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a  b  s  t  r  a  c  t

The  risks  to  potable  aquifers  due  to  brine  leakage  through  plugged  and  abandoned  (P&A) wells  is  highly
uncertain  and  a potentially  significant  contributor  to  the  risk  profile  in Geologic  Carbon  Storage  (GCS).
This  uncertainty  stems  from  the  unknown  location  of wells  and  the  large  variance  of  P&A  wellbore
permeability,  making  the spatial  assessment  of  P&A  brine  leakage  risk  challenging.  A  new  methodology  is
presented  to generate  “risk  maps”,  or spatial  distributions  of brine  leakage  risk  to  groundwater  resources
as  defined  with  no-impact  or Maximum  Contaminant  Level  (MCL)  thresholds.  The  methodology  utilizes
probability  theory,  thereby  avoiding  the  use  of  computationally  expensive  Monte  Carlo  simulations  while
maintaining  flexibility  in modeling  techniques.  These  maps  provide  quantitative  probabilities  of  risk  as
a function  of  time  to inform  site  selection  and  monitoring  during  and  post-injection,  conducive  to the
arbon capture and storage
O2 injection

US  EPA’s  permitting  of  class-VI  wells  and  the  so-called  “area  of review”,  AoR.  As a  demonstration  of the
methodology,  a numerical  model  of  a  hypothetical  fully-coupled  system  spanning  from  the  injection
reservoir  to the USDW  is used  to assess  the  evolution  of brine  leakage  through  P&A wells.  Risk  maps  of
CO2 leakage  can  also  be  generated  with  this  methodology  for a comprehensive  assessment  of  GCS leakage
risk.

©  2017  Elsevier  Ltd. All  rights  reserved.
. Introduction

Geologic Carbon Storage (GCS) may  be a viable option to aid
n mitigating climate change, and is frequently included in projec-
ions to reduce global CO2 emissions. The intergovernmental panel
n climate change (IPCC) most recently planned that cost-effective
ossil fuel power generation without the use of GCS will be entirely
hased out by 2100 (IPCC, 2014). Although the emission reductions
rojected from GCS-inclusive strategies could be as high as 30% by
050 (IEA, 2009), questions related to the safety of overlying drink-

ng water aquifers still need addressing given that potential leakage
f CO2 and/or brine from deep geologic storage formations into
roundwater resources may  adversely affect water quality (Little
nd Jackson, 2010; Siirila et al., 2012; Navarre-Sitchler et al., 2013;
aradharajan et al.., 2013; Carroll et al., 2014, 2016; Zhong et al.,

014; Zheng et al., 2015; Bacon et al., 2016; Keating et al., 2016;
iao et al., 2016).

∗ Corresponding author.
E-mail address: ERWoodburn@lbl.gov (E.R. Siirila-Woodburn).

ttp://dx.doi.org/10.1016/j.ijggc.2017.02.003
750-5836/© 2017 Elsevier Ltd. All rights reserved.
As part of the protection of these freshwater resources, the
US EPA has implemented permitting regulations for class-VI wells
used to inject CO2 into deep storage formations. These regulations
include the need to delineate a so called “area of review” (AoR), for-
mally defined as the region surrounding the geologic sequestration
site where underground sources of drinking water (USDWs) may
be endangered by the injection activity (US EPA, 2013). Guidelines
state that the AoR should encompass 1) the maximum extent of
the CO2 plume and 2) the pressure front of sufficient magnitude
required to force fluids from the injection zone into the formation
matrix of the USDW over the lifetime of the project, the latter of
which is typically larger in extent than the former for industrial-
scale injections (Bandilla et al., 2012; Birkholzer et al., 2014).

Assuming hydrostatic conditions, a worst-case brine leakage
scenario is used in class-VI well permitting to determine the extent
of the differential pressure front covering an area within which
differential pressures exceed a critical differential pressure suffi-
cient in magnitude to force fluids from the injection zone into the

