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Abstract

Explanation plays an important role in acquiring knowledge, solving problems, and establishing the
credibility of conclusions. One approach to gaining explanatory competence is to acquire proofs of the
domain inference rules used during problem solving. Acquiring proofs enables a system to strengthen
an imperfect theory by connecting unexplained rules to the underlying principles and tacit assump-
tions that justify their use. This paper formalizes the task of improving explanatory competence
through acquiring proofs of domain inference rules and describes KI, a knowledge acquisition tool
that discovers proofs of rules as it integrates new information into a knowledge base. KI's learning
method includes techniques for controlling the search for proofs and evaluating multiple explanations
of a proposition to determine when they can be transformed into proofs of domain inference rules.

1. Introduction

Knowledge-based systems must be capable of explaining their conclusions. One approach
to gaining explanatory competence is to acquire proofs of the domain inference rules used during
problem solving. Possessing proofs of rules used during problem solving has several advantages.
First, a rule’s proofs identify support for the rule, that is, the domain principles that justify the
rule’s correctness. Second, a rule’s proofs explicate the tacit assumptions being made when the
rule is used. By identifying the underlying principles and assumptions, proofs of inference rules
enable the system to justify and qualify its conclusions to the user [Swar83], guide knowledge
refinement [SMIT85], and, in the case of default reasoning when assumptions are not met, improve
problem solving [STaL77]. This paper formalizes the task of improving explanatory competence
through acquiring proofs and describes a system that discovers proofs of domain inference rules as
it integrates new information into a knowledge base.

Acquiring proofs strengthens an imperfect theory when new information enables proving
previously unsupported rules. Initially, a knowledge base (or person) often includes tentative, default
rules such as “birds can fly” or “leaves are green.” However, as the knowledge base is extended,
and competence in the domain improves, these default rules may be annotated with deeper causal
support when explanations of the rules are discovered. Gagne [GAGN85] illustrates this behavior in
people with the following example:

A student is told In vitro erperiments show that Vitamin C increases the formation of white blood
cells. The student has prior knowledge that white blood cells destroy viruses, and intuitively knows
that Vitamin C is taken to fight colds, which are caused by viruses. The student realizes that Vitamin
C is capable of fighting colds because it stimulates the creation of white blood cells, which subsequently
kill cold-causing viruses.

The student identified a causal explanation of an existing belief that was neither stated in the new
information nor previously known. Having discovered this explanation the student possesses greater
insight into why Vitamin C is taken to fight colds. For example, the student could now explain why
Vitamin C is not taken in response to similar symptoms having causes unrelated to viruses (e.g.,
allergies).

! Support for this research is provided by the Air Force Human Resources Laboratory under RICIS
grant ET. 14.
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This paper describes research aimed at modeling this learning behavior. In Section 2, the
learning task of proof acquisition is formulated, and a terminating, although incomplete, method
of performing this task is developed in Section 3. Section 4 describes KI, a knowledge acquisition
tool that implements this method to discover proofs of domain inference rules as it integrates new
information into a knowledge base.

2. The Learning Task

Proofs of an inference rule identify sentences in a theory that ensure its truth. However, the
contents of logical proofs are not restricted to sentences having explanatory (e.g., causal) significance.
For example, a proof of a rule could include an arbitrary number of trivial tautologies (e.g., p = p)
not relevant to the truth of the rule. Therefore, a distinction must be made between the set of all
logical proofs and proofs acceptable as explanations. Let e be a predicate on proofs such that e(p) is
satisfied exactly when proof p is acceptable as an explanation. For example, e might restrict proof
steps to be applications of modus ponens to a particular subset of rules. Let R be a domain theory
and r, be a sentence in R. The notation p. denotes a proof that satisfies e, and (R - r;) Fpe 7
denotes proof p. is a derivation of r, from the theory (R - r;).

