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ABSTRACT OF THE DISSERTATION

Coherent Manipulation of Semiconductor Quantum Dot Qubits

by

John Dean Rooney

Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Hong-Wen Jiang, Chair

Quantum computing has received growing interest not only from the research community,

but also in the general public. One reason for this focus is due to the ability of a quantum

computer to solve problems that cannot be computed classically, creating a pathway for

solutions to complex problems that would benefit numerous aspects of society. One of

the popular proposals for a quantum computer harnesses semiconductor quantum dots to

define qubits within electron or hole states. Due to the compatibility of this technology

with existing nanoscale industrial fabrication facilities, it has a unique advantage of being

able to scale to the millions of qubits required for a commercially practical quantum

computer.

Within this work, I will describe two approaches to building a qubit using semiconduc-

tor quantum dots. One exploits the valley degree of freedom of conduction electrons in

silicon. While these valley states are usually seen as obstacles to spin encoding schemes,

we demonstrate the ability to encode a qubit within them. This valley qubit comes with

the advantage of sub-nanosecond operation times and protection from charge noise dur-

ing operation. We further characterize this qubit using quantum process tomography to

find fidelities ranging from 79%− 93%.

The second approach leverages the spin states of holes in a germanium double quan-

tum dot. This area of research has grown rapidly over the past few years, partially

because the strong spin-orbit coupling and site-dependent g-tensors of these holes allows
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for all-electrical control of the qubit states without the need for micromagnets. I will

characterize the evolution between singlet and triplet states and describe how the hole

g-tensors can be modified, which are vital to qubit manipulation. By adjusting the volt-

age applied to the barrier separating the two quantum dots, we have found a g-factor

that can be increased by approximately an order of magnitude, revealing a sensitivity

and tunability these g-tensors have to the the local electrostatic environment.
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CHAPTER 1

Introduction

1.1 Introduction to quantum computing

Our world is fundamentally quantum. If we wish to accurately simulate the Physics of Na-

ture, then we require the ability to emulate its quantum character. As introduced by Paul

Beinoff in 1980 and popularized by Richard Feynman in a 1981 keynote speech, this desire

necessitates a different kind of computation than the method used by classical computers

prevalent today–a quantum computation [Ben80, Fey82]. With the power of quantum

computers, the pathway opens to solving complex problems in quantum cryptography,

accelerated drug discovery, machine learning, and the development of revolutionary ma-

terials [Int18]. Since Beinoff and Feynman’s proposals and with this motivation in mind,

quantum computers have grown from the theoretical and small-scale research settings to

industrial giants fabricating chips with over 400 quantum bits [CN22]. However, these

computers are best described as noisy intermediate-scale quantum (NISQ) devices, as

they are able to perform calculations that surpass the abilities of any classical computer

but are severely limited by noise to operate reliably [Pre18]. While this technology has

achieved impressive feats in recent years, such as simulating the isomerization of N2H2

[QCA20], it remains distant from the goal of a computer composed of millions of quan-

tum bits that can tackle the practical problems of today. This thesis will describe my

contributions to moving this technology closer to that aspiration.

The feature that distinguishes a quantum computer from its classical counterpart

1



and provides its advantage is the quantum bit, more commonly referred to as the qubit.

While both classical and quantum bits are generated from a two-level system (|0⟩ and

|1⟩), the nature of a quantum system allows a qubit to exist in a superposition of these

states. This property becomes more apparent when we look at the general form of a

two-level quantum system:

|Ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩, (1.1)

where θ ∈ {0, π} corresponds to the amplitude associated with the qubit being in either

the |0⟩ and |1⟩ state, and ϕ ∈ {0, 2π} represents the phase between these two states. For

example, with θ = π/2 and ϕ = 0, the state of the qubit becomes a quantity that cannot

be encoded into a classical bit: |Ψ⟩ = 1√
2
(|0⟩+ |1⟩).

However, the power of quantum computers truly manifests when multiple qubits oper-

ate together. Consider the case of two qubits, where each qubit can be in a superposition

of |0⟩ and |1⟩. Combining these qubits creates to a superposition of all four possible

outcomes:

|Ψ⟩ = a|00⟩+ b|10⟩+ c|01⟩+ d|11⟩. (1.2)

where the left (right) digit denotes the state of the first (second) qubit. This entangled

state can be exploited to perform computations on the individual outcomes simultane-

ously. In contrast, two classical bits can also represent each of these outcomes ({|00⟩, |10⟩,

|01⟩, |11⟩}) but only one at a time, meaning a classical computer would need to perform

four separate operations to match the quantum computer’s one. This quantum speedup

grows exponentially with the number of qubits (2N), granting quantum computers the

ability to efficiently solve specific complex problems where a large number of possible

outcomes exist [Fey82, DiV95, EJ96, Sho97, NC10, CD10, Mon16, Jor].

2



1.2 Quantum computing gate operations

To better visualize these qubit operations, it is beneficial to map the state of the qubit

in Eqn. 1.1 onto what is known as the Bloch sphere, where the coordinates of the state

vector are defined by θ and ϕ. In this representation, the north (θ = 0) and south (θ = π)

pole of the sphere symbolize the |0⟩ and |1⟩ states respectively. For example, Fig. 1.1a

illustrates the specific state where θ = π/4 and ϕ = 3π/4. From Eqn. 1.1, one can see

that any state that does not lie along the z-axis is a mixture of the two logical states,

where the maximally mixed states are located along the equator.

(a) (b)

Figure 1.1: (a) Visualization of a qubit’s state on the Bloch sphere. This particular

state is defined with θ = π/4 and ϕ = 3π/4 according to Eqn. 1.1. The north and south

pole of the Bloch sphere correspond to |0⟩ and |1⟩ respectively. Points along the

equator represent equal superpositions of |0⟩ and |1⟩, where |x⟩ = |0⟩+|1⟩√
2

and

|y⟩ = |0⟩+i|1⟩√
2

. (b) A qubit is initialized in the state |0⟩ (black arrow). An X(π/2)

rotation transforms this state to | − y⟩ (blue arrow). Finally a Z(3π/2) rotation brings

this state to | − x⟩ (red arrow).

With this tool in hand, we can begin to explore important operations applied to single

qubits. For example, a basic requirement for controlling a qubit is the ability to move the

qubit state to any point on the Bloch sphere. This manipulation is usually accomplished

through establishing two rotation axes of control, where one qubit operation rotates the

state around the x axis changing θ, while another results in Z rotations changing ϕ.

3



For example, Fig. 1.1b illustrates two operations on the initial state |0⟩: The first is an

X(π/2) rotation that moves the the state to the equator (|−y⟩). The second is a Z(3π/2)

operation that rotates | − y⟩ around the z axis to | − x⟩. As another example, a NOT

gate would be a X(π) rotation, where |0⟩ would flip to |1⟩ and vice versa.

Once this control over the qubit has been established, the next milestone for quantum

computation is entangling two qubits together. We define an entangled state as one where

the state of a qubit cannot be described independently of its entangled partner’s state

[Per10]. One of the most straightforward ways to generate an entangled state is through

what are known as controlled two-qubit gates. These gates are act on a pair of qubits,

where the operation on one qubit is only performed if its partner is in a specific state.

As a concrete example, let us extend the NOT gate described above to the controlled-

NOT (CNOT) gate acting on two qubits, which performs a NOT operation on the second

qubit only when the first qubit is in the state |1⟩. Let us assume the first qubit is already

rotated to the state |Ψ1⟩ = 1√
2
(|0⟩+ |1⟩) and the second qubit is initialized to |Ψ2⟩ = |0⟩.

The complete state of the system can then be written as

|Ψ1⟩ ⊗ |Ψ2⟩ =
1√
2
(|0⟩+ |1⟩)⊗ |0⟩ (1.3)

=
1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |0⟩)

=
1√
2
(|00⟩+ |10⟩).

Now we apply the CNOT gate to this state:

CNOT |Ψ1⟩ ⊗ |Ψ2⟩ = CNOT
1√
2
(|00⟩+ |10⟩) (1.4)

=
1√
2
(|00⟩+ |11⟩),

where the state of the target qubit (right) is only flipped when the control qubit (left)

is 1. This final state happens to be one of the four Bell states, which form a basis of

maximally entangled states for two qubits. As this state is entangled, it is not possible
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to separate it back into a product state of two independent qubits. With the ability to

perform arbitrary single qubit rotations and two-qubit entangling operations, a universal

set of quantum gates are available. Universal refers to the requirement that any possible

quantum gate can be reduced to a finite set of operations, and is one of the important

requirements for a quantum computer [DiV00].

1.3 Dephasing and relaxation in qubits

As briefly mentioned in the opening paragraph of this thesis, state of the art quantum

computers are best described as noisy intermediate-scale quantum (NISQ) devices. The

term "noisy" refers to the issue that these large quantum computers cannot perform long

computations without succumbing to noise [Sho96]. This deficiency is due to either a

build-up of errors or the eventual decoherence of the superposition of states essential to

the operation. All quantum computers strive to reach a fidelity threshold where error

correction schemes can overcome this noise and generate useful computations. This goal

is known as the fault-tolerant threshold and its maximum allowed error is on the order

of 1% with current error mitigation techniques [FSG09].

In this section, I will introduce two important processes that contribute to the er-

ror of qubit operations, both of which result from a slight but significant coupling the

environment outside the qubit subspace: dephasing and relaxation. Inhomogeneous de-

phasing originates from the qubit being poorly synchronized with itself or another qubit,

resulting in a phase difference between successive operations [BLN21]. The longer an

operation lasts, the greater the effect of this phase difference becomes. When averaging

many final states that have accumulated variable amounts of phase over a long period

of time from the same operation, the end result is an incoherent mixture of the |0⟩ and

|1⟩ states (Fig. 1.2a). Fig. 1.2b illustrates the effect of dephasing on a qubit while it

oscillates between its |0⟩ and |1⟩ states. The inhomogenous dephasing time can be ex-

tracted from the decay these oscillations clearly experience, and is defined as T ∗
2 in the

literature. Fortunately, the effects of T ∗
2 can be mitigated at the cost of longer and more
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complicated manipulation sequences [ZDR18].

(a) (b) (c)

Figure 1.2: (a) Example of a qubit operation experiencing inhomogenous dephasing

beginning at |x⟩ and rotating around the Z axis. Eventually, an incoherent mixed state

is reached (green dots). (b) With no coupling to outside environment, this qubit would

oscillate between |0⟩ and |1⟩ indefinitely. With a dephasing time of T ∗
2 = 400 ns, these

oscillations (black) quickly decay, limiting the qubit’s operation time. The dephasing

time defines the envelope (red) of the sinusoidal oscillations. (c) Example of relaxation

affecting the Z rotations of a qubit beginning in the state |x⟩. As time goes on (blue to

green points), the excited state |1⟩ relaxes to |0⟩. If relaxation was absent, the state

would rotate around the equator indefinitely.

Similar to dephasing, relaxation is another process that leads to the loss of quantum

information. Whereas the dephasing time characterizes a phase error, relaxation entails

a loss in energy for the qubit, leading to the relaxation of the excited state to the ground

state [ZDM12]. Consequently, operation and readout times are also limited by the re-

laxation rate, defined as T−1
1 . Relation is typically described well in experiments by an

exponential decay of the excited state down to the ground state. Fig. 1.2c demonstrates

how the initial state |x⟩ rotating around the z axis is affected by |1⟩ relaxing to |0⟩.
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1.4 Leveraging semiconductor quantum dots for quantum com-

putation

The requirements for a quantum computer are broad enough that the list of viable tech-

nologies for quantum computing continues to grow. Because no candidate has yet to

advance far enough, companies, governments, and research groups also continue to pour

money and effort into many of these qubit implementations. This thesis focuses on one

such route towards realizing a large-scale, practical quantum computer, and that avenue

is leveraging semiconductor quantum dots. In this section, I will briefly touch upon the

basics of a quantum dot (QD) defined in a semiconductor heterostructure and outline

why QDs are a promising candidate for advanced quantum computing.

A semiconductor heterostructure (with possible aid from a metal electrode) can gener-

ate a two-dimensional (2d) gas of charge carriers (e.g., electrons or holes) confined along

the growth direction of the heterostructure (which I define as z). Voltages applied to

additional electrodes fabricated on top of the heterostructure can further confine this 2d

gas along the lateral direction into an island of charge with a radius of ∼ 50 nm, which

forms the quantum dot [ZDM12]. Fig. 1.3a shows a top-down view of a device where

a 2d electron gas (2DEG) is depleted by local metal electrodes to from two QDs. Fig.

1.3b shows a side view of a Si/SiGe heterostructure, where electrons are confined to a

Si quantum well sandwiched between two SiGe layers. The right of this figure illustrates

how the confinement potential along the z direction creates a well within the Si layer. A

voltage is applied to the global top gate to populate the welll, while local gates B1 and

B2 deplete the 2DEG, forming an quantum dot between them.

There are two important properties that define the QD. The first originates from the

Coulomb repulsion of charge already present on the QD, which prevents any additional

charge from tunneling onto the dot unless this energy barrier is overcome. When cooled

to millikelvin temperatures, this charging energy Ec is utilized to control the number of

carriers on the dot. The second property is the confinement of the charge in all three
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(a)

(b) (c)

Figure 1.3: (a) Example of a 2d electron gas (red) confined along the x-y directions

using metal electrodes fabricated above the heterostructure. Two islands of electrons

are isolated. (b) A SiGe heterostructure depicting electrons (red dots) confined along

the z direction in the quantum well. Gates B1 and B2 confine the electrons in the x-y

plane to form a quantum dot in the center. The potential along the z direction is

depicted to the right, where electron states are occupied up until the Fermi level EF .

(c) Diagram illustrating the chemical potential of a quantum dot. Charge can only

tunnel onto the dot when its chemical potential lies below µS.
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directions results in a discrete energy spectrum akin to atoms. With this energy spectrum

and the ability to deterministically add or remove charge from the dot, it is fair to describe

QDs as artificial atoms [WFE02]. The tunneling rate onto and off the dot and the number

of charge carriers present is also controlled through these confinement electrodes. Fig.

1.3c demonstrates electrons can only tunnel onto the dot when its chemical potential µN

lies below the that of the source and drain reservoirs. For an additional electron to be

added to the dot, gate electrodes must lower the energy of µN+1 by Ec + ∆E, where

∆E accounts for the additional energy from the quantized states [WFE02, ZDM12]. In a

similar manner, electrons can be removed from the dot by raising its chemical potential.

When operating at millikelvin temperatures, it becomes possible to deplete the dot down

to the final charge carrier.

With access to a regime where only a few electrons or holes are present on the dot,

it was eventually proposed by Loss and DiVincenzo in 1998 to exploit of the spin states

of these QDs for qubit manipulation [LD98]. The spin degree of freedom of an electron

or hole naturally forms the two state system required for qubits. However, the physics

of quantum dots, especially when multiple dots are coupled together, is rich enough

that single spin states are not the only method of creating viable two-state systems for

qubits. Various encodings will be introduced in the following section and a couple will

be expanded upon in later chapters of this thesis.

Compared to other material platforms, semiconductor quantum dots are accompanied

by the large space of tunable parameters in the solid-state environment. For example,

the tunneling rate onto a dot can be easily tuned by the adjustment of one voltage.

When multiple dots are fabricated alongside each other (Fig. 1.3a), the wave function

overlap of the particles confined inside the QDs is sensitive to the electrode separating

the QD pair. The size, shape, and proximity to other QDs can all be modified to suite

the needs of the desired qubit encoding. While this is advantageous in many respects, it

is followed by the downside that creating identical quantum dots is a difficult feat. For

small numbers of qubits, their unique personalities can be overcome by time and effort;

however, it is certainly not feasible to extend this procedure to the vast number of qubits
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needed for practical quantum computers.

A second advantage that partially alleviates these concerns is the existence of an

enormous semiconductor industry that has dedicated itself to the production of billions

of metal electrodes on top of heterostructures with exceptionally high fidelity and den-

sity. It was through this technology that the early room-sized classical computers were

scaled down to the size of our pockets. The fabrication of semiconductor quantum dots

follows these same procedures, meaning the field already has access to the industrial-scale

operations that would be used for large-scale computers. While these corporations have

already entered the race to building a quantum computer [ZKW22], their entry has not

solved every problem facing the community, and plenty of work remains to be done as

larger qubit arrays are engineered and different encodings and materials are tested.

One such area of research is understanding the noise sources that govern qubit coher-

ence. To varying degrees, the majority of qubit encodings are coupled to the electrical

fluctuations in the environment. This noise can originate from unstable gate voltages,

background charge fluctuators in the substrate, and phonons [HKP07, CNQ19]. In addi-

tion to this charge noise, all qubits encoded in the spins of electrons or holes suffer from

magnetic noise, where the spins experience a varying magnetic field due to their hyperfine

coupling to the surrounding nuclei in the substrate. One can think of the ensemble of

nuclear spins generating an effective magnetic field, known as the Overhauser field. As

the Overhauser field assumes a random orientation, the qubit spins will evolve accord-

ingly in an unknown manner. Fortunately, this noise source can be heavily mitigated by

using substrates whose nuclei have zero nuclear spin, such as isotropically purified 28Si,

or particles with weak hyperfine interactions (e.g., holes) [HKP07].

Both charge and magnetic noise directly lead to the dephasing and relaxation effects

introduced in section 1.3. When exploiting spin states for qubit control, the dephasing

time T ∗
2 is generally much shorter than the relaxation time T1. Due to a strong dependence

on the substrate and encoding technique, these T ∗
2 times range from several ns to tens

of µs [PSR19, HFS20, XRS22, NTN22]. To increase qubit fidelities, the community has

focused on either boosting qubit coherence times through improved substrates, device
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design, and pulse techniques, or raising operation speeds.

Beginning in 2014, single qubit gates with fidelities exceeding the 99% fault-tolerant

threshold were demonstrated in Si quantum dots [VHY14]. However, extending this ac-

complishment to two-qubit gates has only been recently achieved in the past two years

[NTN22, XRS22, MGG22, WRJ23]. While delayed, this exciting accomplishment estab-

lishes that semiconductor quantum dots have the potential to be scaled up to practical

quantum computers, as long as this success can continue as qubit arrays grow.

1.5 Different approaches for qubit encodings within semiconduc-

tor quantum dots

As I have alluded to several times already, there are numerous ways to encode a qubit

using semiconductor quantum dots. In this section, I will briefly introduce three of these

variants, two of which will be explored in later chapters.

1.5.1 Charge qubits

One of the simplest encodings one can make within quantum dots is utilizing the charge

state of a double quantum dot (DQD). In this scheme, two quantum dots are fabricated

next to each other and a single charge, such as an electron, is free to shuffle between the

two dots. The logical qubit states are encoded in the left |L⟩ → |0⟩ and right |R⟩ → |1⟩

charge states of the DQD. This system can be described by the relative energy difference

between the two dots, defined as the detuning ϵ, and the tunnel coupling tc between them

[GHW05]. The energy levels of each dot can be tuned by gate electrodes (typically called

plungers) fabricated directly above the dots. Similarly, the tunneling barrier between the

dots is adjusted through a third electrode (called a barrier) between the two plungers

(see Fig 1.4a).

11



The Hamiltonian for this system in the basis {|L⟩, |R⟩} is as follows:

H =
ϵ

2
σz +

tc
2
σx =

1

2

 ϵ tc

tc −ϵ

 , (1.5)

where σx and σz are the Pauli matrices. Fig. 1.4b plots the eigenenergies for this H

as a function of ϵ. Taking the difference between these two eigenenergies results in the

frequency of the qubit rotations as a function of ϵ and tc:

f =
√
ϵ2 + t2c/h. (1.6)

For large detunings, the Hamiltonian simplifies to H = ϵ
2
σz, where the eigenstates

are for the charge to be in either the left or right dot. When ϵ is large and negative

(positive), the DQD potential is skewed so that finding the charge in the left (right) dot

is the ground state. Fig. 1.4a illustrates the DQD for a negative detuning. Under this

condition, the frequency of the qubit is f = ϵ/h and the qubit rotates around the z axis

of the Bloch sphere (red arrow in Fig. 1.4c).

Directly at ϵ = 0, where the energy levels of the dot are aligned, H = tc
2
σx and the

eigenstates become admixtures of |L⟩ and |R⟩. Therefore, to perform X rotations around

the Bloch sphere, one only needs to set the detuning to zero (blue arrow in Fig. 1.4c).

Although this qubit has the benefit of being simple with rotations that are com-

pletely controlled by the voltages applied to electrodes, it is highly susceptible to charge

noise. Recall that charge noise leads to fluctuations in any parameters in the system that

critically depend on the local electric field. Because the dot energy levels are directly

tied to the field generated by the plunger gates, any charge noise present distorts the

detuning ϵ. The charge qubit is protected to first order from this noise only at ϵ = 0,

whereE = hf = tc and ∂E
∂ϵ

= 0. However, when performing Z rotations, E = ϵ, meaning

the qubit frequency is directly influenced by fluctuations in ϵ from charge noise. Conse-

quently, the coherence times for charge qubits are too short (∼ 1 ns) relative to the gate
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(a) (b) (c)

Figure 1.4: (a) Confinement potential along the x-y plane generated by voltages

applied to the two plungers (P) and barrier (B) gates. These gates control the energy

difference (ϵ) and tunnel coupling (tc) between the two dots (b) Energy diagram for the

charge qubit. Near ϵ = 0, the eigenstates become superpositions of |L⟩ and |R⟩. (c)

The evolution of the charge qubit around the Bloch sphere can be directly controlled by

adjusting the detuning between the dots. Rotations around the z-axis (red) are

performed with ϵ≫ tc, while X rotations (blue) occur at ϵ = 0 and tc dominates H.

operation speed (∼ 0.5 ns) to achieve high fidelities for single qubit gates [HFC03].

