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Abstract
As our understanding of genetics has improved, genome-wide association studies (GWAS)

have identified numerous variants associated with lifestyle behaviours and health out-

comes. However, what is sometimes overlooked is the possibility that genetic variants iden-

tified in GWAS of disease might reflect the effect of modifiable risk factors as well as direct

genetic effects. We discuss this possibility with illustrative examples from tobacco and alco-

hol research, in which genetic variants that predict behavioural phenotypes have been seen

in GWAS of diseases known to be causally related to these behaviours. This consideration

has implications for the interpretation of GWAS findings.

Introduction
The rapid growth in genome-wide association studies (GWAS) has resulted in the identifica-
tion of common genetic variants associated with behavioural traits, from biomarker pheno-
types that capture the downstream consequences of behaviour (e.g., body mass index [BMI])
[1] to the behaviours themselves (e.g., tobacco and alcohol use) [2]. While the success of
GWAS has generated insights into the biological mechanisms underpinning these traits (see
Box 1), it is less appreciated that it has also begun to tell us about the causal effects of modifi-
able or environmental influences on these traits. For example, a genetic variant at a locus con-
taining the NPC1L1 gene is strongly associated with low-density lipoprotein (LDL) cholesterol
level as well as with the risk of cardiovascular events. This is not because NPC1L1 is indepen-
dently associated with cardiovascular problems, but simply because high cholesterol is a causal
risk factor for the disease [3–5]. In other words, there are a number of cases where GWAS of
disease outcomes have identified loci that capture modifiable risk factors rather than direct bio-
logical pathways. Here, we explain how this insight can inform the interpretation of GWAS
results.
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Genetics and Causal Inference
The relationship between phenocopy and genocopy (see Box 2) lies at the heart of the Mende-
lian randomization approach, which seeks to leverage genetic information to identify causal

Box 1. CHRNA5-A3-B4 and Cigarette Smoking

The most robust finding to emerge from GWAS of smoking phenotypes is the associa-
tion between the nicotinic receptor gene cluster CHRNA5-A3-B4 on chromosome 15 (at
15q25) and smoking quantity. This gene cluster encodes three nicotinic acetylcholine
receptor subunit proteins: alpha-5, alpha-3, and beta-4. An association between the non-
synonymous variant rs16969968 in CHRNA5 and nicotine dependence was first reported
in 2007 in a candidate gene study [39], with the minor allele found to confer increased
risk. The following year, the same locus (tagged by rs1051730 in CHRNA3, in high link-
age disequilibrium with rs16969968) was found to be associated with smoking quantity,
this time in a GWAS conducted by Thorgeirsson and colleagues [11]. This study also
highlighted an association between rs1051730 and two smoking-related diseases, lung
cancer and peripheral arterial disease. These initial findings renewed interest in
CHRNA5 and CHRNA3 and the role played by these genes in nicotine dependence, and
led on to a series of preclinical follow-up studies focused on determining the mechanism
underlying the observed associations with smoking behaviour and disease. Functional
research has demonstrated that the minor allele at rs16969968 (i.e., the risk variant for
heavier smoking) is associated with a decreased maximal response to a nicotine agonist
relative to the major allele in vitro [40]. Subsequent research using alpha-5 knockout
mice has further illustrated the role that CHRNA5 plays in determining response to nico-
tine. Using a nicotine self-administration paradigm, Fowler and colleagues [41] observed
that knockout mice responded far more vigorously than wild-type mice for nicotine infu-
sions at high doses and, unlike wild-types, did not self-titrate nicotine delivery. Deficient
alpha-5 signalling attenuated the aversive effects of nicotine that would normally serve to
limit its intake.