Each proof of a rule identifies a set of underlying principles and assumptions that justify the
rule’s use; different proofs may elucidate different principles and assumptions. Therefore, the goal
of acquiring proofs of rules for explanation includes identifying every p. for each rule rather than
any single p.. This learning task may be characterized as the following information processing task:

Given: a rule set R
a predicate e on proofs

Find: for each r; € R
the proof set Py = {p. | (R - ri) Fpe i}

Unfortunately, when the language used to encode rules is as expressive as first order logic (FOL)
this task is not solvable. However, this task becomes decidable when the following restrictions are
adopted:

Let R. be the subset of R including only rules that may be represented as
horn clauses without functions.

1) U., the universe of discourse for R., is a finite subset of U, the universe
of discourse for R.

2) e admits only proofs containing non-cyclic applications of rules in R..

These restrictions enable the existence of a terminating method by sacrificing completeness. In-
tuitively, decidability is achieved by restricting the universe of discourse to a finite set. A theory
equivalent to R, can be constructed by replacing each r; € R, with the set of ground implications
that includes every possible binding of the variables in r; to elements of U.. The finiteness of U,
makes such a construction possible. The result is a propositional theory and is therefore decidable.

The restricted learning task may be characterized as:

Given: a rule set R
a predicate e on proofs

Find: for each r; € R
the proof set P; = {p. | (R. - ri) Fpe ri}

While this task is guaranteed to have a terminating solution, the restrictions cannot guarantee
tractability. In practice, solutions cannot be expected to discover all proofs enabled by the restricted
theory. Therefore, solutions must include some mechanism to bias their search for proofs. The next
section describes a method of guiding search for restricted proof acquisition.
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3. Discovering Proofs through Hypothetical Reasoning

One approach to guiding deduction involves separating inference from the process of instan-
tiating quantified formulae [McAL80). Inference is then limited to computing the entailment of a
small but “representative” set of ground propositions. This sections describes a generate and test
search procedure that manipulates a set of ground propositions and implications to guide search for
proofs of rules in R. This search is summarized by the following cycle:

1) generate a hypothetical context: a set of propositions over hypothetical instances of some
small subset variables referenced by rules in R

2) generate all ground explanations (i.e., sequences of deductions) enabled by repeatedly
applying rules in R, to the propositions

3) determine if any resulting explanation can be generalized into a proof of some rule in R

4) extend the context with propositions over new hypothetical instances of variables referenced
by rules in R; goto step 2.

To initiate the search, select a very restricted set of rules called Training; the search will be
biased towards discovering proofs that make use of these rules.? Let Contezt be some small set of
propositions that satisfy every sentence in Training. For example, if Training = {[isa(z Person) &
location(z Austin) = location(z Tezas)]}, then the proposition set {isa(Person; Peraon), location(Person,
Austin), location(Person; Tezas)} satisfies Training.

Second, generate ground explanations enabled by the propositions in Contezt and the rules
in R.. This involves computing all possible deductions by repeatedly applying rules in R, to the
propositions in Contezt (i.e., by exhaustive forward-chaining). While termination is guaranteed,
exhaustive forward-chaining has the potential for exponential combinatorics. However, the rules are
chaining on a very restricted set of instances, so, in practice, restrictions on proof construction will
typically be sufficient to prevent intractable chaining.3

Finally, determine if any resulting explanation can be generalized into a proof of some rule.
This is accomplished using techniques developed for explanation-based learning to generalize and
compile explanations (e.g., [Moon88]). To continue the search for proofs, extend Contezt with
additional hypothetical instances and add some set of propositions on these new instances. Then
repeat the generation and evaluation of explanations as before.

Under this strategy, the search for proofs is controlled by the extensions made to Contezt. One
way to generate hypothetical instances is to instantiate Skolem functions appearing in the rule set
R. For example if isa(Fred Person) is a proposition in Contezt, and [isa(z Person) = mother(z fn;(z)))
1s a rule in R, Person; could be a new hypothetical instance and mother(Fred Person;) a new propo-
sition for Contezxt. Now R, can be extended with the ground implication [isa(Fred Person) =
mother(Fred Person;)]. This enables limited representation in R, of rules from R that involve predi-
cates on functions (e.g., Skolem functions). The next section describes a program that implements
this method and illustrates it with an example.

