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Targeting neuroplasticity to improve motor 
recovery after stroke: an artificial neural 
network model

Sumner L. Norman,1,2 Jonathan R. Wolpaw3 and David J. Reinkensmeyer4

After a neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, 
which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity protocols interact with the 
central nervous system to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement 
traditional therapy and enhance recovery. However, their development and validation is difficult because many different targeted neu
roplasticity protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models 
can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can 
then concentrate on the most promising ones. Here, we simulate a neural network of corticospinal neurons that control motoneurons 
eliciting unilateral finger extension. We use this network to (i) study the mechanisms and patterns of cortical reorganization after a 
stroke; and (ii) identify and parameterize a targeted neuroplasticity protocol that improves recovery of extension torque. After a 
simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal torque recovery. To enhance re
covery, we interdigitated standard training with trials in which the network was given feedback only from a targeted population of 
sub-optimized neurons. Targeting neurons in secondary motor areas on ∼20% of the total trials restored lateralized cortical activation 
and improved recovery of extension torque. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; 
they enable the identification and parameterization of the most promising targeted neuroplasticity protocols. By providing initial guid
ance, computational models could facilitate and accelerate the realization of new therapies that improve motor recovery.
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Using a neural network model of corticospinal motor function, Norman et al.
show non-normative cortical reorganization and decreased motor function after 
a simulated stroke and how targeted neural feedback could enhance neuroplas-
ticity, restore cortical organization and improve motor recovery.

Introduction
Activity-dependent neuroplasticity occurs throughout life, 
affecting the CNS from cortex to spinal cord.1–4 When trau
ma or disease [e.g. stroke, spinal cord injury (SCI)] impairs 
motor function, traditional rehabilitation concentrates on 
intensive practice of the impaired motor skills. Although 
this usually produces some recovery, significant disability of
ten remains. Thus, the present challenge is to guide CNS 
plasticity to maximize functional recovery.3–6 Targeted neu
roplasticity (TNP) protocols are an innovative approach to 
addressing this challenge.7–13

A TNP protocol creates a sensorimotor interaction with 
the CNS that induces activity-dependent plasticity at a key 
site (e.g. a particular spinal reflex pathway, a specific region 
in motor cortex).7–11 This plasticity improves function. By 
doing so, the targeted plasticity enables activity that pro
duces wider beneficial plasticity at other important sites.10

For example, after incomplete SCI, a TNP protocol that 
weakens a hyperactive spinal reflex can reduce the ankle clo
nus or foot-drop that prevents effective locomotor practice; 
it can thereby enable more effective practice, which produces 
wider beneficial plasticity.14,15

While TNP protocols are a promising new therapeutic ap
proach, their design and evaluation are formidable tasks. 
The many kinds of CNS plasticity, the many sites where 

they occur, the many new biological and technical methods, 
and the probability that the best therapies will combine 
several methods, generate an overwhelming number 
of appealing protocols. Testing even one of them is 
lengthy, demanding and expensive, especially in humans. 
Computational models offer a solution. They can provide ra
pid and efficient screening of many potential protocols; only 
the most promising ones would then be tested in animals 
and/or humans.16,17

This study develops a neural network model first proposed 
in Reinkensmeyer et al.18 of motor corticospinal (CS) plasti
city before and after a simulated stroke. We used it to predict 
the therapeutic efficacy of a TNP training protocol as a func
tion of the brain region targeted and the TNP dosage. The re
sults provide insight into the mechanisms of cortical 
reorganization after stroke and into the design of maximally 
beneficial TNP protocols. They indicate how judicious use of 
computational models might shape the development of ef
fective new rehabilitation therapies.