The association between the CHRNA5-A3-B4 locus and smoking quantity [2,12,42–
44], alongside other smoking-related phenotypes and diseases, has been replicated in
numerous studies. GWAS of lung cancer [14] and chronic obstructive pulmonary disease
[15] have also identified this locus, and follow-up candidate gene studies have suggested
a role in bladder cancer [45], emphysema [46], and upper aerodigestive tract cancer [47],
diseases for which smoking has already been recognised as a causal factor [48]. Some of
these findings were used to argue that there is an independent effect of this locus on the
disease, given evidence of residual association between variant and disease following
adjustment for self-reported smoking quantity. However, this is likely due to the impreci-
sion of self-report measures of heaviness of smoking and misclassification of smoking
status. Studies using biomarkers of tobacco exposure have illustrated that rs1051730/
rs16969968 accounts for a far greater proportion of variance in nicotine metabolite levels
relative to self-report measures of daily tobacco consumption [13,49,50]. When we use
the per allele effect of rs1051730 on cotinine levels, for example, to estimate the associa-
tion between genotype and lung cancer risk, this accords with published data, which sup-
ports the conclusion that the effect of this locus on lung cancer risk is mediated largely, if
not wholly, via level of tobacco exposure [13].
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relationships between modifiable exposures and disease outcomes. The principles of Mendelian
randomization have been described in detail elsewhere [6–8]. In brief, genetic variants are used
as proxies (i.e., instrumental variables) for modifiable exposures. If the assumptions of Mende-
lian randomization hold, these proxies should not be associated with the factors that confound
observational associations and will not be subject to reverse causation. This has become an
increasingly popular technique for establishing whether an observational association between
an exposure and an outcome is likely to be causal. However, while Mendelian randomization
makes use of information obtained (principally) via GWAS, our argument is that the same rea-
soning can directly inform our interpretation of GWAS results.

Implementing Mendelian randomization techniques can be challenging, principally because
single genetic variants (and even polygenic risk scores) typically capture only a small propor-
tion of variance in the exposure of interest. An ideal instrument would exactly mimic the expo-
sure of interest without being associated with confounding variables, but this is, of course,
impossible in practice. Genetic variants are, therefore, generally weak instruments, meaning
that very large sample sizes are required to attain adequate statistical power. Historically, data-
sets were required with information on genotype, outcome, and exposure of interest in order to
run such studies. Methodological developments now allow the application of Mendelian ran-
domization across two different samples if no single sample is available that includes data on
genotype, the exposure, and the outcome.

Conventional Mendelian randomization uses genetic markers known to be associated with
a modifiable exposure of interest, for which there is also a known observational association
between the modifiable exposure and an outcome of interest. In an ideal situation, the associa-
tion of the genotype with the outcome can be tested across strata of individuals who are posi-
tive or negative for the putative mediating exposure (e.g., ever-smokers versus never-smokers).
If there is a causal effect of the exposure (e.g., smoking heaviness) that is being captured by the
genotype, then an association of the genotype with the outcome should only be seen in the
exposed group and not the unexposed group (see Fig 1) [9]. This is a special case of
gene × environment (G × E) interaction, where both G and E are known, although it will not
always be possible to stratify on the exposure, and stratification (which can be considered a
form of statistical adjustment) can introduce other potential biases in certain circumstances

Box 2. Genocopy and Phenocopy

The term “phenocopy” is attributed to Goldschmidt [51] and describes the situation
where an environmental effect results in the same effect as that produced by a genetic
variant. It is generally used to describe diseases that are similar to some genetic syndrome
but that can also be caused by environmental exposures. The term “genocopy,” attributed
to Schmalhausen [52], is essentially the reverse of phenocopy and describes the situation
in which a genetic variant produces an outcome that could equally be produced by an
environmental exposure. The critical point is that genetic and environmental causes of
disease can be seen as essentially equivalent; as Goldschmidt wrote in 1938, “different
causes produce the same end effect, presumably by changing the same developmental
processes in an identical way” [51]. More recently, Zuckerkandl and Villet have argued
that “no doubt all environmental effects can be mimicked by one or several mutations,”
again suggesting that genetic and environmental influences can be regarded as both
equivalent and interchangeable [53].
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(see Box 3) [10]. Nevertheless, if differences in the magnitude of association observed in
exposed and unexposed groups are very large, this is convincing evidence of a causal pathway
via the exposure. Therefore, a logical extension of Mendelian randomization is that any GWAS
will, in principle, identify exposures that are causally associated with the outcome of interest in
that GWAS.

We illustrate the application of Mendelian randomization reasoning to GWAS data using
the example of two behavioural phenotypes—tobacco and alcohol use. These are phenotypes
for which GWAS has identified a number of associated loci. A number of disease outcomes are
also known to be associated with tobacco and alcohol use, and therefore serve as proof of prin-
ciple for our argument that GWAS can identify the effects of modifiable exposures.

