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Abstract

Computing the numerical solution of the Kadanoff-Baym equations, a set of nonlinear integral differential

equations satisfied by the two-time Green’s functions derived from many-body perturbation theory for a

quantum many-body system away from equilibrium, is a challenging task. Recently, we have successfully

applied dynamic mode decomposition (DMD) to construct a data driven reduced order model that can be

used to extrapolate the time-diagonal of a two-time Green’s function from numerical solution of the KBE

within a small time window. In this paper, we extend the previous work and use DMD to predict off-diagonal

elements of the two-time Green’s function. We partition the two-time Green’s function into a number of

one-time functions along the diagonal and subdiagonls of the two-time window as well as in horizontal and

vertical directions. We use DMD to construct separate reduced order models to predict the dynamics of these

one-time functions in a two-step procedure. We extrapolate along diagonal and several subdiagonals within

a subdiagonal band of a two-time window in the first step. In the second step, we use DMD to extrapolate

the Green’s function outside of the sub-diagonal band. We demonstrate the efficiency and accuracy of this

approach by applying it to a two-band Hubbard model problem.

Keywords: Kadanoff-Baym equation, two-time Green’s function, dynamic mode decomposition,

non-equilibrium quantum many-body dynamics

1. Introduction

Simulating a quantum many-body system away from equilibrium is a challenging task. Although time-

dependent physical observables can be computed from the solution of a time-dependent Schrödinger equation

with a time-dependent Hamiltonian, such a brute-force approach is limited to small systems defined in a

small dimensional Hilbert space. For many physical properties of interest, a more practical approach is to

focus on the Green’s function, G(t, t′), which is a two-point correlator of the creation and annhilation field
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operators defined on the Keldysh contour [1, 2, 3, 4]. Unlike the equilibrium Green’s function, which depends

on t − t′ and hence is a one time function, the non-equilibrium Green’s function depends on both t and t′.

The equation of motion satisfied by the two-time non-equilibrium Green’s function is a set of nonlinear

integro-differential equations of the form
[
i
d

dt
−H(t)

]
G(t, t′) = δ(t, t′) +

∫

C

Σ(t, t)G(t, t′)dt, (1.1)

where H(t) is a single-particle Hamiltonian, Σ(t, t′) is a self-energy that accounts for the many-body in-

teractions and generally can depend on the Green’s function G. Equation (1.1) and its accompanying

adjoint equation which describes the propagation of G(t, t′) along the t′ direction are often referred to as the

Kadanoff-Baym equations (KBE) [2].

Evolving the Green’s function numerically on a two-time grid is highly non-trivial. A commonly used

method to solve the KBE system (1.1) is a nonlinear time evolution scheme based on an implicit Runge-Kutta

method and a fixed point iteration [5, 6]. Other numerical methods for solving this type of nonlinear integral

differential equations have been proposed in [7, 8, 9, 10, 11, 12, 13, 14, 15] and the references therein. In

all these methods, the presence of the integral term in the KBEs makes both the memory requirement and

computational cost high if the long-time behavior of a physical observable is to be examined [16].

One possible way to reduce the computational cost is to use model order reduction techniques to sim-

plify the time evolution of the Green’s function while retaining the key features of the dynamics. These

techniques construct models with fewer degrees of freedom to approximate the original system. The use of

a reduced order model can lead to a significant reduction in computational cost without sacrificing much

accuracy. Among these techniques, the dynamic mode decomposition (DMD) technique, originally intro-

duced by Schmid [17], is a promising approach. DMD has been successfully applied to various applications

in fluid dynamics [18, 19, 20, 21], video processing [22, 23] and epidemiology [24]. However, to the best of our

knowledge, DMD has not been widely used for simulating the dynamics of a quantum many-body system.

We will show in this paper that DMD can be used to approximate the two-time nonequilibrium Green’s

function without solving the KBEs (1.1) on a large two-time grid.

In our previous work [25], we applied DMD to predict the time diagonal of the Green’s function, i.e,

ρ(t) = G(t, t), for large t, from a linear reduced order model constructed from the numerical solution of

the KBE within a small two-time window. Even though the two-time dynamics satisfied by G(t, t′) can be

nonlinear, we observed that the one-time dynamics satisfied by ρ(t), which cannot be easily written down

analytically, can be well approximated by a linear model.

In this paper, we extend the technique developed in [25] to predict the entire two-time Green’s function

G(t, t′) from the numerical solution of the KBE from a small time window. Our basic strategy is to divide

the two-time G(t, t′) into a number of one-time functions and construct a DMD-based reduced order model

for each one of them. We examine a few different ways to perform such divisions and approximations. In

one approach, we treat G(t, t′) for a fixed t − t′ as a one-time function that satisfies a one-time dynamical

system. The prediction of such time-subdiagonal of G(t, t′) is a natural extension of the prediction of the
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time diagonal of G(t, t′) we developed in the previous work. After the prediction of several time-subdiagonals

of G(t, t′) have been made, we can then use either the computed or extrapolated G(t, t′) for a fixed t′ to

construct a reduce order model to predict the values of G(t, t′) for large t, i.e. away from the time-diagonal.

This two-step procedure is compared with an alternative approach in which we first fix t′ and extrapolate

along the t direction, and then fix t and extrapolate along the t′ direction. The DMD method employed in

both of these two approaches provides a momentum-temporal decomposition of several one time functions.

Numerical examples are presented to demonstrate the effectiveness of the DMD extrapolation for a simple

Hubbard model driven by an external field with different intensity levels. Yet another alternative we consider

in this paper is a decomposition that fixes the k-point (i.e., a momentum grid point) and treats one of the

time variable as a spatial variable within a selected time window. The reduced order model constructed

in this scheme allows us to extrapolate the values of G(t, t′) within a two-time sub-window for a specific

k-point. We show, by numerical examples, that this approach can sometimes be more effective than a

momentum-temporal decomposition.

The rest of the paper is organized as follows. In Section 2, we review the principal ideas and procedures

of applying DMD. The implementation of DMD for the two-time Green’s function is discussed in Section 3.

In Section 4, we demonstrate the effectiveness of the proposed DMD schemes by numerical examples.

2. Dynamic mode decomposition

In this section, we provide an overview of the dynamic mode decomposition (DMD) method [17, 26] to

be used in the next section to predict values of the two-time Green’s function G(t, t′) for large t and t′ from

the numerical solution of the KBE within a small two-time window. We will also examine a variant of DMD

called high order DMD (HODMD), which was originally developed by Clainche and Vega [27] to yield more

accurate prediction from spatially undersampled data.

DMD is a data-driven dimension reduction technique used to construct a low dimensional linear dynamical

model that can be used to predict observables of a nonlinear dynamical system with a large number of degrees

of freedom [17, 19, 26, 28]. The linear model can be characterized by a number of spatial and temporal modes

that can be obtained from the eigenvalues and eigenvectors of a linear operator.

To describe the basic idea of DMD, consider a nonlinear dynamical system defined by the ordinary

differential equation
dx(t)

dt
= f(x(t), t), t ≥ 0, (2.1)

where x(t) ∈ Cn is a time-dependent state variable, and f : Cn ⊗ R+ → Cn is a nonlinear function of x and

time t.

If we were to approximate (2.1) by a linear model

dx(t)

dt
= Ax(t), (2.2)
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what is the best choice of the linear operator A? This question is important for problems in which distinct

features such as certain oscillation frequencies and amplitude decay rates are of interest even though the

overall dynamics cannot be easily described by a linear model. For problems that have an explicit analytical

expression of f(x(t), t), it may be possible to linearize f(x(t), t) and derive A explicitly. This linearization

process essentially amounts to a linear response analysis. However, when the analytical form of f(x(t), t) is

unknown, performing such an analysis is difficult, if not impossible.

