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Quantification of Analyte Concentration in the Single Molecule
Regime Using Convolutional Neural Networks
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ABSTRACT: Single molecule (SM) detection represents the ultimate limit of chemical detection. Over the years, many
experimental techniques have emerged with this capacity. Yet, SM detection and imaging methods produce large spectral data
sets that benefit from chemometric methods. In particular, surface enhanced Raman scattering spectroscopy (SERS), with
extensive applications in biosensing, is demonstrated to be particularly promising because Raman active molecules can be
identified without recognition elements and is capable of SM detection. Yet quantification at ultralow analyte concentrations
requiring detection of SM events remains an ongoing challenge, with the few existing methods requiring carefully developed
calibration curves that must be redeveloped for each analyte molecule. In this work, we demonstrate that a convolutional neural
network (CNN) model when applied to bundles of SERS spectra yields a robust, facile method for concentration quantification
down to 10 fM using SM detection events. We further demonstrate that transfer learning, the process of reusing the weights of a
trained CNN model, greatly reduces the amount of data required to train CNN models on new analyte molecules. These results
point the way for unambiguous analysis of large spectral data sets and the use of SERS in important ultra low concentration
chemical detection applications such as metabolomic profiling, water quality evaluation, and fundamental research.

Optical detection and spectroscopy of single molecules in
the condensed phase has uncovered a wealth of

understanding of molecular dynamics in physical, chemical,
and biological systems since the first measurement in 1989
using frequency modulated laser spectroscopy by Moerner and
Kador.1 Compared to other single molecule (SM) detection
schemes, SM surface enhanced Raman scattering (SERS), first
reported in 1997,2,3 has several advantages, including the
ability to directly sense nonemitters and nonresonant
molecules with small Raman cross sections.4−6 SERS acquires
rich spectral information from the “fingerprint” region in
vibrational spectroscopy which can be used to uniquely
identify molecules,7 enabling multiplexing.8

Like many fields within analytical chemistry, SERS spec-
troscopy has greatly benefited from the development of
chemometric methods. Principal component analysis (PCA)
dimensional reduction,9 is now ubiquitous in SERS analysis,
for example, being used for detecting cancer.10−13 Linear14−16

and multilinear17,18 regressions are common for concentration
quantification using the Langmuir adsorption curve.19 The
ongoing machine learning revolution has begun to impact

SERS, including using support vector machines20,21 and
decision trees22,23 to analyze spectra. Fully connected artificial
neural networks have been used for quantification of
concentration in the micromolar regime,24 and convolutional
neural networks (CNNs) have been used to differentiate
metabolites produced by cells in vitro.25 These machine
learning techniques have greatly improved predictions because
they are robust to noise and nonanalyte signal and can handle
deviations from the Langmuir isotherm, but they map one
spectrum to one concentration value. SM SERS is charac-
terized by discrete jumps in analyte number observed in any
given measurement, so concentration will not be correctly
inferred from one measurement.26 This observation has led to
quantification methods based on mapping the distribution of
analyte observations to concentration such as the Brule ́
methods27 and the digital method.28 However, these methods

Received: August 7, 2019
Accepted: October 7, 2019
Published: October 7, 2019

Letter

pubs.acs.org/acCite This: Anal. Chem. 2019, 91, 13337−13342

© 2019 American Chemical Society 13337 DOI: 10.1021/acs.analchem.9b03599
Anal. Chem. 2019, 91, 13337−13342

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
L

IF
O

R
N

IA
 I

R
V

IN
E

 o
n 

M
ar

ch
 8

, 2
02

4 
at

 0
0:

12
:3

4 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/ac
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.analchem.9b03599
http://dx.doi.org/10.1021/acs.analchem.9b03599


do not generalize to other analyte molecules, and entire data
sets must be acquired for each new application, slowing their
adoption in key applications such as measuring biomarkers29,30