Cigarettes and Alcohol
The strongest genetic signal for tobacco-use phenotypes identified via GWAS is located in a
gene cluster on chromosome 15 containing the CHRNA5, CHRNA3, and CHRNB4 genes
(CHRNA5-A3-B4), which encode the alpha-5, alpha-3, and beta-4 nicotinic acetylcholine
receptor subunits, respectively. Each additional copy of the minor risk allele at this locus is
associated with one extra cigarette smoked per day. The locus [11] accounts for approximately
1% of the variation in cigarette consumption in daily smokers [12] and approximately 4% of
the variation in cotinine levels, the primary metabolite of nicotine and a more precise bio-
marker of exposure [13]. The same locus has been identified in GWAS of lung cancer [11,14],
peripheral arterial disease [11], and chronic obstructive pulmonary disease [15]. One parsimo-
nious interpretation of these results is that these are all diseases for which cigarette smoking is

Fig 1. Illustration of the Mendelian randomization framework. In Mendelian randomization, if there is a causal effect of the exposure (e.g., smoking
heaviness) that is being captured by the genotype on the outcome (e.g., lung cancer), then an association of genotype with the outcome should be detectable
in a sufficiently large unstratified GWAS (panel A). This can be confirmed in a stratified analysis, where an association of genotype with the outcome should
only be seen in the exposed group (i.e., smokers, panel B) and not the unexposed group (i.e., never-smokers, panel C). This is a special case of
gene × environment (G × E) interaction, where both G and E are known, although it will not always be possible to stratify on the exposure, and stratification
(which can be considered a form of statistical adjustment) can introduce other potential biases in certain circumstances (see Box 3).

doi:10.1371/journal.pgen.1005765.g001
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a strong, causal risk factor. Indeed, the effect of smoking on these outcomes is sufficiently
strong that variants associated with heaviness of smoking achieve genome-wide significance
even in unstratified GWAS (i.e., where smokers and never-smokers are not considered sepa-
rately). When stratified, one should see the association only in ever-smokers and not in never-
smokers (see Box 3) [16–18], although due to misclassification (i.e., misreporting of smoking
status), this is not always the case.

A subtler example arises from the association of ALDH2 with alcohol consumption. This
gene encodes aldehyde dehydrogenase, an enzyme responsible for metabolizing acetaldehyde
(a metabolite of alcohol) to acetic acid. When less of this enzyme is present, acetaldehyde can

Box 3. Stratification in Mendelian Randomization

For behavioural exposures such as tobacco or alcohol use, stratification on the exposure
of interest can be a powerful means of testing the pleiotropy assumption that is central to
Mendelian randomization. While endogenous exposures (e.g., cholesterol levels) can
never be zero, only higher or lower in different individuals, behavioural exposures are
generally limited to a subset of the population (e.g., smokers). In principle, a genetic vari-
ant associated with heaviness of smoking should be associated with an outcome of inter-
est (e.g., BMI) only among those exposed to this putative causal agent (i.e., ever-
smokers) and not those unexposed (i.e., never-smokers). Whether this association differs
between strata can be assessed using an interaction test.

However, stratification on a common effect can introduce collider bias [10,54], which
can result in a spurious correlation between otherwise independent variables (Fig 2A). In
the case of the CHRNA5-A3-B4 variants used in Mendelian randomization analyses of
smoking, the assumption is that these variants are principally associated with heaviness
of smoking rather than smoking status, in which case the risk of collider bias is reduced,
as smoking initiation is not a common effect (Fig 2B). However, if these variants are
shown to be associated with smoking initiation [55], this risk would be increased. Stratifi-
cation does not always introduce the risk collider bias—for example, in a Mendelian ran-
domization analysis of alcohol consumption and blood pressure, the analysis was
stratified by participant sex due to differences in alcohol consumption among men and
women in East Asian populations [23]. This does not introduce the possibility of collider
bias because sex cannot be an effect of the genetic variant in question; sex is determined
by a different genetic variation, which is inherited independently of other variants, and
sex cannot be an effect of blood pressure (Fig 2C).