The linearization produced by DMD is based the Koopman operator theory [29, 30, 31], which is developed

to characterize the evolution of a scalar obervable function of x(t), denoted by g(x(t)), to g(x(t+ ∆t)) with

∆t > 0, i.e.

g(x(t+ ∆t)) = K∆tg(x(t)).

In the limit of ∆t→ 0, the Koopman operator defines a linear dynamical system

dg(x(t))

dt
= Kg(x(t)). (2.3)

Because the Koopman operator K is a linear operator that maps from a function space to another function

space, it has infinite number of eigenvalues λj and eigenfunctions ϕj(x), j = 1, 2, ...,∞.

If the observable functions of interest can be well approximated by an invariant subspace of K defined by

a finite subset of eigenvalues and eigenvectors, then it is possible to construct a finite dimensional operator

(matrix) approximation to K.

To be specific, if g1(x), g2(x),...,gn(x) are n observable functions that can be expressed as




g1(x)

g2(x)
...

gn(x)




=
[
v1 v2 · · · vk

]




ϕ1(x)

ϕ2(x)
...

ϕk(x),




for some vectors v1, v2, ..., vk ∈ Cn, which contain the expansion coefficients, then K can be approximated

by a k × k matrix A.

To construct such an approximation for observable functions that are chosen to be the components of

x(t) defined in (2.1), we take snapshots of x(t) at tj = (j − 1)∆t, i.e., xj = x(tj), for j = 1, ...,m, and use

them to build two matrices X1 and X2 of the form

X1 = (x1 x2 · · · xm−1) and X2 = (x2 x3 · · · xm) . (2.4)

The finite dimensional approximation to the Koopman operator can then be obtained by solving the following

linear least squares problem

min
A
‖AX1 −X2‖2F . (2.5)

The solution to (2.5) is

A = X2X
†
1, (2.6)
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where X†1 is the Moore-Penrose pseudoinverse of X1 that can be computed from the singular value decom-

position (SVD) [32] of X1. If the nonzero singular values of X1, σj , j = 1, 2, ...,m, decrease rapidly with

respect to j, which indicates that the numerical rank, denoted by r, of X1 is much smaller than m and n,

we can use a truncated SVD of X1 in the form of X1 = ŨΣ̃ṼT , where the r× r diagonal matrix Σ̃ contains

the leading r dominant singular values of X1, and Ũ and Ṽ contain the corresponding right and left singular

vectors, to obtain an approximation of A as

A ≈ X2ṼΣ̃−1Ũ∗, (2.7)

We can now fully characterize the approximated reduced order linear dynamical system model by diag-

onalizing the projected Koopman operator Ã = Ũ∗AŨ = ŨX2ṼΣ̃−1. Let

ÃW = WΛ (2.8)

be the eigendecomposition of Ã, where Λ = diag(λ1, ..., λr) is composed of the eigenvalues of Ã, and the

columns of W are the corresponding eigenvectors. The matrix

Φ = X2ṼΣ̃−1W (2.9)

contains the so called DMD modes. If φ` is the `th column of Φ, the DMD approximation to x can be by

represented by

x(t) ≈
r∑

`=1

φ` exp(iωDMD
` t)b` = Φ exp(Ωt)b. (2.10)

where ωDMD
` = −i lnλ`

∆t , ` = 1, ..., r, Ω = ln Λ
∆t = diag(iωDMD

1 , ..., iωDMD
r ), and the amplitude vector b :=

[b1, ..., br]
T is taken either as the projection of the initial value x1 onto the DMD modes, i.e.,

b = Φ†x1, (2.11)

or as the least squares fit of (2.10) on the sampled trajectories, i.e.,

b = arg min
b̃∈Cn

m∑

j=1

‖Φ exp(Ωtj)b̃− xj‖2, (2.12)

where ‖ · ‖ denotes the standard Euclidean norm of a vector. For more details on the numerical procedure,

we refer readers to references [17, 26, 28, 25].

The major computational cost of DMD computation is in the SVD of X1, which is O(min(m2n,mn2)).

The memory cost is O(mn).

As pointed out in [28, 33], the success of the DMD approximation to the Koopman operator depends

crucially on the choice of observables. When the observables are chosen to be discretized components of x, a

limited resolution in the discretization may lead to a poor DMD approximation to the Koopman operator as

shown in [25]. In particular, the number of DMD modes r, which can be extracted from the data, may be too

small to represent the true dynamics of x(t). To overcome this difficulty, we choose to use the higher order
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DMD (HODMD) method, which was derived from the time-delay embedding theory in [34, 35, 36, 37], to

construct a better approximation to the Koopman operator in (2.3). For more details about the time-delay

embedding theory and its relation to HODMD, we refer readers to [25] and [27].

In HODMD [27], each column of X1 and X2 consists of d consecutive snapshots. When the time step size

between two adjacent columns is a constant ∆t, the same snapshot may be used in several adjacent columns.

This construction increases the leading dimension of the data matrices by a factor of d. Consequently, the

cost of computing the HODMD modes is also higher. Furthermore, when ∆t is small, the columns can

become more linearly dependent. To reduce the computational cost and column linear dependency of the

data matrices, we can increase the temporal distance between the augmented snapshots to make sure there

is no overlapping between two columns of X1 and X2. Specifically, we can define the data matrices X̃1 and

X̃2 as

X̃1 =




x1 xd+1 ... x(p−2)d+1

x2 xd+2 ... x(p−2)d+2

...
...

...
...

xd x2d ... x(p−1)d



, X̃2 =




xd+1 x2d+1 ... x(p−1)d+1

xd+2 x2d+2 ... x(p−1)d+2

...
...

...
...

x2d x3d ... xpd



, (2.13)

where p = floor(m/d). We denote this choice of data matrices as HODMD[d].

Once X̃1 and X̃2 are prepared according to (2.13) in HODMD[d], we follow the same procedure used

in DMD to compute the HODMD modes. The only difference is that the time step between two adjacent

columns becomes d × ∆t instead of ∆t. As each column of X̃1 consists of d consecutive snapshots, each

spatial HODMD mode is a vector of length nd. Therefore, in the reconstruction and extrapolation of x(t)

by (2.10), we only take the first n elements of each spatial HODMD mode as φ`, ` = 1, ..., r.

We remark here that we use HODMD instead of DMD in all the examples presented in this paper in

order to compensate for the possible lack of spatial/momentum resolution. But for simplicity, in the next

section, we use DMD to demonstrate the main features of this type of approach. As mentioned above, the

basic algorithmic steps performed in HODMD are the same as those in DMD, except that the data matrices

used in HODMD are augmented as shown in (2.13), and we only take the first nk rows of the extrapolated

results as the approximation to the desired Green’s function.

3. DMD for the two-time Green’s function

In this section, we propose two ways to use DMD to extrapolate the entire two-time Green’s function

from the numerical solutions of the KBE in a small time window. In the first approach to be presented in

section 3.1, we extrapolate along one fixed time direction, and refer this scheme as a fixed timeline (FT)

DMD extrapolation. In the second approach to be presented in section 3.2, we extrapolate on a two-time

grid for each fixed k-point, and refer to this scheme as a fixed k-point (FK) DMD extrapolation.
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3.1. DMD of G(t, t′) for a fixed t− t′ or t′

In our previous work [25], we applied the DMD technique to analyze and extrapolate the time-diagonal

of the two-time Green’s function G(t, t′) from the numerical solution of the KBEs (1.1) within a small time

window.