1.5.2 Singlet-triplet qubits

In order to mitigate the effects of electrical noise, one can opt for a system whose energy

levels are less sensitive to it. One such design is using the spin degree of freedom of

the charge trapped in the quantum dot. In this section, I will introduce the specific

case where two spin-1/2 particles are confined within the DQD, and each dot hosts one

particle (Fig. 1.5a). The four possible spin states of this system are the singlet and three
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triplet states [HKP07]:

|S⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩)

|T−⟩ = | ↓↓⟩

|T0⟩ =
1√
2
(| ↑↓⟩+ | ↓↑⟩)

|T+⟩ = | ↑↑⟩

Fig. 1.5b illustrates the energies of these spin states as a function of detuning. The

energy difference between the singlet state and |T0⟩ equals the exchange term J(ϵ) =

− ϵ
2
+

√
ϵ2

4
+ 2t2c for smaller detunings and plateaus to the difference in the two dot’s

Zeeman energies, ∆Ez, for large ϵ. The ϵ and tc terms are the same as those discussed

in previously in Section 1.5.1. In the presence of a magnetic field, the polarized triplet

states split from |T0⟩ by the average Zeeman energy of the two dots, ΣEz/2.

As Fig. 1.5b immediately shows, one must decide which pair of the four spins states

to use as the logical basis for the qubit. The most studied subspace has been {|S⟩, |T0⟩},

as these states are the most accessible for electrons in DQDs [BLP23]:

HST0 = J(ϵ)σz +
µB∆(g∗B)

2
σx (1.7)

Here, J(ϵ) is the exchange coupling between the spin states and can be controlled

with the DQD detuning ϵ. The X rotations are controlled by the difference in Zeeman

energy between the two dots, where g∗ is the effective g-factor and B is the magnetic

field of each dot. This ∆Ez is generated from the Overhauser field, a micromagnet, or

site-dependent g-factors. Typically, ∆Ez remains constant while ϵ controls the angle of

rotation in the x-z plane θ = arctan (∆Ez/J(ϵ)) (see Fig. 1.5c). It is worth mentioning

that recent studies of holes in Ge substrates have taken advantage of its strong spin-

orbit coupling and g-factor anisotropy to encode the qubit within the S − T− subspace

[JMH22, BLN21]. Operating in this subspace is similar to that of S − T0, and I will
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(a) (b) (c)

Figure 1.5: (a) Two spin-1/2 particles trapped in a double quantum well. The wave

function overlap (blue and red) is controlled by the center gate electrode of the DQD.

(b) Energy level diagram for the singlet and triplet states confined to a DQD. The | ↑↓⟩

and | ↓↑⟩ states denote mixtures of |S⟩ and |T0⟩. (c) Bloch sphere depicting the two

rotation axes for the S − T0 qubit. The strength of J(ϵ) is controlled through the DQD

detuning ϵ. For small ϵ, J(ϵ)≫ ∆Ez and the qubit rotates around the z-axis (red). For

large ϵ, J(ϵ)→ 0 and X rotations are performed.

expand on this topic in detail in later chapters of this thesis.

Compared to charge qubits, singlet-triplet qubits have much longer coherence times

(T ∗
2 ∼ 1 µs) at the cost of slower operation speeds (∼ 10 − 100 MHz) [FCH18, JJH18,

JHB21]. This enhancement in coherence originates from the environment needing to

interact with the system’s spin degree of freedom instead of only its charge. The case of

harnessing two holes in a DQD for singlet-triplet encoding will be discussed in Chapters

3 and 6.
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1.5.3 Hybrid qubits

A middle ground between charge and spin qubits exists where characteristics of both

systems are harnessed. These so-called hybrid qubits borrow the the fast operation times

of charge qubits and decoherence protection of spin qubits [KGF12, KSS14, CLY16,

PSR19]. For example, one instance of this encoding utilizes the charge states {|R⟩, |L⟩}

of a double quantum dot along with the valley splitting {|Lv1⟩, |Lv2⟩} of the ground state.

The origin of this valley splitting and the conditions under which it can be utilized will

be discussed in later chapters. A Hamiltonian governing the dynamics of this type of

qubit in the {|R⟩, |Lv1⟩, |Lv2⟩} basis is the following:

H =


ϵ
2

∆1 ∆2

∆1 − ϵ
2

0

∆2 0 − ϵ
2
+ EV S

 , (1.8)

where ∆1 is the coupling between the right dot charge state and the lower valley state of

the left dot, ∆2 is the right dot’s coupling to the excited valley state of the left dot, and

EV S is the valley splitting of left dot.

The energy levels of this system are depicted in Fig. 1.6a, where the weight of the

left dot’s lower and excited valley states are colored red and blue respectively. Rotations

around the x axis of the Bloch sphere are performed near the anticrossing of the |L⟩ and

|R⟩ charge states (ϵx in Fig 1.6a). Just like in the charge qubit case, this detuning is

favorable for qubit operations because it is insensitive to fluctuations in detuning (i.e.,

charge noise) to first order. On the other hand, Z rotations are executed in the large

detuning regime (ϵz in Fig 1.6a). At this point, the qubit rotates around the axis defined

by the valley states of the left dot. Due to the energy levels being parallel in this region,

the qubit is also insensitive to charge noise resulting in longer coherence times.

Hybrid qubits exhibit dephasing times on the order of 1-10 ns with operation times

∼ 200 ps [KWS15, SFJ17, PSR19], making them one of the fastest qubits available. The

details of encoding a qubit into the valley states of Si will be discussed in Chapters 2 and
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(a)

Figure 1.6: (a) Energy level diagram for the hybrid qubit using the valley states of Si.

X rotations are performed near the anticrossing between the |L⟩ and |R⟩ states at ϵx,

while Z rotations are performed in the large detuning regime at ϵz. The red (blue)

coloring signifies the weight of the state |Lv1⟩(|Lv2⟩).

5.
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CHAPTER 2

The valley states of silicon

As introduced in Chapter 1, there are many ways a qubit can be encoded into the energy

states of electrons in silicon. To understand the limits and conditions of using these qubit

basis states, it is pertinent to first comprehend their origin in this physical system. This

chapter will focus on the source of the valley states in silicon, which define the two logical

qubit states demonstrated in Chapter 5.

2.1 Silicon band structure

The silicon lattice shares the form of the diamond lattice that can be described as two

inter-penetrating face centered cubic (fcc) lattices. The fcc lattice hosts atoms at the

eight corners of a cube (black circles in Fig. 2.1a) and an additional six at the centers

of each cube face (gray circles in Fig. 2.1a). A second lattice is offset from the first by(
1
4
, 1
4
, 1
4

)
the length of the cubic cell a = 5.43 Å (blue circles in Fig. 2.1a) [AM76].

Due to the periodicity of this lattice, an electron travelling through it experiences a

periodic potential that is invariant under a translation R: U(r + R) = U(r), resulting

in the electron’s eigenstates to reflect this periodicity. Bloch’s theorem states that under

these conditions, the form of the electron’s eigenstates can be chosen as a plane wave

times a function u(r) periodic with the crystal lattice [AM76]:

ψnk(r) = eik·runk(r), (2.1)
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(a) (b) (c)

Figure 2.1: (a) Diamond lattice structure consisting of two fcc lattices offset from

each other. (b) Energy band diagram for silicon adapted from [Sch17]. (c) First

Brillouin zone for silicon adapted from [Sch17].

where unk(r) satisfies the periodic condition unk(r +R) = unk(r). The index n reflects

the fact that for a fixed k, a family of solutions to the Schrödinger equation with dis-

cretely spaced eigenvalues Enk exist for a given crystal potential, where each Enk varies

continuously with k and is known as an energy band. By mapping out the energy bands

versus k, one generates silicon’s energy band diagram (Fig. 2.1b).

Band diagrams are useful as they help illustrate several important electronic prop-

erties of the crystal. These characteristics for electrons in silicon are almost exclusively

determined by the relatively small number of electrons that are excited to the conduction

band minimum [AM76]. As illustrated in Figs. 2.1b and 2.1c, the minima of the conduc-

tion band are located along the [100], [010], and [001] directions at k0, which is ∼ 85% of

the distance to Brillouin zone boundary’s square face (k0 = 0.852π
a

) [ZDM12]. Fig. 2.1c

illustrates this six-fold degeneracy as ellipsoids plotted within the Brillouin zone. These

six degenerate minimums are known as the the six valleys of silicon’s conduction band.
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2.2 Valley states

2.2.1 Valley states in bulk silicon

To understand the behavior of the conduction electrons around these valley minima,

we can rely on an effective mass approximation (EMA) to estimate the form of the

conduction band energies Eck as quadratic and centered at k0 [AM76]. For the valley

located at k0 = k0x̂, E(k) has the form

E+x(k) ≈ Ec +
h̄2

2

(
(kx − k0)2

mx

+
k2y
my

+
k2z
mz

)
, (2.2)

where mi is the electron’s effective masses along the direction of ki [AM76]. For the

valley minima in Si, the effective mass along the k0 axis is ml = 0.92m, while the mass

perpendicular to the axis is mt = 0.19m, where m is the mass of the free electron [Gre90].

Arranging the like masses together in Eqn. 2.2 gives the local band shape around the

+x valley:

E+x(k) = Ec +
h̄2

2

(
(kx − k0)2

ml

+
k2y + k2z
mt

)
, (2.3)

which is the equation of an ellipse and the reason for the ellipsoids shown in Fig. 2.1c. As

will be explained in the following section, the electrons comprising the 2DEG in our device

are confined to move along the transverse direction with effective mass mt = 0.19m.

2.2.2 Lifting the degeneracy of valley states

Up until this point, I have only considered silicon’s band structure and electrons in bulk

silicon. This description is insufficient for the electrons trapped in quantum dots for

a number of reasons that cannot be ignored. The two most important modifications

to the valley states are the effects of the Si/SiGe heterostructure and gate confinement

potentials.

When the Si quantum well is grown between two layers of SiGe, the lattice mismatch
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between the Si well and SiGe buffer generates in-plane tensile strain. Silicon’s lattice

constant is a = 5.431 Å, while the average lattice constant for Si0.7Ge0.3 is 5.4928 Å

[DEP64], leading to a 1% mismatch and the source of this strain. The resulting in-plane

strain generated in the quantum well lifts the energies of the in-plane valleys by 200 meV

above their out-of-plane counterparts [Sch97]. Because the SiGe layers are grown along

the [001] direction, the in-plane valleys are those along kx and ky, leaving the ground

state of the conduction band to consist of the two-fold degenerate z-valleys (see red lines

Fig. 2.2a).

The remaining two-fold degeneracy of the z valleys is lifted by the quantum well

confinement and electrical field applied along the z direction (blue lines in Fig. 2.2a)

[BKE03, SCH09]. These two z valleys then become the basis states for the ground

and first excited states of the quantum dot. Focusing on these two valleys, one can

extend the effective mass approximation used in the preceding section to calculate the

ground and excited eigenstates. Beginning with the unperturbed Bloch wave functions

ψk = uk(r)e
ik·r and energies E(k) (Eqn. 2.3), one can look for solutions to the perturbed

Schrödinger equation

[H0 + U(r)]ψ(r) = Eψ(r), (2.4)

where H0 is the unperturbed Hamiltonian of bulk Si and U(r) is the perturbing potential

due to the electron’s confinement inside the heterostructure. In this approximation, if

one assumes the perturbing potential varies slowly on the scale of the lattice constant

a and is small compared to the separation of energy bands, solutions to Eqn. 2.4 can

take the form of a summation over the basis of the z valley Bloch states [FCT07, Ihn10,

ZDM12, YRR13]:

ψ(r) =
∑
i=±z

αiuki(r)e
ikizFi(r). (2.5)

The constants αi both satisfy |αi| = 1√
2

and describe the relative phase between the

two valleys, uki(r)eikiz are the Bloch functions that describe the wave forms for atomic

length scales, and Fi(r) are the slowly varying envelope functions that describe long
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wavelength modulations due to confinement in the quantum well. Because the effective

masses for both z valleys are equal, their envelope functions are equivalent: Fi(r) = F (r)

[FCT07].

The two valley states are coupled due to the abrupt change at the Si/SiGe interface;

however, this is difficult to capture within the effective mass approximation because the

sharp change in confining potential at the interface violates the assumption of a slowly

varying potential with respect to a. To alleviate this issue, one can express the valley

interaction through an effective coupling potential Vv(z), which can be treated as a delta

function over the long length scale where EMA is valid [FCT07]:

Vv(z) = vvδ(z − zi), (2.6)

where vv is the strength of the valley coupling and zi is the location of the smooth inter-

face. This valley coupling is incorporated into the EMA framework through perturbation

theory, resulting in a valley-orbit coupling that lifts the degeneracy of the z valleys:

∆V O = 2vve
2ik0ziF (0)2(zi) = |∆V O|eiϕ, (2.7)

where the zeroth order envelope function is defined as F (0)(z) and the valley splitting is

EV S = 2|∆V O|. This result is illuminating, because it shows the importance the interface

has on the valley splitting, in particular, the magnitude of the envelope function evaluated

at the interface (I will further discuss the significance of this relationship shortly). The

ground and excited eigenstates become symmetric and antisymmetric valley doublets:

ψ±(z) =
1√
2

[
u−k0(z)e

−ik0z+iϕ ± uk0(z)eik0z
]
F (z). (2.8)

The additional term ϕ describes the phase difference between the valleys due to the

valley orbit interaction. Fig. 2.2b illustrates the amplitudes of these two states within

the quantum well. Fast oscillations have a wavelength of ∼ 2πk−1
0 = 0.65 nm and
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(a) (b)

Figure 2.2: (a) Effects of strain, confinement, and disorder on the valley splitting in

Si. (b) Ground and excited eigenstates. The slowly varying envelope spans the

quantum well, while the fast oscillations are on the order of the atomic spacing. The

difference in phase between the eigenstates is adjusted by specifics of the interface.

Image is adapted from [ZDM12].

originate from the Bloch functions in Eqn. 2.8, while the slowly varying envelope F (z)

modulates these rapid oscillations within the quantum well.

2.2.3 Effects of interface disorder

One of the assumptions made in Eqn. 2.6 was a smooth Si/SiGe interface that does not

change with respect to x or y. In reality, interface disorder is present in every system,

ruining this assumption, and leads to an important modification of the valley splitting.

There are two important types of disorder that can occur at the interface: alloy disorder

in the Si1−xGex buffer and step disorder, both of which are discussed in [ZDM12] and I

will briefly summarize in the following.

Alloy disorder encompasses the various situations that the Si1−xGex buffer has in-

plane spatial dependence. Because SiGe is a random alloy, the order of the Si or Ge

atoms on the lattice is not regular but random. This randomness also contributes to a

variable lattice spacing, as Si atoms want to pull neighboring Si atoms closer and push
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Ge atoms away. Finally, the concentration of Si to Ge can vary due to fluctuations

in the growth conditions, increasing the alloy disorder. In addition to alloy disorder,

misalignment between the wafer growth and z direction results in steps so the interface

is no longer flat. In addition to the steps changing the interface coordinate zi by their

very nature, the steps are not perfect lines, causing additional disarray.

When the wave function spanning this disorder no longer experiences a uniform in-

teraction with the interface, the integrated valley-orbit coupling |∆V O|eiϕ becomes sup-

pressed due to interference among the differing phase contributions [ZDM12, FCT07,

TH19]. As |∆V O| decreases, so too does the valley splitting of the two lowest eigenstates

(see green lines in Fig. 2.2a). This reduced EV S is often small enough that it becomes

the energy spacing defining the two lowest states of a quantum dot, meaning the valley

physics cannot be ignored. Moreover, an additional consequence of disorder is the ad-

justment of ϕ. While ϕ is global phase that is not too important for single dot physics,

it will play a major role in the coupling of two dots, which I discuss in the next section.

The dependence of the valley splitting on interface disorder has been a challenging prob-

lem for the quantum dot qubit community. Because this disorder is difficult to control

when growing wafers, the valley splitting for a quantum dot not only varies from device

to device, but also dot to dot. This issue is compounded by the fact that one cannot

determine the valley splitting until the device is fabricated and tested, which greatly

harms yield when one desires identical qubits.

2.3 Description of valley states within a double quantum dot

For the experiments described in Chapter 5, we encoded a qubit using the valley states

within double quantum dot. Building on Section 2.2, a complete description of the

system will include not only the two valley states for the left and right dots, but also

the interactions between these four valley states. Specifically, the following subsections

will describe the role valley states play regarding an electron tunneling between quantum

dots.
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2.3.1 Interdot tunneling between valley states

Consider the two localized eigenstates on the left quantum dot to be symmetric and

antisymmetric valley doublets in Eqn. 2.8 and labeled as |L, v±⟩ and similarly for the

right dot with label R. In the absence of interface disorder, the symmetric eigenstates

in the left and right dots (|L(R), v+⟩) have the same phase, while they are 90◦ out of

phase with respect to the antisymmetric eigenstates (|L(R), v−⟩). Consequently, the wave

functions of |L, v+⟩ and |R, v+⟩ overlap, and an electron can tunnel between these two

states, while it cannot tunnel between |L, v+⟩ and |R, v−⟩ [SCJ07]. In other words, the

valley index is preserved when tunneling between dots.

Now consider the same case with disorder present. As was shown in the previous

section, disorder adjusts not only the magnitude of the valley splitting, but also the

phase ϕ between z valleys. When accounting for two different dots under a disordered

interface, it is generally the case that ϕL ̸= ϕR. In the presence of this phase difference,

|L, v+⟩ is no longer necessarily out of phase with |R, v−⟩, lifting the tunneling restriction

between states with different valley indices [GEC13, SCJ07, ZHC17].

2.3.2 Hamiltonian for valley states in a double quantum dot

Before compiling this information into a Hamiltonian that describes all four valley states

and their interactions, let me return to the simple charge qubit case introduced in Section

1.5.1. Consider an electron that can tunnel between two dots with tunnel coupling ∆,

where its position is controlled through the detuning of the dot energy levels ϵ. In the

basis {|R⟩, |L⟩}, the Hamiltonian describing this system is

H =

ϵ/2 ∆

∆ −ϵ/2

 . (2.9)

The eigenenergies of this Hamiltonian are shown in Fig. 2.3a. For negative detunings,

the charge is likely to be found in the right dot. For positive detunings, this probability
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switches to the left dot. At zero detuning, the eigenstates are mixtures of the two charge

states: |L⟩ ± |R⟩.

Now I will return to the case for an electron in Si where the valley states are included

for the left and right dots. Because there are two valley eigenstates for each dot, the

charge state splits into two: |L⟩ → |L, v−⟩, |L, v+⟩ and similarly for |R⟩, where the valley

splitting EV S separates the valleys of each dot. Note that the valley splitting for the left

and right dots are often not equal, as each dot sees a different interface due to disorder.

While tunneling between valley states on the same dot is assumed to be forbidden

(e.g., |L, v−⟩ and |L, v+⟩ do not overlap), the previous section outlined how intervalley

tunneling is allowed when an electron tunnels to a neighboring dot. If one assumes the

dot positions are constant over the relevant range of detuning, the coupling elements that

describe the tunneling between valley states of different dots can be estimated as fixed

terms. Accounting for the valley splitting in each dot and the tunneling between them, the

final Hamiltonian takes the following form in the basis {|R, v−⟩, |R, v+⟩, |L, v−⟩, |L, v+⟩}:

H =


ϵ/2 0 ∆1 −∆2

0 ϵ/2 + EV S,R −∆3 ∆4

∆1 −∆3 −ϵ/2 0

−∆2 ∆4 0 −ϵ/2 + EV S,L

 , (2.10)

where the ∆ terms represent the interdot valley coupling. The simple charge qubit energy

diagram transforms to that in Fig. 2.3b. Although the presence of small valley splittings

complicates spin-based qubits, one can utilize the valley states in a single dot as a two-

level system to encode quantum information. This manipulation of the valley states is

explored in Chapter 5.
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(a) (b)

Figure 2.3: (a) Energy diagram for an electron shared between two quantum dots.

Red signifies the weight of the |R⟩ charge state, while blue corresponds to |L⟩. (b)

Energy diagram for an electron in a double quantum dot with the two valley states per

dot included.
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CHAPTER 3

The spin states of holes in germanium

Arguably the most successful type of qubit encoding in semiconductor quantum dots

utilizes the spin degree of freedom. Not only does the spin of an electron or hole natu-

rally form a two-state system, but its weak coupling to the environment results in long

coherence times that can exceed seconds [BLN21, TTM12]. While the majority of the

spin qubit community’s focus has been on exploiting electrons in silicon, rapid progress

has been made with holes in germanium (Ge) in recent years. From the demonstration of

quantum dots in 2018 [HFS18] to a four-qubit quantum processor in 2021 [HLR21], the

hole spin states of Ge have shown to be a promising platform for quantum computation.

Chapter 6 showcases one such qubit encoded in the singlet-triplet states of two holes.

This chapter will delve into the origin of these spin states and the theoretical foundation

for their use as qubits.

3.1 Germanium band structure

Germanium shares the diamond lattice structure (Fig 2.1a) and same Brillouin zone as

silicon. In contrast to silicon, the conduction band minima are located at the edge of the

Brillouin zone along the [111] directions, creating four degenerate ellipsoidal pockets (see

Fig. 3.1). The highest valence bands are similarly located at the k = 0 Γ-point [AM76].

I will focus my attention on these valence bands, as they form the ground state for the

system I am interested in.
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Unlike electrons in the conduction band, the valance band states are p-like with

angular momentum l = 1, subjecting the charge carriers to a strong spin-orbit interaction

(∆so) proportional to l·s. Because l·s = 1
2
(J2−l2−s2), ∆so splits the six-fold degeneracy of

the valence band states, where the states with total angular momentum J = 1/2, known

as the split-off band, are shifted down by ∆so from the states with J = 3/2 (Fig. 3.1a)

[HDK08]. In a crystal, the spin-orbit interaction is a relativistic effect that originates

from the hole moving in the electric field of its confining potential. In the rest frame

of the charge, the Lorentz transformation of this electric field has both an electric and

magnetic field component. The magnetic field interacts with the spin of the charge,

resulting in the energy splitting of different spin states [GA20]. The two topmost valence

bands are distinguished by their projection of the total angular momentum: jz = ±3/2

and jz = ±1/2. Because the spin-orbit coupling is much larger than other energy scales

in the system, the SO band is usually neglected or incorporated via perturbation theory.

