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Abstract

Semantic features have been playing a central role in investi-
gating the nature of our conceptual representations. Yet the
enormous time and effort required to empirically sample and
norm features from human raters has restricted their use to a
limited set of manually curated concepts. Given recent promis-
ing developments with transformer-based language models,
here we asked whether it was possible to use such models to
automatically generate meaningful lists of properties for ar-
bitrary object concepts and whether these models would pro-
duce features similar to those found in humans. To this end,
we probed a GPT-3 model to generate semantic features for
1,854 objects and compared automatically-generated features
to existing human feature norms. GPT-3 generated many more
features than humans, yet showed a similar distribution in the
types of generated features. Generated feature norms rivaled
human norms in predicting similarity, relatedness, and cate-
gory membership, while variance partitioning demonstrated
that these predictions were driven by similar variance in hu-
mans and GPT-3. Together, these results highlight the poten-
tial of large language models to capture important facets of
human knowledge and yield a new approach for automatically
generating interpretable feature sets, thus drastically expand-
ing the potential use of semantic features in psychological and
linguistic studies.
Keywords: semantic features; conceptual knowledge; natural
language processing; GPT-3

Introduction
A central aim in the cognitive sciences is to understand the
nature of human conceptual knowledge. This knowledge is
often characterized through semantic features, which form a
set of minimal semantic descriptions of concepts and which
have been at the heart of much theorizing about catego-
rization (Nosofsky, 1986; Rosch, 1973), semantic memory
(Murphy, 2004), and semantic processing more generally
(Cree & McRae, 2003). For example, the concept car can,
among others, be described by the features is a vehicle and
has four wheels. The relationship of this concept to other
concepts can then be quantified by evaluating the similarities
and differences to the features of other concepts.
A common approach for attaining semantic features of con-
cepts is to instruct humans to list properties for a given con-
cept, for example by asking what are the properties of a cow?.
The popularity of such empirically-generated semantic fea-
tures has led researchers to create semantic feature produc-
tion norms for a larger number of concepts (Devereux, Tyler,
Geertzen, & Randall, 2014; McRae, Cree, Seidenberg, & Mc-
Norgan, 2005), which have been invaluable for improving

our understanding of semantic representations. At the same
time, the impact of these norms has remained constrained to
the set of concepts and features that have been made pub-
licly available. Creating new norms requires collecting re-
sponses from hundreds of participants and necessitates ex-
tensive manual curation by researchers, inherently restricting
the scope of such approaches. If there was a computational
model that contained the knowledge sufficient for generating
feature norms of similar quality to humans, this would dras-
tically expand the possible scope of research with semantic
features in the study of conceptual knowledge.
In recent years, there have been strong advances in the field
of natural language processing. So-called transformer mod-
els, such as BERT (Devlin, Chang, Lee, & Toutanova, 2019)
or GPT-3 (Brown et al., 2020), often approach human-level
performance in diverse language understanding tasks (Floridi
& Chiriatti, 2020; Wang et al., 2018) and can even be used to
produce prose that can be difficult to distinguish from human-
generated text (Dale, 2021). While the general linguistic un-
derstanding and reasoning ability of these models are still
far from perfect (Marcus, 2020), they may offer a valuable
computational tool for automatically producing semantic fea-
tures for an arbitrary number of concepts (Derby, Miller, &
Devereux, 2019), thus leveraging the statistical structure of
knowledge present in their immense training text corpora for
addressing central questions in semantic cognition research
(Bhatia & Richie, 2022).
Here we tested the degree to which recent transformer mod-
els can be used for automatic production of semantic features
and whether the produced features mirror those found in hu-
mans. To this end, we used GPT-3 to generate a semantic
feature norm for 1,854 diverse concepts of concrete objects.
We chose concrete objects for two reasons. First, concrete
objects have been used in much research on conceptual rep-
resentations and are indeed used in several existing feature
production norms, thus providing a valuable human baseline
to relate our results to. Second, similarity ratings for these
1,854 objects have recently become available (Hebart, Zheng,
Pereira, & Baker, 2020), providing a broad test case for vali-
dating these features with existing similarity ratings.