To be specific, we solved the KBE within the time window [0, tm]× [0, tm] for a sufficiently small time step

∆t and a small integer m. The time-diagonal of the Green’s function ρ(ks; tj) := G(ks; (j− 1)∆t, (j− 1)∆t),

with s = 1, ..., nk, j = 1, ..., m were used to construct a snapshot matrix X as

X = [ρ(k, t1), ρ(k, t2), ..., ρ(k, tm)] , (3.1)

where k := (k1, ..., knk
)T denotes the uniformly sampled k-points in the Brillouin zone of the momentum

space, and each snapshot ρ(k, tj) is defined as

ρ(k, tj) := (ρ(k1, tj), ρ(k2, tj), ..., ρ(knk
, tj))

T
, j = 1, ...,m. (3.2)

We have shown that, for a two-band Hubbard model driven by an external field, DMD can successfully

predict the long-time dynamics of ρ from X when the intensity of the driving field is relatively small. The

numerical experiments presented in [25] also show that for high intensity driving field, HODMD produces

more accurate prediction of ρ(k, t) for large t values.

The success of DMD and HODMD is partly due to the fact that the time diagonal of G(t, t′) is well

behaved, i.e., the real and imaginary parts of this function are smooth, and they exhibit clear oscillation and

decay properties.

It has been observed that the smoothness property of G(t, t′) also holds for t′ − t = τ , where τ > 0 is

fixed. As an example, Figure 3.1 shows G(t + 0.9, t), i.e., τ = 0.9, for the same two-band Hubbard model

examined in [25]. Therefore, we can, in principle, use the same DMD techniques we developed for predicting

the time diagonal of G to predict the time subdiagonals of G.

However, to generate a snapshot matrix X for the j-th subdiagonal of G with m snapshots, we need to

increase the size of the sampled time window in which the KBE is solved numerically from [0, tm] × [0, tm]

to [0, tm+j ]× [0, tm+j ]. The nk ×m snapshot matrix X for the j-th subdiagonal G(k; t+ j∆t, t) is therefore

given by

X = [G(k, t1+j , t1), G(k, t2+j , t2), ..., G(k, tm+j , tm)] . (3.3)

In general, if the diagonal and `− 1 subdiagonals of G(t, t′) are to be analyzed and extrapolated, we need to

solve the KBE within the time window of [0, tm+`−1]× [0, tm+`−1]. Figure 3.2 gives a schematic depiction of

the time window in which the KBE is solved. The shaded region contains the snapshots to be used for DMD

analysis. The extrapolated subdiagonal elements of G(t, t′) are contained in the parallelogram denoted by

the blue dashed lines. Note that, within the time window [0, tm+`−1]×[0, tm+`−1], we can use more snapshots

to perform DMD for the subdiagonals closer to the diagonal.

7
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Figure 3.1: The subdiagonal G(t + 0.9, t) for the two-band Hubbard model with the intensity of the external field I = 0.5 at

k = 0.

0 . . . t` tm+`−1 . . . tN
t

...

tm

tm+`−1

...

tN
t′

Figure 3.2: To use DMD to predict G(t, t′) along the time-diagonal and `−1 time-subdiagonals (contained in the parallelogram

outlined by the blue dashed lines), we need to solve the KBE numerically within the time window [0, tm+`−1] × [0, tm+`−1]

(drawn in red). The snapshot matrices are constructed by extracting subdiagonals of G(t, t′) within the shaded parallelogram

contained in the solid blue lines.

To obtain values of G(t, t′) for t and t′ that are outside of the subdiagonal band, we rely on another

observation that shows G(t, t′) is typically smooth with respect to t for a fixed t′ and vice versa. For

example, In Figure 3.3, we plot the real and imaginary parts of G(t, t′) at t′ = 50. Both curves are smooth

with clear oscillation frequencies and amplitude envelops.

Therefore, we can utilize values in the subdiagonal band to extrapolate those that are outside the band.

To be specific, for a fixed t′ = tj , the nk × ` data matrix X to be used in DMD is constructed as

X = [G(k, tj , tj), G(k, tj+1, tj), ..., G(k, tj+`−1, tj)] . (3.4)

If j ≤ m, then from Figure 3.2, these data can be taken from the numerical solution to KBE. Otherwise,

8
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Figure 3.3: G(t, 50) for the two-band Hubbard model with the intensity of the external field I = 0.5 at k = 0.

they are approximated by subdiagonal extrapolations produced in the previous steps.

What we have described is one possible way to apply DMD to predict G(t, t′) for large t and t′ values from

the numerical solution of the KBE within a small time window. We first apply DMD to the data matrices

(3.3) to extrapolate the values in the subdiagonal band G(t + j∆t, t) with j = 0, 1, ..., ` − 1. Subsequently,

we use the solutions in the subdiagonal band to predict the values of G(t, t′) outside the subdiagonal band.

As in each step, one time direction is always fixed (t − t′ for the first step, and t′ for the second step), we

call this method fixed timeline (FT) DMD extrapolation.

3.2. DMD of G(t, t′) for a fixed k-point

DMD is traditionally used to perform a spatial-temporal decomposition of one-time nonlinear dynamics.

In the previous section, we took the more traditional approach by fixing either t− t′ or t′ and performing

a DMD in the two dimensions defined by momentum (k) and time (t) for a fixed t− t′ or t′.

However, the DMD algorithm itself is agnostic to the physical interpretation of the variables and the data.

All it requires are a few slices of data that are related and vary smoothly from one slice to another. These

data slices can be combined and viewed as a data matrix on which a truncated singular value decomposition

can be performed. Once the DMD modes and frequencies are computed, they can be assembled to construct

a reduced order model for predicting additional data slices.

In this section, we take an alternative approach in using DMD to analyze and predict the two-time

Green’s function. Instead of fixing t′ or t− t′, we fix the k-point, and apply DMD directly to G(t, t′).

The simplest scheme is to take the numerical solution of the KBE within the time window [0, tm1
]×[0, tm2

]

for a fixed k-point as the snapshot matrix, and perform DMD to extrapolate and predict the values of G(t, t′)

for 0 ≤ t′ ≤ tm2 and t > tm1 as the first step. This procedure is illustrated in Figure 3.4. Then, in the second

step, the computed or extrapolated values of G(t, t′) within [0, tN ] × [0, tm2
] are used to predict values of

G(t, t′) for t′ > tm2
.

9
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Figure 3.4: Illustration of the extrapolation of G(t, t′) along the t direction by applying DMD to the sampled window [0, tm1 ]×
[0, tm2 ] given by the shaded rectangle.

Note that the KBE is typically solved for t′ ≤ t. The values of G(t, t′) in the upper triangular part of the

time window 0 ≤ t ≤ tm1
and t′ > t can be obtained from symmetry properties of G. However, because the

amplitude envelop of G(t, t′) is typically different for t < t′ and t ≥ t′ (for a fixed t′) (see Figure 3.3), using

the values of G(t, t′) for t ≤ t′ to predict G(t, t′) for t > t′ may not work well as we will show in Section 4.

An alternative scheme, which only requires taking snapshots within the lower triangular time window

t′ ≤ t for a fixed k-point is to sample along the diagonal and subdiagonals of G(t, t′), i.e., we can construct

the snapshot matrix as

X =




G(t1, t1) G(t2, t2) · · · G(tm, tm)

G(t2, t1) G(t3, t2) · · · G(tm+1, tm)
...

... · · ·
...