Borrowing from the effective mass theory discussed in Section 2.2.1, the effective mass

of the charge carriers in these energy bands is related to the band’s curvature:

(m∗)−1 =
1

h̄2
d2E(k)

dk2
. (3.1)

From Fig. 3.1a, it is evident that the jz = 3/2 band (red) does not bend as sharply as

the jz = 1/2 band (green), and therefore has lower curvature. From Eqn. 3.1, we can

see this translates to a larger effective mass m∗ for the jz = 3/2 band, which is the basis

for why it is named the heavy-hole (HH) band. Similarly, the jz = 1/2 band (green) is

labeled the light-hole (LH) band in comparison.

3.1.1 Holes

Before continuing, it is beneficial to introduce the concept of holes as charge carriers,

as the term hole has already appeared in this discussion of valence bands. Consider the
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current contributed by all electrons occupying states in a given band [AM76]:

j = (−e)
∫

occupied

dk

4π3
v(k). (3.2)

Using the fact that a completely filled band carries no current,

0 =

∫
zone

dk

4π3
v(k) =

∫
occupied

dk

4π3
v(k) +

∫
unoccupied

dk

4π3
v(k), (3.3)

Eqn. 3.2 can be rewritten as

j = (+e)

∫
unoccupied

dk

4π3
v(k). (3.4)

Therefore, the current generated by electrons occupying energy states in a band becomes

equivalent to the situation where those states are unoccupied and all other levels in

the band were occupied by particles with charge +e [AM76]. This flipped approach is

convenient and efficient when dealing with an energy band that is almost completely

filled with electrons. For example, consider a band that has 99/100 states occupied by

electrons. One can either track all 99 electrons and determine j using Eqn. 3.2 or solve

the problem of 1 fictitious particle with charge +e occupying the band and all other states

unoccupied. The latter method is of course much easier. Because this picture utilizes

the absence of electrons, these positively charged particles are called holes. Because the

valence bands in a semiconductor are almost always mostly full, it is convenient to use

the this hole picture for the valence band.

A second benefit of using this hole picture emerges from the motion of electrons at the

top of the valence band under applied fields. Similar to Eqn. 2.3, we can approximate

the energy E of an electron at k0 = 0 in the valance band by expanding E around k0:

E(k) ≈ E(k0)−
h̄2

2m∗ (k− k0)
2, (3.5)

where m∗ is a positive quantity because E is maximum at k0 [AM76]. Looking at the
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group velocity of an electron near this k0,

v =
1

h̄

∂E

∂k
= − h̄

m∗ (k− k0), (3.6)

leads to an acceleration in the opposite direction of k̇:

a =
dv

dt
= − h̄

m∗ k̇. (3.7)

Electrons near the top of the valence band therefore look like they have negative mass,

as they move in the opposite direction of an applied force from what one would expect

[AM76]. Consider the case of an electron at k0 in an applied electric field E, where we

make use of the relation in Eqn. 3.7:

h̄k̇ = (−e)E (3.8)

(−m∗)a = (−e)E←→ (+m∗)a = (+e)E. (3.9)

The motion of the electron with apparent negative mass behaves the same as a positively

charged particle (hole) with positive mass, which is much more intuitive.

3.2 Lifting the HH-LH degeneracy

Let us return to the two topmost valence bands in Fig. 3.1a. These bands are degenerate

in bulk Ge, but separated due to strain in the heterostructure and 2D confinement within

the quantum well. Just like in the case in Chapter 2 with silicon sandwiched between two

SiGe buffers, a germanium well placed between two SiGe buffers will experience strain

due to the lattice mismatch between the layers. The lattice constants of Ge and Si at

room temperature are 5.64 and 5.43 Å respectively [Dav98]; therefore, the Ge well will

compress to match the smaller lattice spacing of the Si1−xGex substrate. This compressive

strain gives rise to a splitting between the HH and LH bands ∆HL [TMW21, Dav98],

where the mechanism responsible for splitting will be discussed more in Section 3.5.
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(a) (b)

Figure 3.1: (a) Ge band structure adapted from [NSM] and [HDK08]. (b) Ge band

structure when quantum confinement and strain are included. Image adapted from

[HDK08].

The 2D confinement of the valence band states in the quantum well works with strain

to further increase ∆HL. As was mentioned in Section 3.1, wave functions in the HH and

LH bands have the symmetry of p orbitals, and it turns out these p orbitals are oriented

along different crystal axes that is dependent on the band. HH states are comprised of p

orbitals pointed in the x-y plane, making it difficult for holes to travel through the crystal

in the z direction (along the growth axis) and, therefore, HH states have a large effective

mass along z. In contrast, LH orbital states are made up mostly of p orbitals pointed in

the z direction, where travel is easier along z. The heavier effective mass along z for the

HH states translates to a bound state that is deeper in the quantum well compared to

LH states, lowering the LH band’s energy [Dav98].

The combined effects of strain and confinement result in HH-LH splittings on the

order of ∼ 100 meV [TMW21, CRZ23], and the final band structure for quantum dots

appears as that of Fig. 3.1b. The ground state of the quantum dot is then predominantly

HH character, where various factors lead to a small mixture of LH states. Although the

magnitude of this mixture is quite small, it will be shown that even minimal mixing

between the HH and LH bands results in immense changes for the hole system.
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3.3 Luttinger-Kohn model of the valence band

Recall the Bloch wave functions introduced in Section 2.1: ψnk(r) = eik·runk(r). If we

input this function into the Schrödinger equation, we can isolate the periodic portion of

the Bloch function letting H act on the exponential term:

[
p̂2

2m0

+ V (r)

]
eik·runk(r) = Enke

ik·runk(r), (3.10)

where p̂ = −ih̄∇ acting on eik·r gives h̄k, and the final equation reads

{[
p̂2

2m0

+ V (r)

]
+

[
h̄

m0

k · p̂+
h̄2k2

2m0

]}
unk(r) = Enkunk(r). (3.11)

The leftmost terms describe a free electron (or hole), while the second boxed terms include

an adjustment to the free particle’s energy and a k · p̂ term that gives this approach

its name: the k · p̂ model. Using a complete set of basis functions, such as the set of

eigenfunctions at k = 0, {un0(r)}, one can transform this equation into a matrix equation

and solve for the Bloch functions exactly. Approximations can be made by considering

a subset of this basis. For example, the Kane model without spin incorporates the s-like

wave function of the conduction band (|S⟩) and the three topmost valance bands, which

have px, py, and pz orbital symmetry (|X⟩, |Y ⟩, |Z⟩) [Kan56, Dav98].

For a hole system where only the topmost valance bands are occupied, a natural

choice of basis states are the four states defined by the projection of angular momentum:

|jz = ±3/2⟩ and |jz = ±1/2⟩. These four states are related to the above p orbital states
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in the following manner [Dav98]:

∣∣∣∣ 32 ,+3

2

〉
= |+ 1 ↑⟩, (3.12)∣∣∣∣ 32 ,+1

2

〉
= +

√
1

3
|+ 1 ↓⟩ −

√
2

3
|0 ↑⟩, (3.13)∣∣∣∣ 32 ,−1

2

〉
= −

√
1

3
| − 1 ↑⟩ −

√
2

3
|0 ↓⟩, (3.14)∣∣∣∣ 32 ,−3

2

〉
= | − 1 ↓⟩, (3.15)

where |0⟩ = |Z⟩ and | ± 1⟩ =
√

1
2
(|X⟩ + i|Y ⟩). From these basis states, we can deduce

the character of the HH and LH states touched upon in the previous section. The HH

states (composed of |X⟩ and |Y ⟩) have p orbital symmetries along the x and y directions,

while the LH states are predominately have pz symmetry. Focusing on these states is

the idea behind the 4x4 Luttinger-Kohn Hamiltonian [WCP08, SKZ21] (presented in the

spherical approximation):

HLK = − h̄2

2m0

[(
γ1 +

5

2
γs

)
k2 − 2γs(k · J)2

]
, (3.16)

where γ1 ≈ 13 and γs ≈ 5 for Ge [WCP08, SKZ21]. The first term in Eqn. 3.16 can

be thought of as the kinetic energy term, while the second term originates from the

spin-orbit coupling that cannot be ignored in this system. The matrix representation of

this Hamiltonian in the basis {| 3
2
, 3
2
⟩ , | 3

2
, 1
2
⟩ , | 3

2
,−1

2
⟩ , | 3

2
,−3

2
⟩} is as follows [WCP08,

WSV22a]:

HLK =


P +Q L M 0

L∗ P −Q 0 M

M∗ 0 P −Q −L

0 M∗ −L∗ P +Q

 , (3.17)
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where

P = − h̄2

2m0

γ1k
2, (3.18)

Q =
h̄2

2m0

γs(2k
2
z − k2x − k2y), (3.19)

L =
h̄2

2m0

2
√
3γsk−kz, (3.20)

M =
h̄2

2m0

√
3γsk

2
−, (3.21)

and k− = kx − iky. By examining the diagonal elements of Eqn. 3.17 and grouping kx

and ky terms, we can approximate the effective masses for the heavy and light holes for

the in-plane motion in the quantum dot:

m∗
HH,LH ≈

m0

γ1 ± γs
= (0.05, 0.13)m0. (3.22)

From Eqn. 3.22, it is apparent the heavy hole mass is actually less than light hole

mass for motion in the x-y plane. This is reversed from the case in bulk Ge, and it is

customary to continue using the same naming convention for the HH and LH bands (i.e.,

the HH band corresponds to lighter jz = ±3/2 states). Because the ground state has a

predominantly HH character, holes in Ge quantum dots are are quite light compared to

the bare electron, leading to large orbital-level spacings that are useful when encoding a

qubit in the two lowest energy levels of the dot [SKZ21].

3.4 Including the Zeeman interaction

Absent from Eqn. 3.16 are the effects of an external magnetic field B. The simplest way

to incorporate B into the Hamiltonian is through the Zeeman interaction, where there

are two terms linear in B that come into play for this hole system [Win03]:

Hz = −2κµBJ ·B− 2qµB(J
3
xBx + J3

yBy + J3
zBz), (3.23)
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where κ = 3.41 is the bulk (isotropic) g-factor, q = 0.07 is the anisotropic Zeeman term,

and µB is the Bohr magneton (cited values are for Ge) [WKV16]. Because κ ≫ q in

Ge, the second term can be neglected for most analyses and I will continue to do so here

unless noted otherwise. Once again, it is useful to show the explicit matrix form of Hz

[WCP08]:

Hz = −2κµB


3
2
Bz

√
3
2
B− 0 0

√
3
2
B+

1
2
Bz B− 0

0 B+ −1
2
Bz

√
3
2
B−

0 0
√
3
2
B− −3

2
Bz

 , (3.24)

where B± = Bx ± iBy. Consider the case when B = Bẑ is oriented along the growth

direction. From the diagonal elements of this matrix, we can read off the Zeeman energy

splitting for the HH states is ∆EHH = 6κµBBz, while the LH state are separated by

∆ELH = 2κµBBz. However, for the case of an in-plane magnetic field, the situation is

quite different: ∆EHH = 0 and ∆ELH = 4κµBB∥.

I would like to emphasize this dependence of the Zeeman splitting on the orientation

of the magnetic field is quite remarkable and be a useful tuning knob for qubits. The

anisotropy for the HH states originates from the rigid quantization axis induced by the

HH-LH splitting that points along the growth direction [Win03, WCP08]. For an out-of-

plane magnetic field, the Zeeman term does not compete with the B = 0 spin orientation

and a large Zeeman splitting can be observed. For in-plane fields, the Zeeman term

competes with the out-of-plane spin orientation and is thus suppressed [Win03, WCP08].

For typical magnetic fields used in experiment, the in-plane magnetic field is never large

enough (∼ ∆HL) to overcome the forced quantization axis. It is interesting to note this

competition between the Zeeman terms and quantization axis along ẑ is only present for

the HH (jz = ±3/2) states. The two LH states (jz = ±1/2) can always be combined

to form an eigenstate of angular momentum for any orientation of the quantization axis

[Win03].

The Zeeman effect is typically observed by analyzing the linear separation of energy

levels as a function of B. For convenience, the system’s linear response is usually written

36



with an effective g-tensor:

Hz =
µB

2
g · σ ·B, (3.25)

where g is a tensor and σ are the Pauli spin matrices. For equation 3.24, the g-tensors

for the HH and LH cases in the basis defined by the crystal axes read as follows (where

I include the anisotropic Zeeman term q):

gHH =


3q 0 0

0 3q 0

0 0 6κ+ 27
2
q

 =


0.21 0 0

0 0.21 0

0 0 21.4

 (3.26)

gLH =


4κ+ 10q 0 0

0 4κ+ 10q 0

0 0 2κ+ 1
2
q

 =


14.3 0 0

0 14.3 0

0 0 7.3

 (3.27)

As I have already established, the ground state for holes in quantum dots is primarily

composed of HH states. From the above matrices, we can expect a large Zeeman splitting

for magnetic fields in the out-of-plane direction compared to the in-plane one due to

g⊥ ≫ g∥. Moreover, by comparing the g-factors in these two directions, increasing the

weight of the LH states in the ground state of the quantum dot results in a decrease in

g⊥ and increase in g∥. I have not yet reviewed any mechanisms responsible for mixing

the HH and LH states, but this point will be crucial for interpreting the experimental

results of Chapter 6.

It should be noted other sources separate from Hz also contribute to the g-tensor.

These sources include the spin-orbit term in Eqn. 3.16, structure inversion asymmetry

of the confining potential (Rashba spin-orbit coupling), and bulk inversion asymmetry

(Dresselhaus spin-orbit coupling) [WCP08, WFE]. As stated above, any mixing between

HH and LH states will also alter the g-tensor. Because of these mechanisms, the out-

of-plane g-factor is often much smaller than 6κ+ 27
2
q [WKV16, AGK13, MS17, DMS14,

NDZ03].
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3.5 Strain

3.5.1 Including strain into the Luttinger-Kohn model

Section 3.2 touched on the importance of strain in the quantum well lifting the degen-

eracy of the HH and LH states. The consequences of strain can be discussed in more

quantitative detail by including strain directly into the Luttinger-Kohn Hamiltonian.

When a crystal is under the effects of a uniform deformation, it may retain its peri-

odicity such that the Bloch theorem can be applied, with a modified period equal to the

new lattice spacing [Chu95]. A simple example showing the effects of a deformation on

the crystal lattice is shown in Fig. 3.2. When no stress is applied (the unstrained case),

atom A is at position r = (x, y, z). When stress is applied to the crystal, such as when the

Ge lattice spacing is forced to match that of SiGe, the lattice becomes strained (3.2b).

The same atom A is now found at r = (x′, y′, z′), where the strained and unstrained

coordinate systems are related by [Chu95]

x′ = (1− εxx)x̂+ εxyŷ + εxzẑ, (3.28)

y′ = εyxx̂+ (1− εyy)ŷ + εyzẑ, (3.29)

x′ = εzxx̂+ εzyŷ + (1− εzz)ẑ. (3.30)

These εij are the strain components and are often expressed as a tensor:

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 . (3.31)

Typically, homogeneous strain is assumed, where εij = εji. The diagonal elements repre-

sent normal strain, where a force along an axis deforms the crystal along that same axis.

The off-diagonal elements represent shear strain, where a force along one axis deforms

the crystal along a different axis.
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(a) (b)

Figure 3.2: (a) Unstrained crystal lattice (b) Strained crystal lattice. Both images

adapted from [Chu95].

Pikus and Bir incorporated the effect of strain on the valence bands using deformation

potential theory in their work [BP74]. By including strain, each nonzero matrix element

in Eqn. 3.17 is modified by an additional term:

P → P + Pε, Q→ Q+Qε, (3.32)

L→ L+ Lε, M →M +Mε, (3.33)

where the strain elements are given as

Pε = −av(εxx + εyy + εzz) (3.34)

Qε = −
b

2
(εxx + εyy − 2εzz)

Lε = −d(εxz − iεyz)

Mε =

√
3

2
b(εxx − εyy)− idεxy,

where av = 2, b = −2.16, and d = −6.06 eV are deformation potentials for the case of

Ge [FL96, TMW21]. Not only does the introduction of strain alter the HH-LH splitting,

but also contributes to the mixing of the two bands. For example, consider the case of

biaxial strain where εxx = εyy ̸= εzz, εzz = −Cεxx, and all shear strain elements are zero.

The constant C is related to the elastic stiffness constants of the material. At k = 0,
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the modified Luttinger-Kohn Hamiltonian only contains the Pikus-Bir terms, and the

splitting between the HH and LH bands is given by

∆HL(k = 0) = |2Qε| = 2b(εxx − εzz) = 2bCεxx. (3.35)

As mentioned in Section 3.2, this simple example demonstrates the important role strain

plays in lifting the degeneracy of the HH and LH bands.

3.5.2 Strain generated from gate electrodes

Up until this point, I have only considered the strain induced by the lattice mismatch

between the Ge quantum well and SiGe substrate. However, strain also originates from

the difference in thermal contraction between the metal gate electrodes and SiGe sub-

strate (see Fig. 3.3). This contribution creates a variable strain profile that varies on the

length scale of the gate width [CRZ23, LMM21]. Consequently, one should also expect

the strain’s influence on the HH/LH states to vary across this length scale. As Fig. 3.3b

illustrates, the further away the quantum well is from the metal-substrate interface, the

less of an impact this additional strain will have on the hole wave functions. Moreover,

one can reduce this strain by electing to use a material with a thermal expansion coeffi-

cient closer to that of the substrate (e.g., palladium’s coefficient is closer to that of SiGe

when compared to gold).

However, it is often the case that as the crystal is deformed, both normal and shear

strain have an effect on the bands. Generally, when the lattice is compressed along the

in-plane directions, it also stretches in the out-of-plane direction [CRZ23]. When the

shear effects can no longer be ignored, we can see from Eqns. 3.17 and 3.34 that the

shear components (Lε and Mε) directly induce mixing between the HH and LH bands.

While the shear components have been measured to be one to two orders of magnitude

smaller than the diagonal strain terms, both can undergo similar changes around the

electrodes [CRZ23]. Accordingly, a hole trapped in the quantum well of a heterostruc-

ture can experience different magnitudes of strain as its position shifts underneath the
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(a) (b)

Figure 3.3: Metal gate (grey) on top of a SiGe substrate (blue) at (a) room

temperature and (b) mK temperatures. Image adapted from [TZ15].

gate electrodes. The hole will generally experience greater biaxial strain when directly

underneath the metal gates and increased shear strain when underneath the edges of the

gates [LMM21, CRZ23].

Through Eqns. 3.34, a variable strain profile due to the gate electrodes becomes an

avenue to influence the HH-LH mixing by adjusting the quantum dot’s position along

the in-plane direction inside the quantum well. When underneath a gate where the

biaxial compression increases the diagonal elements of the strain tensor (Eqn. 3.31), the

diagonal terms in the Luttinger-Kohn-Pikus-Bir Hamiltonian (P and Q) also increase.

This pushes the LH band further away from the HH band, reducing the the admixture

of the LH band in the ground state of the quantum dot. For a quantum dot that is near

the edge of a gate, the shear (off-diagonal) terms of ε are greatest and the normal strain

terms are relatively smaller. Both of these changes result in an increased admixture of

LH states in the ground state. Returning to the discussion of Section 3.4, the greater

influence of the LH bands will decrease g⊥ and increase g∥. I will rely on this argument

in Chapter 6 to explain the variation of measured g-factors.

41



3.6 Modeling holes in a double quantum dot

The Luttinger-Kohn-Pikus-Bir Hamiltonian provides a great deal of insight into the

ground state of a quantum dot for holes in germanium. With it, we can understand

many physical characteristics of the hole states in a quantum dot from the properties

of the uppermost valence bands. However, using this model becomes significantly more

complicated when we begin to add multiple quantum dots, additional holes, and the

requirement of the detailed knowledge of the potential landscape of each dot. A more

practical approach approximates the problem by parameterizing the interactions between

the various dot and hole states, generating a much simpler Hamiltonian. This is the mo-

tivation for using the Hubbard model to describe the system in Chapter 6 where two

holes are trapped in two quantum dots.

3.6.1 The two-site Hubbard model

Consider the case of two quantum dots electrostatically defined in a Ge quantum well

sandwiched between two SiGe layers. The hole occupations of both quantum dots are

depleted down to the point where only two holes remain. Each hole can occupy the left

(L) or right (R) dot, and the wave function overlap between these two states allows each

hole to tunnel between dots. Furthermore, placing two holes on the same dot is associated

with an energy cost due to the Coulomb interaction between these holes. Taking these

factors into account, we can write down the Hubbard Hamiltonian as follows [WEC15]:

Hhub = tc(c
†
LcR + c†RcL)−

∑
i=L,R

µi(ni↑ + ni↓) + Uni↑ni↓. (3.36)

Here, ci is the two component spinor annihilation operator for holes on dot i, tc is the

tunnel coupling between each dot, µi is the chemical potential of dot i, niσ is the number

operator for spin σ on dot i, and U is repulsive intradot Coulomb interaction. The

detuning ϵ is defined as the energy difference between the two dots, ϵ = µR − µL −U , so

that ϵ = 0 corresponds to the charge transition (0, 2)→ (1, 1), where (n,m) denotes the
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number of holes in the left and right dots.