Materials and methods
We simulated the impact of different treatment protocols on 
recovery of contralateral finger extension after a stroke that 
damaged motor cortex in one hemisphere. The foundations 
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of this mathematical model are based on the structure and 
learning model first presented in Reinkensmeyer et al.18

That model investigated use-dependent recovery of move
ment strength following a stroke using a network of CS neu
rons connected to downstream motor neuronal pools. The 
network learned using a biologically plausible reinforcement 
learning rule. To investigate the impact of different TNP pro
tocols following a stroke, we now extend the structure of the 
model to represent CS neurons in both hemispheres; each 
neuron now has its own connection strength to the motor 
neuronal pool and its own intrinsic firing rate variability. 
We then simulate three scenarios: (1) the undamaged net
work underwent standard finger extension training trials; 
(2) the trained network was damaged by a stroke affecting 
contralateral motor cortex (i.e. contralateral to the finger) 
and then underwent standard finger extension training trials; 
and (3) the trained network was damaged by a stroke affect
ing contralateral motor cortex and then underwent standard 
finger extension training trials interspersed with training 
trials in which trial outcome was determined by the behav
iour of a specific population of CS neurons (i.e. TNP trials).

Architecture
The model incorporates a network of n CS neurons that fire 
with activation levels xi (assumed to vary between 0 and 1 
and to correspond, proportionally, to firing rates). Each CS 
neuron is connected to a motoneuronal (MN) pool via a sca
lar connection weight wi. The MN pool sums the product of 
the neuron activation xi and connection weight wi using a 
saturation nonlinearity, gi

Se =
􏽘

gi(xi)wi, (1) 

where function gi sets the saturation limit of neuron i. In this 
presentation, the model has a constant saturation limit of +1 
for all neurons

gi(xi) = xi, xi ≤ 1
1, xi > 1

􏼚

(2) 

The MN pool activation level Se is proportional to a unitless 
finger extension torque Te. Thus, the finger extension torque 
generated is proportional to, and determined by, the 
weighted summed output of the CS network activation pat
tern (Fig. 1). Varying the saturation limits across neurons did 
not significantly affect network dynamics. Thus, this presen
tation uses the constant saturation limit of +1 for all neurons.

Network learning
The goal of the network is to learn the CS neuronal activa
tion pattern that produces the maximum possible finger 
extension torque, i.e. the best performance. Since the net
work consists only of neurons that excite extensor motor 
neuronal pools, the optimal activation pattern is achieved 

when the activation of every neuron is increased to the neu
ron’s saturation limit of +1.

To learn this pattern, the network employs an iterative re
inforcement learning protocol: after each trial (i.e. each 
movement attempt), the network adjusts the activation pat
terns based on a scalar teaching signal, which is finger exten
sion torque Te. Using a single signal to optimize a large 
network presents a credit assignment problem: if finger ex
tension torque Te increases on a given trial, which neurons 
are responsible for the increase? Reinforcement learning 
can solve this credit assignment problem, albeit imperfect
ly.18–22 As will become clear below, TNP trials are designed 
to mitigate the credit-assignment problem and to thereby im
prove the learning outcome.

We implement reinforcement learning with stochastic 
search. The algorithm uses a noise process to generate a 
new activation pattern for each trial (i.e. each attempted 

Figure. 1 Parameter distributions for a network of 10 000 
corticospinal (CS) neurons. Synaptic connectivity adheres to a 
bimodal distribution resulting from use of two lognormal 
probability density functions, one for the contralateral cortex and 
one for the ipsilateral cortex. The mean of the bimodal distribution 
was chosen to be one. Most (90%) neurons reside in the cortex 
contralateral to the finger to be extended and have stronger 
connectivity (contralateral = yellow, high connectivity). The 
remaining neurons reside in the ipsilateral cortex and have weaker 
connectivity (ipsilateral = blue, low connectivity). Neuronal firing 
variability also adheres to a bimodal distribution arising from two 
lognormal probability density functions. Neurons in primary motor 
areas are more task-related and exhibit more trial-to-trial 
variability during movement attempts (primary = dark, high 
variability). Neurons in secondary motor areas are less task-related 
and exhibit less trial-to-trial variability during movement attempts 
(secondary = light, low variability). The resulting network has four 
broad types of neurons: 1, high-connectivity/high-variability (dark 
yellow); 2, high-connectivity/low-variability (light yellow); 3, 
low-connectivity/high-variability (dark blue); 4, low-connectivity/ 
low-variability (light blue).
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movement). If the new activation pattern increases finger tor
que compared with the previous trial, the algorithm stores 
(i.e. switches to) the new activation pattern. The stochastic 
search algorithm is a simplified form of the random search 
with chemotaxis algorithm:19