USDW via an open-wellbore conceptual model. The calculated crit-
ical differential pressure for open conduit flow from the injection
zone upwards towards the USDW is a function of temperature and
salinity variations (Birkholzer et al., 2011), and thus in an injection

dx.doi.org/10.1016/j.ijggc.2017.02.003
http://www.sciencedirect.com/science/journal/17505836
http://www.elsevier.com/locate/ijggc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijggc.2017.02.003&domain=pdf
mailto:ERWoodburn@lbl.gov
dx.doi.org/10.1016/j.ijggc.2017.02.003
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eservoir with relatively low-salinity brine, even small pressure
ncreases at several kilometers distance from the injection loca-
ion may  result in USDW leakage via a potential open-wellbore.
he AoR calculated using the proposed method by the US EPA’s
lass-VI regulation (US EPA, 2013) is arguably over-conservative, as
pen-wellbores are an extreme risk scenario, and may  not be a rep-
esentative characterization of more likely wellbore leakage risks
uch as leakage in and around the damage zones of plugged and
bandoned wells (Celia et al., 2004). As pointed out by Birkholzer
t al. (2014), the presence of thief zones (i.e. brine-bearing inter-
ediate layers between the USDW and the injection reservoir) can

revent brine leakage into the USDW by laterally mitigating the
ertical flow of brine through and around the wellbore casing. Also,
he inherent assumption of a hydrostatic equilibrium between the
njection reservoir and the USDW in the US EPA’s suggested method
f the critical pressure calculation may  not be valid in some reser-
oir systems (US EPA, 2013, p. 42; Oldenburg et al., 2016), requiring
he development of more general and robust methods for AoR
elineation.

Birkholzer et al. (2014) presented an alternative, tiered AoR
ethodology which differentiates GCS leakage risks by constituent

CO2 or displaced brine from the injection reservoir) and the type
f leakage pathway (plugged and abandoned or open wellbores).
hey proposed a three-tier AoR system to differentiate these types
f risks. The first tier of AoR is defined by the spatial extent over
hich the CO2 plume exists, and CO2 leakage could occur. Similarly,

 second tier of AoR is defined by the spatial extent over which the
ressure front is sufficiently large enough to result in brine leakage

nto the USDW via open-boreholes (i.e. the proposed method in the
S EPA’s class-VI regulation). Finally, a third tier of AoR is defined
s the intermediate area between Tier 1 and 2 where brine leakage
ould occur via plugged and abandoned (P&A) wellbores. The spa-
ial extent of Tier 2 AoR can be estimated via simple analytical and
emi-analytical equations and some knowledge of the initial fluid
ressure in the USDW and injection zone, density and temperature
ariations, and depth between the USDW and injection reservoir
see US EPA, 2013; Nicot et al., 2008; Birkholzer et al., 2011). As
hown in Fig. 1a, estimating the spatial extents of AoR Tiers 1 and 2
s fairly straightforward (provided that reliable predictions of future
O2 migration and reservoir pressurization are available) whereas

 risk-driven methodology to determine the spatial extent of the
ier 3 AoR has yet to be developed.

Here we present a methodology that appropriately differenti-
tes the risks related to geologic carbon storage while providing
n approach to quantify the spatial extents of brine leakage risk
hrough P&A wells. This approach also considers the substantial
ncertainty due to varying wellbore hydraulic properties along the

eakage pathway. Because the area where brine leakage through
&A wells could occur is likely expansive in spatial extent, the
resented methodology incorporates a way to determine how risk
volves as a function of lag distance from the injection well, thus
he term “risk maps.” It also integrates time as a dimension in the

ethodology, allowing for risk assessors and other stakeholders
o determine not only the spatial but also the temporal evolution
f risk. The concept of spatially distributed risk has been applied

n a number of different disciplines such as the spread of inva-
ive species (e.g. Hulme, 2009; Venette et al., 2010), the spread
f diseases (e.g. Moffett et al., 2007; Boender et al., 2007), and for
atural hazards (e.g. Gaull et al., 1990; Douglas, 2007). The pre-
ented method of generating risk maps is flexible in techniques
sed (numerical versus analytical) and is computationally very
fficient, stemming from probability theory rather than compu-

ationally expensive Monte Carlo simulations. While advances in
uasi-Monte Carlo and Latin Hypercube Sampling have recently
een made in the realm of CO2 storage to greatly reduce computa-
ional demands in some applications (e.g. Hou et al., 2016; Pawar
f Greenhouse Gas Control 59 (2017) 99–109

et al., 2016), the computational efficiency of our approach allows
for higher fidelity models and more complexity to be integrated
into the risk assessment framework. Lastly, although we present
the probabilistic methodology applied to the assessment of brine
leakage via P&A wells, the same set of steps in the risk map  pro-
cedure may  be used to assess both CO2 leakage and brine leakage
via open-borehole wells. It may  also be applied to assess leakage
where reservoir conditions prior to injection are not in equilibrium.