or contaminants in water.31

One of the most important applications of contemporary
machine learning, i.e., image analysis, has remained relatively
untouched by the SERS community. With newly developed
SERS surfaces that have SERS enhancement factors of 109 and
a relative standard deviation of 10% over large areas,32 spectra
are acquired across the SM concentration regime and are
bundled into 8 × 8 pixel maps (with each pixel being a SERS
spectra) and used to train a CNN model. The uniformity of
enhancement factor is essential for our approach, as large
variance in the data set not only increases the variance in
predictions, which limits the methods to semiquantitative
analysis25 but also requires more data for convergence and
prevents a transfer learning approach.33 A key advantage of the
proposed CNN analysis is its compatibility with transfer
learning, the use of large data sets to train a model and then
generalize this pretrained model to new molecules quickly with
significantly smaller data sets. The presented CNN model is
used to address the long-standing challenge in SERS:
quantification of subnanomolar analyte concentrations. The
demonstrated limit of blank (LOB) is 1 fM for Rhodamine
800, with a limit of quantification (LOQ) of 10 fM.
Furthermore, the model’s predicted concentrations have an
average r2 value of 0.958 over 6 orders of magnitude as
determined by k-folds cross validation. Generalization of the
CNN model to other analytes using transfer learning is
demonstrated with methylene blue. Transfer learning achieves
good results with as few as 50 8 × 8 pixel maps. Thus, entire
data sets are acquired quickly, requiring just 5.3 min of total

laser exposure time per concentration to train a robust model
that is much faster and more scalable than required for
building SM concentration regression models. This demon-
strates a proof of concept for hyperspectral CNN image
analysis of SERS, which could be broadly applicable within
SERS, especially in the biological setting where classification of
images could improve analysis of bacteria that are already
imaged with SERS.34−36

■ RESULTS AND DISCUSSION

Experimental System. Integral to any machine learning
approach are access to large and high-quality data sets. Using
2-dimensional physically activated chemical (2PAC) self-
assembly, we have shown we can achieve reproducible
enhancement factors of 109 over 1 cm2.32 2PAC cross-links
nanoparticles into discrete assemblies with a small molecule
linker, where the cross-linking reaction is driven by electro-
hydrodynamic flow at on a substrate surface and is described in
detail elsewhere.32 A scanning electron microscopy (SEM)
image of a 2PAC assembled SERS surface is depicted in Figure
1a. The inset of Figure 1a depicts a transmission electron
microscopy (TEM) image of hotspots observed in a 2PAC
fabricated assembly, the observed gap spacing is 0.9 nm,
corresponding to the length of the chemical cross-linker.32

Large area SERS maps are acquired from these 2PAC
assembled surfaces, as described in the Experimental Details
in the Supporting Information. Analyte dissolved in water is
used as the immersion media for a water immersion objective
during measurements. Spectra are preprocessed, which
includes Savitsky−Golay smoothing and background sub-
traction as described in the Experimental Details in the
Supporting Information. An example spectrum of Rhodamine

Figure 1. (a) SEM image of as-assembled gold nanoparticle assemblies. Inset depicts a TEM image of hotspots in an as-assembled gold
nanoparticle assembly, and gap spacings are observed to be 0.9 nm. (b) Preprocessed SERS spectrum with an R800 concentration of 1 μM. Inset
depicts the 1441 cm−1 vibrational mode signal distribution of a 1 μM R800 data set, an RSD of 13.1% is observed. (c) Schematic of a CNN mode.
Refer to Figure S1 for a depiction of the CNN model and Figure S4 for an example of a complete input into the CNN model.

Figure 2. (a) NMF component of R800 acquired from 1 μM SERS measurements. (b) Violin plot of normalized NMF scores with respect to this
component averaged from 64 spectra bins across the SM concentration regime. The top and bottom bars represent the maximum and minimum
scores at each concentration, while the width of the distribution depict the density of spectra maps with those scores.
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800 (R800) is depicted in Figure 1b, this spectrum was
acquired at a concentration of 1 μM of R800. The inset of
Figure 1b depicts the distribution of the R800 1441 cm−1

signal emerging across 2940 SERS spectra acquired at 1 μM
concentration of R800. One may observe a relative standard
deviation of 13.1%, and this is somewhat larger than the 10%
reported previously32 for chemisorbed benzenethiol, but the
difference is unsurprising as R800 does not chemisorb onto
gold and will thus exhibits a distribution of molecular location
and orientation in the hotspot volume.
In order to analyze relevant spectral features in the high