For the experiments I am interested in, the energy levels of the dots are adjusted

from a small, negative detuning, where both hole are in the right dot (0,2), to small

positive detunings, where each dot hosts one hole (1,1). At these detunings, there are

five accessible spin states the system can be in. One is the singlet (0,2) state |S02⟩ and

the other four are a part of the (1,1) charge configuration introduced in Section 1.5.2:

|S⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩)

|T−⟩ = | ↓↓⟩

|T0⟩ =
1√
2
(| ↑↓⟩+ | ↓↑⟩)

|T+⟩ = | ↑↑⟩

The triplet states in the (0,2) charge configuration are neglected because they lie much

higher in energy due to the strong exchange interaction between two holes occupying

the same dot [JN06]. In this regime, the spin-conserving tunnel coupling tc between

the dots is typically the largest energy scale in the model [WEC15, MB21a], resulting

in the hybridization between the two singlet states. This subspace of Eqn. 3.36 is

[WEC15, MB21a, JMH22]

HS =
√
2tc(|S11⟩⟨S02|+ |S02⟩⟨S11|) + ϵ|S02⟩⟨S02|, (3.37)

which has the following hybridized eigenstates:

|Sg⟩ = cos

(
Ω

2

)
|S11⟩ − sin

(
Ω

2

)
|S02⟩ (3.38)

|Se⟩ = sin

(
Ω

2

)
|S11⟩+ cos

(
Ω

2

)
|S02⟩ (3.39)

with ground and excited energies Eg,e = ϵ/2 ∓
√
ϵ2/4 + 2t2c . The mixing angle between

the charge states is equal to Ω = arctan (2
√
2tc/ϵ). Transforming Eqn. 3.37 to the
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hybridized {|Se⟩, |Sg⟩} basis gives

HS = Ee|Se⟩⟨Se|+ Eg|Sg⟩⟨Sg|. (3.40)

3.6.2 Including Zeeman and spin-orbit interactions

To properly characterize the two hole system, we must supplement Hhub with two addi-

tional terms: one that includes the Zeeman interaction with an external magnetic field

(Hz) and another to describe the spin-orbit interaction between spin states (Hso). The

Zeeman Hamiltonian is given by the sum of the Zeeman contributions for the two dots

[MB21a, JMH22]:

Hz =
µB

2

(
gL · σL ·BL + gR · σR ·BR

)
=
µB

2
{B cos θ

(
gL∥ σ

L
x + gR∥ σ

R
x

)
+B sin θ

(
gL⊥σ

L
z + gR⊥σ

R
z

)
}

=
µB

2

{
B cos θ

2

(
g+∥ σ

+
x + g−∥ σ

−
x

)
+
B sin θ

2

(
g+⊥σ

+
z + g−⊥σ

−
z

)}
, (3.41)

where I have assumed a global magnetic field in the x-z plane and a g-tensor where the

in-plane components are equal, g = diag{g∥, g∥, g⊥}. Here, θ represents the angle of B

from the x-y plane (i.e., θ = 90◦ is perpendicular to the substrate). For convenience, the

final step shows the Zeeman Hamiltonian expressed in terms of the sum and difference

between the left and right dot spins (σ±
i = σL

i ± σR
i ) and g-factors (g±i = gLi ± gRi ):

As remarked on in Section 3.1, the spin-orbit interaction is a relativistic effect orig-

inating from the effective magnetic field a hole experiences when moving through the

electric field of its confining potential. Consider the simple case of an electric field ori-

ented along the z axis that presses the hole wave function against the upper surface of the

Ge quantum well, E = E0ẑ. The hole moving with velocity v will experience an effective

magnetic field equal to Beff = −(v × E)/c2. Including this into the Zeeman interaction
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leads to a spin-orbit contribution to the Hamiltonian:

Hso =
µB

2
gσ ·Beff = −gµB

2c2
σ · (v × E). (3.42)

This interaction of the charge carrier with E0ẑ at the interface of the quantum well is

known as Rashba spin-orbit coupling. For the HH bands in Ge, this term is proportional

to the cube of the in-plane wave vectors [WCP08, NKK12, MSH14, MB21b, Win03]:

Hso = iλR(k
3
−σ+ − k3+σ−), (3.43)

where k± = kx±iky, σ± = 1/2(σx±iσy), and λR is the strength of this Rashba interaction.

As the name spin-orbit suggests, this interaction couples orbital states with different

spins. For the purposes of this Hubbard-like model, it can be parameterized by a spin-

orbit vector tso = (tx, ty, 0) that couples |S02⟩ to the polarized (1,1) triplet states |T±⟩

[DN09, MB21b, JMH22]:

Hso = −
∑
±

(tx ± ity)|T±⟩⟨S02|+ H.c. (3.44)

Combining Eqns. 3.40, 3.41, and 3.44, we arrive at the full Hamiltonian in matrix

form in the basis {|Sg⟩, |T+⟩, |T0⟩, |T−⟩} [MB21b, JMH22]:

H =


ϵ
2
−
√

ϵ2

4
+2t2c tso sin (Ω

2 )−
g−∥ µBB cos θ

2
√
2

cos (Ω
2 )

g−⊥µBB sin θ

2
cos (Ω

2 ) t∗so sin (Ω
2 )+

g−∥ µBB cos θ

2
√
2

cos (Ω
2 )

t∗so sin (Ω
2 )−

g−∥ µBB cos θ

2
√
2

cos (Ω
2 )

g+⊥µBB sin θ

2

g+∥ µBB cos θ

2
√
2

0

g−⊥µBB sin θ

2
cos (Ω

2 )
g+∥ µBB cos θ

2
√
2

0
g+∥ µBB cos θ

2
√
2

tso sin (Ω
2 )+

g−∥ µBB cos θ

2
√
2

cos (Ω
2 ) 0

g+∥ µBB cos θ

2
√
2

−
g+⊥µBB sin θ

2

 ,

(3.45)

where tso = ty + itx For simplicity, I neglect the excited singlet orbital state |Se⟩, as it

lies high enough in energy to be safely ignored for typical experiments. For brevity, I

will also begin removing the subscript for the ground singlet state: |Sg⟩ → |S⟩. The

eigenenergies of these states (including the excited singlet) are plotted as a function of
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(a)

Figure 3.4: (a) Eigenenergies for the singlet and triplet states in Eqn. 3.45.

detuning ϵ in Fig. 3.4a.

From this Hamiltonian and dispersion plot, it is clear there are several spin states

one must consider when attempting to encode a qubit into two states of this system. To

benefit from properties of spin encoding discussed in Section 1.5.2, one needs to utilize

the subspace of the singlet state and one of the triplet states. Since |T+⟩ lies the highest

in energy, it is generally difficult to populate this state without significant leakage into

the lower states, reducing the choice of triplet state to |T0⟩ or |T−⟩. The correct choice

depends on which state one can access and perform coherent operations the longest. To

complicate the matter further, the answer to this question relies on all of the parameters

we have discussed in this section. Changing the orientation of the magnetic field, spin-

orbit coupling, or HH-LH splitting through the dot position all have an effect on which

states can be used for the most optimal qubit.

For example, looking at the off-diagonal elements in the Hamiltonian connecting |S⟩

and |T−⟩, one can see the coupling between these states depends on the orientation of

the magnetic field. Because of this coupling, these two states form an anticrossing, where

the size of this gap is labeled ∆ST− in Fig. 3.4a. Consequently, it is possible to adjust the

size of the S−T− anticrossing gap by rotating the direction of B. A smaller anticrossing

makes it difficult to access the T− state, but is ideal for S − T0 encodings.
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Once again, I would like to stress that although this model does not explicitly justify

the origins of the various interactions included, one can still rely on energy band models

to explain the behavior of the Hubbard model’s parameters. The advantage of using this

model is the speed at which one can solve for the eigenenergies and eigenstates, allowing

one to easily fit the Hamiltonian parameters using measured probabilities in experiment.

3.6.3 S − T− subspace

In Chapter 6, I discuss experimental evidence for encoding the qubit using |S⟩ and |T−⟩.

Therefore, I would like to introduce the subspace spanned by these two states (colored

blue and magenta in Fig. 3.4a). Projecting Eqn. 3.45 onto this logical basis {|S⟩, |T−⟩}

results in the effective Hamiltonian [MB21b]:

HST− =

−J(ϵ) ∆

∆ −Ez

 . (3.46)

I define the exchange energy J(ϵ) = − ϵ
2
+
√

ϵ2

4
+ 2t2c as the energy difference between |S⟩

and |T0⟩. The coupling of the S − T− states (∆) emerges from two sources: (1) a spin-

orbit splitting (∆so) and (2) an effective Zeeman splitting due to the anisotropy of the

g-tensors (ga) that is only present when B has non-zero in- and out-of-plane components

[JMH22, MB21b]:

∆ =

∣∣∣∣∆so sin

(
Ω

2

)
+ gaµBB cos

(
Ω

2

)∣∣∣∣ , (3.47)

∆so = ty − itx
g+⊥ sin θ√

(g+∥ cos θ)2 + (g+⊥ sin θ)2
, (3.48)

ga =
1

4
√
2

(g−∥ g
+
⊥ − g

+
∥ g

−
⊥) sin (2θ)√

(g+∥ cos θ)2 + (g+⊥ sin θ)2
. (3.49)

Additionally, Ez is the average Zeeman splitting that separates |T−⟩ from |T0⟩, Ez =

gµBB, where g is the average g-factor of the two dots projected onto the axis of B.
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Chapter 6 explores a system where I use this Hamiltonian to describe coherent oscillations

between spin states in a Ge quantum dot. Consequently, I will leave explaining the details

of using this S − T− subspace for qubit manipulation until then.
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CHAPTER 4

Device Fabrication and Experimental Setup

As introduced in Fig. 1.3, the goals of our devices are to generate a two-dimensional

electron or hole gas, deplete this 2d layer in specific patterns to isolate two quantum

dots, and manipulate the energy levels of these dots to trap and control two particles for

qubit operation. This chapter focuses on the fabrication procedure used to create these

devices and the equipment needed to achieve this precise control.

4.1 Fabrication

Fabricating devices for quantum dots is a strenuous yet rewarding journey. Because the

resolution and spacing requirements of gate electrodes reaches 50 nm at the device’s

center, it is paramount that the majority of fabrication steps are executed in a careful

and consistent manner. Failure to adhere to guidelines will result in faulty or erratic

devices that oftentimes cannot be diagnosed until tested below 4 K.

In the following, I will detail these methods that were built upon previous students

in the lab [Sch17, Fre17, Pen20]. The early half of my research focused on trapping

electrons in a Si/SiGe heterostructure, while the latter half utilized a Ge-rich Ge/SiGe

heterostructure to isolate holes in DQDs. Because the fabrication steps for these two

processes are almost identical, I will not separate them; however, I will note where they

differ. I would also like to note that Joshua Schoenfield fabricated the device used on

the Si wafer, while I made the device for the experiments on the Ge wafer. While the
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following does not detail every fabrication parameter, I included a step-by-step guide in

Appendix A that goes more in depth.

4.1.1 Germanium wafer structure and characterization

For all experiments regarding holes, measurements were performed on a Ge-rich het-

erostructure shown in Fig. 4.1b supplied by Giordano Scappucci and Menno Veldhorst

from the QuTech and Kavli Institute of Nanoscience at Delft University of Technology.

Beginning with a Si(001) base, the heterostructure consists of a 1.6 µm relaxed Ge layer; a

1 µm step graded Si1−xGex layer with a final ratio of x = 0.8; a 500 nm relaxed Si0.2Ge0.8

buffer; the 16 nm wide compressively strained Ge quantum well; a 55 nm Si0.2Ge0.8

spacer layer; and finally a sacrificial Si cap (< 2 nm). The heterostructure is grown in

an industrial reactor by reduced-pressure chemical vapor deposition [HLR21, LHL21].

To characterize the wafer, I designed (with helpful guidance from Hong-Wen Jiang)

and fabricated a Hall bar on top of the heterostructure (see 4.1c). Ohmic contacts (blue)

for the Hall bar were patterned with photolithography and metalized with 60 nm of Pt.

A 100 nm Al2O3 insulating layer was grown with atomic layer deposition (ALD) before

a 100 nm Al top gate (pink) was deposited. The device was then annealed for 1 hour at

420 C to repair oxide defects and draw the Pt into the quantum well. The Hall bar was

tested at 4 K, and the transverse (RXY ) and longitudinal (RXX) Hall resistances were

measured in a magnetic field to calculate the wafer’s mobility µ (Fig. 4.1c). RXX was

calculated from the resistance between contacts 4 and 5, while RXY was the resistance

between contacts 3 and 5. Although Fig. 4.1c demonstrates the onset of the quantum

Hall effect through the visibility of Landau levels and Shubnikov-de Haas oscillations,

the mobility is calculated within the region of vanishing magnetic field B, where the

quantized behavior is not prominent.

The mobility characterizes how quickly charge travels through a semiconductor when

pulled by an electric field [Kit05]. Generally, the larger µ is, the less defects and impurities

are present in the semiconductor, making it a good measurement to compare the quality
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of various substrates. Regarding Hall bar measurements, the mobility can be found from

the electrical resistivity at zero magnetic flux ρ and carrier concentration n2D:

µ =
1

n2D|e|ρ
, (4.1)

where e is the charge of the electron. The charge density n2D can be found from RXY

and resistivity ρ from RXX for small magnetic fields [MHP15, Lak]:

RXY =
B

n2D|e|
(4.2)

ρ = RXX
w

d
. (4.3)

Using the data in Fig. 4.1c and Eqns. 4.2 and 4.3, I found µ = 1.3 × 105 cm2/V·s.

I would like to note this is not the wafer’s maximum mobility, as I did not measure µ

for various top gate voltages. However, a similar wafer’s mobility was measured in Ref.

[SSH19] to be 5× 105 cm2/V·s.

4.1.2 Silicon wafer structure and characterization

All experiments characterizing and operating a qubit using the valley states of Silicon were

performed on a wafer grown by Lisa Edge at HRL Laboratories and generously supplied

to us by Jason Petta’s lab at Princeton. While the details of this wafer’s structure are

confidential, the relevant characteristics are known and illustrated in Fig. 4.1a. Once

again beginning with a Si substrate, a Si1−xGex alloy graded buffer is grown, where the

concentration x is varied from 0 up to typically 0.3 [HLL12, LHR13, PLK22]. This SiGe

layer is followed by a 10 nm wide, strained Si quantum well, which is sandwiched by an

additional Si1−xGex layer. Finally, a thin, sacrificial Si cap completes the heterostructure.

This wafer’s mobility was characterized by Hong-Wen Jiang and Nick Penthorn through

Hall bar measurements and found to be 7× 105 cm2/V·s [Pen20].
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(a) (b) (c)

Figure 4.1: (a) Si quantum well wafer heterostructure. (b) Ge quantum well wafer

heterostructure. Image adapted from [SSH19]. (c) Hall bar design used to character

the heterostructure of (b). The ratio of w/d was 3/1. Longitudinal and transverse Hall

resistances (lower panels) were measured to calculate µ = 1.3× 105 cm2/V·s.

4.1.3 Global alignment markers

Once the bare wafer is attained, one can begin fabricating the Ohmic contacts and gate

electrodes that define the quantum dot device. Because the entire device cannot be

fabricated in one step, it is important to first define a set of global markers that each

fabrication step will be aligned to.

The pattern of the global alignment markers was first designed in KLayout and de-

veloped by Joe Zendejas into a photolithography mask by the UCLA Nanofabrication

Laboratory (NanoLab). For all subsequent steps, the photolithography masks were pro-

duced in this same manner. A single layer of HMDS and photoresist (AZ 5214-E) was

spun onto the wafer and exposed to UV light using this mask. After exposure, the wafer

was developed in in a mixture of water and AZ 400K to removed the exposed resist.

Finally, a 50 nm thermal evaporation of chrome using our lab’s evaporator metalized

these alignment markers. The remaining resist is then dissolved by letting the wafer sit
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in acetone, leaving the Cr global markers only (Fig. 4.2a).

4.1.4 Ohmic regions

The device’s source and drain reservoirs originate from doped regions that are conductive

regardless of the top gate voltage. For the Si wafer, these regions are created with the

implantation of phosphorous ions. Before being sent out for implanting, the Ohmic

regions were first patterned with a double layer of photoresist and photolithography

similar to the previous step. The unexposed photoresist serves as a protective shield when

the entire wafer is bombarded by ions. The wafer was then sent out for ion implantation,

which was performed by Leonard Kroko, Inc. with a beam energy of 25-30 KeV and

dosage of 2×1015 cm−2. The resist is then stripped off in acetone, and the wafer is placed

in a rapid thermal annealer at NanoLab for 15 s at 700 ◦C. This annealing step repairs

the crystal structure that was damaged by the ion beam, ensuring good conductivity.

For the Ge wafer, the Ohmic regions are created in a different manner. Instead of ion

implantation after photolithography, I used the CHA e-beam evaporator at NanoLab to

deposit 60 nm of Pt. Immediately before evaporation, the wafer was dipped in Buffered

Oxide Etch (diluted HF acid) to etch the Si capping layer. This step ensures the deposited

Pt will make good contact with the underlying SiGe layer. Once the resist is removed,

the wafer was annealed for 1 hour at 420 ◦C. Similar to before, this annealing step creates

the Pt-SiGe alloy that serves as the source of holes. The final result after this step is

shown in Fig. 4.2b.

4.1.5 Outer gates

Similar to the global alignment marker step, the outer gate electrodes were patterned

with photolithography. After this step, 5/45 nm of Ti/Au was deposited onto the wafer

using the CHA e-beam evaporator at NanoLab (see Fig. 4.2c). The first 5 nm of titanium

serves as a buffer layer that will bond well to the Si substrate and subsequent gold. Gold

is preferred over Ti due to its increased conductivity. Using the e-beam evaporator is
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(a) (b) (c)

Figure 4.2: Beginning fabrication steps. (a) Cr global alignment markers. (b) Ohmic

regions defined by ion implantation or Pt. (c) Outer gate Ti/Au electrodes. Top panels

represent wafer cross-sections. Bottom panels illustrate photolithography masks used

for patterning.

especially important in this and the following step because of its ability to create a

high quality metallic film. This pattern does not extend all the way to the device’s

center because the resolution requirement of 50 nm is not possible with usual means of

photolithography. Consequently, the outer gate pattern terminates when the width of

the electrodes reaches ∼ 3 µm.

4.1.6 Inner gates

To fabricate the inner leads of the device’s depletion gates, electron-beam lithography

(EBL) must be used to reach the nm resolution required for quantum dot confinement.

Whereas photolithography uses UV light to expose specific patterns of resist, EBL traces

out the pattern using a beam of electrons. For the Si wafer, EBL was carried out

on our lab’s Hitachi scanning electron microscope (SEM) with the Nanometer Pattern

Generation System (NPGS) software. This software requires the user to fine-tune the

beam parameters and manually find the alignment markers for each device, which leads

to a large amount of variation from device to device.

For the Ge wafer, we decided to utilize NanoLab’s Vistec EBPG 5000+ES tool, which
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automatically calibrates the e-beam and locates alignment markers. With this machine,

there is almost no device variation. A second advantage of Vistec is the speed that it can

perform the exposure. Because it costs little operating time, I opted to skip the previous

step and write both the inner and outer gates simultaneously with Vistec.

After developing the e-beam exposed resist, the pattern is metalized using NanoLab’s

CHA e-beam evaporator. Again, 5/45 nm of Ti/Au was deposited to form the electrodes.

Fig. 4.3a illustrates the result. Combined with the outer gates, these electrodes function

to deplete the 2d electron or hole gas into two islands that form the quantum dots.

4.1.7 Atomic layer deposition

Before patterning the top accumulation gate, a 100 nm layer of Al2O3 is first grown

using our lab’s Savannah through a process known as atomic layer deposition (ALD).

ALD offers the user a high degree of control over the thickness of the oxide, as 1 Å is

grown every cycle of the process. This oxide electrically isolates the gold depletion gates

fabricated in the previous two steps with the top gate in the following step.

4.1.8 Top gate

To generate the 2d electron or hole gas, a voltage is applied to a global accumulation

gate that overlaps with the device center and Ohmic contacts (pictured in gray in Fig.

4.3b). Because the top gate spans several microns at its point of highest resolution,

photolithography is used to define the pattern. Metallization can either be done in a

thermal or e-beam evaporator to deposit 100 nm of aluminium, as the top gate’s features

are large enough that either method works. The aluminium oxide layer with the top gate

metallized is depicted in Fig. 4.3b.

4.1.9 Etched contact windows

After the top gate is fabricated, windows are etched into the Al2O3 layer to allow electrical

contact to the depletion gates and Ohmic regions via wire bonds. Wire bond contact
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windows are first defined in photoresist using photolithography. The wafer is then briefly

submerged in a phosphoric acid agent (Transetch-N) that selectively attacks aluminium

oxide. Once the oxide in the exposed regions is completely etched away (blue squares in

Fig. 4.3c), wire bonds can make electrical contact with each gate.

4.1.10 Mounting and electrical contacts

The final fabrication step involves mounting individual devices onto a printed circuit

board (PCB) and wire bonding between the PCB and device contacts. Devices are

cleaved from the wafer using either a diamond scribe or an LPKF ProtoLaser. For thin

wafers, a diamond scribe is sufficient to break off devices. However, for thicker wafers,

it is beneficial to instead use a dicing tool. Each device is then either super-glued or

attached via silver epoxy to the PCB. Super glue was used for short tests, while silver

epoxy ensured the device remained on the PCB for longer experiments and multiple

cooldowns. Once the device is mounted onto a PCB, a dab of indium was placed with a

low-powered soldering iron onto the Ohmic contacts for the the ion-implanted Si wafer.

This indium was needed in order to make good electrical contact between the implanted

ions and wire bond. Wire bonds from the PCB to the device are made with a West Bond

Model 7400C Wire Bonder, after which the device is ready for low temperature testing.

4.2 Cryogenic setup

All quantum dot qubits of today must be operated at cryogenic temperatures. When

thermal fluctuations in the device are comparable to the spacing between the qubit’s

energy levels, the environment will have a high probability to populate excited states,

destroying any qubit coherence. The energy required to place additional charge onto a

quantum dot is on the order of 1 meV. This translates to needing an operating tem-

perature well below T = E/kB ≈ 10 K to detect charge transitions on and off a dot,

where kB is Boltzmann’s constant. This operating point is further limited by the energy

spacing between qubit states. For example, for the qubit described in Chapter 5, the
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(a) (b) (c)

Figure 4.3: Final fabrication steps. (a) Inner gate Ti/Au electrodes. (b) ALD grown

AL2O3 and Al top gate. (c) Etched contact windows through the oxide. Top panels

represent wafer cross-sections. Bottom panels illustrate the EBL pattern (a) or

photolithography masks (b and c) used for patterning.

energy difference between |0⟩ and |1⟩ is ∼ 20 µeV, which requires a device temperature

well below 230 mK. To this end, basic device screening was performed at 4 K, and all

qubit experiments were made in a dilution refrigerator with a base temperature of 40

mK.

4.2.1 Device screening at 4 K

Due to the limited capacity and time required to cool down a dilution refrigerator, we

often screened devices at liquid helium (LHe) temperature (4.2 K) prior to loading it

inside a dilution refrigerator. At 4 K, we can ensure a device is working properly and

avoid the time and effort required to cool it down to mK temperatures if it misbehaves.