2. Construction of risk maps: methodology

Fig. 1b shows the conceptual model used to generate risk maps
for brine leakage via P&A wells. CO2 is injected beneath a deep,
low permeability caprock layer into an injection reservoir which
leaky wells may  penetrate. In the region between Tier 1 and Tier
2 AoR, the two  greatest sources of uncertainty are assumed to be
the unknown location of the leaky well and the leaky well’s per-
meability, which can range over several orders of magnitudes. The
first step in the calculation of a risk map used to define Tier 3
AoR is to determine leakage at a discrete number of lag distances
between Tiers 1 and 2. In Fig. 1b, this is shown as example leaky
wells labeled W1, W2, and W3. These can be thought of as the “sam-
pled” leaky well locations, where the calculations are performed.
While this method can be applied for complex anisotropic and het-
erogeneous systems, if the assumption of homogeneous, isotropic
layers is made (i.e. that the USDW, thief and caprock zones, and
injection reservoir do not contain significant heterogeneity below
the strata-scale) then calculations only need to be performed along
one direction, where the leaky well location increases as a function
of distance from the injection well. With these assumptions, a radial
extrapolation can then be performed in the x-y plane. In the exam-
ple shown in Fig. 1b, leakage at well W1 is equivalent to leakage at
well W4. Then, leakage at well W5 can be interpolated from wells
W1 and W2. As described below, leakage amounts at the discrete
leaky well locations (e.g. W1, W2, W3 in Fig. 1) are used to quantify
the uncertainty of P&A leakage as a function of distance from the
injection well. Note that the topic of well interference where mul-
tiple wells may  be leaking simultaneously is not considered here,
and is the topic of future work.

2.1. Simulations

As shown in Fig. 2, the first step of the risk map  methodology
begins with the calculation of brine leakage through P&A wells
as a function of time and at increasing distances away from the
injection. This can be solved numerically, or if density differences
are neglected, with analytical methods. Once discrete lag locations
are selected, brine leakage is calculated over a range of effective
well permeabilities, where the permeability of the well does not
vary in the vertical direction. Unlike computationally expensive
Monte Carlo simulations that would randomly sample hundreds or
more of effective well permeabilities for each location, the risk map
methodology only requires data for a small and discrete number of
effective well permeability values for each location. For example, a
typical risk map  calculation with simple homogenous and isotropic
layers would only require on the order of tens of leaky well loca-
tions and tens of permeability values, typically with less than 100
total simulations. As further described in Section 2.3, a probabilistic
theory approach other than Monte Carlo simulations is used here
to alleviate the need for additional computations in this step.

From Step 1, a number of output metrics can be compared. To

assess the risk to potable drinking water resources, two  practical
parameters for analysis are the volume and the area of groundwater
impacted by leaky wells. For sake of terminology, hereafter we will
refer to the volume or area of impacted water as the “parameter of
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ig. 1. a) Schematic of the three tiers of AoR described by Birkholzer et al., 2014; b)
ethodology.

nterest”. Consistent with a “no-impact” regulation, if brine leakage
nto the USDW causes the parameter of interest to be greater than
hanges that would be observed due to the natural variability of the
ystem, there is non-negligible risk and action (such as decontami-
ation efforts or a cease of injection) must occur (Carroll et al., 2014;
ast et al., 2016; Xiao et al., 2016). An alternative to the no-impact
egulation is based on the EPA’s secondary Maximum Contami-
ant Level (MCL) limits for groundwater concentrations. For total

issolved solids, water with an aqueous concentration over 500
mg/L) pose adverse water quality properties such as a salty taste,
rregular color, and the potential for staining. We  define risk in the
SDW to be non-zero if the parameter of interest exceeds either
ple leaky well points sampled (W1, W2, W3) and interpolated (W4, W5) in risk map

of these thresholds (i.e. the no-impact or MCL), but of course any
other reasonable thresholds could be selected instead. The param-
eter of interest is then assessed as a function of the following:
distance from the injection well, permeability of the well, and time.
Of specific importance is the relationship between the parameter
of interest as a function of well permeability, as discussed in the
following section.
2.2. Determination of parameter distributions

The relationship between the parameter of interest and well
permeability (kw) will be specific to a certain distance from the
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ig. 2. Schematic of the four steps required in the risk map  methodology using the fu
f  time.