Given an initial activation pattern X0 that produces a tor
que T0: 
1. Activate CS neurons with pattern Xi = X0 + vi, where vi is 

random noise, and measure the torque Ti produced by 
this pattern.

2. Store (i.e. switch to) the new pattern Xi if the torque Ti it 
produces is greater than T0 (i.e. if Ti > T0, then let X0 = Xi 

and T0 = Ti).
3. Repeat

We also tested a gradient descent stochastic search meth
od, another biologically plausible solution to the credit as
signment problem.21 It produced comparable results. Here, 
we present the results from the stochastic search algorithm 
to allow more direct comparison to Reinkensmeyer et al.18

and to provide conceptual clarity.

Neuron parameters
The CS neurons in the model are described by their current 
activity level (xi, proportional to firing rate), and their exci
tatory synaptic connectivity to the extensor MN pool (wi). 
In the present work, we augment the model of 
Reinkensmeyer18 to allow different levels of trial-to-trial fir
ing rate variability for different CS neurons (σi). This feature 
is based on evidence23 that neuronal variability differs across 
cortical areas. The network updates each neuron’s activation 
level after a successful movement trial (i.e. a trial that pro
duces more torque than the previous trial). Each neuron’s 
connectivity and variability remain constant throughout 
the simulation. In reality, spared descending pathways are 
plastic after an injury. Although we do not change weighting 
(wi), altering the firing rate is mathematically equivalent in 
this model; it is a heuristic for the dynamic nature of down
stream synaptic plasticity.

Another change from Reinkensmeyer et al.18 is that neur
onal parameters, including initial activation level, fixed con
nectivity and fixed variability, were initialized by sampling 
from lognormal distributions. Functional and structural 
parameters in the brain, including synaptic connectivity 
and firing rates, are typically not normally distributed; they 
are skewed with a heavy tail. Thus, they are closely approxi
mated by lognormal distributions24 (see Supplementary 
Material, Selection of neuronal parameter distributions). 
To represent different cortical areas, we used different log
normal distributions (Fig. 2).

Synaptic connectivity
Monosynaptic and multisynaptic CS pathways are repre
sented in the model by a single, fixed connectivity from 
each CS neuron to the finger extensor MN pool (i.e. weights 
labelled wi in Fig. 1). We explicitly represent both cortical 

hemispheres in the model, since the hemisphere ipsilateral 
to the moving finger is known to be able to activate the 
requisite MN pools through uncrossed pathways, and these 
pathways are thought to play a significant functional role 
after stroke.25 We designed the distributions of the neuronal 
connectivities to reflect known physiology: neurons from the 
hemisphere contralateral to the motor task are, on average, 
more strongly connected to the MN pools than ipsilateral 
neurons (Fig. 2).26 Furthermore, these contralateral neurons 
outnumber the ipsilateral neurons by a ratio of 9:1. This is 
consistent with the physiological situation wherein about 
90% of axons cross over from the lateral CS tract and about 
10% of fibres travel within the uncrossed anterior CS tract.27

Variability
Motor variability is necessary for motor learning;28,29 higher 
levels of motor variability accompany motor skill acquisi
tion. Furthermore, such variability is present from the neur
onal level to the behavioural level.23 Thus, the algorithm 
incorporates trial-to-trial corticomotor variability to drive 
motor learning in our training scenarios.