The device is first placed in a probe that can be lowered into a LHe dewar. Once

the probe is submerged in LHe, a voltage is applied to the top gate to generate the 2d

electron or hole gas underneath it and a current will develop across two Ohmic contacts.

If no current is measured for high top gate voltages, there is a problem with the device’s

Ohmic regions: either the wire bonds do not have good electrical contact with the Ohmic
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regions or the annealing step did not repair the crystal structure or even altered the

heterostructure.

Assuming current can be measured between Ohmic contacts at appropriate top gate

voltages, the depletion gates can then be tested. This test is done by attempting to

deplete the current by applying a voltage to the gate electrodes. In the case of electrons

flowing between contacts, this voltage is negative, while pinching off a current of holes

requires a positive gate biases. When a single gate has no effect on the 2DEG (or 2DHG),

there is likely a break in the electrode resulting in no voltage being applied to the inner-

most end.

If all depletion gates have some ability to decrease the current induced by the top

gate, the device is considered sufficient for mK experiments. The greatest benefit of this

screening is that it only takes 1-2 hours compared to the 3-4 days needed for our dilution

refrigerator. This screening can also be performed while experiments are ongoing in our

dilution refrigerator.

4.2.2 Oxford Triton-200 dry dilution refrigerator

The Triton dilution refrigerator was used for the low temperature experiments discussed

in Chapters 5 and 6, where its inner workings are pictured in Fig. 4.4a. Because it is a dry

fridge, it does not require a dewar of LHe to cool, as the 3He/4He mixture it relies on is

circulated in a closed-loop system. Like all dilution fridges, it exploits a phase transition

between 3He and 4He that exists down to 0 K [BT]. At mK temperatures, a 3He/4He

mixture will separate into two phases: an almost pure 3He phase (the concentrated phase)

and a 4He-rich phase consisting of 6.4% 3He (the dilute phase). Due to its lighter mass,

the concentrated phase rests on top of the dilute phase. As 3He is pumped out of the

bottom, dilute phase, it is replenished by the 3He atoms in the pure phase resting above.

This transition from the concentrated to dilute phase costs energy, which is taken from

the environment, and subsequently lowers the temperature of the fridge.

Currently, 104 DC lines and 14 semi-rigid cables for HF signals run from the top
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(a) (b)

(c)

Figure 4.4: (a) The inner skeleton that composes the Triton-200 dilution refrigerator.

The mixing chamber is located on the lowest plate, which has a base temperature of 40

mK. (b) A view from underneath the mixing chamber plate. Several PCBs can be seen

mounted. Both images adapted from [Sch17]. (c) Dilution process removing atoms of
3He from the diluted phase. As the 3He is replenished from the concentrated phase,

energy is taken from the environment. Image adapted from [BT]

of the fridge down to the mixing chamber plate seen in Fig 4.4b, permitting six double

quantum dot devices to be tested simultaneously. It typically takes a day to unload and

load a new batch into the fridge, and another day to cool the mixing chamber plate down

to the fridge’s base temperature.

4.2.3 Sample holder

For quick screenings in LHe, we often mounted devices onto a simple 16-pin ceramic

chip carrier (see Fig. 4.5b). Although this board does not support high-frequency (HF)

signals due to cross-talk and attenuation issues, it allows us to quickly screen devices with
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(c)

Figure 4.5: Two device carriers used for screening and testing. (a) PCB designed by

Blake Freeman with a device mounted at the top. There are 24 DC pins and 4 HF

lines. Inset: wire bonds connecting the device and PCB pins are visible. (b) A 16-pin

ceramic device carrier. (c) For spin measurements, a block magnet was mounted at the

edge of the PCB.

DC voltages. The standard socket makes plugging the carrier into a probe exceptionally

easy.

The second type of carrier used was a custom-made PCB developed by Blake Freeman

shown in Fig. 4.5a. This PCB consists of four layers: two for 24 DC wires, one for 4

HF lines, and a grounding layer separating the two. The 24 DC pins can be accessed

with standard 8-pin sips, while the four HF pins socket into SMA adaptors. The device

is mounted onto a rectangular copper pad plated with gold. All wires are routed to the

edges of this rectangle to allow for short wire bonding lengths.

Before this PCB is mounted into our dilution refrigerator, a 3d-printed plastic cap is

attached to protect the wire bonds underneath (see 4.5c). A copper mount is attached

to the bottom of the board to ensure good thermal contact between the mixing chamber

plate in the dilution fridge and PCB. For the spin experiments discussed in Chapter

6, two block magnets were mounted onto the copper mount at the edge of the PCB,

generating a global field of ∼ 4 mT at the device’s center.
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4.2.4 Electron temperature

While the mixing chamber in our dilution refrigerator may reach 40 mK, this is not the

temperature of the charge carriers in the device. The electron (or hole) temperature Te is

both a function of the fridge temperature Tf and additional inelastic processes originating

from noise and interference of the measurement environment (which I will call parasitic

heat) [MSB13].

Unfortunately, as the temperature of the charge carriers falls, so does their thermal

coupling to the phonons in the substrate’s lattice, generating a mismatch between the

temperature of the charge carriers and the substrate. Consequently, Te becomes indepen-

dent of Tf once the fridge is cold enough, as the source of parasitic heat can no longer be

overcome by the cooling power delivered to the charge carriers. The main countermea-

sures against parasitic heat include proper thermal anchoring of wires, the elimination

of ground loops, mounting passive electrical components (e.g, bias tees and attenuators)

inside the fridge, and microwave filtering [JSP20]. After implementing many of these

remedies, our group has measured the electron temperature in our devices to be a few

hundred mK [SFJ17, Fre17, PSR19].

4.3 Electrical control

4.3.1 Current measurements

The primary means our lab has of detecting charge flowing into, out of, and between

quantum dots is by monitoring the shifts of a nearby source-drain current as the electron

or hole occupation on a dot changes. This nearby current channel is operated as a

quantum point contact (QPC) or single electron transistor (SET), and its shifts are

on the order of several picoamps. For DC measurements, a Stanford Research Systems

(SRS) 570 current preamplifier or LCA-20K-200M low-noise current amplifier was used to

amplify the current before measurement with a Keithley 2000 series digital multimeter.

At the cost of a factor of 5 in gain, the LCA-20K-200M has a greater bandwidth at
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20 KHz compared to the SRS 570’s 200 Hz, making it the better option for real-time

measurements.

Using only the DC current to detect charge transitions in a neighboring quantum dot

is often insufficient due to the electrical noise present in our system. Current fluctuations

from this noise are often the same order of magnitude as the current response to a single

electron or hole moving through the quantum dot. To counteract this noise, we utilize

the homodyne measurement performed by an SRS SR830 Lock-in amplifier. The Lock-in

generates an output voltage ∆V sin (ωt) at at a reference frequency ω, where we set ∆V

to be 1 mV. This signal is superimposed onto the plungers’ DC biases using an SRS

SIM980 summing amplifier.

We then feed in the QPC/SET current into the Lock-in, where it isolates the portion

of the signal oscillating at the same frequency of the Lock-in reference frequency ω. All

extraneous contributions to the current, including noise, that do not oscillate at ω are

thrown out by the Lock-in. Because the reference signal applied to the device’s plungers

(which control the charge occupation of the dots) oscillates at ω, charge transitions occur

at this frequency, leading these events to be highlighted by Lock-in while the effects of

noise are dampened.

4.3.2 DC biases

Every quantum dot gate electrode requires its own DC bias, meaning ∼ 11 DC biases are

required per double quantum dot device. We supplied these biases using two instruments.

The first was with the auxiliary (AUX) outputs of a SR830 Lock-in. Each SR830 comes

with four AUX outputs that can be set remotely through a GPIB connection. In addition

to the lock-in, DC biases were also controlled with a BS-16 precision voltage source from

Stahl Electronics. Each Stahl voltage source hosts 16 outputs with 16-bit resolution,

making it an ideal instrument to handle all of the DC biases for a quantum dot device.

A BNC cable connects the voltage output to a breakout box at the top of our dilution

refrigerator. From the breakout box’s center pins, stainless steel mini coaxial cables from
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Cooner Wire travel down the length of the fridge to sips that plug into the device PCB.

This wire is anchored to each temperature stage of the fridge to reduce heat exchange.

Stainless steel is ideal for this connection due to its poor thermal conductivity, which

mitigates the heat traveling from the room temperature lock-in to the mK cooled device.

4.3.3 Arbitrary voltage waveforms

For many qubit experiments, a complicated set of pulses need to be applied to multiple

gate electrodes to manipulate the charge on the quantum dots. An arbitrary waveform

generator (AWG) has the freedom to create these pulses at the cost of slower rise times

and smaller sampling rates. For the experiments in Chapter 6, a Tektronics AWG 520

generated all pulses applied to the device’s plunger gates. This AWG has two channels

that can be independently programmed with a sampling rate of 1 GHz. The temporal

resolution is therefore limited to 1 ns; however, this is not too limiting for singlet-triplet

qubits with operation times of 20-100 ns. Another important aspect of the AWG is the

ability to output a programmable trigger at any point in the pulse sequence. This trigger

was used to externally modulate the lock-in frequency, syncing the Lock-in’s current

measurement to specific sections of the pulse.

4.3.4 Fast gate pulses

For the qubit experiments in Chapter 5, where operation times between the valley states

occur at 4.5 GHz, the 1 GHz sampling rate of the AWG is not sufficient to precisely

control evolution. In these situations, we opted to use short square pulses originating

from an Agilent 81134A Pulse Pattern generator, which has ps resolution and a rise time

as short as 60 ps. This short rise time plays a critical role in Chapter 5, as it induces

the non-adiabatic transitions between valley states we rely on for the initialization of a

mixed valley state. Although the slowest repetition rate for these pulses was 15 MHz, we

often operated the Agilent in its "data mode," where the effective pulse rate is lowered

by modifying the binary data string defining pulse cycles. Data mode also permits us to
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modulate the repetition rate in a way where the pulse is on for a number of cycles and

then off the for the same number of cycles. If the Lock-in’s reference frequency is set to

this rate, the Lock-in will isolate the pulse generator’s effects on the quantum dots and

remove any background signals.
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CHAPTER 5

Two-axis quantum control of a fast valley qubit in

silicon

As discussed in Chapter 2, the low-lying valley states in silicon greatly affect electron

physics in silicon-based heterostructures. In the case of Si/SiGe quantum dots, the energy

splitting between out-of-plane valley states can be suppressed in the presence of disorder

at the Si/SiGe interface [Sch97, FEC06, FCT07, CHD10]. For electron charge- and spin-

based qubit implementations, an excited valley state that is nearly degenerate with the

ground state presents an unwanted avenue for quantum information loss [GSF07, YRR13,

ZLS13].

On the other hand, the valley states have properties that can be exploited to form

a qubit basis with several desirable traits. First, such a valley qubit can be electrically

manipulated and measured through valley-orbit coupling with no need for a magnetic

field gradient [FC10, GEC13, VRY15]. Second, since there exists a broad window of

quantum dot gate voltages that do not impact the valley splitting, a valley-encoded

qubit would have protection against charge noise, the leading source of decoherence in

charge and spin qubits [CSK12, MKP18]. Finally, gate operation times are determined

by the valley splitting, which can be on the order of 10 GHz [SFJ17, MPB17].

In 2017, our group demonstrated electrical manipulation and charge-based readout of

the valley states in a Si/SiGe heterostructure [SFJ17]. We further advanced this idea in

2019 when we established two-axis control over a qubit defined with these valley states,
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allowing us to explore the advantages outlined above [PSR19]. This chapter focuses

on this recent work, beginning with mapping out the surface of the Bloch sphere and

concluding with a discussion on the fidelities of this qubit.

5.1 Few electron regime

A scanning electron micrograph (SEM) of the device prior to the top gate fabrication is

pictured in Fig. 5.1a. The five depletion gates in the lower channel define the two quan-

tum dots (dotted circles). The barrier gates are labeled BL, M , and BR and control the

tunneling between the dot and reservoirs and between the dots themselves. The interdot

coupling is controlled by barrier gate M. The middle gates labeled VL and VR are the

plungers, which we used to control the left and right dot energy levels respectively. Before

operation, the device was cooled inside our dilution refrigerator with a base temperature

of 36 mK.

The charge occupation of both dots is measured through monitoring of the nearby

current flowing through the upper channel of the device. Defined by the three top elec-

trodes and pictured as a large dotted circle, a large quantum dot is formed that acts as

a single electron transistor (SET). Peaks in the transconductance of the current through

the SET correspond to electrons hopping in or out of either dot, and the sign of each

peak indicates whether or not the charge transition occurred in the left dot (positive) or

the right dot (negative).

By applying appropriate voltages to the five lower electrodes, we tune the device into

a regime where there are only two electrons present on the double dot. We focused on

the (1,1)-(2,1) charge transition as the qubit operation point; in other words, there is

one electron in the left dot and a second is allowed to tunnel between dots (Fig. 5.1b).

This transition yielded the best operation, although valley oscillations were also seen

at the (1,0)-(0,1) transition in earlier work from our lab [SFJ17]. Because we observed

oscillations between valley states for both dots (Fig. 5.1c and 5.1d), we determined this

stationary electron did not significantly impact the valley physics. With one electron
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free to tunnel between the dots, we can apply the theory discussed in Chapter 2. In the

following, I will label the ground and excited valley states for the left and right dots as

|Lv1⟩, |Lv2⟩, |Rv1⟩, |Rv2⟩.

Figure 5.1: Device structure and coherent valley oscillations. (a) SEM of the double

QD device used in this study, before deposition of the top gate. (b) Charge stability

diagram as a function of plunger voltages, measured by QPC transconductance, in the

operation region. Indices (i,j) indicate electron occupation in the left and right dots.

Arrows represent the general starting points and pulse directions used to drive valley

precession. (c) Oscillations of 5.5 GHz between left dot valley states when pulsing from

(1,1) to (2,0). (d) Oscillations of 7.8 GHz between right dot valley states when pulsing

from (2,0) to (1,1).

5.2 Operation mechanism

To observe coherent valley oscillations in the left dot, the system is initialized in the (1,1)

charge configuration corresponding to the right dot ground state |Rv1⟩. Then a trape-

zoidal voltage pulse with ∼200 ps rise time is applied simultaneously to VL and VR (with

opposite polarities) to modify the system detuning ϵ = VR − VL, or the relative energy
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of the two quantum dots. The ramp rate is slow enough that there are no transitions to

excited states for all detunings ϵ < 0. As the detuning is increased to positive values,

there is an anticrossing between the lowest two levels at ϵ ≈ 0 (see Fig. 2.3b or Fig.

5.2c). Here, the state experiences a Landau-Zener transition into a superposition of all

four states, with state coefficients determined by the pulse ramp rate [PLG10].

The transition from the |Rv1⟩ ground state to the excited states as the system passes

through the anticrossing is governed through the Landau-Zener equation:

PLZ = exp
(
−2π∆2

2h̄v

)
, (5.1)

where v is the effective speed at which the system passes through the anticrossing at

ϵ = ϵ∗:

v =

∣∣∣∣d(E2 − E1)

dt

∣∣∣∣
ϵ∗

=

∣∣∣∣d(E2 − E1)

dϵ

∣∣∣∣
ϵ∗

ϵp
tramp

.

Here, E1 and E2 are the diagonal elements of the Hamiltonian for these two states forming

the anticrossing, ∆ is the coupling between these two states, and ϵp is the ramp height.

As we adjust the ramp time or height, we therefore influence the probability PLZ that

the initialized |Rv1⟩ remains in |Rv1⟩ or transitions to one of the states involved at the

anticrossing (1-PLZ). If the pulse is sudden enough with respect to ∆, the system will

remain in the initialized state |Rv1⟩. In the opposite limit for gradual pulses, the |Rv1⟩

will adiabatically evolve to |Lv1⟩ as the system is pulsed to large positive detunings. In

this experiment, we relied on the pulse being between these two regimes to generate a

relatively even mixture of the two eigenstates at the anticrossing.

Due to valley-orbit coupling, the state evolves smoothly into a superposition of the

two left dot valleys |ψ⟩ = 1√
2

(
|Lv1⟩+ eiϕ|Lv2⟩

)
as the detuning is further increased. When

the pulse reaches its maximum detuning and remains idle, the state undergoes Larmor

precession between the left dot valley states with a frequency determined by the left

dot valley splitting EV S,L. Here is the reason for needing an even mixture of the valley

states from the Landau-Zener transition. If the initial state evolved completely into an
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eigenstate, there would be no Larmor precession. The more even the final mixed state

is, the closer |ψ⟩ is to the equator of the Bloch sphere and the greater the visibility of

the precession becomes.

5.3 Readout mechanism

After the state precesses around the Bloch sphere at positive detuning for an operation

time tϕ, the qubit accumulates a valley state phase difference ϕ = ϕ0+
EV S,L

h̄
t determined

by the left dot’s valley splitting. To read out this phase difference, a method is needed

that distinguishes the two valley states |Lv1⟩ and |Lv2⟩. We accomplished this task by

evolving |ψ⟩ once again through a Landau-Zener transition at the anticrossing near ϵ = 0.

This transition maps |Lv1⟩ → |R⟩ and |Lv2⟩ → |L⟩. After projecting to the charge states,

the nearby SET can now determine the valley composition that was present at the end

of the operation.

5.4 Coherent valley oscillations

The measured current oscillations as a result of the operation time tϕ, averaged over

roughly 5 × 106 pulse realizations for each pulse width, reflect a changing ϕ between

valley states (Fig. 5.1c). This pulse technique is also used to probe the right dot valley

states by initializing in the left dot and pulsing to negative detuning (Fig. 5.1d). The

amplitude of these oscillations can be modeled by a decaying sinusoid, as the phase

between the valley states is projected to the probability of finding the electron on L or

R dot:

P (t) =
1

2

[
1 + e−(t/T ∗

2 )
α

cos

(
EV S

h̄
t+ ϕ0

)]
, (5.2)

where oscillations decay on the timescale of the inhomogeneous dephasing time T ∗
2 with

exponent α, which is typically taken to be 2 when low-frequency charge noise is the

dominant source of noise. For large pulse heights, the maximum T ∗
2 is found to be over 7

ns for the left dot. We can use a simple model to understand the dephasing time as the
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direct effect of the energy fluctuations between the two lowest states [WWP14]:

√
2h̄T ∗−1

2 =
√
⟨δE2⟩. (5.3)

For a valley qubit operating at large detuning, charge noise disturbing the value of ϵ

should not have a significant impact on T ∗
2 , as dE/dϵ → 0 in this regime. Instead, we

attribute the dephasing to fluctuations in the interdot valley coupling parameters ∆ and

a slight shift in the valley splitting energy. To compare with the charge qubit case in

the absence of valley states, the the frequency of precession is f = ϵ/h̄, resulting in a

predicted T ∗
2 of

T ∗
2 =
√
2h̄

∣∣∣∣dEdϵ σϵ
∣∣∣∣−1

=

√
2h̄

σϵ
= 0.5 ns, (5.4)

where the fluctuations in ϵ are given by the magnitude of the charge noise. In similar

devices, our lab calculated the average charge noise to be 2 µeV [FSJ16]. From this

predicted value, it is evident that while the valley oscillations have much shorter T ∗
2 times

compared to spin qubits (∼ 1µs), the valley encoding offers a substantial improvement

to the coherence time over the pure charge qubit case due to its charge noise protection.

5.5 Ramsey spectroscopy

The full four-state Hamiltonian (consisting of two charge states, each with two valley

states) that was discussed in Chapter 2 is shown below again for convenience in the basis

{|Rv1, |Rv2, |Lv1, |Lv2}:

H =


ϵ/2 0 ∆1 −∆2

0 ϵ/2 + EV S,R −∆3 ∆4

∆1 −∆3 −ϵ/2 0

−∆2 ∆4 0 −ϵ/2 + EV S,L

 . (5.5)

The eigenenergies are depicted in 5.2c and can be reconstructed with Ramsey spec-
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troscopy using the voltage pulse shown in the inset of Fig. 5.2c [SSW14]. Ramsey

spectroscopy offers an advantage over the square pulses used for Figs. 5.1c-d because it

allows us to map out the energy splitting between the two lowest states for both posi-

tive and negative detunings simultaneously. This is difficult to accomplish with a square

pulse because of reliance on a Landau-Zener transition through the anticrossing to mix

the two valley states. Following the logic in Section 5.2, a square pulse with ϵp set at the

anticrossing (ϵp ≈ 0) is not fast enough to sufficiently populate the first excited state,

reducing visibility. When using the Ramsey pulse, the initial state is always ramped to

large positive detuning, ensuring an even mixture of the valley states before the system is

pulsed to the operation detuning ϵp for a variable amount of time tp. As long as the ramp

to ϵp is not too abrupt, the system will precess between the two lowest energy states.

For this experiment, the voltage on the right barrier gate BR was decreased to reduce

tunneling from (1,1) to (1,0). Changing the quantum dot tuning inevitably changes

the static dot locations in the device as well as the valley splitting, so we expect to

see modified valley oscillation frequencies. The voltage pulse begins as before with a

ramp to a sufficiently positive detuning point chosen to yield the highest visibility valley

oscillations when performing a trapezoidal pulse. As a result of the first pulse stage, the

qubit state transforms into | − y⟩ = (|Lv1⟩ − i|Lv2⟩) /
√
2.

In the middle stage of the operation, the detuning is brought to an arbitrary point

ϵp where the state is allowed to precess for time tp. Finally the state is brought back to

the positive detuning point and then to the initialization point ϵ0 for readout. This pulse

scheme allows for high-visibility precession between the two lowest lying energy levels

(Fig. 5.2a), and the frequency of precession can be directly converted into an energy

gap. All four energy levels can be determined by plotting the energy gap as a function of

ϵp (Fig. 5.2b). Left- and right-dot valley splittings EV S,L = 4.55 GHz and EV S,R = 15.7

GHz were extracted with this procedure as well as the four interdot tunnel couplings:

∆1 = 1.8,∆2 = 12.7,∆3 = 15.6, and ∆4 = 2.0 GHz. Important for high-coherence

quantum control, the two low-energy states have a “sweet spot” at the anticrossing ϵ=20

µeV where the system is first-order insensitive to charge noise, as well as two “extended
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sweet spots” at large positive and negative detunings where the valley splittings become

largely independent of gate voltage (Fig. 5.2c).