njection well as imposed in Step 1 of the risk map  methodology.
s shown in Fig. 2 (Step 1), leakage rates and the subsequent vol-
mes of impacted water at n wells between AoR 1 and 2 were
alculated as a function of time. Using the impacted volume of
ater (Volimp) as an example of the parameter of interest, the rela-

ionship between Volimp and kw is fit to a function at each lag
istance from the injection well and at each point in time (see Fig. 2
tep 2). The function Volimp (kw) is required to be monotonic and
nvertible. As shown in Section 5, our numerical results from the
oupled reservoir-USDW system indicate that Volimp as a function
f kw follows a clear, monotonically increasing trend which can be
athematically represented by simple empirical functions. As one

xample, we selected a Gaussian type function satisfying mono-
onicity and invertibility. The method also requires knowledge of
he probability distribution function for kw . Unfortunately, field

easurements of effective permeabilities along P&A wells are very
imited; measured values reported from field studies vary between
0−15 (m2)–10−12 (m2) (e.g. Crow et al., 2010; Duguid et al., 2011,
013; Gasda et al., 2013). Additionally, there are also only a sparse
umber of studies in the literature that present frequency distri-
utions for effective well permeabilities (e.g., Nordbotten et al.,
009; Celia et al., 2011; Checkai et al., 2013), generally represented
y using lognormal or bi-lognormal frequency distribution func-
ions. The effective well permeability ranges in these studies were
nferred based on soft data such as well construction characteris-
ics, drilling time (e.g., Watson and Bachu, 2008, 2009; Celia et al.,
011) as well as pressure-time data in annulus and flow rate mea-

urements in oil/gas wells (e.g., Checkai et al., 2013). A strength
f the risk map  methodology presented here is that it takes into
ccount the uncertainty related to the distribution of kw .
ns of a random variable approach. Note that this procedure is repeated as a function

2.3. Generation of probability distribution of parameter of
interest

Step 3 of the risk map  methodology is to obtain the spatially-
dependent probability of the parameter of interest (following the
example in Fig. 2, Vimp). To do so, we  propose an alternative to the
Monte Carlo-based approach based on a probability theory. The
functions of a random variable method can be used to obtain a
cumulative probability of a continuous random variable based on
the relationship between that variable and another random vari-
able of which the probability distribution function is known. Stated
more formally for Tier 3 AoR, if kw is a continuous random vari-
able with probability density fkw (kw) and the relationship between
Volimp and kw can be described by a continuous, increasing function
of kw defined by:

Vimp=u(kw) (1)

and if this function is invertible, then:

kw = v(Volimp) (2)

and the probability density function for Volimp based on fkw (kw) is
given by:

fVolimp (Volimp) = fkw (v(Volimp)) × |v′(Volimp)| (3)

Then, the cumulative probability distribution can be expressed as:

F(Volimp) =
∫ Volimp

fVolimp (�)d� (4)

0

Eq. (4) represents the probability that the impacted volume of the
USDW is less than or equal to Volimp, where � is a dummy  (or a
numeric proxy stand-in) variable.
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Table 1
Numerical simulation parameters for example demonstration.

Parameter Value(s) Units

Spatial Extent in the x, y,
and z Directions
(Respectively)

75, 50, 1.12 (km)

Domain Porosity 0.2 (−)
Permeability of Reservoir 10−12 (m2)
Permeability of Caprock 10−18 (m2)
Permeability of USDW 10−12 (m2)
CO2 Injection Rate 10,000 (T/d)
Equivalent Brine Injection Rate 1.46 × 107 (kg/d)
CO2 Density 819 (kg/m3)
Brine Density 1195 (kg/m3)
Leaky Well Permeability Values 10−8, 10−9, 10−10, 10−11, 10−12, 10−13 (m2)
E.R. Siirila-Woodburn et al. / International Jou

By repeating the above steps for each lag and as a function of
ime, the spatial probability of exceeding the parameter of inter-
st is determined (see Fig. 2, Step 3). Then, by setting a threshold
f acceptable risk, such as zero contamination or a small, accept-
ble volume of impacted water, probabilities can be mapped onto
n x-y space, thereby generating a “risk map.” As shown in Fig. 2
tep 4, these maps are descriptions of the probability of exceed-
ng a certain threshold of Volimp (i.e., equal to 1–F(Volimp)) based on
he uncertainty stemming from kw . Because these maps are proba-
ilistic in nature and can show how a risk profile evolves over time,
heir use in site selection, monitoring, and potential remediation
s very valuable. A demonstration of the four steps in the risk map

ethodology is outlined in Section 3, verified with another method
n Section 4, and discussed in Section 5.