The algorithm varies neuronal firing rate by sampling an 
activation noise level from a normal distribution that is spe
cific to each neuron. A higher-variability neuron has a wider 
normal distribution; it averages a larger stochastic perturb
ation to its activation level on each trial compared with a 
lower-variability neuron. The most task-relevant brain areas 
exhibit more variability. Thus, the model gives neurons in 
primary motor areas of both hemispheres higher variability 
for the finger extension task than neurons in secondary 

Figure 2 Network architecture. A two-layer feedforward 
neural network incorporates n corticospinal (CS) neurons with 
activation levels xi. These activation levels are generated when the 
neurons are given a command to maximize finger extension torque 
Te. A motoneuronal pool Se sums the weighted activation pattern. A 
nonlinear function gi implements the physiological observation that 
the contribution of any single CS neuron to the excitation of the 
motoneuronal pool saturates at some activation level. The network 
optimizes the activation pattern × through reinforcement learning 
in simulated consecutive movement practice trials in which 
extension torque Te is the teaching signal.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac264#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac264#supplementary-data
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motor areas. At the same time, high- and low-variability neu
rons are unlikely to be wholly separated spatially.30,31 For 
this reason, the model overlaps high- and low-variability 
neurons (Fig. 2). A neuron’s firing rate is related to its 
mean firing rate by a power function, the parameters of 
which vary across cortical areas and behavioural condi
tions.32,33 Our model simplifies this relationship to clarify 
the effects of neuronal variability on the network dynamics: 
a neuron’s trial-to-trial variability differs across cortical 
areas but remains constant over time and does not depend 
on its firing rate.

Simulations
We use this model to simulate three scenarios for learning 
finger extension: (1) learning by the uninjured network; (2) 
learning by the network following a unilateral stroke; (3) 
learning by the network following a unilateral stroke with 
TNP training trials interdigitated. The initial, uninjured net
work consisted of 10 000 CS neurons. To simulate the 
stroke, Scenarios 2 and 3 fix the activation and connectivity 
of CS neurons lost to the stroke to zero. To simulate the dis
ruptive effects of the stroke on the properties of surviving CS 
neurons,34 their initial post-stroke activation patterns for 
Scenarios 2 and 3 are randomized.

Since network learning is driven by movement attempts 
(i.e. trials), the number (i.e. dosage) of movement trials af
fects the results. Lang et al.35 found that participants with 
stroke completed an average of 32 functionally oriented 
movements/day during upper extremity rehabilitation ses
sions. However, recent rehabilitation interventions have suc
cessfully administered 150–250 trials/session, for up to 23 
sessions, for a total of 3450–5750 trials.7 In the simulations 
presented here, the network trained in each given scenario 
for a total of 20 000 total movement attempts. In the TNP 
scenario, a subset of these attempts was given TNP feedback. 
For example, in the case where 20% of attempts were dedi
cated to TNP therapy, this simulates 4000 trials in the clinic.

Scenario I: Learning with an undamaged network
To provide a baseline, we simulated learning in the uninjured 
network. For each trial, finger extension torque was deter
mined using all 10 000 neurons. The teaching signal was 
the difference from the previous trial in finger extension tor
que. If the torque was greater than that of the previous trial, 
the network switched to the new activation pattern.

Scenario II: Learning after stroke
To simulate neuronal death after a stroke, we disconnected 
(de-weighted) a subpopulation of 3333 CS neurons by per
manently setting their connectivity and activation levels to 
zero. This scenario focuses on the most severe stroke: a 
stroke that damages contralateral primary motor cortex, 
where high-connectivity, high-variability CS neurons are 
concentrated. The teaching signal from each trial is the finger 
extension torque produced by the remaining intact CS neu
rons of both hemispheres.

