival, almost all living creatures need to update their knowledge based on a continual
stream of feedback from the environment. No real-life learner has ever given a moment’s
thought as to how a stopping rule ought to adjust the evidence obtained thus far. The only
organisms who seem to care about stopping rules are frequentist statisticians.5

Intuition 3: There Can be Only One Posterior and Only One Bayes Factor

The Bayesian process of knowledge updating occurs automatically and yields a sin-
gle posterior distribution and a single Bayes factor. This holds at any point before, after,
and during data collection. Complaints about the result of a Bayesian analysis need to be
directed to the elements whose deterministic combination gave rise to it: the prior distri-
bution (p(θ); e.g., Lindley, 1993), the likelihoods of the various models under consideration
(p(data|θ); e.g., Etz, 2018), and the data. With the models completely specified, the con-
nection to the data drives a knowledge update that is dictated by the rules of probability
theory. Figure 2 tries to convey the impression that the updating process proceeds in a
way that is unavoidable; Bayes’ theorem “is to the theory of probability what Pythagoras’s
theorem is to geometry.” (Jeffreys, 1931, p. 19; see also Jevons, 1874/1913).

Intuition 4: Evidence Accumulates Towards the Truth

Can a researcher cheat by monitoring the Bayes factor until it indicates sufficiently
compelling evidence in favor of the researcher’s pet hypothesis? The Bayesian learning

4In real murder cases, the learning process will rarely if ever take place with quantitative precision.
5There is an exception to this rule. Informative stopping rules affect the kernel of the likelihood function

(i.e., the part that involves the parameters) and they do affect Bayesian inference. Informative stopping
rules are relatively rare; for details see Berger and Wolpert (1988).
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Figure 2 . Bayes’ theorem “is to the theory of probability what Pythagoras’ theorem is to
geometry” (Jeffreys, 1931, p. 19). Given the specification of a data-generating process (i.e.,
the prior distribution p(θ) and the likelihood p(data|θ)), the observed data give rise to a
single posterior distribution.

cycle shown in Figure 1 already suggests that this is not the case; when we learn about the
predictive adequacy of, say H0 versus H1, we will discover that one hypothesis does better
than the other – collecting more data generally serves to reinforce the correct impression.

Assume that H0 is true. In such a case, monitoring the p-value is akin to releasing a
toy sailboat in a stagnant pond. Over time, random gushes of wind push the sailboat around
so that it ends up visiting every position in the pond. Waiting for the sailboat to visit a
particular area is therefore a strategy that is certain to succeed and therefore meaningless
(“sampling to a foregone conclusion”). In contrast, monitoring the Bayes factor is akin to
releasing the toy sailboat in a flowing river. The sailboat will tend to travel downstream,
suggesting more and more support for the true H0; one may decide to wait until the boat
ends up traveling upstream in support of H1, but, instead of resulting in certain success,
this strategy is doomed to fail (Edwards et al., 1963).

The intuition about the sailboat can be made precise. It is well known that the
sequential monitoring of Bayes factors is subject to a universal bound on the frequency of
obtaining misleading evidence (e.g., Cornfield, 1966a; Good, 1991; Kerridge, 1963; Royall,
2000; Sanborn & Hills, 2014). This universal bound states that if one of the two hypotheses
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under consideration is true6 and the Bayes factor is monitored until it reaches a level of k
in favor of the incorrect hypothesis, the frequency of this happening in repeated use is no
more than 1/k. For instance, in case the null hypothesis H0 is true and one monitors the
Bayes factor BF10 until it reaches 20 in favor of the incorrect alternative hypothesis H1,
the frequency of this happening in repeated use is no more than .05. Similarly, in case the
alternative hypothesis H1 is true and one monitors the Bayes factor BF01 until it reaches
20 in favor of the incorrect null hypothesis H0, the frequency of this happening in repeated
use is also no more than .05. As summarized by Good (1991, p. 192):7

“Suppose that a sample of any kind whatever can be continually enlarged and
that an experimenter decides that he will continue to enlarge the sample until
he obtains a Bayes factor of at least B against a true theory or hypothesis. As
soon as he achieves this goal he stops (perhaps pretending that he has to catch
a train). Then the probability that he will ever attain his goal is no greater that
[sic] 1/B.” [italics in original]

Intuition 5: Model Misspecification Can Make Bayes Factors Vulnerable to
Optional Stopping