2 To model learning by discovery, Training can be any subset of R. Alternatively, when existing
knowledge is being extended with new information, it is natural to prefer discovering explanations

enabled by the new information. In this context, Training is the set of axioms being added to R.
3 To guarantee tractability, additional restrictions can be imposed on proof construction, such as a
bound on the execution time allotted to compute explanations.
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Figure 1: New information and the initial context

1a) New Information Provided to KI 1b) Propositions satisfying the new information
[V x isa(x Chloroplast) Chloropla
= isa
3 y isa(y Chlorophyll) & hasPart(x y)] Chiorophyll  Coroplast
isa hasPart
Chlorophyll

4. Acquiring Proofs During Knowledge Integration

KI is an interactive knowledge-acquisition tool being developed to help knowledge engineers
integrate new information into the Botany Knowledge Base [MURR88, PorT88). This knowledge
base currently contains over four thousand frames representing plant anatomy, physiology, and
development; it has been constructed in collaboration with MCC’s CYC project [LENA89].

This section describes an implemented example of KI extending the Botany Knowledge Base
with new information relating chloroplasts and chlorophyll. The knowledge base already contains
extensive partonomic knowledge of plants and some knowledge of photosynthetic pigments, such as
chlorophyll. A knowledge engineer wishes to extend the knowledge base to represent the fact that
chlorophyll is a constituent part of chloroplasts (see Figure 1a). The task of KI is, in general, to
identify interesting consequences of this new information and, in particular, to identify how this
new information can explain existing beliefs. KI's model of knowledge integration comprises three
prominent activities:

1) Recognition: identifying the knowledge relevant to new information

2) Elaboration: applying the expectations provided by relevant knowledge to determine the
consequences of the new information

3) Adaptation: modifying the knowledge base to accommodate the elaborated information

4.1 Recognition

During recognition KI identifies concepts in the knowledge base that are relevant to the new
information. This involves maintaining a learning contezt - a set of propositions about hypothetical
instances of concepts deemed relevant to the new information. When presented with new informa-
tion, KI initializes the context with propositions that satisfy the new rules (e.g., Figure 1b). To
extend the learning context, KI uses views to determine which concepts in the knowledge base,
beyond those explicitly referenced in the context, are relevant.

Views are sets of propositions that interact in some significant way and should therefore be
considered together. Views are created by applying a generic view type to a domain concept. Each
view type is a parameterized semantic net, represented as a set of paths emanating from a root node
and used during knowledge integration as a reminding schema. Applying a view type to a concept
involves binding the concept to the root node and instantiating each path. Figures 2a and b present
an example view type and the view created by applying it to chloroplast.

To extend the learning context, KI identifies the views defined for concepts already contained
in the learning context. Each candidate view is scored with a heuristic measure of relevance: the
percentage of concepts contained in the view that are also contained in the learning context. KI
presents the list of candidate views, ordered by their relevance score, to the knowledge engineer,
who selects one for use.* The set of propositions contained in the selected view are added to the
learning context. This results in a learning context comprising those concepts in the knowledge base
considered most relevant to the new information.