Scenario III: Learning after stroke with TNP trials 
interdigitated
Finally, we simulated learning the finger extension task after 
stroke with a portion of the training trials now dedicated to 
a TNP protocol. In TNP trials, only the targeted neurons de
termined the teaching signal. That is, in a TNP trial, separate 
training signals were generated for the total network (finger 
extension torque, IA) and the targeted network subpopulation 
(targeted intervention, IB). The training algorithm used IB to 
determine success or failure (i.e. to determine whether the net
work switched to the new activation pattern). If IB indicated 
success, the parameters of all the surviving CS neurons (tar
geted and untargeted) were updated. The total number of 
trials did not change; Standard trials and TNP trials were in
terspersed in different ratios to determine the optimal dosage. 
Thus, we systematically evaluated the dependence of torque 
recovery on two training parameters: (i) which subpopulation 
of CS neurons was targeted; and (ii the proportion of the total 
trials that were TNP trials (i.e. dosage).

Statistical analysis
Neuron parameters adhere to a bimodal distribution result
ing from two lognormal probability density functions. These 
parameters were set according to known physiological para
meters; no statistical comparisons were made. We ran each 
simulation ten times and present the mean torque (solid 
lines) and standard deviation of torque (shaded area) as func
tions of movement trial. We ran each simulation 20 times to 
determine how targeting each of eight cortical regions (160 
simulations total) affected recovery after simulated stroke. 
We present the mean recovery for each area and the standard 
deviation of that value across 20 simulations using bars and 
whiskers. We assessed the effect of varying TNP dosage and 
present recovery as a function of dosage as a mean (solid line) 
and standard deviation (shaded area) across 20 simulations. 
To determine the behaviour of different neuron groups, we 
used a Monte Carlo method where we ran the same single 
trial of the model 10 000 times—once at the beginning of net
work training, and once after the network had been trained 
for 20 000 trials. We present the mean change in torque due 
to neuron activity changes, grouped by their parameters. We 
also present the probability of a neuron increasing its firing 
rate, the mean change in firing rate and mean change in tor
que across all successful trials and across all trials.

Results
We trained the network in three Scenarios: (1) an undam
aged network; (2) after stroke; and (3) after stroke with 
TNP trials interdigitated. We ran each scenario 10 times, 
with 20 000 trials each time. In Scenario 1, the undamaged 
network achieved 84.5% of the maximum possible finger ex
tension torque (i.e. the maximum torque possible for all CS 
neurons) following a stereotypical learning curve (see 
Supplementary Material, Characterizing the learning curve 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac264#supplementary-data
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with residual capacity). For simplicity, we scale all results to 
the average maximum torque produced in Scenario 1 
(Fig. 3).

In Scenario 2, we simulated neuronal death due to stroke 
by removing a subpopulation of CS neurons from the net
work (by fixing their connectivities and activation levels at 
zero). We randomized the initial firing rates of the surviving 
CS neurons. The teaching signal was the finger extension tor
que produced by all the surviving CS neurons. Finger torque 
increased exponentially and then approached a recovery 
plateau in which it generated 64.9% (+/− 2.9% SD) of the 
maximum torque possible before the stroke (Fig. 3, 
Scenario 2). While this is a substantial recovery, significant 
capacity to generate torque remained unused (Fig. 3, residual 
capacity for recovery).

Scenario 3 began in the same way as Scenario 2, i.e. with a 
stroke and 20 000 trials of subsequent training. In our initial 
evaluation of Scenario 3, every fifth trial was a TNP trial; in 
which the teaching signal was provided by the surviving CS 
neurons in the secondary motor areas of both hemispheres. 
After this training period, the network reached 72.8% of 
the maximum torque possible before the stroke, an increase 
over Scenario 2 (conventional rehab). Scenario 3 enabled the 
network to use 43.6% of the latent capacity for recovery that 
Scenario 2 did not capture.

Impact of training on different 
neuronal types
Scenario 1 (the uninjured network) preferentially optimized 
activation of high-variability (M1, primary motor cortex), 

high-connectivity (contralateral) neurons. Thus, it left 
some residual capacity unachieved.