Figure 5.2: Ramsey spectroscopy of the (1,1)-(2,0) transition. (a) Precession between

the ground and first excited states of the system, induced by a 3-stage Ramsey pulse, as

a function of middle-stage pulse width tp and pulse height ϵp. (b) Fourier transform of

(a) and a fit to a four-state model (overlaid dots). Error bars are obtained from the

root mean squared error of the fit. (c) Reconstructed energy levels as a function of

detuning using the fit from (b). Colors correspond to the four valley states. The

calculated Hamiltonian matrix elements are ∆1 = 1.8 GHz, ∆2 = 12.7 GHz, ∆3 = 15.6

GHz, and ∆4 = 2.0 GHz, as well as valley splittings EV S,L = 4.55 GHz and

EV S,R=15.74 GHz (see Eqn. 5.5 for model Hamiltonian). Inset: the pulse form,

measured on an oscilloscope, of a typical Ramsey pulse. Image taken from [Pen20]

5.6 Two-axis control

5.6.1 Control pulse

Two-axis quantum control of the valley qubit was implemented on the left dot valley states

using a fast three-stage DC-gated pulse scheme (Fig. 5.3) [KSS14]. After initialization

into |Rv1⟩ at ϵ0, the first stage of the pulse brings the detuning to the anticrossing at

ϵx. The effective two-state Hamiltonian at ϵx is H(ϵx) ≈ 2∆1σx = 2∆1(|Rv1⟩⟨Lv1| +

|Lv1⟩⟨Rv1|, and the qubit state will precess between the left and right dot charge states

for the duration of the pulse stage, tθ. On the Bloch sphere in the charge basis, this
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corresponds to rotations of the qubit state about the x axis with polar angle given by

θ = 2∆1tθ/h̄ in the diabatic limit. Because these two lowest states are mapped to |Lv1⟩

and |Lv2⟩, this corresponds to a rotation about the x axis of the Bloch sphere in the

valley basis shown in blue in Fig. 5.3c.

During the second stage of the pulse, the system is brought to detuning ϵz and held

for a time tϕ, where the effective Hamiltonian becomes H(ϵz) ≈ EV S,L|Lv2⟩⟨Lv2|. This

Hamiltonian is orthogonal to H(ϵx) and therefore allows for the second, independent axis

of control over the qubit. At this detuning, the qubit rotates around the z axis of the

Bloch sphere defined by |Lv1⟩ and |Lv2⟩, accumulating a total phase ϕ =
EV S,L

h̄
tϕ. Fig.

5.3c illustrates this azimuthal angle on the Bloch sphere in red.

Not only are the operation detunings chosen so the proper X or Z rotation are com-

pleted, but both ϵx and ϵz are located at "sweetspots" in detuning. The term sweetspot

is used here because the system is insensitive to charge noise to first order. This means

that at both detunings, fluctuations in ϵ will not lead to drastic changes in operation

frequency. Aside from the ramp portion of the pulse, all qubit operations have some

protection from charge noise and should display an improved coherence time, which is

an important advantage for this qubit.

The last stage of the pulse brings the detuning back to ϵx for a time tθ, equal to that

of the first pulse stage. Similar to the first pulse stage, this operation performs x axis

rotations and maps the phase ϕ of the valley qubit state to charge states that can be read

out at ϵ0. Since the 200 ps pulse rise time is not fast compared to the state evolution in

this stage, the rotations actually occur about an axis that makes an angle α = π/4 with

the x axis in the x-z plane (cyan arrow in Fig. 5.3c).

5.6.2 Mapping the Bloch sphere

By fixing operation points ϵx and ϵz and varying the time spent at these points during

the pulse sequence, the qubit state is swept over the entire surface of the Bloch sphere.

Fig. 5.4a shows the measured probability of the final state being in the left dot’s excited
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(a) (b) (c)

Figure 5.3: Pulse used for two-axis control. (a) Four state energy diagram where the

detunings for the three pulse stages are labeled. (b) Pulse form used for two-axis state

rotations. Pulse heights are fixed at ϵx and ϵz and the pulse widths tθ and tϕ are varied.

(c) A view of the three pulse stages on the Bloch sphere. In stage 1 (blue), the state is

rotated about x by angle θ. In stage 2 (red), the state is rotated about z by angle ϕ,

and in stage 3 (cyan) the state is rotated about a tilted axis by angle θ′, where θ′ = θ

by design.

valley state |Lv2⟩, which we map to the logical |1⟩ of the qubit. The two axes of control

are both visible on this plot. Rotations about the z axis are are seen along the tϕ axis

at a frequency of 4.6 GHz, which equals the valley splitting at ϵz. X rotations occur

independently along the tθ axis at a frequency of 2.5 GHz, which equals the energy

splitting at ϵx.

When the qubit is rotating around the z axis, there will be maximum visibility when

this rotation is along the equator of the Bloch sphere. That is, the visibility will be

greatest when θ is an odd multiple of π/2. Whenever the state reaches |− y⟩ in Fig. 5.3c

during the middle stage of the pulse, the third stage’s X rotation will transform | − y⟩ to

|Lv2⟩ = |1⟩ (maximum measured probability). When the middle stage ends with |y⟩, the

final X rotation transforms this state into |Lv1⟩ = |0⟩ (minimum measured probability).

Because the qubit is rotating around the z axis at a frequency determined by the left dot’s

valley splitting EV S,L = 4.55 GHz, it is expected for these fringes to have a frequency of

4.6 GHz.
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For rotations about the x axis, there should be no oscillations between the two valley

states whenever the state vector is pointed along the north or south pole, that is, when θ

is a multiple of π. In contrast to the Z rotations, however, the three stage pulse includes

not one but two X operations (stage 1 and 3), each rotating the state by an angle θ.

This translates to an expected doubling of the frequency at the ϵx operation point. We

naively should then expect the fringes along tθ to oscillate at 5 GHz, not 2.5 GHz. This

inconsistency is resolved by including rotation errors in the analysis.

As pictured in Fig. 5.3c as the cyan arrow, a 45◦ tilt in stage 3 of the pulse has

already been pointed out. By allowing the first X rotation to have an error of 18◦ with

the x-z plane and the second stage’s Z rotation to be tilted by 8◦ with the x-y plane, we

can reliably simulate (Fig. 5.4b) and predict (Fig. 5.4c) the the experimental data. The

importance of the tilt α in explaining the 2.5 GHz periodicity is discussed more in the

next subsection.

It is important to emphasize that the mapping from the valley to charge configuration

in Fig. 5.4a is dependent on tθ due to the length of the third pulse stage varying. While

this complication has little impact on observing the two-axis control, it will become

pertinent in Section 5.7. To illustrate this idea, consider the case where tθ generates a

rotation of θ = π/2, bringing |0⟩ to | − y⟩ during the first stage of the pulse. Setting

ϕ = 0 (no z rotation) results in the third pulse stage rotating the qubit from | − y⟩ to

|1⟩, and a maximum probability will be measured.

Now consider a different tθ where the initial state is rotated about x by an angle

θ = 3π/2. Letting the state evolve to ϕ = 0 will once again leave us with |−y⟩ at the end

of the second pulse. However, the third stage will rotate the | − y⟩ by 3π/2 all the way

to |Lv1⟩ = |0⟩, where the minimum probability is measured. At the end of the second

pulse for both cases, |ψ⟩ = | − y⟩, but the measured probability is different. This simple

example showcases how the mapping changes with tθ and must be accounted for when

using Fig. 5.4a to map out the state probabilities.
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5.6.3 Simulation of the two-axis control

After fitting the Ramsey spectroscopy data in Fig. 5.2 to the energy difference between

the two lowest eigenstates of Eqn. 5.5, the extracted parameters were used to simulate the

two-axis control in Fig. 5.4a. To include inhomogeneous dephasing into the simulation,

the system was evolved using the Lindblad equation:

∂ρ

∂t
= − i

h̄
[H, ρ] + γ

(
CρC† − 1

2
{C†C, ρ}

)
, (5.6)

where ρ is the density matrix, γ = 1/T ∗
2 is the dephasing rate for the pulse stage, and

C is the dephasing operator for the pulse stage. An appropriate dephasing operator for

each stage of the pulse is one between ground and excited eigenstates: C = |g⟩⟨g|−|e⟩⟨e|.

The dephasing time the X and Z rotations were extracted from the Ramsey spectroscopy

data as well, where T ∗
2,x ≈ 10 ns and T ∗

2,z = 1.5 ns. The result of this simulation is shown

in Fig. 5.4b, which matches to the data well.

In addition to simulation, we can reproduce this qubit’s evolution around the Bloch

sphere using SU(2) unitary operators to represent the rotation at each stage of the pulse:

U1(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
σx, (5.7)

U2(ϕ) = cos

(
ϕ

2

)
I − i sin

(
ϕ

2

)
σz, (5.8)

U3(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
(σx cosα + σz sinα), (5.9)

where the angles θ and ϕ are the polar and azimuthal angles of the Bloch sphere (see Fig.

5.3c), I is the identity operator, and σi are the Pauli operators. Here, the α = 45◦ tilt of

the third stage of the pulse is already included in Eqn. 5.9. Using these expressions, the

measured projection after the pulse can be written as ⟨Lv2|U(θ, ϕ)|Lv1⟩, where U(θ, ϕ) =

U3(θ)U2(ϕ)U1(θ). The corresponding probability of finding the qubit to be in the excited
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valley state is sinusoidal in ϕ, and oscillations vanish when θ is an even multiple of π:

|⟨Lv2|U(θ, ϕ = 0)|Lv1⟩|2 = (1− cos θ)

(
1 +

1√
2
cos θ

)
. (5.10)

By including the rotation error α in U3(θ), the 2π periodicity (corresponding to a fre-

quency of 2.5 GHz) seen along the vertical axis in Fig. 5.4a is resolved. Without α, one

would observe the naively expected 5 GHz frequency. This model is further improved by

adding rotation axis deviations in pulse stages 1 and 2 of 10◦ and 6◦ respectively, which

is plotted in Fig. 5.4c.

(a) (b) (c)

Figure 5.4: Quantum control of the valley qubit. (a),(b) Measured and simulated

oscillations with a dynamical projection axis determined by tθ, demonstrating a

complete map of the Bloch sphere surface. Independent oscillations as functions of

pulse widths are visible with frequencies of 4.6 GHz and 2.5 GHz. A linear background

is subtracted from the data. (c) Theoretical prediction of the measured probability

|⟨Lv2|U(θ, ϕ)|Lv1⟩|2 with U(θ, ϕ) given by the product of Eqs. 5.7, 5.8, and 5.9.

5.7 Benchmarking qubit performance

Once two-axis control over a qubit has been established, the next logical step is to

characterize how well the operations are being performed. Ideally, this benchmarking

allows for the comparison of the qubit to not only similar devices but also to completely

different architectures that hosts qubits. The basic question to answer is how similar is
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the qubit’s operation to the ideal scenario, which can generally be termed as the qubit’s

fidelity. The greater this similarity, the higher the qubit’s fidelity.

As briefly touched upon in Chapter 1, a scalable qubit platform must exhibit op-

erations that meet a ∼ 1% error threshold for current error correction schemes. Put

another way, gate operations need to surpass 99% fidelity. To measure a qubit’s fidelity,

several benchmarking methods have been developed, but the most accepted approach

involves generating a sequence of randomly selected gates and comparing the outcome to

the expected result [HYC19]. Because this technique requires a stable device and exten-

sive flexibility in developing pulses, we opted to use an alternative fidelity measurement

known as quantum process tomography (QPT) [CGT09]. While QPT is too burdensome

for systems with more than four qubits and cannot distinguish between different types of

errors, it offers a simple pathway to characterize our single qubit device. As one might

expect, QPT requires the reconstruction of the qubit state after the application of a

gate. The reconstruction is completed through an initial analysis called quantum state

tomography and is the focus of the next section.

5.7.1 Quantum state tomography

True quantum process tomography for a single qubit would entail initializing into four

linearly independent basis states and separately measuring the x, y, and z projections of

the final state after a gate operation. Although the information given by our dynamical

projection approach does not constitute a complete set of state tomography, a less rigor-

ous calculation of QPT can be obtained by matching the data with the theoretical model

in Fig. 5.4c and then reconstructing the qubit state from the measured probabilities

accordingly (Fig. 5.5).

Because tθ spans several periods (see Fig. 5.4c), the states |0⟩, | ± y⟩, and |1⟩ were

explicitly prepared. Missing from this list are the | ± x⟩ states, but due to the tilted

X rotations, we have access to these two two states when θ = 3π/2 + 2πn, where the

additional Z rotation from the tilted X operation equals π/2. For instance, at θ = π/2
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the y projection is being measured while at θ = 3π/2 the x projection is probed. Missing

components, like the x and y projections of the qubit state when initialized in state

|+ z⟩ = |Lv1⟩, are approximated from traces where oscillations are minimized at θ = 2π

and 4π. Due to the heavily suppressed tunneling rate from (1,1) to (2,0), we further

assume that electrons do not tunnel out of the dots during qubit operations, which

allows us to map the upper and lower limits of the measured transconductance directly

to the probability of the qubit to be in state | − z⟩ = |Lv2⟩.

Quantum state tomography uses these x, y, and z projections to determined the state

of the qubit. Every density matrix ρ can be written as a linear combination of the Pauli

matrices and identity matrix [TNW02, Bha14]:

ρ =
1

2
(I + sxσx + syσy + szσz), (5.11)

where si are the normalized Stokes parameters and σi are the Pauli matrices. For an ideal

qubit, we can simply use three independent projections measured on Fig. 5.4a as the

expectation values for these Stokes parameters. However, experimental errors may lead

to nonphysical density matrices, so it is generally best to fit each density matrix in such

a way that satisfies the typical properties of a density matrix: (1) ρ is Hermitian, (2) the

eigenvalues of ρ are zero or greater, and (3) Tr(ρ) = 1. To enforce these requirements, ρ

can be fit to a T-matrix that has these properties using a least-squares technique [PAJ03]:

ρ =
T †T

Tr(T †T )
, T =

 t1 0

t3 + it4 t2

 . (5.12)

Due to read-out noise and the sensitivity of quantum process tomography to the

calculated density matrices, we elect to first fit the raw projection data to decaying

sinusoidal curves as a function of tϕ (solid lines in Fig. 5.5). This not only ensures the x,

y, and z projections fall within the bounds of [0,1], but also generates a stable data set

that will allow for sensible fidelity calculations in the following sections.
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After fitting these t parameters, the qubit’s state can be plotted on the Bloch sphere

(Fig. 5.5). Here, we show the qubit’s state as a Z rotation is applied for two different

initializations: red corresponds to the initial state | − y⟩ and blue for the initial state

|+ z⟩ = |Lv1⟩.

Figure 5.5: State tomography of Z rotations. (a),(b),(c) Red dots represent state

projections when the qubit is initialized in state | − y⟩ (θ = π/2), and blue dots indicate

an initial state of |+ z⟩ (θ = 2π). Data is extracted from Fig. 5.4a and solid traces are

fits to a decaying exponential with a 4.6 GHz frequency. (d) Normalized trajectories of

the qubit state on the Bloch sphere during Z rotations using the fits from state

tomography.

5.7.2 Quantum process tomography

Once the density matrix for the qubit before and after an operation is fitted, we can

continue with quantum process tomography to calculate how close to the output density

matrix was to the ideal outcome. QPT measures this difference by finding a transforma-
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tion that maps an input density matrix to an output [MRL08, OPG04]:

E(ρin) = ρout =
d2−1∑
m,n=0

χmnAmρinA
†
n. (5.13)

Here, the matrix χ is the process matrix that completely describes the map E , An are

a basis for the operators acting on ρ, and d = 2n is the dimension of the qubit space.

Since we are dealing with a single qubit gate, n = 1 and d = 2. For these single qubit

rotations, a basis that is natural choice are the Pauli matrices A = {I, σx, σy, σz} once

again. The goal of QPT is to compute χ and compare it to the ideal mapping χideal for

the operation one is interested in.

To solve for χ, Eqn. 5.13 must be inverted. First, E(ρk) is decomposed into a linear

combination of basis states ρl: E(ρk) =
∑

l λklρl. We define a similar relation for the

right hand side of Eqn. 5.13: AmρkA
†
n =

∑
lB

mn
kl ρl. Combining these two relations with

Eqn. 5.13 gives
∑

mnB
mn
kl χmn = λkl, which can be expressed as the following matrix

equation [MRL08]:

Bχ = λ, (5.14)

Calculating the pseudo-inverse of B allows us to solve for the d2 × d2 process matrix

χ = B−1λ. Just as when ρ was fit, we wish to enforce that χ is semi-definite, Hermitian,

and has a trace of 1. This is once again done through a suitable T-matrix:

χ =
T †T

Tr(T †T )
, T =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

 . (5.15)

Through another maximum likelihood estimation (MLE), the t parameters are fit to

real values and χ is found from the fit that best transforms ρin to ρout under the enforced
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physical conditions:

f(t) =
2∑

k,l=1

(ρout,kl − E(ρin,kl, t))2. (5.16)

Once the experimental process matrix is known, it is used with the ideal process

matrix to calculate the operation’s fidelity:

F = Tr[χidealχ]. (5.17)

5.7.3 Valley qubit fidelities

For the valley qubit, we are interested in the extra protection from charge noise offered

by the extended parallel region in detuning where the energy splitting is approximately

constant at EV S,L (see right hand side of Fig. 5.2c). At these detunings, the qubit

performs Z rotations, which will then be the family of operations we choose to focus

our attention on. In particular, we measure the fidelities for Z(π/2), Z(π), and Z(2π)

operations. We first choose a starting point at some time t0 as the initial state. Then

we select a future point in time that corresponds to the rotation angle. For instance,

the Z(π/2) rotation occurs at a time t0 + δt, where δt = 1/4f = h̄/4EV S,L. From these

two times, the fidelity Fπ/2 is calculated. We can repeat this calculation for a number of

starting points to generate the average and standard deviation of Fπ/2.

Because we chose to fit the projection measurements in Fig. 5.5 to curves before

the state tomography, we lose some uncertainty due to errors in state preparation and

measurement. However, the error in F is dominated by the uncertainty from the MLE

method, permitting a reasonable estimate of the variance. To further address the sensi-

tivity of χ to the initial guess, we use the process matrix corresponding to the median

fidelity in a data set as the initial guess for a second iteration of finding F .

The result of these χ measurements for the chosen Z operations are pictured in Fig.

5.6a,c,e, which show good qualitative agreement with the ideal maps in the lower panels

for comparison (Fig. 5.6b,d,f). Using these process matrices, we calculate the fidelities
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to be Fπ/2 = 0.85± 0.02,Fπ = 0.79± 0.02, and F2π = 0.93± 0.01.

Figure 5.6: Quantum process tomography for valley (Z) rotations. (a),(c),(e)

Measured process matrices based on a fit of state tomography data. The color of each

matrix element bar denotes complex phase: blue is real, red is imaginary. (b),(d),(f)

Ideal process matrices for comparison. Calculated fidelities F = Tr(χidealχ) are

Fπ/2 = 0.85± 0.02, Fπ = 0.79± 0.02, and F2π = 0.93± 0.01.

The decreases in fidelity of the smaller rotations when compared to the full 2π rotation

can be understood by the trajectory of the qubit state. From state tomography, it is clear

that the actual rotation axis is tilted away from the z axis by about 10 degrees. The

identity (2π) process matrix is insensitive to the choice of rotation axis, whereas the

NOT (π) process matrix is maximally sensitive. Since the fidelity of the 2π process

is greater than the fidelities of the smaller rotations, this suggests that the fidelity is

limited by rotation axis errors and not by decoherence. Attenuation and pulse-shaping

considerations may be able to alleviate this effect in future work, although a crucial

variable that controls decoherence and rotation axis error is the choice of operation

point ϵz. Analysis of the energy level diagram suggests that the energy splitting is

still slowly converging in the region of ϵz, leading to a nonzero first-order sensitivity to

charge noise as well as a non-negligible charge coupling that contributes to the undesired
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rotation axis tilt. This conclusion is further supported by the measured coherence time

during Z rotations of 1.5 ns, smaller than the value of T ∗
2 obtained from trapezoidal pulse

experiments and much smaller than typical valley relaxation times [KSW14]. Pulsing

further into the region of detuning-invariant energy splitting would certainly lead to

improved gate fidelities and coherence times.

5.8 Principle sources of error

We identify decoherence due to charge noise and rotation errors arising from pulse im-

perfections as the main sources of error that lead to suboptimal fidelities in our system.

Estimates of the expected operation fidelity can be calculated in the cases of (1) perfect

rotations in the presence of dephasing and (2) tilted rotations with no dephasing. The

dependence of fidelity on dephasing time and off-axis rotation tilt indicates the dominant

error source and provides insight into what can be done to further improve the qubit

operation. To estimate the fidelity in the first case, Larmor precession in a general two-

level system is simulated in the presence of variable dephasing times (Fig. 5.7d). In the

second case, unitary transformations corresponding to an X rotation by θ = π/2 (Eqn.

5.7) and a Z rotation by ϕ (Eqn. 5.8) are applied to the initial state | + z⟩, with both

rotation axes tilted by some amount in the x-z plane (Figs. 5.7a,b,c). Here, we choose a

definition of fidelity given by [NC10]

F = Tr (
√
ρtρ
√
ρt) , (5.18)

where ρ is the “measured” qubit density matrix after the operation and ρt is the target

density matrix resulting from perfect operation. Although Eq. 5.18 is not independent of

choice of the initial state, as the process matrix formalism is, this version is much faster

to calculate and provides a fidelity estimate that is sufficiently accurate for the purpose

of this analysis.

From dephasing considerations alone, the fidelity is expected to decrease as a function
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of dephasing rate 1/T ∗
2 and operation time. For the experimentally determined dephasing

time of 1.54 ns, our simple model gives fidelities of 98%, 97% and 94% for Z rotations of

π/2, π and 2π respectively. These values are well above the measured process fidelities

for all operations except the 2π rotation, which was found to be 93%.