. Example demonstration

A hypothetical CO2 injection site where brine leakage through
&A wellbores may  occur is used to demonstrate the use of risk
aps in Tier 3 AoR. To account for density driven flow due to the

nfluence of brine, numerical simulations are performed with an
queous variable density and viscosity numerical simulator. Since
ur focus is on brine leakage risks in areas beyond the CO2 plume
one (Tier 1, Fig. 1a), a single-phase flow simulator is used to rep-
esent CO2 injection by an equivalent volume of brine. By doing so,
ressure perturbations and brine leakage phenomena in leaky wells
eyond the Tier 1 zones are modeled without taking into account
he local two-phase flow processes, as has been done and justi-
ed in earlier studies (Nicot et al., 2008; Cihan et al., 2011). The
otential for CO2 leakage to occur is restrained to an area encom-
assing Tier 1 only, which can be evaluated separately using a
wo-phase flow simulator without the computational demands of
he wellbore brine leakage simulation. Three-dimensional numeri-
al simulations are performed using an in-house code, which solves
he continuity and advection diffusion equations for a single-phase
inary mixture of NaCl-H2O based on a finite volume method. Prop-
rties of the mixture (compressibility, density and viscosity) are
omputed as a function of salt mass fraction, pressure and tem-
erature, using the correlations developed by Spivey et al. (2004)
nd Phillips et al. (1981). Static spatial temperature variation is
ccounted for with depth, but dynamic heat flow is not simulated.
his code has been verified by analytical and numerical simulations,
nd has also been shown to represent experimental observations
easonably well under ambient conditions for brine flow in labora-
ory tests (Agartan et al., 2017).

Parameterization of the different system components for a
ypothetical, yet realistic coupled GCS system (including the reser-
oir, caprock, USDW, and leaky well) is outlined below. The
imulated domain consists of a 60 (m)  thick storage reservoir over-
ain by a 1025 (m)  thick low-permeability caprock and a 35 (m)
hick fully saturated USDW. The spatial extent of the fully coupled
ystem is 75 (km) in the x-direction, 50 (km) in the y-direction, and
.12 (km) in the z-direction. Finer cell-discretization with less than
.5 (m)  grid size is used near the injection and leaky well locations,
ith larger cells away from the wells to accommodate the large

patial extents in the x and y directions. Fig. 3 shows an example
omain discretization for a leaky well location at x = 5 (km). Vertical
ell discretization is also shown in Fig. 3 (right), which is constant
or all simulations. Table 1 details the hydrologic parameters of
ach unit of the domain. The storage reservoir is characterized by

 background salinity of 1195 (kg/m3), the USDW by zero salinity,

nd the caprock zone between the reservoir and the USDW of var-
ed salinity decreasing linearly from the top of the reservoir to the
ottom of the USDW. Temperature follows a geothermal gradient
f 25 ◦C per km (see Table 1). For all simulations, CO2 is injected
Distance Between Leaky Wells 2 (km)
Land Surface Temperature 20 ◦C

into the storage reservoir via a single well at a rate of 2 (Mt/y) for
30 years (see Table 1 for parameterization used to calculate brine
equivalent injection). The location of the CO2 injection well into the
reservoir formation 1060 (m)  beneath the land surface is constant
in all simulations (see Fig. 3). Brine leakage into the USDW via P&A
wellbores is tracked as a function of time for 200 years (including
injection time) at ten increasing lag distances between the injection
well and the leaky well. Leaky wells are spaced laterally away from
the injection well in 2 (km) increments in the x-direction along
one line in the y-direction. Following the notation in Fig. 3, leaky
wells are located at x-W1 = 5 km,  x-W2 = 7 km,  . . .,  x-W10 = 23 km
and y-W1–10 = 0 km in all simulations.

As described in Section 2.1, unlike computationally expensive
Monte Carlo simulations, this methodology only requires simu-
lations for a small set of discrete intervals of well permeability.
In this demonstration, leaky well permeability was varied from
10−8 (m2) to 10−13 (m2) in one-order-of-magnitude increments.
Thus, only a total of 60 simulations (10 leaky well locations and 6
leaky well permeability values) are needed for each demonstration
of the methodology. The discrete leaky well permeability values
and increments should be selected with some knowledge of the
shape and distribution of the well permeability probability distri-
bution. For example, a complexly-shaped probability distribution
function may  require additional discrete leaky well permeability
values, and at smaller intervals. Given that this work is focused on
describing the theory of the risk map  methodology, we  reserve the
sensitivity of well permeability selection for a future study. No-flow
boundaries cover all external faces of the domain so that a gradient
does not exist, and the simulation begins injection from hydrostatic
conditions.