Scenario 2 (the injured network with standard training) also 
favoured optimization of high-variability, high-connectivity 
neurons (Fig. 4C). However, because many such neurons 
were gone, the training then optimized high-variability neu
rons with low connectivity; it shifted activity towards the 
weakly connected, but undamaged ipsilateral hemisphere.

Scenario 3 was the same as Scenario 2 except that every 
fifth trial based its outcome only on neurons in secondary 
motor areas of either hemisphere (i.e. generally low- 
variability neurons not optimized by Scenario 2). These tar
geted areas had the potential to significantly improve overall 
network performance. However, without TNP, the network 
struggled to access them. In standard trials, the stronger im
pact on trial outcome (i.e. success or failure) of the random 
changes in high-variability neurons masked the weaker im
pact of low-variability neurons. The TNP trials of Scenario 
3 removed this masking. They promoted activation of low- 
variability/high-connectivity neurons (Fig. 4D).

Impact of training on the topography 
of neuronal activation
To visualize the predicted effect of the three scenarios on the 
topography of the task-related neuronal activation, we 
mapped neuronal parameters to brain areas. Specifically, 
we mapped high- and low-connectivity neurons contralat
eral and ipsilateral to the movement. We mapped high and 
low-variability neurons to primary motor cortex (M1) and 
dorsal premotor cortex (dPM; a secondary motor area), re
spectively (see Table 1). In Fig. 5, we use this mapping to 
show network reorganization across hemispheres during 
learning before a stroke (Scenario 1), and after a stroke with
out (Scenario 2) or with (Scenario 3) TNP training.

Standard learning by the intact network (Scenario 1) opti
mized contralateral primary motor (i.e. high-variability, 
high-connectivity) neurons. This resulted in contralateral ac
tivity (Fig. 5). Standard learning after stroke (Scenario 2) 
shifted activation to the undamaged ipsilateral hemisphere 
(i.e. towards high-variability neurons with relatively low 
connectivity). This produced bilateral activation for the uni
lateral task. Standard learning after stroke plus TNP 
(Scenario 3) also optimized neurons in secondary motor 
areas of both hemispheres (i.e. low-variability neurons). 
This produced more normal lateralized activation and im
proved torque recovery.

Optimizing target population and 
dose
One of the model’s advantages is its ability to predict which 
populations to target to maximize therapeutic effect. To this 
end, we targeted different cortical areas and gave TNP on 
every fifth trial. We ran each simulation twenty times; each 
one simulated a stroke that affected a random subset of 
75% of the CS neurons in contralateral primary motor 

Figure 3 Torque production by the three Training 
Scenarios. Torque (in % of the maximum torque achieved by the 
uninjured network after 20 000 trials) as a function of the number of 
movement trials. After a stroke, max recovery is the theoretical 
maximum torque possible for the surviving CS neurons. Solid lines 
represent the mean result and shaded areas represent the standard 
deviation of ten simulations. Conventional Training (Scenario 2) 
leaves substantial residual capacity for recovery. Targeted plasticity 
(TNP) (Scenario 3) recovers much of this capacity; thus, it produces 
greater torque recovery (student’s t-test, t = 9.72, P < 0.001).
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cortex (i.e. mostly high-connectivity, high-variability neu
rons). We then determined for each area the improvement 
in residual torque capacity recovered over that provided by 
standard training alone (Scenario 2) (Fig. 6A). Delivering 
TNP therapy to secondary motor areas (e.g. dPM) gave the 

best results, restoring 30.5% of the residual capacity left 
by Scenario 2. Targeting dPM only in the damaged hemi
sphere had similar effects. Targeting dPM in the undamaged 
hemisphere was ineffective. Targeting primary motor cortex 
(M1) either bilaterally or only in the damagehemisphere 