Considering rotation errors in the absence of dephasing, we see that the 2π rotation

about the z axis is minimally sensitive to off-axis tilts, while the π rotation is maximally

sensitive. This is qualitatively identical to what is experimentally observed. In fact,

for an x axis tilt of 18 degrees and a z axis tilt of 6 degrees, the estimated fidelities

based on rotation errors alone are 87%, 84% and 90% for Z rotations of π/2, π and 2π

respectively, quite close to the experimental fidelities. This suggests that the performed

qubit rotations are limited in quality by rotation errors rather than dephasing. Such

rotation errors likely result from imperfect pulse shaping, for example voltage drift at the

X operation point.

Figure 5.7: Impact of rotation errors on (a) a Zπ/2 operation, (b) a Zπ operation, and

(c) a Z2π operation. The initial state |+ z⟩ is first rotated about the nominal x axis by

π/2 (subject to an x axis tilt). (d) Fidelities for Zπ/2 (solid purple), Zπ (dashed

orange), and Z2π (dashed cyan) operations as a function of dephasing time T ∗
2 . Vertical

black line indicates the experimentally determined T ∗
2 = 1.54 ns.
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5.9 Conclusion

In summary, we have shown that a semiconductor qubit formed from valley states in

silicon can be electrically controlled to perform independent rotations about two orthog-

onal axes. Sub-nanosecond operation times, determined by valley splitting, range from

200 ps to 300 ps. Although the performance of this particular valley qubit is inferior to

the similarly operated hybrid qubit system in terms of coherence times [KWS15], proper

pulse engineering and readout can in principle lead to fidelities greater than 90% at mul-

tiple charge configurations. This chapter explored the utility of valley degrees of freedom

as alternatives to electron charge and spin for storing and manipulating quantum in-

formation in silicon and further investigated methods for limiting charge noise-induced

decoherence.
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CHAPTER 6

Gate modulation of the hole singlet-triplet qubit

frequency in germanium

Chapter 3 detailed the lowermost spin states that define a two hole system of a double

quantum dot in strained germanium. As touched on in Chapters 1 and 3, utilizing the

spin states of quantum dots is not only an intuitive system for qubits, but is arguably

one of most successful encodings in semiconductor quantum dots. In particular, using

hole states in strained germanium has become a popular approach and has developed

rapidly over the past several years (see the introduction of Chapter 3).

The success of these experiments can be partly attributed to the various advantages of

holes for spin qubit encoding [SKZ21]. In stark contrast to the case of electrons described

in Chapter 2 and showcased in Chapter 5, the two topmost valence bands in Ge are well

separated in energy due to strain and 2D confinement. The light effective mass (0.054me

[LHL21]) of holes in this topmost band and the absence of valley degeneracy allows us

to easily access the two highest hole states for spin encoding. Furthermore, Ge hole spin

coherence times benefit from their weak hyperfine interaction with surrounding nuclear

spins. Finally, because of their strong spin-orbit coupling and site-dependent g-tensors,

Ge hole quantum dots do not require the fabrication of micromagnets, advancing their

potential for scalability and integration into current industrial semiconductor facilities

[SKZ21]. Building on this success, this chapter is based on the the successful demonstra-

tion of coherent spin manipulation our lab achieved in 2023 [RLS23], and the layout of

this chapter closely follows this work.
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Most double quantum dot singlet-triplet qubit studies have focused on encodings

between the singlet |S⟩ and unpolarized triplet |T0⟩ states [JHB21, WWP14, PJT05,

MBH12]. This chapter will instead detail the dynamics of the S − T− subspace, which

has been less studied thus far [JMH22, WSV22b, WDT23]. Furthermore, we explore the

tunability of the hole g-tensors by varying the electrostatic potential generated by the

barrier gate bridging the two quantum dots. As quantum computation with Ge hole

spins critically depends on the g-tensor, the ability to manipulate the g-tensor becomes

a valuable asset for a spin qubit encoded in this system.

6.1 The few-hole regime

A scanning electron microscope image of the device studied is shown in Fig. 6.1a along

with the Ge/SiGe heterostructure in Fig. 6.1b. The strained Ge quantum well is 16

nm in width and located 55 nm below the surface. For more details regarding the

heterostructure, see [LHL21] and Section 4.1.1. A two-dimensional hole gas is first created

in the Ge well by applying a negative voltage to a global top gate situated above the

gates pictured in Fig. 6.1a. The double quantum dot (DQD) is then formed underneath

plungers P1 and P2 by applying appropriate voltages to the neighboring barrier gates,

where the middle barrier voltage VB controls the coupling between the two dots.

Varying the plunger voltages controls the chemical potential of each dot. By applying

an increasingly positive voltage to a plunger, the chemical potential for N holes on the

dot is raised above the chemical potential of the nearby reservoir. This allows the hole

to escape the dot and tunnel to the reservoir. By applying sufficiently positive voltages

to both plungers, we can empty the dots until the few-hole regime is reached (Fig. 6.1c),

where all experiments were performed at the (1,1)-(0,2) charge configurations (Fig. 6.1d).

The hole occupation of both dots was detected by the nearby single electron transistor

(SET) located on the left half of the device labeled in Fig. 6.1a. For convenience in

describing this DQD system at the (1,1)-(0,2) anticrossing, we define the relative energy

of the two quantum dots as the detuning ϵ = α2VP2 − α1VP1, where αi converts the
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(a) (b)

(c) (d)

Figure 6.1: (a) SEM image of lithographically defined gates identical to the device

used in this study. The magnetic field applied was B⊥ = 1.2 and B∥ = 4.4 mT. (b)

Heterostructure of the device showing the Ge quantum well packed between two Ge rich

SiGe layers. (c) A typical stability diagram with the circle highlighting the (1,1)-(0,2)

anticrossing. (c) All experiments were completed at the (1,1)-(0,2) anticrossing, where

(n,m) denotes the hole occupation for each dot. Point R was used to reset the DQD, M

for measurement and initialization, and O for coherent operation between the singlet

and triplet states.

voltage applied to Pi to the change in the energy level of dot i. Fig. 6.1d illustrates the

detuning axis on the stability diagram, where ϵ = 0 at the (1,1)-(0,2) boundary (dotted

line). The black arrow depicts the direction I have defined as positive detuning.

6.2 Observation of coherent spin oscillations

When the system passes the ϵ = 0 detuning line into the (1,1) charge configuration,

Section 3.6 outlined how the (0,2) singlet state hybridizes with the (1,1) singlet due to

the tunnel coupling between the quantum dots: |S⟩ = sin (Ω/2)|S02⟩ − cos (Ω/2)|S11⟩.
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Here, Ω = arctan
(

2
√
2tc
ϵ

)
is the mixing angle between the two singlet states. In addition

to the singlet state, Fig. 6.3c depicts the three triplet states that compose the four lowest

energy levels in the (1,1) charge configuration. A simple block magnet situated near the

device’s PCB provided the field necessary to lift the degeneracy of the three triplet states,

generating an estimated fixed global out-of-plane field of 1.2 mT and in-plane field of 4.4

mT measured at the device’s position (|B| = B = 4.6 mT points θ = 15◦ out of the x-y

plane). This tilted field differs from previous qubit experiments on this heterostructure

where B was completely in-plane, allowing for a unique perspective into the hole spin

states [HLR21, WDT23]. Importantly, the magnetic field splits the polarized triplet |T−⟩

from |T0⟩ by the average Zeeman energy of the quantum dots Ez.

Beginning at M in Fig. 6.1d, the system is first initialized into the (0,2) singlet

state by waiting for 0.5 µs for a hole to tunnel onto the dot. A voltage pulse was then

applied to P1 and P2 to quickly separate the holes, moving the system into the (1,1)

charge configuration (point O). Just as in Section 5.2, an admixture between the |S⟩ and

|T−⟩ is generated through a Landau-Zener transition as the system passes through the

S − T− anticrossing, resulting in part of the initialized state remaining as a singlet and

the remaining going to |T−⟩.

Once the holes were separated, the system was pulsed to various operation detunings

ϵP and allowed to evolve for a time tE between |S⟩ and |T−⟩ where the system undergoes

Larmor precession (Fig. 6.3a and 6.3c). The qubit frequency (Fig. 6.3b) is given by

the energy difference between these two states at the operation detuning: hf = ∆EST− ,

which plateaus to roughly Ez for large detunings.

For smaller operation detunings, the energy splitting reaches a minimum at the S−T−

anticrossing, where it approximately equals 2∆ST− . We define ∆ST− as the coupling be-

tween |S⟩ and |T−⟩ at the S − T− anticrossing. The existence of this minimum leads

to the observed chevron pattern at 1 meV in Fig. 6.3a, which has been seen in previ-

ous S − T− works and absent from studies coherently manipulating the S − T0 states

[JHB21, JMH22, WDT23, WWP14, WSV22b, PJT05, MBH12]. By varying the opera-
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tion detuning ϵP from 0.5 to 2.5 meV, we sampled the energy splitting between the two

lowest states for both of these detuning regimes.

6.2.1 Readout mechanism

To read out the final two-hole state after the qubit operation, the system was left at

point M for 20 µs. Point M sits inside what is known as the Pauli spin blockade (PSB)

window, which enables spin to charge conversion of the two hole state. While in the PSB

region, only the singlet (1,1) state is energetically allowed to tunnel to the singlet (0,2)

state. In contrast, all triplet states are prohibited from tunneling to (0,2) due to a large

singlet-triplet splitting EST02 in the (0,2) charge configuration. The triplet states also

are prevented from tunnelling to the singlet (0,2) state due to the conservation of spin.

The top panels of Fig. 6.2 illustrate the singlet state being allowed to tunnel to the (0,2)

configuration, while the triplet states are blocked. Once the (0,2) triplet states are low

enough in energy, the (1,1) triplet state can also tunnel to the (0,2) configuration (lower

panels of Fig. 6.2).

Because spin-selective tunneling to the (0,2) charge configuration exists while in the

PSB region, the SET current will either detect a change in the hole configuration to (0,2),

signifying the final state as |S⟩, or no change in hole occupation will be seen, indicating

the final state as |T_⟩. The system is then reset at R for 1 µs before repeating the cycle

again.

6.2.2 Singlet-triplet splitting in (0,2)

The energy splitting EST02 between the singlet and triplet states in the (0,2) charge

configuration was measured by varying the readout position ϵr of the Ramsey pulse. As

the readout position is further pushed deeper into the (0,2) charge configuration, it will

eventually surpass the PSB boundary the SET uses to distinguish the singlet and triplet

states. From Fig. 6.2, we measure this cutoff and therefore EST02 to be 0.9 meV. Knowing

the orbital energy difference defines the (0,2) singlet-triplet splitting, we can use EST02
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to estimate the size of the right dot by approximating the confinement potential to be a

2d box and the dot shape to be a disk:

EST02 =
3h̄2π2

2m∗L2

EST02 =
3h̄2π2

2m∗πr2
,

where m∗ = 0.09me and r is the radius of the dot. From EST02 = 0.9 meV, we calculate

the radius of the right dot to be r = 66 nm. By comparing the charging energies of the

left and right dot and using the fact that E ∼ 1/r2, we further estimate the size of the

left dot to be r = 75 nm.

Figure 6.2: By scanning the readout position ϵr of the Ramsey pulse, we measured

the energy splitting between the singlet and triplet states in the (0,2) charge

configuration. As the readout position is moved further into (0,2), PSB is eventually

lifted as the (1,1) triplet state is allowed to tunnel to the (0,2) triplet. By detecting the

readout position where this transition occurs, we measured EST02 = 0.9 meV.

6.2.3 The S − T− Hamiltonian

To understand these dynamics, we utilize a Hamiltonian describing the {|S⟩, |T−⟩} sub-

space that was derived in Ref. [MB21b] and introduced in Section 3.6.3. To leading
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order, it takes the following form:

H =

−J(ϵ) ∆

∆ −Ez

 . (6.1)

We define the exchange energy J(ϵ) = − ϵ
2
+
√

ϵ2

4
+ 2t2c as the energy difference between

|S⟩ and |T0⟩. The coupling of the S−T− states (∆) emerges from two sources: (1) a spin-

orbit splitting (∆so) and (2) an effective Zeeman splitting due to the anisotropy of the

g-tensors (ga) that is only present when B has non-zero in- and out-of-plane components:

∆ = ∆so sin
(
Ω
2

)
+ gaµBB cos

(
Ω
2

)
[JMH22, MB21b]. The anisotropy between the in- and

out-of-plane g-factors of a quantum dot has been previously observed, where the in-plane

g-factors (g∥) were measured to be a few tens to hundreds of times smaller than their

out-of-plane counterparts (g⊥) for holes in Ge/SiGe substrates [JMH22, HMM23]. The

|T−⟩ state splits from |T0⟩ by the average Zeeman energy, Ez = gµBB, where g is the

average g-factor of the two dots projected onto the axis of B.

With this Hamiltonian, we can solve for the frequency of the S − T− evolution:

f = 1
h

√
(J − Ez)2 + (2∆)2. At the S − T− anticrossing, J = Ez, and f is controlled

by ∆, where X rotations are performed around the Bloch sphere (red circle in Fig. 6.3d).

For large detunings, J → 0, leaving f to be determined by the average Zeeman energy

and S−T− coupling, and the qubit rotates near the z axis (blue circle in Fig. 6.3d). The

larger the ratio Ez

∆
becomes, the closer this axis aligns with the z direction. With control

over the orientation of the magnetic field, it is possible for ∆→ 0 at specific detunings,

resulting in perfect Z rotations [MB21b].

6.3 Dephasing and relaxation measurements

We analyzed the dephasing and relaxation of this qubit by measuring T ∗
2 and T1.
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(a) (b)

(c) (d)

Figure 6.3: (a) Coherent oscillations between |S⟩ and |T−⟩. (b) Fourier transform of

the coherent oscillations in (a), illustrating the S − T− energy splitting as a function of

detuning. (c) Energy levels (not to scale) of the singlet and triplets as a function of

detuning. The Ramsey pulse used is shown below as a function of time and detuning.

(d) Bloch sphere depicting the two rotation axes for the S − T− subspace. When ϵP is

at the S − T− anticrossing, the system undergoes X rotations (red axis). For large

detunings, a combination of X and Z rotations are performed (blue).

6.3.1 T ∗
2 dephasing time

To measure T ∗
2 , we extracted the decay of oscillations between |S⟩ and |T−⟩ in Fig. 6.3a.

Each linecut along ϵP is fit to the equation P = Ae−(t/T ∗
2 )

2
cos (ωt+B) + Ce−t/D + E,

where A,B,C,D, and E are fitting parameters in addition to T ∗
2 . The angular frequency

ω = 2πf is already known from the Fourier transform data. Several example fitted traces

are shown in Fig. 6.4, where the background (Ce−t/D + E) has been subtracted off.

After extracting T ∗
2 as a function of ϵP (Fig. 6.5a), a clear dependence on the pulse

height is seen. This behavior can be understood with a simple model describing the

94



Figure 6.4: Traces taken from Fig. 6.6f for several values of operation detuning ϵP .

Each trace is fit to a decaying sinusoid with an exponential background and offset. The

background is removed before plotting the change in the SET current (∆ISET ) for both

the trace and fit (solid line). Each trace is offset along the vertical axis for clarity.

influence of charge and magnetic noise on the fluctuations in the energy difference between

the two states [WWP14, JHB21]:

√
2h̄T ∗−1

2 =
√
⟨δE2⟩. (6.2)

At the S−T− anticrossing where the qubit frequency reaches a minimum, the system

is insensitive to first-order to fluctuations in ϵ due to charge noise. This protection leads

to the maximum in T ∗
2 seen at 1 meV in Fig. 6.5a. However, the qubit is still susceptible

to electrical noise affecting the dot g-factors and tunnel coupling as well as magnetic

noise afflicting B. We can estimate the magnitude of this noise combination from Eqn.

6.2 using the fact that J = Ez at this detuning. Under this condition δE = 2δ∆rms,
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where we define δ∆rms to include the noise sources pertinent to tc, ga, and B, leading to

δ∆rms ≈
√
2h̄

2
(T ∗

2 = 600 ns)−1 = 0.8 neV.

For large operation detunings, the energy separation between the S−T− states reaches

a parallel regime (Fig. 6.3b), which diminishes the charge noise contribution to δE. In

this regime, ∆EST− approximately equals Ez, where the combined electrical and magnetic

"Zeeman" noise affecting g and B limits T ∗
2 . We estimate this parameter using Eqn. 6.2

again:

δE ≈ δEz,rms,

δEz,rms ≈
√
2h̄(T ∗

2 = 317 ns)−1 = 3 neV.

6.3.2 T1 relaxation time

The system’s T1 spin relaxation time was measured by varying the wait time at the

readout position ϵr (Fig. 6.5b). For these measurements, the system was allowed to

completely dephase at the operation detuning ϵP before being pulsed back to the readout

window for a variable amount of time (see inset of Fig. 6.5b). We fit the resulting

exponential decaying curve shown in Fig. 6.5b to P = Ae−(t/T1) + B and find T1 to

be 17.2 ± 3.2 µs, which is comparable to experiments done in single hole [HFS20] and

S − T0 qubits [JHB21]. However, this T1 can still be improved, as single hole spin

relaxation times as long as 32 ms with B = 0.67 T have been measured using tighter dot

confinements and limiting the dot-reservoir coupling [LHR20].

6.4 Gate modulation of the singlet-triplet frequency

We now focus on modulating the coherent evolution of the S−T− states by adjusting the

voltage applied to the barrier separating the two quantum dots. Over a small range of

voltage (12 mV), Fig. 6.6 illustrates the dramatic transformation the S − T− oscillations
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(a) (b)

Figure 6.5: Dephasing and relaxation measurements (a) T ∗
2 as a function of detuning.

Linecuts in Fig. 6.3a are fit to the curve P = Ae−(t/T ∗
2 )

2
cos (ωt+B) + Ce−t/D + E,

where the dephasing time T ∗
2 is extracted and plotted in (a). Error bars equal one

standard deviation of the uncertainty in T ∗
2 from this fit. This decoherence can be

understood as a contribution from two noise terms with the simple model shown in

Eqn. 6.2. From this model, we estimate δ∆rms = 0.8 and δEz,rms = 3 neV. (b) A T1

measurement where the change in SET current is recorded as a function of wait time at

the measurement point M. We extract T1 from the fit P = Ae(−t/T1) +B (solid line) and

calculate T1 = 17.2± 3.2 µs. Inset: the pulse used to observe this decay.

undergo. As VB increases, it is clear the frequency of evolution between the two states

decreases monotonically. From the Fourier transform of these oscillations, we can isolate

two quantities of interest, namely g from the frequency at large detuning following f ∼

Ez/h and ∆ST− from the minimum frequency near ϵP = 1 meV, where f = 2∆ST−/h.

We would like to note that the location of the frequency minimum ϵ∗ is determined

by the tunnel coupling tc and Ez from the condition J = Ez [JMH22]:

ϵ∗ =
2t2c − E

2

z

Ez

, (6.3)

Because ϵ∗ remains approximately constant throughout this range of VB, a decrease in tc

must be accompanied by a decrease in Ez. While it is evident from the sharper rises seen

in the FFTs of Fig. 6.6 that tc decreases with VB, a similar decline in Ez, and therefore

g, is necessarily present. From the S−T− evolution frequency at large ϵP in Fig. 6.6, we
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(d) (e) (f)

(g) (h) (i)

Figure 6.6: (a)-(i) Evolution of the S − T− oscillations (upper) and their

corresponding FFTs (lower) as a function of the middle barrier gate voltage VB.

Applying a more positive barrier gate voltage decreases the frequency of the oscillations

throughout the entire detuning range. Both the minimum and maximum frequencies

decrease as VB becomes more positive, indicating a reduction in both ∆ST− and g.
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can then extract the dependence of g on VB.

Fig. 6.7 demonstrates the linear trend both ∆ST− and g follow with respect to the

barrier voltage VB. Recall the S − T− coupling is determined by both the spin-orbit

coupling and the effect of the anisotropic g-tensors, ga. We assert it is the latter of these

contributions that is affected over the small range of VB considered here. Consequently,

to justify the modulation of the qubit frequency in Fig. 6.7, we seek a mechanism that

simultaneously reduces both g and ga as VB increases. We will argue these changes

are accomplished through increasing the admixture of light-hole (LH) states into the

predominantly heavy-hole (HH) ground state of the Ge quantum dot.

While it is well known the upper valence bands in Ge/SiGe heterostructures are com-

posed primarily of HH states due to a large HH-LH splitting ∆HL [SKZ21], an accurate

understanding of the g-tensor in many Ge materials requires the consideration of the

LH bands [DMS14, WKV16, AGK13]. To understand the consequences of this mixing,

it is beneficial to first examine the g-factor components of both bands in the case of

bulk Ge. As described in Refs. [KKY01, NDZ03, WKV16] and Section 3.6.2, for the

pure HH state, the out-of-plane g-factor is g⊥ = 6κ + 27q
2

and the in-plane component

is g∥ = 3q, where κ = 3.41 and q = 0.07 are the magnetic Luttinger parameters. Note

this κ and q result in the large anisotropy of the g-tensor: g⊥ ≫ g∥. Conversely, for pure

LH states, g⊥ = 2κ and g∥ = 4κ. By comparing these two bands, the LH state has a

smaller g⊥ but greater g∥ compared to the HH state. Therefore, when increasing the LH

admixture in the ground state of the quantum dot, we expect a decrease in g⊥ and an

increase in g∥, which has been experimentally observed for various mixing mechanisms

[NDZ03, AGK13, WKV16, JMH22].

Due to the large anisotropy between g⊥ and g∥, g is dominated by its out-of-plane

component g⊥. With an increase in HH-LH mixing, we then expect a decrease in g

through a reduction in g⊥ for either dot. On the other hand, the in-plane g-factors

are the leading order terms defining ga, where a more similar g∥ between the two dots

diminishes ga. Increasing the HH-LH mixing decreases ga when the in-plane g-factors

change in such a way that the difference between g∥ for the left and right dot lessens.
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Importantly, this mixing mechanism can then explain both downward trends we observe

in Fig. 6.7.