Related research
Several previous studies have investigated the use of corpus-
based language models to produce sets of features mirroring
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Figure 1: Comparison of features from the CSLB norms and features generated using GPT-3, including feature examples (top)
and feature label distributions (bottom). Please note that images were not part of the study and are used for illustration only.
Bootstrapped confidence intervals for feature label distributions were too small to be displayed.

Table 1: Descriptive statistics of human and GPT-3 generated feature norms

Feature CSLB McRae GPT-3 (preprocessed) GPT-3 (preprocessed + filtered)
Number of concepts 638 541 1,854 1,854
Total number of features 22,667 7,259 189,126 124,569
Number of unique features 5,929 2,524 63,467 11,683
Number of features per concept 35.52 13.42 102.06 67.35
Share of unique features to all features 26.16% 34.77% 33.55% 9.37%

human conceptual knowledge. Static word embeddings, in-
cluding word2vec (Mikolov, Chen, Corrado, & Dean, 2013)
or GloVe (Pennington, Socher, & Manning, 2014) are trained
on lexical co-occurrences in large text corpora and provide
decent predictions of human similarity ratings (Hill, Reichart,
& Korhonen, 2015). However, the features of these models
typically lack interpretability (Subramanian, Pruthi, Jham-
tani, Berg-Kirkpatrick, & Hovy, 2018). Rubinstein, Levi,
Schwartz, and Rappoport (2015) used word embeddings to
directly predict a small set of semantic features, conclud-
ing that distributed language models may be better at cap-
turing taxonomic than attributive features. Fǎgǎrǎşan, Vec-
chi, and Clark (2015) used partial least squares regression to
map word embeddings to feature norms, with a more recent
approach using a non-linear mapping based on a multilayer
perceptron (Li & Summers-Stay, 2019). Derby et al. (2019)
proposed Feature2Vec, a method which combines the infor-

mation from word embeddings with human feature norms by
projecting the features into the word embedding space. De-
spite good overall performance, these methods rely on a fixed
feature vocabulary, making it only possible to generate fea-
tures for new concepts but not completely new features.
More recently, Bhatia and Richie (2022) investigated the use
of transformer models to model human conceptual knowl-
edge by finetuning a pretrained BERT model (Devlin et al.,
2019) on a broad set of features and probing the model
whether the concept-feature pairs were correct. The model
correctly predicted concept features even outside of the train-
ing set with good accuracy, providing an important step to-
wards general purpose feature generators. However, this
method still requires probing existing feature-concept pairs,
rather than generating new features. Thus, it remains un-
known to what degree it is possible to generate arbitrary fea-
tures for arbitrary concepts. Finally, Bosselut et al. (2019)
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and Petroni et al. (2019) proposed models of commonsense
knowledge based on GPT and BERT. Models are finetuned
on subject-relation-object triplets, with the task of predicting
the object (e.g. mango-IsA-fruit). While these models can
partially generate features for concepts, they are limited in
that they require a prori specification of relations.

Methods
Feature collection from GPT-3
We probed GPT-3 (DaVinci version) to generate semantic
features for 1,854 object concepts from the THINGS database
(Hebart et al., 2019), using a text completion task. To instruct
GPT-3 on this task, we presented it with a question about an
object (e.g. What are the properties of a chair?), had it gen-
erate an answer, and replaced this answer with features from
the McRae feature norm (McRae et al., 2005) which served
as ground truth (e.g. It is furniture, it is made of wood, etc.).
When continuing this process, generated features appeared to
no longer improve in quality after three question and answer
sequences, so we chose this number as a trade-off between
monetary cost and performance. Once GPT-3 was primed on
the task, this was followed by an open question for each of
the 1,854 object concepts, after which the answer was col-
lected and both the answer and the question deleted to keep
the context static across all trials. To reduce bias induced by
specific concepts and associated features and to better mirror
experimental approaches that merge data across human par-
ticipants, we collected 30 runs, each time using a different
set of example concepts. In cases where a concept occurred
multiple times with different meanings (e.g. bat as animal or
bat as sports item), we added a superordinate category to the
training example in parantheses.