It is also worth remembering that the environmental exposure that is used for stratifi-
cation is subject to the usual problems of confounding. Keller has argued that many
gene × environment interaction studies do not adequately control for potential con-
founders because they do not include covariate × gene and covariate × environment
interaction terms [56]. For example, ADH1B genotype shows clear association with risk
of upper aerodigestive cancer among alcohol drinkers, but not non-drinkers, consistent
with a causal effect of alcohol consumption (Fig 3) [14]. However, a similar (albeit
weaker) pattern is observed when stratification is based on smoking status rather than
alcohol consumption, because these exposures are correlated. In these cases, the interac-
tion will be stronger for the causal factor (i.e., when stratification is based on drinking
status rather than smoking status).
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build up after alcohol consumption, leading to unpleasant side effects. Therefore, the minor
allele is robustly associated with reduced alcohol consumption [19]. The frequency of the
minor allele at the ALDH2 locus is very low in samples of European ancestry but is relatively
common in samples of East Asian ancestry. It is, therefore, only associated with alcohol con-
sumption in the latter population. As a result, in GWAS of high blood pressure, ALDH2 was
not identified in studies that recruited predominantly European samples [20] but was identified
in studies that recruited East Asian samples (once genotyping chips that adequately tagged the
ALDH2 locus were used) [21,22]. This confirms the results of Mendelian randomization analy-
ses of alcohol consumption and blood pressure conducted prior to these later GWAS [23]. In
other words, alcohol consumption causes high blood pressure, and this is detected in GWAS of
high blood pressure, but only when tested in populations in which the variants associated with
alcohol consumption are sufficiently common. This provides strong evidence that the identifi-
cation of this locus in the GWAS is due to a causal effect of alcohol consumption rather than
being due to shared genetic aetiology or to pleiotropy. Similarly, ALDH2 has emerged in
GWAS of esophageal cancer in East Asian samples [24], confirming earlier Mendelian ran-
domization analyses [25].

Fig 2. Illustration of collider bias. Panel A shows the basic premise of collider bias. In this example, a bell is sounded whenever either coin come up
“heads.” The result of one coin toss is independent of the other. However, if we stratify on the bell ringing, seeing “heads” on both coins is not independent
and a spurious correlation is induced. Panel B shows this with the example of stratifying on smoking status. If the variant used as an instrument for heaviness
of smoking is also associated with smoking status (i.e., ever-smoker versus never-smoker), and if BMI also influences smoking status, then there is a risk of
collider bias if we stratify on smoking status. Panel C shows an example where stratification will not introduce collider bias, as sex is not an effect of either
possession of a genetic variant that predicts alcohol consumption or of blood pressure.

doi:10.1371/journal.pgen.1005765.g002
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Behavioural traits such as tobacco and alcohol use can be regarded as intermediate traits,
which are under a degree of genetic influence but which are themselves direct causal agents
influencing various health outcomes. However, a critical difference between these and more
usual intermediate phenotypes (such as LDL cholesterol) is that whereas both may be direct
causal agents and amenable to intervention for therapeutic benefit, the former may be entirely
absent (i.e., non-smokers, non-drinkers), whereas the latter cannot be (i.e., no one has a choles-
terol level of zero). Genetic variants may influence whether or not someone smokes or drinks,
or how much they smoke or drink, or both.

Implications
As GWAS of disease outcomes are carried out on increasingly large samples, more loci will be
identified, promising to deliver insights into underlying biological mechanisms. However, as
we have seen, it will become increasingly important to also consider whether these associations
reflect effects of modifiable exposures. This will require the triangulation of evidence across
GWAS of disease outcomes and GWAS of behavioural phenotypes to determine the cases in
which signals identified for behavioural phenotypes are the same as those identified for disease
phenotypes. Unfortunately, this approach is hampered at present by the relative lack of GWAS
of behavioural phenotypes—while we have identified a number of variants associated with
tobacco and (to a lesser extent) alcohol use, as well as obesity, this is not yet the case for expo-
sures such as cannabis use. Nevertheless, this situation is rapidly changing—for example, there
are now several variants that have been shown to be associated with caffeine consumption [26].
It is also worth noting that both the CHRNA5-A3-B4 and ALDH2 loci were initially identified
in candidate gene studies.

Fig 3. Association of ADH1B genotype with risk of upper aerodigestive cancer.Risk of upper aerodigestive cancer by ADH1B genetic variation,
stratified by drinking intensity and smoking status, is shown as the odds ratio (OR) of upper aerodigestive cancer by re1229984 (ADH1B) genotype
comparing rare allele (dominant model) carriers versus common allele homozygous genotype. ORs are standardised by age, sex, study centre, cumulative
alcohol consumption, and, when relevant, smoking. ORs and 95%CI are derived from fixed effects models. Figure adapted from Hashibe et al. (2008) [57]
with permission granted by Nature Publishing Group.