4 Alternatively, an autonomous version of KI selects the view having the highest relevance score.
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Figure 2: An example view and view type

2a) Qua Component 2b) Chloroplast Qua Component
Photosynthetic Cell
PM P"'V hasPart

Chloroplast Cell Nucleus \ Plasma Membrane

hasPart hasPart

Cell Wall
Chlorophyll Stroma
Thylakoid

2c¢) [V s isa(s Chloroplast) = 3 tuvwxyz isa(t Chlorophyll) & hasPart(s t) & isa(u Thylakoid) & hasPart(s u)
& isa(v Stroma) & hasPart(s v) & isa(w Photosynthetic-cell) & partOf(s w)
& isa(x Cell-nucleus) & hasPart(w x) & isa(y Cell-wall) & hasPart(w y)
& isa(z Plasma-membrane) & hasPart(w z))

View type Qua Component identifies two paths emanating from a concept relevant to its role as a part of a physical
structure (the shaded node designates the root concept). Applying this view type to chloroplast identifies the segment
of the knowledge base representing chloroplast as a part of a photosynthetic cell. The path variables may have
multiple bindings (e.g., the chloroplast parts include chlorophyll, stroma, and thylakoid). 2c) expresses in FOL the
inference this view supports.

In addition to adding propositions contained in the selected view to the learning context, Kl
adds the implications that characterize the conditions under which these propositions are assumed
to be true. Whenever the preconditions of a view are satisfied, the propositions contained in the
view are assumed to hold. For example, when the proposition partOf(chloroplast; photosynthetic-cell; )
is added, the following implications are also added:

1) 1isa(chloroplasty chloroplast) = partO f(chloroplasty photosynthetic-celly)
2) isa(photosynthetic-celly photosynthetic-cell) = partO f(chloroplasty photosynthetic-celly)

The first implication follows from view ChloroplastQuaComponent (see Figure 2¢); the second follows
from PhotosyntheticCellQuaStructure (see Rule 6 of Figure 6). Since there is high overlap among views,
many such implications are added to the learning context. This enables limited representation in
R. of rules from R that involve predicates on functions (e.g., Skolem functions). The use of these
implications is often essential for completing proofs of domain inference rules.

4.2 Elaboration

During elaboration KI determines how the new information interacts with the existing know-
ledge within the learning context. Rulesin R, are allowed to exhaustively forward-chain, propagating
the consequences of the training throughout the context. For example, one consequence of chloro-
plasts having chlorophyll is that their color is green. Some of the domain inference rules applicable
to this example are listed in Figure 3a, and the resulting conclusions are presented in Figure 3b.

KI enters a cycle of recognition (i.e., selecting views) and elaboration (i.e., applying inference
rules) that explicates the consequences of the training while searching for new proofs of rules. This
cycle continues until the user intervenes or the relevance scores of all candidate views fall below a
progressive threshold. Figure 4 illustrates the second round of this cycle. The recognition phase
extends the context of Figure 3b with the set of propositions relevant to a photosynthetic cell in its
role as a producer during cell photosynthesis. The elaboration phase propagates the consequences
of the new information throughout the extended context.

4.3 Adaptation

During adaptation KI determines if elaboration has revealed any new proofs of inference rules.
An interesting prerequisite of discovering proofs of rules is that multiple ground explanations for
some proposition must exist. When this occurs, KI determines whether any explanation can be
generalized into a proof of some inference rule.
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Figure 3: Example rules and inferences

3a) Example Inference Rules

1. Rule: @partOf-Preserves-Color
Color may be inferred from the color of the parts

3b) The Elaborated Context

color

—_—— - Cell
[V xyz partOf(x y) & color(x z) = color(y z)) Grny-(- l - e o hasPart
\olor  parof

2. Rule: @Chlorophyllcolor (lor N .

Inheritance rule: Chlorophyll is inherently green I CNoroplast 1 o f’“N“d""‘ Plasrma Me:r’\bnnel

[V x isa(x Chlorophyll) = color(x Green)] pasPart = ~ . Gntains

| contains o) wally

3. Rule: @Leafcolor Chlorophyll1 Stroma 1

Inheritance rule: Leaves are assumed to be green Thylakoid

[V x isa(x Leaf) = color(x Green)]

The dashed arrows indicate propositions inferred during elaboration; subscripts denote category instances (e.g.,
1sa(Chloroplasty Chloroplast)).