Figure 4 Neuronal activation patterns for the naive network and for the network at the end of each of the three scenarios 
(shown for a 10 000-neuron network). (A) Normal network before learning. Network activation reflects a pseudorandom sample of 
activation levels. (B) Normal network after standard learning and before stroke, with more optimized neurons in yellow/lighter shade (high firing 
rate). High-connectivity/high-variability neurons are optimized. (C) Injured network (i.e. 8125 remaining neurons) after standard learning. 
Optimization is focused on the remaining high-variability neurons; low-variability neurons are generally not optimized. (D) Injured network after 
standard learning plus targeted neural plasticity (TNP). Optimization of low-variability neurons is increased (i.e. d is substantially more yellow/ 
lighter shade than c). The result is that torque recovery improves (Fig. 3). (E) Firing rate histograms for each scenario and neuron type. 
Low-variability neurons are optimized by TNP training in Scenario 3. versus Scenario 2.
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caused maladaptive plasticity that reduced torque produc
tion compared with Scenario 2. Targeting primary motor 
cortex only in the undamaged hemisphere had no significant 
effect.

We then focused on the most beneficial targeting (i.e. dPM 
bilaterally) and assessed the effect of varying TNP dosage 
from 1/2000 trials to every trial. We ran each simulation 
twenty times; each one simulated a stroke that affected a ran
dom subset of 75% of the CS neurons in contralateral pri
mary motor cortex (i.e. mostly high-connectivity, 
high-variability neurons). We then determined for each 
TNP dosage the residual capacity recovered compared with 
conventional rehabilitation (Fig. 6B). Doses <1% were inef
fective. As dose increased from zero, training efficacy in
creased; it reached a maximum when 20% of the trials 
were TNP trials. Efficacy declined at doses >50%. The re
sults were similar when other cortical areas were targeted. 

To our knowledge, these results provide the first substantive 
insight into the most effective dosage of TNP as a fraction of 
total training. The consistency of the result across different 
targeted areas suggests that the result may apply across dif
ferent lesion types and training protocols.

Mechanisms: neuron-specific 
optimization rates and ‘blocking’
Why did activity lateralize in the undamaged brain, but be
come bilateral after the simulated stroke? And why did 
TNP help remediate this situation, improving torque recov
ery? Two mechanisms account for these results. First, 
high-variability neurons optimize faster than low-variability 
neurons. Second, once optimized, high-variability neurons 
prevent (block) optimization of low-variability neurons.

To illustrate these mechanisms, we used a Monte Carlo 
method wherein we ran the same, single trial of the model 
10 000 times—once at the beginning of network training, 
and once after the network had been trained for 20 000 
trials, when the network had learned to generate more tor
que (Fig. 7A) by increasing activation across neuron groups 
(Fig. 7B). Using the results from the Monte Carlo simula
tions, we estimated the probability that each neuron group 
would, through their summed activity that resulted from 
the random perturbation on that trial, contribute towards 
a positive change in torque. Specifically, we calculated the 
mean change in activation δ X = 1

n

􏽐n
i=1 δxi and the mean 

change in torque δ T = 1
n

􏽐n
i=1 g(δxiwi) across all neurons 

xi = 1,2, …, n in each group. We report these values for suc
cessful trials that advance the optimization (Fig. 7C–E) and 
for all trials (Fig. 7F–H).

Highly variable neurons optimize first. Before training, no 
neurons are optimized (Fig. 7B). Thus, on learning trial 1, 
all neurons increase or decrease their activity with equal 
(i.e. 0.5) probability on each trial (Fig. 7F). Recall that we 
ran this first learning trial many times. Across all these first 
learning trials that are successful (i.e. produce an increase 
in torque), high-variability (i.e. fast) neurons change activa
tion (Fig. 7D), and thus their contributions to total torque 
(Fig. 7), by relatively large amounts. The contribution to in
crease in torque is particularly high for the fast, high- 
connectivity (i.e. strong) neurons, which will cause them to 
optimize quickly. These neurons will saturate as training 
proceeds (they cannot exceed the maximum firing rate de
fined by the g function). At trial 20 000, they do not contrib
ute any more to increasing the total torque (Fig. 7E, after 
training), or it is extremely unlikely that they will do so 
(Fig. 7C, after training). The network then favours at this 
later time stage (i.e. following the optimization of fast/strong 
neurons) the optimization of high- variability/low- 
connectivity (fast/weak) neurons (Fig. 7D, after training).