G(tm, t1) G(tm+1, t2) · · · G(t2m−1, tm)



. (3.5)

The matrix elements contained in (3.5) correspond to values of G(t, t′) evaluated within the parallelogram

outlined in blue and marked as area (I) in Figure 3.5. Each column of X corresponds to each row of the

G(t, t′) within that parallelogram. In general, the number of rows in X can be different from the number of

columns, i.e., we can sample along the t′ direction up to t′ = tm1
= (m1 − 1)∆t, and along the t direction

up to t = tm2
for t′ = 0 and t = tm1+m2−1 for t′ = tm1

(starting from t = tm1
) as shown in Figure 3.5.

Once we perform a DMD on this snapshot matrix, we can extrapolate along the diagonal and subdiagonals

of G(t, t′) first, as indicated by the dashed arrow in the left panel of Figure 3.5.

To predict values of G(t, t′) outside of the subdiagonal bands in the second step, we can sample within

a parallelogram time window outlined in red and marked by area (II) in the right panel of Figure 3.5 to

10
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Figure 3.5: Illustration of the two-step DMD for the Green’s function G(t, t′) at a fixed k-point.

construct a snapshot matrix of the form

X =




G(tj , tj) G(tj+1, tj) · · · G(tj+m2−1, tj)

G(tj+1, tj+1) G(tj+2, tj+1) · · · G(tj+m2 , tj+1)
...

... · · ·
...

G(tj+n−1, tj+n−1) G(tj+n, tj+n−1) · · · G(tj+m2+n−2, tj+n−1)



, (3.6)

where n denotes the number of rows in t′ we consider together. Note that the sampling window (I) is a special

case of (II). It can be used in a DMD analysis to predict values of G(t, t′) to the right of the parallelogram

region in the second step. However, the snapshot matrix used in this step is the transpose of the X matrix

defined in (3.5).

As in this method, the k-point is always fixed, we call it fixed k-point (FK) DMD extrapolation.

3.3. Computational cost

We now compare the computational cost of HODMD with the cost of solving KBEs numerically on a

two-time grid with N ×N grid points. We assume nk k-points are used to represent the Green’s function.

When the second-Born approximation is used to represent the self-energy, it is easy to show [5, 6], that the

computational complexity for solving the KBE numerically is O(n3
kN

3). The cubic scaling with respect to

time (N3) results from the evaluation of the collision integral in each time evolution step.

When DMD is used to construct a reduced order model, we need to first solve the KBEs in a small window

[0, tm] (with m < N) numerically. The cost for this step is O(n3
km

3). If m is relatively small compared to

N , this cost is considered a constant with respect to the final time.

The main computational cost of DMD is in the SVD of the matrix X1 in (2.4), which takes O(n2
km) oper-

ations in general when the matrix to be decomposed is of dimension nk×m. If we use HODMD[d1] with m1

snapshots in the first step of the FT-DMD procedure described in Section 3.1, and HODMD[d2] with m2 snap-

11
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shots in the second step, the overall cost for constructing the reduced order model isO(m2 min(n2
kd1m1, nkm

2
1/d

O(N min(n2
kd2m2, nkm

2
2/d2)), which is linear with respect to N .

Similarly, if we use HODMD[d1] withm1 snapshots in the first step of the FK-DMD procedure described in

Section 3.2, and HODMD[d2] with m2 snapshots in the second step, it takes O(nk min(m2
2d1m1,m2m

2
1/d1)+

O(nk min(N2d2m2, Nm
2
2/d2)) operations to perform the SVDs required to construct the reduced order

model.

Once reduce order models (2.10) are constructed, evaluating these models on O(N2) two-time grid points

takes O(nkN
2) operations.

Therefore, for large N , the DMD based extrapolation can be significantly faster than solving the KBEs

numerically as we will demonstrate in the next section. :q

4. Results and discussions

In this section, we demonstrate and compare methods for predicting the off-diagonal elements of G(t, t′)

discussed in the previous section. All methods are applied to the two-band Hubbard model problem [38, 39,

40] in which the many-body Hamiltonian is given by

Htotal(t) = Hs +Hext(t). (4.1)

In (4.1), Hs is the system Hamiltonian defined as

Hs =
1

2

∑

k

(εvkc
†
vkcvk + εckc

†
ckcck)− U

∑

k

c†ckcck +
U

N0

∑

k1,k2,q

c†vk1+qc
†
ck2−qcck2cvk1 , (4.2)

where εvk (εck) is the band energy of the valence (conduction) band with momentum k, U = 1 is the on-site

interaction between the two bands, and N0 is the number of sites in the system. The energy dispersion is

taken to be

εvk = −(1− cos(k))− Eg/2

εck = (1− cos(k)) + Eg/2,

with Eg = 1 the band gap. The second term in (4.1) is the light-matter coupling within the dipole approxi-

mation defined by

Hext(t) = E(t)
∑

k

(dkc
†
ckcvk + d∗kc

†
vkcck), (4.3)

where E(t) is the time-dependent intensity of the field that is uniform in real space and dk is the dipole

matrix element. For simplicity we set dk = 1.

The many-body Hamiltonian (4.1) describes how electrons and holes interact with each other and with

a classical light field.

12
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We seek to solve the KBE associated with the non-equilibrium many-body dynamics under this Hamil-

tonian. The single-particle Hamiltonian H(t) in (1.1) is derived from the many-body perturbation theory

and always contains the first-order Hartree-Fock self-energies

ΣHartree
cc (t) = −i U

nk

∑

k

Gvv(k; t, t), ΣHartree
vv (t) = −i U

nk

∑

k

Gcc(k; t, t), (4.4)

and

ΣFock
cv (t) = i

U

nk

∑

k

Gcv(k; t, t), ΣFock
vc (t) = i

U

nk

∑

k

Gvc(k; t, t). (4.5)

The Fock self-energy (4.5) in our example is independent of the momentum k since our onsite interaction U

does not have k-independence. The second-order self-energy Σ(t, t) in (1.1) is approximated by the second-

Born correction

Σ2B
jm(k; t, t′) =

U2

n2
k

∑

ps

∑

qk′

Gps(k
′ + q; t, t′)Gsp(k

′; t′, t)Gjm(k− q; t, t′)

− U2

n2
k

∑

ps

∑

qk′

Gjp(k
′; t, t′)Gps(k

′ − q; t′, t)Gsm(k− q; t, t′),

where Gpq(k; t, t′) is the two-time Green’s function with band indices p, q, and crystal momentum index k. To

compute the initial state, we set the system to half-filling with a fully occupied valence band and start from

Hartree-Fock ground state in the calculation. As discussed in Section 1, the KBEs can be solved numerically

by a Runge-Kutta type of time integrator in two times [10]. Before using DMD to predict the long-time

behavior of the two-time Green’s function G(t, t′), we first solve the KBEs by numerical time evolution within

a relatively small two-time window, and use the numerical solution to construct data matrices required to

perform a DMD.

In the following numerical examples, we assume that E(t) is an instantaneous pulse given by Iδ(t− 0.5),

where I denotes the pulse intensity, and δ(t−0.5) denotes a delta function centered at t = 0.5. The Brillouin

zone [−π, π] is discretized uniformly by nk = 20 k-points set to ks = −π + 2(s− 1)π/nk (s = 1, ..., nk). Our

goal is to predict the values of G(ks; t, t
′) for (t, t′) ∈ [0, 200] × [0, 200] on a uniform two-time grid (ti, tj),

with ti = (i − 1)∆t and tj = (j − 1)∆t where ∆t = 0.1, i, j = 1, ..., 2001. As a result, the number of

time grid points in each time direction is N = 2001, and the total number of G(ks, ti, tj)’s to be evaluated

is ks × N × N = 20 × 2001 × 2001. We will validate the predictions made by HODMD below against

numerical solutions of the KBEs obtained from a method that is based on a second-order implicit Runge-

Kutta method and a fixed point iteration. To check the accuracy of the computed G, we recomputed the

solution in t ∈ [0, 50] using a smaller time step ∆t = 0.02. Figures 4.1 shows the solution obtained from

∆t = 0.1 matches well with that obtained from ∆t = 0.02 when I = 0.5. We have similar observations when

I = 0.001 and I = 1.5. In addition, we validated the correctness of the computed solution by checking the

conservation of total energy as suggested in [13]. Figure 4.2 shows that the total energy is conserved in the

limit of large t even though some fluctuation is observed for t < 1. We believe such fluctuation originates

from the instantaneous injection of the external field. Our validation suggests that it is reasonable to use

13
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Figure 4.1: I = 0.5. Comparison of the numerical solutions with ∆t = 0.1 and ∆t = 0.02.
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Figure 4.2: Change of the total energy in time t with different pulse intensities.

the numerical solution of the KBEs obtained with ∆t = 0.1 as a baseline for comparison in the following

numerical examples.