The curse of model misspecification affects all methods of inference, and the Bayes
factor is no exception. The Bayes factor compares the predictive performance of two mod-
els, say H0 and H1. If neither model is true, the Bayes factor will eventually favor the
model that is closest to the true model (e.g., Chatterjee, Maitra, & Bhattacharya, in press).
Consequently, monitoring the Bayes factor is still akin to releasing the toy sailboat in a
flowing river; however, since neither H0 nor H1 is true, the sailboat will travel downstream
not towards the true model, but towards the one that is closest to it. Therefore, even under

6We say that a hypothesis H is “true” if the data are generated from the distribution p(data | H).
Consider the hypothesis that a binomial success probability θ is equal to 0.5, that is, H : θ = 0.5. In
this case, p(data | H) corresponds to a binomial distribution with success probability 0.5 and we say that
H is “true” if the data are generated from this binomial distribution. In case H features a vector of free
parameters θ, we still say that H is “true” if the data are generated from p(data | H). However, p(data | H)
is now obtained by integrating out the parameter vector θ with respect to its prior distribution, that is,
p(data | H) =

∫
Θ p(data | θ,H) p(θ | H)dθ. For instance, consider the hypothesis that does not fix a

binomial success probability to a specific value but assigns it a continuous prior distribution p(θ | H). In this
scenario, in general, one cannot expect the universal bound to hold in a simulation study where θ is fixed
to a particular value θ0 and data sets are generated repeatedly using only this one value θ0. The reason is
that this procedure does not generate data according to p(data | H). In contrast, the universal bound holds
when, in each repetition of the simulation, one (1) generates a value for θ from its prior distribution p(θ | H)
and (2) uses this θ-value to generate data from p(data | θ,H).

7According to Cornfield (1966a), the earliest mention is by Edwards et al. (1963, p. 239) who stated that
“(...) if you set out to collect data until your posterior probability for a hypothesis which unknown to you
is true has been reduced to .01, then 99 times out of 100 you will never make it, no matter how many data
you, or your children after you, may collect.” However, Barnard already mentions the bound in earlier work;
for instance, in a comment on Smith (1953), Barnard (1953) states: “To put it another way, if we interpret
the phrase ‘more extreme result’ to mean ‘result giving a smaller likelihood ratio,’ then if we obtain, for
instance, a likelihood ratio of 1/100, we can say that in rejecting the hypothesis tested on the basis of such
a result, or a more extreme one, the odds of error will be less than 1/100. This result will be true regardless
of whether or not sampling has been sequential, fixed sample size, or whether we have simply taken what
observations we can.”
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model misspecification, the Bayes factor is in general immune to optional stopping. Nev-
ertheless, there are special cases of model misspecification in which the Bayes factor may
behave erratically and become vulnerable to optional stopping.

For example, it has long been known that a one-sided p-value can be given a Bayesian
interpretation as an approximate test for directionality (see Marsman & Wagenmakers,
2017). Specifically, the one-sided p-value can be viewed as a Bayes factor test for H− : δ < 0
versus H+ : δ > 0. But the p-value is affected by optional stopping, and the Rouder
simulations suggest that Bayes factors are unaffected by optional stopping. This paradoxical
situation is exemplified in the three panels from Figure 3.8 In each panel, the three different
lines represent the result of a two-group comparison for three different simulated data sets
(denoted by “1”, “2”, and “3”) created under H0: a true group difference of exactly 0. The
upper panel displays the fluctuations of the right-tailed one-sided p-value of an independent
samples t-test as a function of the number of observations n.9 Because the data were
generated under H0, the one-sided p-value meanders randomly. The middle panel displays
the corresponding Bayes factors for directionality, BF−+; just as the one-sided p-value, the
Bayes factor for directionality also fluctuates randomly.10 The lower panel displays the
corresponding two-sided Bayes factors, BF10, for testing whether or not an effect is present.
As the number of observations increases, the two-sided Bayes factor provides more and more
evidence for the true null hypothesis.

In sum, the upper and middle panel of Figure 3 demonstrate that under H0, both the
one-sided p-value and the Bayes factor for directionality will meander randomly; contrary
to what we have stated earlier, this Bayes factor allows “sampling to a foregone conclusion”.
The paradox is resolved by noting that it is critical that the data are assumed to come
from the point null hypothesis H0 : δ = 0 (see also Kadane et al., 1996a, p. 1234). For
the Bayesian test of directionality, this means that neither H− nor H+ is true: the truth
is literally in the middle, and our flowing river of evidence has been reduced to a stagnant
pond. Consequently, Bayes factors start to drift randomly, just as p-values do.