dimensional data, nonnegative matrix factorization (NMF) is
used to identify and visualize features associated with R800
scattering events on sample surfaces. NMF is chosen over
principal component analysis (PCA) because SERS spectra
satisfy NMF’s assumption of all positive signals, resulting in
improved differentiation of spectral features that emerge from
analyte and nonanalyte sources,37 which is necessary in SM
SERS where nonanalyte spectra will have more variation than
analyte spectra. Each spectrum is reduced to 32 independent
signals using NMF. Further details regarding the implementa-
tion of NMF are provided in the Supporting Information. An
extracted NMF component vector associated with R800 is
acquired only from a 1 μM R800 data set and depicted in
Figure 2a. Here, in the many molecule detection regime, the
SERS spectra is dominated by signal of vibrational modes from
R800. This results in a NMF loading vector perfectly
representing the R800 vibrational spectra with no contami-
nation from nonanalyte signal being observed such as the Si
peak from the substrate at 523 cm−1 in the experimental
spectrum of Figure 1b. Thus, we use this extracted NMF
loading vector to assess R800 score (the magnitude of the
R800 associated component for a spectrum) of spectra
acquired at trace concentrations (1 nM and below).
Specifically, at these trace concentrations, we map bundles of
64 Raman spectra and test how accurately R800 score reflects
analyte concentration. Groups of spectra are required since at
trace concentrations many measurements may not have an
analyte in the measurement area, thus concentration is
determined by the presence of analyte signal exhibited in
these spectral maps. We visualize the average R800 score of
these 64 spectra groups as a function of concentration in
Figure 2b. SERS spectra from each concentration considered
here are depicted in Figure S2. The violin plots depict an
upward trend of these average scores across the trace
concentration regime. Yet factors such as the complex

background arising from nonanalyte signals can cause a large
variance in the R800 score. The nonlinear response of
concentration as a function of the NMF score at concen-
trations below 1 nM is similar to those obtained by
Albuquerque et al.28 This complexity of providing a general-
izable solution for accurately determining analyte concen-
tration motivates a deep learning approach that is described
below.

Convolutional Neural Network (CNN) for Single
Molecule SERS Quantification. Our approach to determin-
ing the distribution of single molecule events in order to
determine concentration begins with bundling SERS spectra
into 8 × 8 pixel maps, where each pixel is a SERS spectrum, as
depicted schematically in Figure 1c. It is important to bundle
SERS spectra when the concentration is below 1 nM, i.e., some
measurements in the laser spot size may not contain a
molecule on the surface. These maps are randomly split into
training (80%) and testing (20%) groups for k-fold cross
validation. The SERS spectra is reduced to 32 independent
signals using NMF that is trained using the training data set.
An example of NMF scores obtained is depicted in Figure S4.
During the training period, each map is given a log
transformed concentration label. It is important to note that
this is a different NMF trained than that obtained from the 1
μM data set; at concentrations below 1 nM molecular
orientation,38 vibronic coupling,39 and other factors40 will
more heavily influence SERS spectra than at higher
concentrations. The need for using multiple spectra when
using SM detection events for quantification is further
discussed in the Supporting Information.
The CNN architecture used in this work is depicted

schematically in Figure S1. A relatively simple CNN model is
used to avoid overfitting. A representative set of predictions
from the CNN model trained on a test data set are shown in
Figure 3a, where an r2 of 0.95 over 6 orders of magnitude is
determined. We perform a 5-fold cross validation to validate
the model, observing a cross validation mean squared error
(MSE) loss of 0.111 ± 0.029 and r2 of 0.958 ± 0.012. The
limit of blank (LOB) is determined to be 1.0 fM with a relative
error of 1.1 fM/fM and the limit of quantification (LOQ) is
approximately 10 fM. These results demonstrate that the CNN
model is robust, producing good results without the need to
fine-tune any parameters based on molecular adsorption
models that was performed in prior methods. Figure 3b
depicts the testing MSE loss as a function of gradient descent
steps. One may observe the model briefly finding local minima

Figure 3. (a) Representative Rhodamine 800 concentration predicted by the CNN model on a test data set acquired during k-fold cross validation.
(b) Model test loss and r2 over gradient descent steps of the model depicted in Figure 3a. Inset: test loss and r2 depicting local minima of loss when
the model predicts similar concentrations for all inputs.
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corresponding to the degenerate solution of predicting all
inputs as having identical concentrations, depicted in the inset
of Figure 3b. The model then finds a good solution to the
problem in just a few hundred gradient descent steps.
Additionally, in order to ensure that the CNN model is not
using Raman intensities related to unique features on a SERS
substrate rather than the analyte, we have evaluated the
performance of a R800 model applied to validation data
acquired from a SERS substrate not used to train the CNN
model. Similar prediction accuracy is observed in this case and
results are provided in Figure S3.
Transfer Learning for New Analyte Molecule. Here, we