For demonstration purposes, we chose to use the impacted vol-
ume  of USDW water, Volimp, as the parameter of interest, although
the area of impacted USDW or a similar metric is equally as valid or
possible. In the demonstration, Volimp is defined as any pore space
volume above the US EPA’s secondary MCL  for total dissolved solids,
500 (mg/L), calculated at each time by summing cell-volumes above
this threshold, multiplied by the USDW porosity. From the results
of the numerical simulations, the relationship between Volimp and
kw is fit to a unit-step Gaussian function with high accuracy, as
discussed in Section 5.2. A hypothetical distribution of well perme-
ability is assumed to follow a generalized lognormal distribution
(Diamond and Dolch, 1972), which is represented by:

fkw (kw) = 1√
2 � ln �

exp

[
−
(

ln(k′/�)√
2 ln �

)2
]

(5)
where k′ = (kw − kmin)(kmax − kmin)/(kmax − kw), and � and � are the
statistical parameters characterizing the probability distribution of
k′. The cumulative distribution function for kw can be expressed as:



104 E.R. Siirila-Woodburn et al. / International Journal of Greenhouse Gas Control 59 (2017) 99–109

F  leaky
c

)

)

�
k
m
c
p
h

4

d
C
u
c
C
f

w
2
t
s
r
C
T
t
e
1
t
m
t
s
i
p
1
a

ig. 3. Spatial extents and example discretization of numerical model domain for
onstant  for all simulations.

Fkw (kw) = 1√
2�ln�

∫ kmax

kw

exp

[
−
(

lnk′(�) − ln�√
2ln�

)2
]

(kmax − kmin

(kmax − �)(� − kmin)d� (6

In this demonstration example, we selected � = 10−12 (m2),
 = 2.8, and lower and upper cut-off values of kmin = 10−22 (m2) and
max = 10−9 (m2), respectively. The generalized lognormal well per-
eability distribution used in this demonstration is shown as a

umulative distribution function in Fig. 4. Sensitivity of the well
ermeability distribution on the risk map  evolution is not discussed
ere, and is the subject for future work.

. Methodology verification

Using the conceptual model of the demonstration example
escribed in Section 3, a semi-analytical mathematical model by
ihan et al. (2011) is used to compare the generated risk map  results
sing 1) the functions of a random variable methodology with dis-
rete sub-sample of well permeability simulations and 2) Monte
arlo simulations for 100 realizations of well permeability values

or each lag distance.
Fig. 5 shows a 1D transect of the probabilistic risk map  obtained

ith the two methods a) at the end of injection (30 y) and b) at
00 (y). These 1D transects of the risk map  reflect one radial direc-
ion along the 2D risk map, as shown in Fig. 2, Step 4. Symbols
how results obtained with Monte Carlo simulations and lines show
esults obtained with the functions of a random variable method.
olors denote different threshold (T) volumes of Vimp, ranging from

 = 100 to 103 (m3). As shown in Fig. 5, the probabilities as a func-
ion of distance trends are in agreement for the two  solutions,
specially at the higher and lower threshold values (T = 103 and
00 (m3), respectively), justifying the use of the more computa-
ionally efficient functions of a random variable method in the risk

ap  approach. This approach’s computational efficiency compared
o the Monte Carlo simulations comes from the need to conduct a
ignificantly less number of forward simulations to generate the

mpacted volume of USDW water with brine leakage. For the sim-
le example here, the Monte Carlo simulation-based method uses
000 simulations in total, while the functions of a random vari-
ble method uses only 70 simulations. For even more complex
 well distance 1 (leaky well at X = 5 km). Note the location of the injection well is

systems such as those with highly heterogeneous reservoir con-
ditions, leakage calculations may  need to be conducted for many
more potential leakage paths (spatially) in order to generate risk
map  contours at a sufficiently high resolution. In most cases uncer-
tainty related to the properties of the reservoir system may  require
multiple realizations of the USDW and/or reservoir systems via
geostatistical methods. In such a case, the number of simulations
required can drastically increase the calculation’s computational
expense. Thus, the possibility of using higher fidelity simulators in
conjunction with traditional Monte Carlo simulations to determine
wellbore leakage can quickly become prohibitive for the generation
of risk maps, making the functions of a random variable approach
an attractive alternative.