Figure 4: Recognition and elaboration during cycle 2

4b) The Elaborated Context
Leaf Photosynthesis 1

4a) Photosynthetic Cell Qua Producer

rod '
:l uoy locition superEvent Light Energy1
af Inputs
Leaf Photosynthesis AT &nsla;u“ Mesophyll
Pmd“"/ e Light Energy l ,SOP ylh Cell Photosynthesis 1 COo21
or ~ roduct
- location nputs @\ soolor QasPart producxrln\ N
~
. Cell Photosynthesis 01 4 ¥ eolor A SeraliSuigard
Leaf Mesophyll product Green = = = = = Photosynthetic Cell1
? bEvent producerln * ‘\color of hasPart
Small Sugar lor ~
TaéKi Reastish Photosynthetic Cell ~ Cell Nucl
g Chloroplast1 BEeusy Plasm Membrane
] = - - w L 4
recepto? hasPart sPart ~ & %
o S 1 contains™ Cell Wall; =~ CoRtans
Chlorophyll Serorma )
Thylakoid 1

Let E be the set of explanations of some proposition, and let r; be the last rule applied
in some explanation e; € E. KI evaluates each alternative explanation in E to determine if it
can be transformed into a proof of r;. First KI uses explanation-based generalization to compute
the maximal generalization of each e; € E-e;. Let ge; be the generalization of explanation e;.
Then KI compares the consequence of ge; to the consequence of r;. When the consequence of
ge; is equivalent to (or subsumes) the consequence of r;, KI searches ge; for sub-explanations
whose weakest preconditions entail the consequence of ge; and are equivalent to (or subsume) the
preconditions of r;; each such sub-explanation constitutes a proof of r;.

In the example, KI's elaboration of the chloroplast training produces several explanations of
the proposition color(Leaf; Green), two of which are presented in Figure 5. Explanation e, involves
a single application of rule r3 whose precondition is isa(z Leaf). Since this is identical to the
preconditions of the generalization of explanation e,, the generalization of e, is a new proof of
@Leafcolor. Note the importance of implications that explain propositions arising from views. As
shown in Figure 6, the views LeafQuaStructure, MesophyllQuaStructure, PhotosyntheticCeliQuaStructure
and ChloroplastQuaStructure all chain together to demonstrate that leaves contain chlorophyll.

This example shows how KI discovers a proof for the existing rule leaves are green while
integrating the new information chloroplasts have chlorophyll. This proof improves the system’s
explanatory competence by revealing the tacit assumptions (e.g., mesophyll contains photosynthetic
cells) and domain principles (e.g., an object’s color is determined by the color of it’s parts) that
justify the rule’s use. For example, the proof provides an answer the query why are leaves green?
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Figure 5: Two explanations of color(leafy, Green)

explanation e; explanation e;
color(Leaf; Green) color(Leaf; Green)
4ra 1sa(Leafy Leaf) 4r1 partOf(Mesophylly Leaf,)

<=4 1sa(Leaf, Leaf)
color(Mesophylly Green)
<1 partOf(Photosynthetic-cell; Mesophyll;)
<rs 130(Mesophylly Mesophyll)
“=rq 1sa(Leafy Leaf)
color( Photosynthetic-celly Green)
<r1 pariOf(Chloroplasty Photosynthetic-celly)
<=rg 19a(Photosynthetic-cell, Photosynthetic-cell)
<5 15a(Mesophylly Mesophyll)
<yq tsa(Leaf; Leaf)
color(Chloroplast; Green)
<r1 partO f(Chlorophylly Chloroplast;)
<7 18a(Chloroplast; Chloroplast)
<,¢ isa(Photosynthetic-celly Photosynthetic-cell)
<=5 1sa(Mesophylly Mesophyll)
&,y 13a(Leaf, Lﬂﬂf)
color(Chlorophylly Green)
<=r3 13a(Chlorophylly Chlorophyll)
<7 18a(Chloroplast; Chloroplast)
4=rg 15a(Photosynthetic-cell; Photosynthetic-cell)
<, 5 19a(Mesophylly Mesophyll)
<r4 isa(Leafy Leaf)

The notation p <=, ¢ denotes p is infered from g by rule 1 (see Figures 3 and 6).