Preprocessing of features
For better comparability to humans, we preprocessed and
normed generated features. We automated preprocessing by
using part of speech tagging with the Python library spacy1

and applying a set of preprocessing rules (see below).
The produced answers consisted of lists of features which
were split at commas in order to attain raw features. Next,
raw features that were classified as nonsensical, consisted of
a single word, or were tautological (e.g. a rose is a rose)
were removed. In addition, features not beginning with a pro-
noun (e.g. green color rather than it has green color) or fea-
tures containing non-ASCII characters (it has ©) or question
marks were removed. Finally, qualifier adverbs (e.g. usu-
ally or really) were removed, in line with previous approaches
(Devereux et al., 2014). This affected 0.75% of all features.
Next, long features with a subordinate clause (which, that,
when, if, but) were shortened by removing the subordinate
part. For example, a feature like it is a car that drives was
shortened to it is a car. This affected 1.83% of all features.
These clean and concise features were furthermore normed.
Nested features, containing multiple units of information,

1https://spacy.io/

were extracted. For example, a feature like it is a big tree
was decomposed automatically into it is a tree and it is big.
A feature like it is blue and green was decomposed into it is
blue and it is green. Next, features containing synonyms, e.g.
it is a car and it is an automobile were collapsed using Word-
net synsets in the Python library nltk2 by choosing the more
frequent synset. However, to avoid merging non-synonymous
words, two words were only considered as synonyms if their
most frequent synset was the same. 4.3% of all features were
replaced.

Filtering
The generated feature norm partially consisted of overly
sparse features, with many features that were unique to in-
dividual concepts. However, a smaller set of features is desir-
able both for reasons of better interpretability and for reduced
computational cost. Therefore, we removed features that oc-
curred very infrequently within each concept. This also made
the feature norm more comparable in size to human generated
norms. To identify a cutoff, we plotted the number of unique
features after removal of infrequent features and chose the
elbow point at k=4. Importantly, while this step strongly re-
duced the number of unique features (see Table 1), it did not
affect performance in validating the norm.

Results
Comparison with human feature norms
As a first analysis, we compared the GPT-3 feature norms
with human feature norms McRae (McRae et al., 2005) and
CSLB (Devereux et al., 2014), using descriptive statistics.
We did not use the Buchanan norm (Buchanan, Valentine, &
Maxwell, 2019) as it was composed only of associative fea-
tures. As seen in Table 1, the preprocessed GPT-3 feature
norm was computed for a larger number of concepts, lead-
ing to a larger number of total features and more unique fea-
tures. Without filtering, a similar share of unique features can
be seen as in the McRae norm, indicating a similar level of
redundancy of features across concepts as found in humans.
After excluding rare features, only around 9% of all features
remained unique. Of note, GPT-3 produced a much larger
number of features per concept, indicating that human fea-
ture production may be limited to a sparser set of features
than those found in GPT-3.

Label distribution
Figure 1 (top) shows several example concepts with their five
most frequent features. The results indicate many similari-
ties and no obvious errors in the types of labels assigned by
GPT-3. To directly compare the distribution of semantic fea-
tures between humans and GPT-3, samples of features from
the CSLB feature norms and GPT-3 were labeled into the cat-
egories taxonomic, visual perceptual, other perceptual, con-
ceptual, functional and encyclopedic. We use a slightly dif-
ferent naming scheme of feature types to McRae and CSLB to

2https://www.nltk.org/
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Figure 2: Representational similarity matrices for 6 concepts in the categories land animals, fruits, vehicles, fruits, birds and
clothing using the CSLB and GPT-3 feature norms (top) and pairwise cosine similarities per category (bottom).

allow for more fine-grained differences between conceptual,
functional, and encyclopedic features. To estimate the distri-
bution of features in all three norms, we randomly sampled
500 features from the 317 concepts shared between CSLB,
McRae, and GPT-3 and 500 features from concepts outside
of the intersection. The corresponding feature labels were as-
signed manually.
The results in Figure 1 (bottom) show that humans and GPT-
3 mostly rely on encyclopedic features and less on percep-
tual features. GPT-3 contained a larger number of functional
features as compared to the CSLB norm. However, the dif-
ferences in the distribution to the McRae norm, which GPT-
3 had been trained on, were less prominent, indicating that
differences of GPT-3 to CSLB may be driven more by dif-
ferences in populations for the creation of human norms or
norming processes, rather than intrinsic differences in repre-
sentations. Overall, this analysis yielded no obvious differ-
ences to human norms in the types of semantic features that
were generated.