doi:10.1371/journal.pgen.1005765.g003
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Already, intriguing hints are emerging that larger GWAS are beginning to identify potential
environmental or behavioural causes of disease. A recent GWAS led by the Psychiatric Geno-
mics Consortium identified 108 loci associated with schizophrenia [27]. One locus that reached
genome-wide significance is located in the CHRNA5-A3-B4 gene cluster on chromosome 15,
which, as we have seen, has been consistently shown to contain multiple loci strongly associ-
ated with heaviness of smoking [2] among cigarette smokers. There are two possible explana-
tions for this finding. One is that there may be genetic variants in this region that
independently influence both heaviness of smoking and schizophrenia risk (i.e., genetic pleiot-
ropy). The other is that this signal captures a causal effect of cigarette smoking on schizophre-
nia (reflecting a dose–response relationship among the smokers in the study). Again, there is a
precedent for this pattern of results: the same region was shown to be associated with lung can-
cer risk [11], but it is likely that this effect operates entirely via cigarette smoking [13].

Critically, while the identification of 108 loci associated with schizophrenia was rightly her-
alded as a breakthrough in our understanding of the genetic determinants of schizophrenia,
very little was made of this potentially vital insight. If smoking is indeed a causal risk factor for
schizophrenia, then this has immediate and dramatic implications for public health, preven-
tion, and treatment. Intriguingly, since the publication of these results, several other studies
have been published that also support a causal role for smoking in schizophrenia and psychosis
[28–31]. It is notable that one study reports a stratified analysis that suggests an association of
CHRNA5-A3-B4 genotype with antipsychotic medication prescription (as a proxy of psychotic
illness) in ever-smokers but not in never-smokers [32]. This is analogous to the case of
CHRNA5-A3-B4 genotype and lung cancer risk, although the evidence in relation to schizo-
phrenia is currently only suggestive.

As GWAS of other behavioural phenotypes such as personality and intelligence emerge, it
will be interesting to see whether variants known to influence tobacco or alcohol use emerge,
given the strong observational associations between these phenotypes. At the same time,
GWAS of other behavioural phenotypes such as cannabis use will in due course provide loci
that may signal causal effects of these behaviours on a range of other outcomes (notably
schizophrenia).

Identifying Causal Pathways
For any locus identified via GWAS, we need to consider whether this reflects a potential modi-
fiable risk factor. However, it is difficult to exclude the possibility that this locus is indepen-
dently associated with both a modifiable risk factor and the disease outcome directly. For
example, a recent study found an association between a polygenic risk score for schizophrenia
(combining multiple variants identified with genome-wide significance into a single risk score)
and cannabis use [32]. The authors concluded that this indicates that some of the association
between schizophrenia and cannabis is due to a shared genetic aetiology. However, an alterna-
tive explanation could be that genetic predisposition to schizophrenia (and behaviours associ-
ated with this) increases the risk of cannabis use. Here, the distinction between mediated and
biological pleiotropy is useful—the former refers to the genetic influence on the outcome oper-
ating via an exposure or intermediate phenotype, while the latter refers to a direct and indepen-
dent genetic influence on both the exposure and the outcome [33]. Mediated pleiotropy is a
single process leading to a cascade of downstream events, ultimately leading to a distal out-
come. In this way, genetic variation at the FTO locus influences BMI and, in turn, blood pres-
sure, hypertension, coronary heart disease, and so on [33]. While statistical adjustment (e.g.,
for BMI) can help dissect these pathways, this can be problematic where residual associations
may exist due to measurement error, such as in the case of CHRNA5-A3-B4, smoking, and
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lung cancer risk [13]. Biological pleiotropy is more problematic and renders causal inference
difficult.

A hierarchy of approaches supports stronger causal inference regarding the role of modifi-
able exposures on disease outcomes (see Table 1). Ultimately, what is required is a triangulation
of evidence using these different approaches, ranging from whole genome methods to more
focused analyses, to determine whether the results obtained using these different methods align
consistently [34]. First, genetic correlation [35,36] can be used to identify shared genetic influ-
ences (e.g., cannabis use and schizophrenia). This approach allows all genotyped common vari-
ants to be interrogated, with correlations with modifiable exposures suggestive of possible
causality. Second, conventional Mendelian randomization analyses (using single variants or
polygenic risk scores) can be used to establish evidence that genetic proxies for a modifiable
exposure of interest (e.g., cannabis use) associate with the outcome thought to be influenced by
the exposure (e.g., schizophrenia) [33]. Single variant approaches are appropriate when the
genetic variants play a known and relatively specific role in the pathway of interest (e.g.,
ALDH2 and alcohol consumption), but these will capture a smaller proportion of the variance
in the exposure than polygenic risk scores. Third, when adequate genetic variants have been
identified for both the exposure and the outcome, bidirectional Mendelian randomization can
be used to determine with greater confidence the likely direction of any causal relationship

Table 1. Hierarchy of evidence.