5. Results and discussion

5.1. Mass flow rate into the USDW and Vimp as a function of time

For the 60 numerical simulations described in Section 3, ver-
tical mass flow rates in the leaky well at the interface between
the caprock unit and the USDW are tracked as a function of time
throughout the 200 (y) simulation. While the parameter of interest
in this demonstration is the volume of impacted USDW water above
the 500 (mg/L) threshold, information concerning mass flow rates
when significant brine is leaking into the USDW may  be impor-
tant in terms of monitoring and risk management schemes. In this
demonstration (and at this injection rate of 2 Mt/y) leakage rates
into the USDW are only significant between approximately simula-
tion years 15 and 34. Fig. 6 shows example vertical mass flow rates
for the well permeability equal to 10−9 (m2) for all leaky well lag
distances, 1–10. This result is important because GCS CO2 injections
resulting in USDW contamination of brine may  not be detectable
for substantial periods of time, in this example for over one or
two decades after the onset of injection. Additionally, after injec-
tion ceased at year 30, leakage continued to be substantial for the
following 3–4 (y), depending on the distance from the injection
well.

Although mass leakage rates are only detectable during a
short window of the simulation, once brine enters the USDW a

density-dependent plume advects and disperses over time. In this
demonstration, the brine plume in the USDW continues to grow
past the end of injection at 30 (y) for all simulations. The volume
of impacted water, Vimp, grows throughout the entire duration of
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ig. 5. 1D transects of probabilistic risk maps comparing results obtained with the 

)  the end of injection (30 y) and b) at 200 (y).

he 200 (y) simulation for the higher leaky well permeabilities (see
ig. 7a) but decreases over time towards zero for lower leaky well
ermeabilities (see Fig. 7b). The latter is a result of relatively small
uantities of brine leakage into the USDW when the leaky well per-
eability is low (note the y-axis differences in Fig. 7a) and b) and

he subsequent dilution of the brine plume with non-saline USDW
ater. It is interesting to note that for even small quantities of Vimp

such as when the leaky well permeability is low) this dilution fac-
or may  require several decades or in some cases over a century
o return the USDW back to pre-injection conditions (see Fig. 7b).
ecall that the simulated USDW aquifer is not subject to a flow
radient, one contributing factor to the occurrence of these long
ilution times.

.2. Functional fit of Volimp and kwell

As part of Step 2 in the risk map  methodology (Fig. 2), Volimp is
xpressed as a function of kw for each leaky well lag distance. The
mpacted volume of the aquifer as a function of the well perme-

bility was found to follow the following distribution for most lag
istances and for most times:

Volimp(kw) = exp(a)
2

erfc
[
−(log10kw − b)/c

]
� (lo
ons of a random variable solution (lines) and the Monte Carlo solution (symbols) at

g10kw − d), kmin ≤ kw ≤ kmax (7)

where a, b, c, and d are parameters determined by fitting Eq. (7)
to the simulated Volimp values. � represents the unit step func-
tion, equal to 1 for log10 kw ≥ d, or else equal to 0. The coefficient of
determination (R2) for the functional fit of Volimp and kw using Eq.
(7) is very close to unity ( > 0.99) for nearly all simulations, ensur-
ing an excellent fit. An example of this optimized functional fit is
shown in Fig. 8 for one point in time, at the end of the 30 (y) injec-
tion. Vimp results from the simulation are shown as symbols and
the optimized functional fits are shown as solid lines for different
distances from injection.

5.3. Spatially-dependent probability distributions of Volimp

The third step of the risk map  methodology (see Fig. 2) is to uti-
lize the theory of functions of a random variable to generate the
likelihood of exceeding Volimp for the different leaky well locations.
Following Eqs. (1)–(4), cumulative distribution functions (CDFs) for
each leaky well lag distance were calculated at every point in time.

Fig. 9 shows an example CDF of Vimp for different leaky well dis-
tances at the end of injection (30 y). As expected, wells closer to the
injection point (e.g. well W1) exhibit a higher probability of exceed-
ing a given value of impacted water when compared to wells farther
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ig. 9. Example CDF of impacted USDW water volume for different leaky well dis-
ances at the end of injection (30 y).

rom the injection point (e.g. well W10). In the example shown in
ig. 9, the probability of exceeding a threshold equal to 102 (m3)
f contaminated water for leakage at well W10 is less than 8%; in
ontrast, the probability of exceeding the same threshold at well

1 is approximately 95%.
An alternative way to interpret Fig. 9 is that for a given likeli-

ood of contamination, the impacted volume of USDW water can
e predicted depending on the distance from the injection well.
or example, at a distance of 23 (km) away from injection a 50%
hance of contamination would result in less than 20 (m3) impacted
ater but that it’s just as likely that at a distance of 5 (km) from

njection, impacted water would be over two orders of magnitude
arger in volume. These types of assessment are extremely useful
or site managers who can quantitatively assess the likelihood and
uantity of contamination based on different acceptable degrees of
ontamination, distance from the injection site, and as a function
f time.