Table 2: Similarity and relatedness prediction

Pearson correlation McRae CSLB GPT-3
MEN (n=55 word pairs) 0.77 0.77 0.79
Simlex-999 (n=26 word pairs) 0.60 0.63 0.62
THINGS (n=317 concepts) 0.56 0.63 0.62

Prediction of category structure based on feature
similarity

Next we tested the degree to which GPT-3 generated feature
norms produced reasonable category structure and how they
compared to existing norms. For better comparability, several
analyses were conducted in a similar fashion to those found
for the creation of the CSLB norm (Devereux et al., 2014).
For a fair comparison, we restricted our analyses to the 317
concepts shared between the McRae, CSLB and GPT-3 fea-
ture norms. Similarities were based on the cosine similarity
of the concepts across feature vectors composed of the pro-
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Figure 3: Hierarchical clustering for 45 land-animal concepts using the CSLB and GPT-3 feature norms, highlighting similari-
ties and differences for within category representational structure.

duction frequency per feature, for human norms across par-
ticipants and for GPT-3 across the 30 runs for which it had
been primed with different examples.
First, we inspected the superordinate category structure. Mir-
roring the results of (Devereux et al., 2014), we based these
analyses on six exemplars of the six categories land animals,
clothing, birds, vehicles, fruits, and musical instruments. If
the produced features prove to be useful for predicting high-
level category structure, we would expect consistently high
within-category similarity and low between-category similar-
ity. A visualization of the similarity structure of the CSLB
norm with the GPT-3 generated norm is shown in Figure 2
(top). As is evident from the figure, both norms show ex-
cellent category structure, clearly distinguishing high-level
categories from each other. To quantify similarities and dif-
ferences between norms, we expanded the set of concepts
available within each superordinate category to the 317 con-
cepts and computed the mean within-category similarity mi-
nus the mean between-category similarity of each concept.
The results are shown in Figure 2 (bottom). Overall, GPT-3
showed comparable or clearer category structure than human
norms, with the only exception of clothing. Together, these
results demonstrate that high-level category structure can be
extracted from GPT-3 generated feature norms, with similar
performance to humans.
Beyond between-category effects, we explored whether the
within-category similarity structure was meaningful in GPT-
3 generated norms. To this end, we performed hierarchical
clustering of the 45 land animal concepts. Overall, we ex-

pected high similarities between all animals but also more
fine-grained differences. The results comparing CSLB with
GPT-3 norms are shown in Figure 3. Overall, the similar-
ities between animals were higher in the GPT-3 norm than
CSLB. A clear clustering of highly similar animals is found
in both matrices (e.g. lamb and sheep). However, the subordi-
nate category structure was slightly different between GPT-3
than CSLB. For example, farm animals clustered in GPT-3
but were more distributed in CSLB, while dangerous animals
clustered more closely in CSLB. In sum, while the overall
category structure was similar, there were fine-grained differ-
ences in the representations derived from semantic features
through GPT-3 as compared to the CSLB norm.

Prediction of similarity and relatedness ratings
Predictions of similarity and relatedness tasks are often seen
as a gold standard for evaluating the relationship between se-
mantic features and our conceptual representations. To iden-
tify the degree to which GPT-3 generated norms could be
used to predict similarity and relatedness ratings, we used
the overlap between McRae, CSLB, and GPT-3 generated
norms with two existing datasets commonly used as natural
language processing benchmarks: The MEN dataset (Bruni,
Tran, & Baroni, 2014) was used for word relatedness and the
Simlex-999 dataset (Hill et al., 2015) for word similarity. We
intended to include other common benchmark datasets but did
not find sufficient overlap in concepts. Beyond these datasets,
we used human similarity scores from THINGS (Hebart et al.,
2020), which were available for all included objects. Similar-
ities were compared by using the Pearson correlation of the
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unique variance CSLB:
4.98% 

unique variance GPT-3:
3.83%

shared variance CSLB - GPT-3:
34.82%

unique variance GPT-3:
8.62%

unique variance McRae:
1.25%

shared variance McRae - GPT-3:
30.03%

Figure 4: Variance partitioning of human similarity judgements, demonstrating strong overlap between human generated and
GPT-3 generated norms in predicting human similarity judgments.