Figure 6: Inferences enabled by views and required for the proof

Rule 4) LeafQuaStructure
[V w isa(w Leafl) = (3 xyz isa(x Mesophyll) & partOf(x w) & isa(y Epidermis) & partOf(y w)
& isa(z Vascular-network) & partOf(z w))]

Rule 5) MesophyliQuaStructure
[V x isa(x Mesophyll) = (3 y isa(x Photosynthetic-cell) & partOf(y x))]

Rule 6) PhotosyntheticCellQuaStructure
[V v isa(v Photosynthetic-cell) = (3 wxyz isa(w Cell-nucleus) & partOf(w v) & isa(x Cell-wall) & partOf(x v)
& isa(y Chloroplast) & partOf(y v) & isa(z Plasma-membrane)
& partOf(z v))]

Rule 7) ChloroplastQuaStructure
[ w isa(w Chloroplast) = (3 xyz isa(x Chlorophyll) & partOf(x w) & isa(y Thylakoid) & partOf(y w)
& isa(z Stroma) & partOf(z w))]

(e.g., leaves are green because they contain chlorophyll). Alternatively, the proof guides dependency-
directed backchaining to identify assumptions that explain why a particular leaf is not green (e.g.,
the leaf’s mesophyll has no photosynthetic cells).

4.4 Strengths, Limitations, and Future Work

KI's approach to knowledge integration involves creating a hypothefical model comprising
concepts relevant to the new information, and then using the model to derive the consequences of
the new information for concepts represented in the model. Reasoning with a single, propositional
model (e.g., a model of a hypothetical leaf), rather than reasoning about entire classes of objects
(e.g., models of all possible leaves) provides greater focus and tractability. However, this prevents
KI from discovering many proofs that alternative models would reveal. Furthermore, KI is currently
not capable of exploring all the alternative, and often mutually-inconsistent, behaviors of a model
that frequently arise during qualitative simulations [Kur87). This prevents KI from discovering
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many proofs that a single model may be capable of revealing under varying assumptions. Future
work should develop methods for guiding the exploration of alternative models and the possible
worlds for a single model.

The inferences completed with the model are not explicitly selected: rules exhaustively
forward-chain. This type of reasoning corresponds to what Johnson-Laird calls implicit inference -
the automatic, seemingly effortless inferences humans make during mundane tasks, such as discourse
comprehension [JoHn83]. The complement of implicit inference is ezplicit inference — the intentional
and conscious reasoning humans perform during problem solving. Currently, KI is not capable
of demonstrating this kind of goal-directed elaboration. Future research must address developing
methods for interleaving these two types of inference.

5. Summary

Explanation plays an important role in a system’s ability to acquire knowledge, solve prob-
lems, and establish the credibility of its conclusions. One approach to gaining explanatory com-
petence is acquiring proofs of the inference rules used during problem solving. Acquiring proofs
enables a system to strengthen an imperfect theory as previously unexplained rules are connected
to the underlying principles and tacit assumptions that justify their use.

KI is a knowledge acquisition tool that strengthens an existing domain theory by discovering
new proofs of inference rules. When new information is provided, KI actively searches for proofs of
existing beliefs that are enabled by the new information. This requires methods for restricting both
the universe of discourse and the use of inference rules that include predicates on functions.

KI exploits a type of domain knowledge called views to precisely manage a context comprising
ground propositions used during the search for proofs. Views are knowledge-base segments composed
of interrelated propositions that should be considered collectively. Each view embodies the use of
functions to create entities over which propositions are asserted. Separating the use of functions to
create entities from the problem of proving theorems enables KI to guide its search for proofs of
domain inference rules.
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