In all the numerical experiements presented below, we use HODMD instead of the standard DMD in order

to compensate for the potential lack of spatial/momentum resolution in the sampled snapshots. Although

we could improve the momentum resolution by generating more k-points, this approach would significantly

increase computational and memory cost used to solve the KBE numerically (within the same two-time

window.) [27]. Following the notation established in Section 2, we use HODMD[d] to denote the version of

HODMD in which d consecutive snapshots of G (in some time direction) are combined into a single column

of the snapshot matrix, and no overlap exists between two adjacent columns of the snapshot matrix, as

defined in (2.13).
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4.1. Predicting G(k; t, t′) for fixed t− t′

We first report the effectiveness of using HODMD to predict G(k; t, t′) for fixed t − t′ values, i.e., we

predict the values of G(k; t, t′) along the time-diagonal and subdiagonals within the parallelogram outlined

by the blue dashed lines in Figure 3.2. To predict the values of G(k; t, t′) for t − t′ = (j − 1)∆t, with

j ∈ {1, 2, ...,m2}, we use G(k; ti, ti−j+1) with j ≤ i ≤ j +m1 − 1 to construct a snapshot matrix required in

an HODMD calculation. Here the parameter m2 is the total number of time-subdiagonals of G(k; t, t′) we will

predict, and m1 is the minimum number of snapshots we will use to perform the HODMD calculation. The

HODMD calculation for each j is independent from the others, i.e., the HODMD calculations for different

time-subdiagonals of G can be performed in parallel. In order to perform these HODMD calculations, we

need to first solve the KBE numerically within the time window [0, tm1+m2−1]× [0, tm1+m2−1]. As mentioned

in Section 3.1, When t−t′ < (m2−1)∆t, more snapshots can be used in the HODMD analysis. In particular,

for t = t′, we can use as many as m1 +m2 − 1 snapshots.

Figure 4.3(a) shows the singular values of the snapshot matrix X̃1 (2.13) constructed for t− t′ = 100∆t =

10. The intensity of the external pulse in (4.3) is set to I = 0.001. We set m1 to 100 to include at least

100 snapshots in the snapshot matrix X, and use HODMD[4] to perform the extrapolation. In this case,

the singular values of X decay rapidly. Only the leading 14 singular values are significantly larger than 0,

indicating that the dynamics of G(k; t+ 100∆t, t) can be well characterized by 14 DMD modes.

To assess the accuracy of the HODMD extrapolation, in Figure 4.3(b), we plot the correlation |c`| between

the numerical solution of the KBE and the HODMD extrapolation along (t+ `∆t, t), which is defined by

c` = min
s

〈G(ks; t+ `∆t, t), GDMD(ks; t+ `∆t, t)〉
‖G(ks; t+ `∆t, t)‖‖GDMD(ks; t+ `∆t, t)‖ , ` = 0, 1, ..., 199, (4.6)

where G(ks; t + `∆t, t) is obtained from the numerical solution of the KBE on a uniform two-time grid

in [0, 200] × [0, 200], GDMD(ks; t + `∆t, t) is the extrapolated trajectory produced from HODMD, and 〈·, ·〉
denotes the standard Euclidean inner product of two complex vectors. We note that c` is the cosine of

the angle between the predicted and the computed trajectories. For each `, we take the minimum of such

cosine values among all k-points, which yields the largest difference between the extrapolated and the original

trajectories among all k points. We can clearly see that for m1 = 100 and m2 = 200, the HODMD prediction

is nearly perfect for I = 0.001.

When I is increased to 0.5, we perform an HODMD[5] extrapolation using m1 = 450, which is the

minimum number of snapshots required to produce satisfactory extrapolations along the diagonals, and m2 =

400, which is the minimum number of snapshots required for each t′ to produce a satisfactory extrapolation

away from the diagonal (see Section 3). The singular values of the snapshot matrix for G(k; t + 100∆t, t)

and the correlation |c`| between the numerical solution of the KBE and the HODMD prediction are similar

to those shown in Figure 4.3 where I = 0.001. The only difference is that the snapshot matrix has more

large singular values, indicating that the dynamics associated with I = 0.5 contains more momentum and

temporal features than the dynamics associated with a smaller I. These additional features would need to
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Figure 4.3: I = 0.001. (a) The singular values of the snapshot matrix X̃1 (2.13) in HODMD[4] constructed from G(k; (m +

100)∆t,m∆t), for m = 0, 1, ...,m1 − 1 = 99; (b) The correlation |c`| between the numerical solution of the KBE and the

HODMD[4] extrapolation of G along (t+ `∆t, t), ` = 0, 1, ...,m2 − 1 = 199.

Figure 4.4: I = 0.5. The extrapolated G(0; t+ 10, t) by HODMD[5] where the snapshot matrix X̃1 (2.13) is constructed from

G(k; (m+ 100)∆t,m∆t), for m = 0, 1, ...,m1 − 1 = 449. The shaded region represents the window of sampled snapshots from

the numerical solution of the KBE.

be accounted for by an approximate Koopman operator of a larger dimension and thus more terms in (2.9).

With these terms, all the m2 = 400 subdiagonals are accurately extrapolated as the values of |c`| are close

to 1 for all `. The extrapolated trajectory of the 100-th subdiagonal of G, i.e., GDMD(0; t+ 10, t) is plotted

in Figure 4.4 and compared with the trajectory G(0; t + 10, t) obtained from the numerical solution of the

KBE. The sampled data are marked by the blue shaded window. We can observe that the extrapolated

trajectory successfully captures the oscillating frequency and the decay rate of the amplitude.

To check the number of snapshots (m1) required in the HODMD to accurately extrapolate G(t+ 10, t),
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Figure 4.5: The root mean square errors RMS(m1) for G(k; t+ 10, t) when (a) I = 0.001; (b) I = 0.5 and I = 1.5.

we define the root mean square (RMS) error of the extrapolated trajectory as

RMS(m1) =

[∑nk

j=1

∑N−m2+1
p=m1+1 |G(kj ; tp+100, tp)−GDMD(kj ; tp+100, tp)|2

nk(N −m1 −m2 + 1)

]1/2

, (4.7)

where we set the value of m2 to 101. The extrapolation is computed by HODMD[4] when I = 0.001,

HODMD[5] when I = 0.5 and HODMD[4] when I = 1.5. The corresponding RMS errors are plotted in

Figure 4.5.

As we can see from Figure 4.5(a), the RMS for the extrapolated G(t + 10, t) starts to decrease rapidly

when m1 > 60 and levels off around m1 = 80 in the I = 0.001 case. The magnitude of RMS matches that

of the numerical integration error contained in the numerical solution of the KBE. When I = 0.5, the RMS

starts to decrease from 10−1 to 10−2, which is the expected level of error in the numerical solution of KBE

when m1 > 120. When I = 1.5, the RMS starts to decrease rapidly when m1 > 50, when m1 = 500, the

RMS is on the order of 10−10. This is due to the fact that the magnitude of G(t + 10, t) rapidly decreases

towards 0 when t increases.