.4. Probabilistic risk maps

The final step in the risk methodology process is the visual rep-
esentations of risk probabilities evolving over distance and time
Step 4, Fig. 2). Risk maps are useful in both determining and
eveloping an understanding of the given site’s risk profile. In this
emonstration, probabilities from the CDFs generated in Section
.3 were extracted and plotted as a function of distance in Fig. 10.
dditionally, risk maps are shown for times before injection ceases

15 y) and post-injection (45 and 200 y). If a value of acceptable con-
amination is determined to be “de-minimis”, or an acceptable risk
oo low of societal concern, this value can be used as the Vimp thresh-

ld. Fig. 10 follows the example from Section 5.3 of a Vimp threshold
quivalent to T = 102 (m3). During early times, results show that
isk is low since the probability of Vimp exceeding the threshold

 = 102 (m3) is less than 0.2 (−) for most of the Tier 3 areas calculated
f Greenhouse Gas Control 59 (2017) 99–109 107

in this demonstration. As shown in Fig. 10, the radial distances from
injection between 5 and 23 (km) were chosen as spatial limits given
that the range of risk values varied most significantly over these
distances. As the injection continues on and leakage continues (see
Fig. 6), risk increases closest to the injection well. Post-injection, the
probability of exceeding the threshold T = 102 (m3) becomes larger,
and finally at 200 (y) is nearly certain, P(Vimp > T) = 1, for all lag dis-
tances from the injection well. Risk maps as shown in Fig. 10 can be
repeated for several different values of T and then compared. For
radially symmetric systems, risk maps are most easily compared as
an abstraction in one dimension, as already done in the verification
exercise shown in Fig. 5.

Fig. 11 shows the same temporal and spatial evolution of the risk
profile shown in Fig. 10 along a 1-D transect of the risk map  for var-
ious values of T ranging from 100 (m3) to 104 (m3). The associated
probabilities of exceeding low T values such as T = 100 (m3) are ini-
tially less than unity at early times (Fig. 11a) but become nearly
certain as time increases (Fig. 11b–d). Similarly, the associated
probabilities of exceeding higher values of T such as T = 104 (m3)
are initially zero but become non-zero as the USDW brine plume
grows over time. For example, at 45 (y) (Fig. 11c) the probability
of exceeding the T = 104 (m3) threshold is small (less than 5%) for
distances 5–8 (km) from the injection well. Over the course of an
additional 155 (y) the probability of exceeding this threshold grows
to distances of 5–17 (km) from the injection well, with likelihoods
as high as 20% at the shortest lag distances (Fig. 11d).

6. Conclusions

An efficient new methodology to assess the spatial distribution
pattern of leakage risk associated with Geologic Carbon Storage was
presented and verified. A demonstration assessing brine leakage
through plugged and abandoned wellbores, a significant contrib-
utor to the uncertainty of the risk profile in Geologic Carbon
Storage, was  shown. The result of this methodology are quantita-
tive “risk maps”, showing the spatial distributions of brine leakage
risk through plugged and abandoned wells defined with no-impact
or Maximum Contaminant Level (MCL) thresholds in underground
sources of drinking water (USDWs). These maps utilized proba-
bility theory without the use of computationally expensive Monte
Carlo simulations while providing probabilities of risk to inform site
selection and monitoring during and post-injection, conducive to
the US EPA’s permitting of class-VI wells and the concept of an “area
of review”. Results show that by using this methodology, the prob-
abilities of exceeding a given impacted volume or area of USDW
water can be compared as a function of distance from the injection,
time, and different thresholds of water quality.

Future work includes a comparison of different conceptual
models of the reservoir and USDW system, such as the inclusion
(and potentially subsequent reduction) of risk given intermediate
brine-bearing formations (i.e., thief zones) in between the stor-
age reservoir and the USDW. Other topics of future work include:
the sensitivity of the well permeability distribution on risk map
evolution such as the parameterization affecting the well perme-
ability distribution shape and uncertainty, the effect of multiple
leaky wells opposed to a single one and the impact on well inter-
ference, and the impact of risk mitigation on the risk map  profile
such as the repair of an abandoned well after leakage was  detected.
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