flattened lower triangular part of the similarity matrices.
The overlap in the number of concepts as well as the perfor-
mance for McRae, CSLB, and GPT-3 generated norms are
found in Table 2. While CSLB performed better than McRae
for the prediction of THINGS, across all three datasets, the
performance of CSLB and GPT-3 was comparable. This in-
dicates that the representations derived from GPT-3 generated
norms were of similar quality as those found in human norms.
What is left open by these correlations is whether the pre-
dictions of similarity were based on similar information in
McRae, CSLB, and GPT-3, or whether GPT-3 had access
to other information not reported by humans. To address
this question, we carried out variance partitioning, identify-
ing the unique and shared variance components explained in
the THINGS similarity dataset. The results of this analysis
are shown in Figure 4. Overall, there was strong overlap in
the explained variance between McRae and GPT-3 as well as
CSLB and GPT-3, with GPT-3 subsuming much of the vari-
ance explained by McRae, while explaining very similar por-
tions of variance than CSLB. Overall, this result demonstrates
that, indeed, GPT-3 is relying on similar information as CSLB
for predicting human similarity.

Discussion
Overall, the results demonstrate that GPT-3 can be used for
automatically generating semantic feature norms for a large
number of concrete objects. Frequently produced features
were meaningful and comparable in distribution to those
found in humans. Further, the results showed that superordi-
nate categories were well identified by the resulting features
and that within-category structure was reasonable. Predic-
tions of similarity and relatedness were comparable to hu-
mans and relied on similar information. Overall, this demon-
strates that GPT-3 can serve as an effective automatic feature
generator, opening up an efficient and rapid approach to gen-
erate large numbers of features for diverse concepts.
Of note, there were some differences to humans. Overall,
GPT-3 produced a much larger number of features, yet reduc-
ing this set through filtering led to very similar results in the
prediction of similarity ratings. Further, the fine-grained sim-
ilarity structure was slightly different to CSLB. Future work
is needed to investigate these differences and the degree to
which they are related to differences between representations

in humans and GPT-3, or whether they were driven by the
norming process itself.
GPT-3 was primed using only three examples, which high-
lights the simplicity of our proposed approach but which may
also introduce bias. Rather than reflecting the knowledge
available to the model, it may in fact mimic the process of
feature generation produced by humans in the three examples
it was provided. Other, more effective priming procedures
may be discovered in the future that constitute less bias and
are better at revealing the knowledge available in such mod-
els. Future work may also investigate the influence of model
complexity on feature generation.
Nevertheless, the fact that GPT-3 and humans relied on simi-
lar information for predicting similarity ratings is relevant in
its own respect, indicating that GPT-3 may indeed contain a
lot of information useful for modeling important aspects of
conceptual knowledge (Bhatia & Richie, 2022). As a con-
sequence, it may be possible to use GPT-3 to generate other
types of norms, for example ratings of animacy, graspability,
or size (Grand, Blank, Pereira, & Fedorenko, 2022). We did
not test whether GPT-3 was able to produce meaningful fea-
tures for more abstract concepts or verbs, which is an impor-
tant avenue for future research. While better computational
models for producing semantic features may exist, our work
demonstrates that it is already possible to create semantic fea-
tures for concrete concepts with human level performance in
predicting similarity ratings using GPT-3.

Conclusions
Here, we introduced a new approach for automatically gen-
erating semantic features for diverse concepts using the re-
cent transformer-based model architecture GPT-3. Our re-
sults demonstrate that recent large language models are in-
deed able to accurately reflect important aspects of human
conceptual knowledge. The approach opens the door to auto-
matic feature generation for arbitrary concepts, thus widening
the potential scope of semantic features for research in psy-
chology and linguistics. To promote the general use of this
method and results, the GPT-3 generated raw data as well as
the final feature norm of the 1,854 object, including the code
to probe GPT-3 and to preprocess and filter raw features, are
made publicly available3.

3https://github.com/ViCCo-Group/semantic features gpt 3
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