4.2. Predicting G(k; t, t′) for fixed t′

As discussed in Section 3, to predict the values of the two-time Green’s function outside of the m2

subdiagonal bands in (t, t′), we can use HODMD to extrapolate G(k; t, t′) horizontally on the two-time grid

by fixing t′ in G. For each fixed t′ = tj , we use either the computed or extrapolated values of G(k; ti, tj), for

j ≤ i ≤ j +m2 − 1 to construct a snapshot matrix from which DMD modes can be extracted to extrapolate

the values of G(k; ti, tj) for j +m2 ≤ i ≤ N .

The accuracy of the prediction can be assessed by examining the correlation between the extrapolated

Green’s function, denoted by GDMD(k; t, t′) and the numerical solution of the KBE denoted by G(k; t, t′)

along a fixed t′ defined as

ck(t′) =
〈G(k; t, t′), GDMD(k; t, t′)〉
‖G(k; t, t′)‖‖GDMD(k; t, t′)‖ , k = ks, s = 1, ..., nk. (4.8)
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Figure 4.6: I = 0.5. A comparision between the real and imaginary parts of GDMD(0; t, 30) and G(0; t, 30) by HODMD[10]

with those of G(0; t, 30). The shaded area marks time window from which snapshots are used to construct the HODMD model.

When the intensity of the external field E(t) = Iδ(t) in (4.3) is set to I = 0.5, we found ck(30) are close to

1.0 for nearly all k-points. This agreement is confirmed in Figure 4.6 where we show the real and imaginary

parts of GDMD(0; t, 30) match well with those of G(0; t, 30).

We make a similar comparison between G(k; t, 120) and GDMD(k; t, 120) in Figure 4.7. Note that, in

this case, the snapshot matrix used in HODMD is constructed from the extrapolated values of G(k, tj , 120),

120 ≤ ti ≤ 120 + m2 − 1, obtained in a previous HODMD step, in which m2 = 400 subdiagonal lines of

G(k; t, t′) are extrapolated from the numerical solution of the KBE within [0, 84.9]× [0, 84.9]. The correlation

factor |ck(120)| deviates slightly from 1.0 for some k values. Such small deviations can also be seen in

Figure 4.7 where we plot both the real and imaginary parts of G(0; t, 120) and GDMD(0; t, 120). We believe

these small deviations are caused by small extrapolation errors introduced in the previous step in which

HODMD is used to extraploate G(k; t, t′) along the diagonal and subdiagonals of the two-time grid.

In Section 3, we also discussed the possibility to extrapolate G(k; t, t′) horizontally from the numerical

solution of the KBE in the time window [0, tm]× [0, tm] directly for t′ < tm without constructing an HODMD

model to extrapolate along the diagonal and subdiagonals of the two-time window first. We now examine

the effectiveness of this approach.

Because the solution to the KBE is computed for t ≥ t′ within [0, tm] × [0, tm], the larger the t′, the

fewer data points we can use to construct the snapshot matrix. However, by making use of the following

symmetric property of the Green’s function [5], i.e.,

Gb1,b2(k; t, t′) = −Gb2,b1(k; t′, t), (4.9)

where b1 and b2 denote the band indices, we can augment the snapshot matrix G12(k; t, t′) for a fixed t′

with samples of −Gb2,b1(k; t′, t). Unfortunately, such a symmetry exploiting data augmentation scheme is

not always satisfactory as we will see below.
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Figure 4.7: I = 0.5. A comparision between the real and imaginary parts of GDMD(0; t, 120) and G(0; t, 120) by HODMD[10]

with those of G(0; t, 120). The shaded area marks time window from which snapshots are used to construct the HODMD model.
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Figure 4.8: I = 0.5. (a) The correlation |ck(10)| between GDMD(k; t, 10) and G(k; t, 10); (b) The correlation |ck(45)| between

GDMD(k; t, 45) and G(k; t, 45).

In the following example with I = 0.5, we set m to 500, i.e., we first solve the KBE within the time window

of [0, t500]× [0, t500] = [0, 49.9]× [0, 49.9]. We use the values of computed G12(k; t, 10) and G12(k; t, 45) within

this time window to construct snapshot matrices that can be used in HODMD[6] to extrapolate G12(k; t, 10)

and G12(k; t, 45) for t > 49.9, as shown in Figure 3.4.

The singular values of both snapshot matrices decrease rapidly, and there are around 65 dominant singular

values with a clear gap between these singular values and the others.

However, Figure 4.8 shows that the two (time) slices of the extrapolated Green’s functions exhibit different

accuracy features. At t′ = 10, the correlation between the HODMD extrapolation GDMD(k; t, 10) and the

corresponding G(k; t, 10) obtained from the numerical solution of the KBE is nearly perfect at all k-points.

Much lower correlation is observed between GDMD(k; t, 45) and G(k; t, 45).

The excellent agreement between GDMD(k; t, 10) and G(k; t, 10) and the lack of satisfactory agreement
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Figure 4.9: I = 0.5. The extrapolated G(0; t, 10) by HODMD[6] with the snapshot matrix X̃1 constructed from G(k;n∆t, 10),

for n = 0, 1, ..,m2 − 1 = 499. The shaded area marks time window from which snapshots are used to construct the HODMD

model.

Figure 4.10: I = 0.5. The extrapolated G(0; t, 45) by HODMD[6] with the snapshot matrix X̃1 constructed from G(k;n∆t, 45),

for n = 0, 1, ..,m2 − 1 = 499. The shaded area marks time window from which snapshots are used to construct the HODMD

model.

between GDMD(k; t, 45) and G(k; t, 45) are confirmed in Figures 4.9 and 4.10 where we plot both the real and

imaginary parts of the computed and extrapolated G(0; t, 10) and G(0; t, 45), respectively. In particular, at

t′ = 10, the HODMD extrapolation correctly captures both the decay amplitude and oscillation frequencies

of G(0; t, 10). However, at t′ = 45, the extrapolated GDMD(0; t, 45) deviates significantly from the solution

of the KBE.

We believe that the reason HODMD performs poorly in predicting the values of G(k; t, 45) for t > 49.9

is that an accurate HODMD model requires a sufficiently large number of snapshots G(k; ti, t
′) for ti ≥ t′.
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Figure 4.11: I = 0.001. A comparison of GDMD(0; t+ 20, t) with G(0; t+ 20, t). The extrapolation is computed by HODMD[10]

with the snapshot matrix X̃1 constructed from G(0; (p+q)∆t, p∆t) with p = 0, 1, ...,m2−1 = 299 and q = 0, 1, ...,m1−1 = 249.

The shaded area marks the time window from which snapshots are used to construct the HODMD model.

In this experiment, only 50 snapshots within [45, 50] are available for using in HODMD, which is apparently

not enough to construct an accurate reduced order model.

4.3. Predicting G(k; t, t′) for a fixed k

We now report the effectiveness of an alternative DMD extrapolation scheme discussed in Section 3.2.

In this scheme, we use snapshots of G(k; t, t′) within a small two-time window for a fixed k to construct a

DMD-based reduced order model from which values of G(k; t, t′) are predicted for large t and t′.

In the first numerical example, we set the intensity of the external field to I = 0.001 and solve the KBE

within the two time window [0, 54.9]× [0, 54.9]. We then set m1 = 250, m2 = 300 and construct a snapshot

matrix X for each k according to (3.5). We use HODMD[10] to construct a reduced order model to extrpolate

values of G(k; t, t′) along the diagonal and subdiagonals of the two time grid for t− t′ ≤ 24.9.