The interpretation of the Bayes factor is still correct: at any point during data accu-
mulation, there is only one posterior distribution and only one Bayes factor, which informs
us about the relative predictive performance of H− versus H+; however, when the data are
generated by the point null, researchers can now bide their time and be certain to eventu-
ally collect compelling evidence for their favored direction. Of course, when this strategy
is followed the posterior distribution will likely show that the effect is very, very small. In
contrast, the Bayes factor that tests the null hypothesis H0 against the alternative H1 is
not misspecified, and the lower panel of Figure 3 shows that for our example trajectories,
the evidence increasingly supports the true model H0.

8The corresponding R code is available at https://osf.io/w5kah/.
9Data were generated according to a balanced design (i.e., an equal number of participants in each group),

which was ensured by generating observations in alternating fashion.
10One-sided p-values higher than .5 are associated with Bayes factors for directionality in favor of the

opposing hypothesis; for instance, if a one-sided p-value of .01 maps unto a Bayes factor of .99/.01 = 99 in
favor of H+ over H−, then a one-sided p-value of .99 maps unto a Bayes factor of .99/.01 = 99 in favor of
H− over H+. This evidential symmetry holds for one-sided p-values, not for two-sided p-values.
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Figure 3 . Model misspecification can make a Bayes factor vulnerable to optional stop-
ping. In each panel, the different lines represent a different data set for a two-group
comparison, simulated under H0. The upper panel displays the right-tailed one-sided p-
value for an independent samples t-test as a function of sample size n. The middle panel
displays the corresponding (misspecified) Bayes factor for directionality, BF−+, and the
lower panel displays the two-sided Bayes factor, BF10, for testing whether an effect is
present or absent. Figure available at https://tinyurl.com/yccjy5h9 under CC license
https://creativecommons.org/licenses/by/2.0/.
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Concluding Comments

We have provided intuitions for why Rouder’s optional stopping simulation works,
for why learners universally ignore the stopping rule, for the inescapable nature of Bayes’
rule, for the notion that evidence (but not the p-value) accumulates towards the truth, and
that optional stopping might be a concern for Bayesians when there is a specific form of
model misspecification. For the sake of brevity we did not discuss how Bayesian inference
can be designed to have frequentist guarantees (e.g., Schönbrodt & Wagenmakers, 2018;
Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017), and how Bayes factors can be
interpreted as an accumulation of one-step-ahead prediction errors (e.g., Wagenmakers &
Grünwald, 2006).

It may well be that de Heide and Grünwald (2018) agree with most or even all of the
points mentioned above. The main argument of de Heide and Grünwald is that optional
stopping is a problem for a specific subset of Bayesian analyses, a subset for which the
prior conflicts with the Stopping Rule Principle. Hence, for subjective Bayesians, optional
stopping is not a problem, and neither should it be a problem for objective Bayesians when
the prior is one that a subjective Bayesian could possibly entertain. But objective priors
that violate the SRP are potentially problematic, at least from a philosophical perspective –
in practice, it may not matter much and the violation of the SRP may only be minor (Berger
& Wolpert, 1988). Nevertheless, a violation of the SRP suggests that, for the problem at
hand, the search for advisable priors should continue. For an objective Bayesian analysis,
where the specification of prior distributions is based on general desiderata, it may happen
that adherence to the SRP makes it difficult to fulfill other important desiderata such as
scale invariance.

In sum, we welcome the further debate on the importance of stopping rules for
Bayesian inference. For now, we conclude that while there exist scenarios in which Bayesian
inference is affected by optional stopping policies, these scenarios are relatively uncommon
and rely largely on the presence of model misspecification. In any case, the Bayes factor
retains its canonical interpretation as the amount of evidence in the data at hand. The
fact that the Bayes factor depends only on the data and the specification of the competing
models, and not on how the data were obtained, is a feature that is present by design:
Unavoidable dependence on the stopping rule would all but rule out meta-analysis, the use
of naturally occurring data, or even most forms of retrospective analysis including the most
trivial case of reading a published study. In that context, we welcome the SRP as well –
the practice of statistics would be severely hamstrung without it.
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