Strength of evidence (low > high) Description

Genetic correlation This method estimates genetic correlation using GWAS
summary statistics, using properties of linkage disequilibrium to
allow for rapid screening for correlations among a diverse set of
traits without the need for individual level data. However, this
approach is still subject to genetic confounding (pleiotropy) and
misclassification bias and requires larger samples than
methods that use individual data. A well-powered null finding
would argue against a causal association between exposure
and outcome. However, direction of causation cannot be
identified.

Polygenic risk score association Polygenic risk scores can be derived where there are multiple
variants identified with genome-wide significance for a trait or
disease. These can be weighted to represent the proportion of
the variance in the risk factor that they explain, and used as a
proxy for an exposure to investigate associations of interest.
The use of a risk score allows for a larger proportion of the
variance to be explained, although it is very likely it will increase
the risk of pleiotropy.

Bidirectional Mendelian randomization
with polygenic risk scores

If polygenic risk scores are available for both the exposure and
outcome of interest, associations can be investigated in both
directions, which may provide evidence in support of an
association in a particular causal direction.

Mendelian randomization sensitivity
analyses

Mendelian randomization Egger regression extends the basic
Mendelian randomization method by meta-analysing the SNP
outcome association from each individual SNP that is
associated with the exposure. This treats each SNP as akin to
a small study in a traditional meta-analysis. Regression
analysis, allowing variation in the intercept, means it is able to
provide an estimate of the extent to which genetic pleiotropy
has an impact on the causal estimates from Mendelian
randomization analyses. Kang median instrument analysis has
been shown to identify causal effects as long as fewer than
50% of instruments are invalid, without requiring knowledge of
which instruments are invalid. It also allows identification of
when this 50% threshold is violated.

doi:10.1371/journal.pgen.1005765.t001
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[33]. Fourth, a range of sensitivity analyses exist that can inform the interpretation of the find-
ings, such as the extent to which (biological) pleiotropy has an impact on the causal estimates
derived from conventional Mendelian randomization methods. This may be particularly rele-
vant when polygenic risk scores comprising variants that act on a range of biological pathways
are used. These methods include Mendelian randomization Egger regression [37] and the
Kang median instrument approach [38]. Those relationships that survive this hierarchy of
approaches are strong candidates for further interrogation in mechanistic or experimental
studies.

The approaches described here can also be informative with respect to null results. If a mod-
ifiable exposure is under genetic influence and is also causally related to a disease outcome, we
would expect to eventually see genetic variants associated with the exposure emerge in a
GWAS of the outcome, given sufficient sample size. If this is not seen, this suggests that there
may be no causal pathway operating (or that any causal relationship is very weak). Of course,
interpreting null results must be done cautiously, particularly in cases where the prevalence of
the modifiable exposure or the minor allele frequency differs across populations. Current
GWAS cannot control for these sources of heterogeneity, which may impact the power of
GWAS to identify modifiable exposures in the way we have described. Cross-contextual com-
parisons (e.g., across GWAS conducted in different populations) may be informative in these
cases.

Conclusion
As we run larger and larger GWAS, some of the signals that emerge may turn out to reflect the
action of modifiable (e.g., environmental or behavioural) exposures, rather than more direct
biological effects. At present, what is likely to be required to understand these pathways is a
two-step approach in which initial GWAS findings are interrogated further in studies in which
detailed phenotype information is available. At present, this is not always possible—for exam-
ple, a lack of smoking status information in the studies contributing to the recent schizophrenia
GWAS means it is not possible to test the possible causal effect of smoking in a stratified analy-
sis. However, as large, richly phenotyped cohort studies (e.g., UK Biobank) emerge, it will
become possible to identify modifiable exposures from genetic data and to dissect those path-
ways within the same cohort. Here, “modifiable” can refer to substance use, but also to factors
such as cholesterol or metabolite levels or blood pressure, which are directly influenced by life-
style choices. A failure to appreciate this point will hamper our ability to translate the results of
GWAS into health benefits, by focusing attention on possible biological pathways when, in
fact, the target for intervention could be a modifiable environmental or behavioural exposure.
We also need to be cautious when using statistical adjustment to test whether a genetic variant
operates entirely via the supposed intermediate behavioural pathway. Sometimes, the most
parsimonious explanation (e.g., smoking causes lung cancer) is the best one.
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