Figure 4.11 shows that for k = 0 and t − t′ = 20, the extrapolated GDMD(0, t + 20, t) agrees well with

the computed G(0; t+ 20, t) obtained from the numerical solution of the KBE. Similar good agreements are

observed for other t− t′ and k values.

Following the strategy presented in Section 3.2, once we extrapolate G(k; t, t′) along the diagonal and

subdiagonals for each k, we then partition the parallelogram formed by the subdiagonal bands on a two-time

grid vertically into several strips of size n × m2. In this experiment, we choose n = 30 and m2 = 300.

The computed or extrapolated values of G(k; t, t′) values within each strip are used to construct a snapshot

matrix X according to (3.6). HODMD[2] is performed to construct a reduced order model from which the

values of G(k; t, t′) outside of the subdiagonal band of width m2 can be extrapolated.

Figure 4.12 shows that, for k = 0 and t′ = 120, the extrapolated GDMD(0, t, 120) agrees well with the

computed G(0; t, 120) obtained from the numerical solution of the KBE. Note that in this case, the snapshot
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Figure 4.12: I = 0.001. A comparison of GDMD(0; t, 120) with G(0; t, 120). The extrapolation is computed by HODMD[2] with

the snapshot matrix X̃1 constructed from G(0; 120+(p+ q)∆t, 120+p∆t) with p = 0, 1, ..., n−1 = 29 and q = 0, 1, ...,m2−1 =

299. The shaded area marks the time window from which snapshots are used to construct the HODMD model.

matrix X is constructed from the extrapolated values of G(0, t, t′) along the subdiagonals of the two-time

grid in the previous step. Similar good agreements are observed for other t′ and k values.

These m1 and m2 values used in the above experiments appear to be the minimal required to produce

accurate extrapolations both along the diagonals and off-diagonals. The choice of n = 30 is somewhat

arbitrary. We observe that the extrapolation in the t direction is accurate for several values of n ∈ [10, 1000].

When we increase the intensity of the external field to I = 0.5, we need to increase the value of m1 to

m1 = 450 in order to obtain accurate extrapolation of G(k; t, t′) along the m2 = 300 subdiagonals of the

two-time grid. We use HODMD[10] to construct the reduced order model used to extrapolate G(k, t, t′)

along the subdiagonals of the two-time grid for each k. The correlation |ck| between GDMD(k; t+ 20, t) and

G(k; t+ 20, t) (obtained from the numerical solution of the KBE) is shown for all k-points in Figure 4.13(a).

Although the correlations for the first 5 and the last 4 k-points appear to be somewhat low, the extrapolation

appears to be accurate outside the time window that contains the sampled snapshots, as shown in Figure 4.14.

This observation suggests that, for a fixed k, the long-time dynamics of G(k; t, t′) can be well approximated

by a linear reduced order model along a fixed t− t′ for t− t′ ≤ 29.9, even though the model does not quite fit

G(k; t, t′) for small t and t′ on which G(k; t, t′) behaves more nonlinearly due to the onset of a higher intensity

pulse. Since the values of G(k; t, t′) are already available from the numerical solution of the KBE for small

t and t′, and because we are mainly interested in the dynamics of G for large t and t′, the extrapolation

produced by HODMD[10] in this case is acceptable.

The extrapolation of G away from the diagonal for t′ = 120 is shown in Figure 4.15. Compared to

Figure 4.7, the extrapolated GDMD(0; t, 120) produced here is much closer to the numerical solution of the

KBE than that produced by the extrapolation described in Section 4.2.
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Figure 4.13: I = 0.5. (a) The correlation |ck| between the numerical solution of the KBE and the HODMD[10] extrapolation

of G(k; t + 20; t). The snapshot matrix X̃1 is constructed from G(k; (p + q)∆t, p∆t) with p = 0, 1, ...,m2 − 1 = 299 and q =

0, 1, ...,m1−1 = 449; (b) The correlation |ck(120)| between the numerical solution of the KBE and the HODMD[5] extrapolation

of G(k; t, 120). The snapshot matrix X̃1 is constructed from G(k; 120 + (p+ q)∆t, 120 + p∆t) with p = 0, 1, ..., n− 1 = 29 and

q = 0, 1, ...,m2 − 1 = 299.

Figure 4.14: I = 0.5. A comparison of GDMD(−π; t+20, t) with G(−π; t+20, t). The extrapolation is computed by HODMD[10]

with the snapshot matrix X̃1 constructed fromG(−π; (p+q)∆t, p∆t) with p = 0, 1, ...,m2−1 = 299 and q = 0, 1, ...,m1−1 = 449.

The shaded area marks the time window from which snapshots are used to construct the HODMD model.

When I is further increased to I = 1.5, we use HODMD[6] and HODMD[5] to extrapolate along the

subdiagonal bands and away from the diagonal. In the first step, we take m1 = 80 snapshots, while in the

second step, we take m2 = 120 snapshots. Extrapolation results at k = 0 for G(0; t + 10, t) from the first

step and G(0; t, 12) from the second step are given in Figures 4.16 and 4.17, respectively. From Figure 4.16,

we notice that, although there is not a complete oscillation period in the sampled window, HODMD gives

a good approximation to the magnitude and frequency of the oscillation for large t and t′. Furthermore,

for t′ = 12, which falls out of the sampled window in the first step, the extrapolation from the second step

matches well with the numerical solution of KBE. This agreement can be observed from Figure 4.17.
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Figure 4.15: I = 0.5. A comparison of GDMD(0; t, 120) with G(0; t, 120). The extrapolation is computed by HODMD[5] with the

snapshot matrix X̃1 constructed from G(0; 120+(p+q)∆t, 120+p∆t) with p = 0, 1, ..., n−1 = 29 and q = 0, 1, ...,m2−1 = 299.

The shaded area marks the time window from which snapshots are used to construct the HODMD model.

Figure 4.16: I = 1.5. A comparison of GDMD(0; t + 10, t) with G(0; t + 10, t). The extrapolation is computed by HODMD[6]

with the snapshot matrix X̃1 constructed from G(0; (p+ q)∆t, p∆t) with p = 0, 1, ...,m2−1 = 119 and q = 0, 1, ...,m1−1 = 79.

The shaded area marks the time window from which snapshots are used to construct the HODMD model.

4.4. Spectral function and band structure approximation

Once G(k; t, t′) is available, we can use it to evaluate the time-dependent spectral function. The spectral

function associated with G = G11 +G22 at a particular k-point k can be computed by the formula

A(T, k, ω) = imag

(∫ T

t0

dt2

∫ T

t0

dt1s(t2)s(t1)eiω(t1−t2)G(k; t1, t2)

)
, (4.10)

where

s(t) = e
− (t−(T+∆t)/2)2

2(1000∆t)2 . (4.11)
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Figure 4.17: I = 1.5. A comparison of GDMD(0; t, 12) with G(0; t, 12). The extrapolation is computed by HODMD[5] with the

snapshot matrix X̃1 constructed from G(0; 12 + (p+ q)∆t, 12 + p∆t) with p = 0, 1, ..., n− 1 = 29 and q = 0, 1, ...,m2 − 1 = 119.

The shaded area marks the time window from which snapshots are used to construct the HODMD model.

In the formulas, s(t) is the envelope function which describes the finite pulse duration of the probe light in

the experiment, and t0 is chosen so that we can get a smooth spectral function A(T, k, ω). Specifically, in

our examples, we just take t0 = 0. We can evaluate (4.10) numerically by first performing a discrete Fourier

transform with respect to t1 and using the trapezoid rule to evaluate the integral with respect to t2.