(a) (b) (c)

Figure 6.7: (a) ∆ST− as a function of barrier voltage. Values are extracted from the

minimum frequency of the FFTs shown in Fig. 6.6. (b) g is extracted from frequency

at large detunings in Fig. 6.6 and plotted versus the barrier voltage. Both parameters

show a strong linear dependence on the barrier gate voltage. This behavior can be

explained by the dots moving through a non-uniform strain environment, which directly

impacts the g-factors of each dot. Error bars for (a) and (b) are calculated from the

linewidth of the Fourier transform data. (c) Cartoon depicting the ∆HL profile

underneath the confinement gates due to the effects of strain.

Although a complete theoretical description lies outside the scope of this thesis, we

will now discuss how a non-uniform strain profile is a viable candidate for this rise in

HH-LH mixing as VB is varied. As discussed in Section 3.5, strain originates from the

differences in thermal contraction between the gate electrodes defining the quantum

dots and the substrate. This strain can both alter ∆HL and directly mix the HH and

LH states, where these effects are greatest along the edges of the confinement gates

[NST04, LMM21, CRZ23]. In one case, Corley-Wiciak et al., 2023 measured the strain

profile of a gate-defined quantum dot device and simulated that ∆HL can vary as much as

4% [CRZ23]. Although this percentage seems small at first glance, the degree of mixing

between the HH and LH states scales as
(

1
∆HL

)2

[LBZ15], where even admixtures of 1%

significantly reduce g⊥ [WKV16].

From a rough calculation of the quantum dot positions as a function of VB (see

section 6.6.4) and using the results of Ref. [CRZ23] for a qualitative picture, we estimate

100



an overall shift of the right dot’s position away from the middle barrier leads to a ∼ 3%

decrease in ∆HL as the dot moves into a region of increased strain (see Fig. 6.7c). With

this change leading to a 9% enhancement in the LH admixture, we can expect a decrease

in both ḡ and ∆ST− . We want to stress these values are crude calculations and only serve

as a guide to how the hole g-tensor evolves with respect to VB and explain the trends in

Fig. 6.7.

6.5 Conclusion

In summary, we have explored the coherent oscillations in a Ge hole double dot between

the singlet, |S⟩, and polarized triplet state, |T−⟩. The dephasing time of this manipulation

strongly depends on the operation detuning with a maximum of T ∗
2 = 600 ns, while the

spin relaxation time at the readout point was measured to be T1 = 17.2 µs. The maximum

in T ∗
2 coincides with the minimum in the S − T− energy splitting, where the system is

insensitive to the noise disturbing J and Ez. Furthermore, we observe the frequency

of evolution between these spin states can be modulated through the voltage of the

middle barrier separating the two dots. The frequency dependence on VB points to the

changing dot position over a variable strain profile as the reason for adjusting the qubit

frequency. These results suggest strain can be exploited to fine-tune qubit frequencies

in Ge. Furthermore, if a variable frequency profile is not desired, the sensitivity of the

g-tensor to the quantum dot position can be mitigated by reducing strain in the system,

such as by defining gate electrodes with palladium instead of gold to closer match the

thermal response of Ge [ML22].

6.6 Supplementary Material

6.6.1 Simulating singlet-triplet oscillations

With the estimates of δ∆rms = 0.8 and δEz,rms = 3 neV, we can simulate the coherent

oscillations of Fig. 6.6c while including dephasing. Similar to section 5.6.3, we use the
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Lindblad equation (5.6) with the Python program QuTiP to measure the probability

of the singlet state after the application of a simple square pulse. Although the square

pulse does not follow the path of the Ramsey pulse used in experiment, it still samples

the energy difference between the two lowest states, meaning it can still recreate much

of what is observed in this experiment.

The Hamiltonian used is Eqn. 6.1, where we estimate the parameters from the data

in Fig. 6.7: tc = 9.9 µeV, ga = 0.19, and ḡ = 0.65. I have ignored the contribution

of the spin-orbit coupling when estimating ga; however, it is not vital for recreating

the frequency spectrum in Fig. 6.6c. With the exclusion of ∆so, this value of ga is

overestimated and ḡ is slightly underestimated.

Inhomogeneous dephasing was included using Eqn. 6.2 and the estimated parameters

δ∆rms and δEz,rms. Because dephasing originates from the fluctuations in energy differ-

ence between |S⟩ and |T−⟩, the appropriate dephasing operator takes the form of the

Pauli matrix σz. However, it is important to recognize that σz is only the correct dephas-

ing operator when the eigenstates at the operation detuning ϵP are |S⟩ and |T−⟩. More

generally, the dephasing operator needs to be a rotation along the axis of the eigenstates

B = {|g⟩, |e⟩}. Therefore, for each ϵP , σz is transformed into the basis defined by the

eigenstates: σdephase = B−1σzB.

The results are the simulation are shown in Fig. 6.8, where there is good qualitative

agreement between the simulated (6.8a) and experimental (6.8c) data. While the singlet-

triplet frequency is recreated, the simulation’s accuracy can still be improved by including

the spin-orbit coupling back into the Hamiltonian. This change is discussed more in

Chapter 7.
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(a)

(b)

(c)

(d)

Figure 6.8: (a) Simulation of the Hamiltonian in Eqn. 6.1 with dephasing included.

(b) FFT of the simulation in (a). (c) and (d) Experimental data from Fig. 6.6c

reproduced here for convenience.
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6.6.2 Lever arm measurement

When a small bias voltage VSD is applied across the reservoirs of the double quantum

dot, conductance regions in the shape of triangles will form at the intersections of charge

transitions between the two dots [WFE02]. The dimensions of these triangles are directly

related to the energy separation between the source and drain, eVSD, and the chemical

potential of each dot being controlled by its respective plunger voltage:

α∆Vg = |eVSD|,

where α is the lever arm relating the plunger voltage to the dot chemical potential. By

measuring the lengths of these triangles along each plunger voltage axis (Fig. 6.9), we

determined the conversion factor α from the ratio of plunger voltage to energy: α =

eVSD/∆VP . We find the lever arms for P1 and P2 to be α1 = 0.12 and α2 = 0.11 eV/V,

which were used to convert the plunger voltages to energies for all calculations in this

work.

Figure 6.9: Stability diagram illustrating transport through both quantum dots with

a bias voltage VSD = 1 mV across the source-drain reservoirs. Triangles can be seen

where the dot charging lines intersect. The dimensions of these triangles are directly

related to the source-drain bias and plunger voltage, which we used to calculate the

lever arm of each plunger: α1 = 0.12 and α2 = 0.11 eV/V.
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6.6.3 Fast S − T− oscillations

The fastest oscillations we observed are shown in Fig. 6.10. This scan was taken at a

center barrier voltage of VB = −180 mV, and illustrates ∆ST− reaching 75 MHz and the

maximum S−T− energy splitting surpassing 180 MHz, which corresponds to a maximum

g ≈ 2.8. While this g is larger than those reported in the main text, we do not expect g

to grow indefinitely as we decrease the middle barrier voltage. As VB draws the two dots

closer to the middle barrier’s edge, the continuous increase in tunnel coupling tc between

the two dots will eventually make system inoperable as a singlet-triplet qubit.

(a) (b)

Figure 6.10: (a) A scan of the singlet-triplet evolution illustrating the highest

frequency oscillations seen from our data set. (b) The the FFT of (a). The S − T−
anticrossing gap is ∆ST− = 75 MHz, while the frequency at large detunings reaches 180

MHz, signifying g = 2.8.
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6.6.4 Estimation of ∆HL from dot positions

We were able to make a crude estimate of the quantum dot positions using capacitance

ratios of the quantum dot to the two plungers and barrier gates. The capacitance ratios

were found from the slope of the charging lines in the stability diagram. From the relative

strength of the effect two gates have on a dot and knowing the gate positions in the x-y

plane, we can create what is known as an Apollonian circle. Creating Apollonian circles

for two different pairs of gates allowed us to estimate the dot position where these two

circles intersect. Repeating this process for various VB generated the data in Fig. 6.11.

From Fig. 6.11, the left dot moves back and forth around its starting position, whereas

the right dot generally moves towards the upper right in the x-y plane. From the right

dot’s relative shift of∼ 36 nm, we estimated the change to ∆HL. Using the simulated data

in Ref. [CRZ23], we note a maximum change of ∼ 4% in the HH-LH splitting. Compared

to the device in this study, the quantum well in Ref. [CRZ23] is situated closer to the

confinement gates, which greatly increases the effects of strain. Consequently, we only

wish to use this 4% change in ∆HL as a guide for understanding the pattern of our data.

We expect the modification to ∆HL to be minimized directly underneath an electrode

and greatest between two electrodes, which is a distance of 50 nm in our device. Naively

assuming a linear dependence of the strain on the dot’s position underneath the gates,

we can estimate the change in ∆HL from the 36 nm shift in the right dot:

δ∆HL ∼
4%

50nm
36nm = 3%.
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Figure 6.11: The positions of both quantum dots are estimated from their

capacitance ratios to the two plungers and center barrier. The coordinate x = 0 is

where the center barrier is placed. Blue (red) dots correspond to the left (right) dot

positions. The darker shades correspond to more positive VB. It is evident that as VB

increases, the right dot tends to shift away from the center barrier, while the left dot

fluctuates around its starting position. The diameters of the two quantum dots are

depicted as circles and estimated in section 6.2.2.
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CHAPTER 7

Future Directions

7.1 Coupled valley qubits in silicon

A natural step to progress the valley qubit physics described in Chapter 5 is to couple

two valley qubits together. While this thesis has focused on single qubit operations, one

must combine single qubit gates with two-qubit operations to create a universal set of

gates that can perform a generic quantum computation [DiV00]. Coupling any two qubits

together requires an interaction between them that is ideally independent of the physics

governing the single qubit operations. This would allow one to switch the two-qubit

coupling on and off at will.

One possible implementation of two coupled valley qubits has been theoretically dis-

cussed in [FMG19], where the charge character of the valley qubit can be coupled to

a neighboring qubit. This interaction is a simple capacitive coupling between the two

qubits, where the energy dispersion for one qubit shifts depending on the charge state

of the partner qubit. For example, consider a valley qubit performing X rotations at de-

tuning ϵx. This detuning will shift when the charge state of a neighboring qubit changes,

for example, an electron in the partner qubit tunnels from the left to the right dot. By

controlling the detuning of the control qubit, one then controls whether the target qubit

undergoes X rotations.

Another potential avenue for coupled valley qubits is through exploiting their inter-

action with the spin states of the quantum dot [YCF20]. This interaction lies outside
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the scope of this thesis, but it has been shown that it is possible to couple the spin and

valley states of a quantum dot through their mutual interaction with the orbital state of

the quantum dot [LON21, CCE23]. This spin-orbit-valley coupling then allows neighbor-

ing qubits to interact via the spin exchange interaction J , which has been widely used

for two-qubit operations of pure spin qubits [MGG22, NTN22, XRS22, HFS20, HLR21,

HYC19, WPK18].

7.2 Magnetic field spectroscopy of the singlet-triplet states in

germanium

While using the permanent magnet in the experiments of Chapter 6 was an inexpensive

and simple solution to lift the degeneracy of the triplet states, it prevents the investigation

of several important magnetic properties of the qubit. One such characteristic is the

distinction between the spin-orbit coupling tso and g-factor anisotropy ga that play the

important role of coupling the singlet |S⟩ and polarized triplet |T−⟩ states. Looking

at the coupling between these two states, ∆ = |tso sin (Ω/2) + gaµBB cos (Ω/2)|, both

contributions are affected by the detuning ϵ through Ω. Consequently, one cannot isolate

tso from ga using only electrical control, as it will always be possible to distribute weight

between these two factors and arrive at the same predicted experimental outcome.

One solution to this issue is the ability to vary the magnetic field, as only the effective

Zeeman term is affected by B. At large detuning, sin (Ω/2) → 0, leaving the Zeeman

terms in the Hamiltonian to control the singlet-triplet oscillations. If one can vary the

angle of B at this detuning, the resulting change in qubit frequency can be fit to determine

all Zeeman components [JMH22], including ga. Knowing ga, one can solve for tso from

the value of ∆ST− at the S − T− anticrossing.

Moreover, varying the magnetic field comes with the additional bonus of being able to

probe the coupling between the singlet |S⟩ and polarized triplet |T−⟩ in a reliable manner.

varying the magnetic field and quickly pulsing to an operation detuning ϵ results in

resonance between the singlet and polarized triplet states when the spin exchange energy
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equals the Zeeman splitting: J(ϵ) = ±ḡµBB [PJT05, LON21, JHB21, JMH22, CCE23].

The pattern this resonance traces out is a funnel, and observing it reinforces the claim

that the coherent oscillations seen in Chapter 6 are indeed between the |S⟩ and |T−⟩.

7.3 Two-axis control and characterization of the S − T− qubit

Having observed S−T− oscillations in Chapter 6, future endeavors should include demon-

strating full two-axis control and fidelity calculations similar to that of Chapter 5. A

straightforward method to implement the two rotation axes is by utilizing two points

in detuning that Chapter 6 already discussed: the S − T− anticrossing and the large

detuning regime. At the anticrossing, the two eigenstates are mixtures of |S⟩ and |T−⟩,

meaning Larmor precession will occur around the x axis. Furthermore, this anticrossing

is an ideal location for qubit operation due to its higher resistance to noise. This was

exemplified in Fig. 6.5a, where this detuning had the longest T ∗
2 time.

For the second axis of control, one can operate the qubit at large detunings for Z

rotations. As mentioned in Chapter 6, the rotation axis for large ϵ depends on the ratio

between the S−T− coupling at large ϵ and the average Zeeman energy Ēz. While a tilted

axis can be supplemented with additional X rotations, an ideal Z rotation is possible if

one can vary the magnetic field orientation [MB21b]. Additionally, the energy levels

between the singlet and triplet state are nearly parallel in this regime, providing the

qubit some protection from charge noise for these operations.

By pulsing the qubit’s detuning between the anticrossing and large detunings, one

can selectively perform X or Z rotations on demand. However, even with this ability, it

is not obvious that a qubit encoded in this S − T− subspace performs any better than

other successful encodings. To help answer this question, one can rely on the fidelity

measurements calculated in Section 5.7.3. Furthermore, fidelity calculations can shed

light onto which aspects the qubit can be improved further. For example, they can

help distinguish whether initialization and measurement errors or decoherence during

the operation are the main sources of infidelity.
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Figure 7.1: Singlet triplet energy levels as a function of detuning. For the S − T−
qubit, X rotations are performed at the S − T− anticrossing, while Z rotations can be

performed at large detunings

7.4 Conclusion

We have demonstrated devices that are capable of hosting single qubits on both silicon

and germanium heterostructures. While fidelities of the valley qubit in Si are only ∼ 90%,

there are many aspects that can still be optimized that were not fully explored this

thesis. These include fixing rotation errors, improving state initialization, and enhancing

readout fidelity. With the advent of multiple groups showcasing spin-valley mechanics,

the possibility to utilize the valley degree of freedom with existing spin qubit methodology

is open.

Our work on a Ge hole spin qubit has reinforced the rapid development hole spin

qubits have made over the past few years. We have shown that the g-tensors of the

quantum dots can be easily tuned through the modulating the electrostatic potentials.

As any spin qubit is reliant on the dot g-tensor when determining operation frequencies,

this tuning becomes an important knob that can increase operation speeds or move

the qubit frequency into an ideal range. However, one must keep in mind that this

adaptability comes with the downside of being more susceptible to noise. Moreover, it is

exciting that holes qubits no longer must grapple with a variable valley splitting across a
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wafer, possibly opening a pathway to the larger qubit arrays in semiconductor quantum

dots.
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Appendix A

Fabrication Recipe

Here I detail the fabrication recipe used for the double quantum dot devices made on the

Ge/SiGe heterostructure. This recipe is almost identical to that of making a device on

the Si/SiGe wafer; the pertinent difference lies in how the Ohmic regions are made, as

described in Section 4.1.4.

1. Cleave wafer: Dice wafer into appropriately sized pieces to work with.

• Spin on two layers of AZ 5214E photoresist to form a protective layer.

– Spin at 600 rpm for 6 s, then 3500 rpm for 30 s.

– Bake for 1 min at 95 C.

– Spin at 600 rpm for 6 s, then 3500 rpm for 30 s.

– Bake for 2 min at 95 C.

• Cleave wafer by scribing desired break points and using a glass slide as a

fulcrum.

2. Clean wafer: Ensure wafer surface is as clean as possible before moving to the

photolithography step.

• Quick clean: Spray wafer with the following solvents in order to remove the

bulk of resist: acetone, isopropanol (IPA), and DI water. Dry the wafer with

N2.
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• Long clean:

– 5 min in acetone

– While in acetone, use sonicator for 1 min

– 5 min in IPA

– 5 min in DI water

– Dry with N2

– 4 min in an O2 plasma asher

• Inspect wafer under microscope and repeat the long clean until the surface is

pristine.

3. Photolithography (Ohmic contacts and alignment markers):

• Apply HMDS. Let wafer sit inside an HMDS tank for 10 min. If an HMDS

tank is not available, apply 3 drops of HMDS onto wafer and spin for 6 s at

600 rpm and 50 s at 4500 rpm.

• Spin AZ 5214E resist for 6 s at 600 rpm and 50 s at 4500 rpm.

• Bake at 95 C for 90 s.

• Expose for 9 s using a mask designed for Ohmic contact implant regions.

• Develop in 1:3 AZ 400K:DI water for 45 s with slight agitation, then 30 s in

DI water.

• Place wafer into an O2 plasma asher for 30 s to etch away any remaining resist

that was not developed.

4. Buffered Oxide Etch (BOE): Remove thin, top SiO2 layer of the wafer.

• Dip the wafer in BOE for 10 s.

• Place in DI water for 30 s.

• Place in a second DI water beaker for 30 s.
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• Place in a third DI water beaker while the BOE is properly disposed. Then

dry off with N2.

5. Metallization (Ohmic contacts and alignment markers): Using a CHA e-

beam evaporator, deposit 60 nm of Platinum (Pt) at 0.5 A/s.

6. Liftoff: Remove resist from the wafer.

• 30 min in one acetone beaker. Use a pipette to blow acetone on the wafer

until the majority of resist has lifted off.

• Transfer the wafer to a clean acetone beaker and place the beaker in the

sonicator for 30 s.

• If any visible unwanted metal remains, use a combination of the pipette and

sonicator to remove it.

• Quickly clean the wafer with IPA and transfer it to a Petri dish filled with

IPA. Note that the wafer cannot be allowed to dry during this process, or any

unwanted metal will permanently adhere to the wafer.

• Inspect the wafer under a microscope to ensure the liftoff process has removed

all unwanted pieces of metal. If not, transfer the wafer back into the clean

acetone beaker and use the sonicator and pipette to remove residual metal.

• Clean the wafer with DI water and dry off with N2.

7. Anneal Pt contacts: Forming gas anneal for 1 hour at 420 C.

8. Electron-beam lithography (EBL):

• Clean wafer.

• Spin 1 layer of PMMA A4 for 6 s at 600 rpm then 50 s at 4500 rpm.

• Bake for 90 s at 180 C.

• Spin 1 layer of PMMA A2 for 6 s at 600 rpm then 50 s at 4500 rpm.

• Bake for 90 s at 180 C.
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• Write small, inner device leads with a 200 pA current and dosage of 1270

µC/cm2.

• Write large, outer device feature with a 50 nA current and dosage of 900

µC/cm2.

• Develop in premixed 1:3 MIBK:IPA for 45 s.

• Place in an IPA stop bath beaker for 45 s.

• Clean wafer with DI water, then dry off with N2.

9. Metallization (device leads): Using a CHA e-beam evaporator, deposit 5 nm

of Titanium (Ti) at 0.5 A/s and 45 nm of Gold (Au) at 0.7 A/s.

10. Liftoff: This step is almost identical to the previous liftoff with two important

differences:

• Let the wafer sit in the clean acetone beaker overnight.

• Avoid using the sonicator when possible, as it will destroy the inner device

leads. If absolutely needed, dip the acetone beaker into the sonicator for 1-2

s.

11. Optional: image inner device leads with an SEM

12. Savannah Atomic Layer Deposition (ALD):

• Clean wafer.

• Setting the chamber temperatures to 200 C, grow 100 nm of Al2O3.

13. Photolithography (top gate):

• Clean wafer.

• Apply 1 layer of HMDS through either an HMDS tank or spinner (see previous

photolithography step).

• Spin 1 layer of AZ 5214E for 6 s at 600 rpm then 50 s at 4500 rpm.
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• Bake for 1 min at 95 C.

• Expose using a top gate mask pattern for 9 s.

• Develop in 1:3 AZ 400K:DI water for 45 s.

• Place in a DI water stop bath for 30 s.

• Rinse with DI water, then dry off with N2.

14. Metallization (top gate): Using a CHA e-beam evaporator, deposit 100 nm of

Al at 1 A/s.

15. Liftoff: This step is almost identical to the Ohmic contacts and alignment markers

liftoff step.

• Use the sonicator for 1-2 s if necessary, but try to avoid it.

16. Etch contact windows:

• Repeat the photolithography (top gate) step using a mask for contact windows.

• Dip the wafer for 3 s into a beaker of Transetch-N (Phosphoric acid) heated

to 180 C.

• Quickly dip the wafer into a beaker of DI water and use a pipette for 30 s to

remove Transetch-N from the wafer’s surface.

• Place the wafer into a second beaker of DI water and repeat the previous step.

• Rinse the wafer off with DI water and dry with N2.

• Inspect the wafer under a microscope to determine if the Al2O3 was etched

through completely in exposed contact windows. If not, dip the wafer into

Transetch-N again and follow subsequent steps.

• Clean wafer to remove resist.

17. Cleave wafer into individual devices:

• Spin 1 layer of AZ 5214E photoresist for 6 s at 600 rpm and 30 s at 3500 rpm.
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• Bake at 95 C for 1 min.

• Spin 1 layer of AZ 5214E photoresist for 6 s at 600 rpm and 30 s at 3500 rpm.

• Bake at 95 C for 2 min.

• Use a diamond scribe or the LPKF ProtoLaser to cleave off devices. If using

the ProtoLaser, set the laser width to 60 µm and repetitions to 25.
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