demonstrate the generalizability of the R800 CNN model to
another analyte, Methylene Blue (MB) using a transfer
learning approach.33 That is, pretrained weights from the
R800 CNN model are used in the training of a MB CNN
model in order to reduce the size of the training data needed
for accurate predictions. The weights of the third and fourth
convolutional layers are frozen throughout training. New NMF
components are found using the MB training data set. The
transfer learning process will fine-tune the unfrozen weights of
the first and second convolutional layers, which have the
important task of learning the pattern of the NMF scores that
are associated with SM detection events of the new analyte.
While these patterns are different from one molecule to the
next, the pretrained CNN model weights will be much closer
to final CNN weights for this new analyte than that of a
randomly initialized CNN network and thus significantly
reduce the amount of training data necessary. Similarly,
different molecules will have different interaction strengths
with the SERS surface (especially in the extreme case of
chemisorption with, for example, thiolated molecules) and this
will change the distribution of SM events expected at a
particular concentration. Again, in this case, trained model
weights on another analyte will still be much closer to the final
weights of a model trained on a new analyte, making the
transfer learning strategy data efficient.
First, we evaluate a MB CNN model trained from the full

56736 augmented MB training maps with the same
architecture as the R800 CNN model. This provides a baseline
for evaluating the performance of the transfer learning
approach. The regression results are depicted in Figure 4a,
where a cross validation MSE loss of 0.288 ± 0.085, r2 of 0.932
± 0.02, and LOB of 1.2 fM ± 1 fM are achieved. The loss,

LOB and r2 of this model, trained on a full MB data set, is used
as the lower (upper) limit of transfer learned model
performance depicted in Figure 4b as horizontal bars. We
then test how much data is necessary to train a new model
using transfer learning. We restrict the number of training
examples, composed of an 8 × 8 bundle of SERS spectra,
observed by the model to be between 1 and 100 per
concentration, with each map being augmented 32-fold as
described in the Supporting Information. One may observe
near optimal model performance with as few as 50 training
examples. Models trained without transfer learning from the
R800 model with 100 or less examples are unable to escape the
degenerate local minimum described previously. This effect
also leads to large standard deviations in the cross validation
values of metrics at 1 and 3 examples. Then, even at just 5
examples, the model is always able to escape the local
minimum, resulting in much smaller variance of cross
validation metrics. These results demonstrate that the R800
CNN model is broadly generalizable to SM concentration
regressions. This is essential for most practical applications, for
example, in metabolomics, where many different molecules
may need to be validated to identify their importance in
disease, or in water quality, where the background may vary
significantly from place to place. With transfer learning, we no
longer need to completely recreate our SM concentration
quantification models.

■ CONCLUSION

In this work, a convolutional neural network (CNN) model is
demonstrated to perform concentration regressions on bundles
of SERS spectra composed of 8 × 8 pixel maps. This study
shows that the CNN model dramatically simplifies the
implementation of concentration regressions in the single
molecule (SM) detection regime. Using Rhodamine 800 as the
analyte, the CNN model makes excellent concentration
predictions. Specifically, a 5-fold cross validated average r2 of
0.958 is achieved with quantification down to 10 fM. Further,
the model is generalizable to a different analyte (methylene
blue) by the implementation of transfer learning. This strategy
results in good predictions with as few as 50 training examples,
which enables new data sets to be acquired in just 5.3 min per
concentration. We believe that CNN models applied to maps
of spectra can be generalized both to other SERS sensor
platforms as well as other chemical analysis techniques capable

Figure 4. (a) Representative Methylene Blue concentration predicted by the CNN model on a test data set acquired during k-fold cross validation.
(b) Cross validation loss, r2, and LOB of transfer learned Methylene Blue model as a function of the number of unique input maps. The model is
identical to that used in Figure 3 but with weights acquired from the Rhodamine 800 model depicted in Figure 3a, with the third and fourth
convolutional layers frozen. Horizontal bars represent the metric performance depicted in Figure 4a. Number of examples for r2 and LOB are offset
by 5% for visual clarity.
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of single molecule detection. This will increase the pace of
innovation in chemical sensing, enabling researchers to tackle
long-standing problems like using rare, low concentration
metabolites in building metabolomics models or in identifying
ultralow concentration of toxins in waterlike microcystins.
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