By assembling spectral functions at multiple k-points, we can plot the band structure. In Figure 4.18, we

compare the band structures A(149.9, k, ω), plotted as a heatmap, obtained from the numerical solution of the

KBE as well as the extrapolated two-time Green’s function GDMD(t, t′) for I = 1.5. The extrapolated Green’s

function is obtained by using the fixed timeline (FT) scheme discussed in Section 3.2. The fixed k-point

(FK) extrapolation yields a nearly identical result and is not shown here for simplicity. We can clearly see

that the band structure constructed from the GDMD(t, t′) is nearly indistinguishable from that constructed

from the numerical solution of the KBE. Similar results are observed for band structures constructed from

external fields with different intensities, i.e. I = 0.001 and I = 0.5.

In Figure 4.19, we take a closer look at the spectral functions at k = 0 (the central slice in Figure 4.18).

We compare ADMD
FT with ADMD

FK , and observe that they both match well with the spectral function obtained

from the numerical solution of the KBE for I = 0.5 and I = 1.5. In particular, all major peaks of the

spectral function are captured accurately. Remarkably, the small discrepancy between the extrapolated and

the computed Green’s functions shown in Figure 4.7 has very little effect on the accuracy of the spectral

function.

To determine how the accuracy of HODMD extrapolation is affected by the number of snapshots we need

to collect in both FT and FK based HODMD methods, we examine the RMS error of the spectral function
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Figure 4.18: A comparison of band structure constructed from the numerical solution of the KBE for two-band model problem

defined by (4.1) and (4.3) with I = 1.5, and a fixed k-point DMD extrapolation.
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Figure 4.19: Comparisons of the spectral functions at k = 0 and T = 149.9 in (4.10) computed from the KBE solution and two

types of DMD approximation when the coupling density I = 0.5 (left) and I = 1.5 (right).

for a particular choice of m1 and m2, defined as

RMSmethod(m1,m2) =
2π

T + ∆t

√√√√
T/∆t∑

`=0

(
A(T, ω`)−ADMD

method(T, ω`)
)2
, j = 1, 2, (4.12)

where ‘method’ is either FT or FK, and

ω` = − π

∆t
+

2`π

T + ∆t
, ` = 0, ...,

T

∆t
= 1499. (4.13)

We plot RMSFT(m1,m2) and RMSFK(m1,m2) for several values of m1 and m2 between 100 and 500 in

Figures 4.20-4.22 for I = 0.001, I = 0.5 and I = 1.5 respectively. Overall, we can observe that the RMS error

decreases as m1 and m2 increase. When a sufficiently large set of m1 and m2 values are chosen, we observe

that AFK tends to be more accurate than AFT. This observation is also consistent with what we observed in

Figures 4.7 and 4.15, where the fixed k-point based HODMD extrapolation outperforms the fixed timeline

based extrapolation.
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Figure 4.20: I = 0.001. The l2-error (4.12) for the spectral function computed from the two HODMD extrapolated Green’s

function introduced in Sections 3.1 and 3.2 respectively.
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Figure 4.21: I = 0.5. The l2-error (4.12) for the spectral function computed from the two HODMD extrapolated Green’s

function introduced in Sections 3.1 and 3.2 respectively

We observe in Figure 4.20 that RMSFK(m1,m2) is relatively large when m2 < m1 regardless how large

m2 is. We are not clear at the moment why m2 must be larger than m1 in this case.

4.5. Computational efficiency

In this section, we report the performance gain achieved by using DMD to extrapolate the non-equilibrium

Green’s function from the solution of the KBE within a small two-time window. As mentioned before, we

use the numerical method presented in [5, 6] to solve the KBE associated with a two-band Hubbard model

problem with second-Born approximation to the self-energy. The computation is carried out on Cori KNL

computer maintained at NERSC. Message Passing Interface (MPI) is used to distribute Green’s functions at
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Figure 4.22: I = 1.5. The l2-error (4.12) for the spectral function computed from the two HODMD extrapolated Green’s

function introduced in Sections 3.1 and 3.2 respectively

different k-points among different MPI ranks. These Green’s functions can be updated in parallel. However,

the evaluation of the self-energy and the integral term of the KBE requires global communication. For 20

k-points distributed among 20 MPI ranks, and wall clock minutes required to perform 500, 1000 and 2000

steps of time evolution respectively are listed in Table 4.1.

Number of time steps 500 1000 2000

wall clock time (min) 13 97 821

Table 4.1: The wallclock time used to perform numerical time evolution of the KBE on 20 MPI ranks.

From this table, we can clearly see the O(t3) scaling of the computational cost for solving the KBE. In

fact, for this relatively small problem, performing 2000 steps of time evolution takes nearly 14 wall clock

hours on 20 MPI ranks.

The use of DMD can significantly reduce the computational time and memory cost. As we indicated

earlier, for I = 0.001 and I = 1.5, we can use DMD to extrapolate the entire Green’s function from the

numerical solution of the KBE within a small time window by performing only 500 steps of time evolution.

The wall clock time used to perform a fixed timeline (FT) DMD extrapolation on 20 MPI ranks is less

than one minute. On the other hand, a fixed k-point DMD extrapolation can be done within 10 seconds.

These time costs are negligible compared to the time required to solve the KBE. As a result, the use of DMD

can speedup the entire computation by a factor of 821/14 ≈ 59.

For I = 0.5, we need to perform 1000 steps of time evolution before applying DMD extrapolation. The

DMD extrapolation can still be completed in less one minute which results in a speedup of 821/98 ≈ 8.

Moreover, by reducing the number of time steps used to solve the KBE, we can reduce the memory cost
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for storing each self-energy function from 5GB to 320MB.

5. Conclusion

In this paper, we applied the dynamic mode decomposition (DMD) method (and a variant called

HODMD), which is a data-driven model order reduction technique, to predict the long-time dynamics of

the two-time nonequilibrium Green’s function from the numerical solutions of the Kadanoff-Baym equations

(KBEs) within a small time window. While the original DMD is applicable to one-time dynamics only,

we successfully used it to extrapolate two-time nonlinear dynamics by decomposing the two-time Green’s

function into several one-time functions in two different time directions. We presented two different time

partitioning schemes and compared their effectiveness through numerical examples. We also presented a

scheme in which one of the time variable is treated as a spatial variable at a fixed momentum grid point.

Our numerical results show that this scheme can sometimes provide a more accurate prediction of the two-

time Green’s function in a large two-time window. We have also demonstrated that the DMD extrapolated

Green’s function can be used to compute interesting physical observables such as the band structure and the

spectral functions of the many-body system accurately. By applying DMD/HODMD, we can significantly

reduce the computational cost for computing these quantities because we do not need to solve the KBEs

within a large two-time window. The cost of performing DMD and HODMD is negligible compared to the

cost of solving the KBEs.

We remark here that there are other techniques to reduce computational complexity of solving the KBEs.

One of these techniques uses the generalized Kadanoff-Baym ansatz (GKBA) [41, 42] to approximate and

store the time diagonal of the Green’s function first and use this one-time function together with Hatree-Fock

propagators to obtain approximations to two-time Green’s functions. Other techniques include the recently

developed G1−G2 scheme [43]. These approaches use certain approximations of the collision integrals.

In many cases, they have been shown to be sufficiently accurate. However, more systematic comparisons

and evaluations need to be made. In these methods, DMD and HODMD can still be used to predict the

long-time dynamics on one-time functions. We plan to study these methods and compare them with using

DMD/HODMD based reduced order models for predicting non-equilibrium two-time Green’s functions in

the future.
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