The network learns at increasingly slow rates, failing to op
timize some neurons. Saturated neurons cannot contribute to 
further increases in torque production. Thus, for saturated 
neurons, the probability that δx is positive approaches zero 

Table 1 Cortical mapping of neuronal parameters (M1: 
primary motor cortex; dPM: dorsal premotor cortex)

Variability Connectivity

Low High
High Ipsilateral-M1 Contralateral-M1
Low Ipsilateral-dPM Contralateral dPM

Figure 5 Topography of task-related neuronal activation 
before training and at the end of training for each of the 
three training Scenarios. 1, Standard training of the uninjured 
network; 2, standard training of the injured network; and 3, 
standard training of the injured network plus TNP. Scenario 1 
primarily optimizes neurons in contralateral primary motor cortex 
(high-connectivity/high-variability neurons). Scenario 2 also 
optimizes neurons in ipsilateral (undamaged) cortex 
(high-variability/low-connectivity neurons). This produces 
abnormal bilateral activation and diffuse activation in the remaining 
contralateral (damaged) primary motor cortex. Scenario 3 also 
optimizes neurons in secondary motor areas (e.g. dPM); and it 
restores more normal laterality.
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(Fig. 7F). As observed above, more variable and strongly 
connected (fast/strong) neurons optimize more quickly, 
and thus, on average, saturate first. For the network to 
switch to a new activation pattern, yet-to-be optimized neu
rons must not only produce their own net positive effect on 
torque but must also overcome any negative effect of the 
more-variable neurons that, once saturated, tend to decrease 
torque on any given trial (Fig. 7E). This blocking phenom
enon, created by the nonlinear saturation function, g, causes 
the latent residual capacity shown in Fig. 3.

Fast but weak neurons optimize before slow but strong neu
rons. Because the training signal is total torque, the network 
preferentially optimizes neurons by their torque change, not 
their activation change. Late in learning, fast/weak and slow/ 
strong neurons are similar in mean torque change per suc
cessful trial (Fig. 7E, after training), but fast/weak neurons 
increase activity more on successful trials, thus optimizing 
more quickly (Fig. 7d, after training). As these neurons satur
ate, they also block optimization of the slow/strong neurons, 
and thus they limit total torque recovery.

Discussion
After a stroke, EEG and functional magnetic resonance im
aging (fMRI) studies reveal substantial reorganization of 
movement-related cortical activity.1,36–40 For example, uni
lateral movements that are contralateral to the affected hemi
sphere can elicit bilateral activity.25,39,41,42 This loss of 
hemispheric laterality correlates with decreased motor func
tion. It may reflect a suboptimal compensatory strategy that 
limits motor recovery.36,38 The present study uses a compu
tational model to explain these shifts in laterality as arising 
from the motor system’s stochastic search for neurons that 

can help drive MN pools following injury. The model further 
demonstrates the ability of a new therapeutic strategy, TNP, 
to modify abnormal movement-related cortical activation 
and to thereby improve motor recovery.43

In traditional rehabilitation, patients simply practice the 
skills that have been impaired by stroke (e.g. locomotion, 
reach and grasp, speech). In the model, practicing finger ex
tension causes the neural search process to settle on a sub
optimal pattern of activation. In contrast, the TNP 
protocol simulated here uses operant conditioning to modify 
the task-related activation of specific subpopulations of CS 
neurons and to thereby enhance the functional recovery of 
the entire population. In both animals and humans, TNP 
protocols can target beneficial plasticity to a specific CNS 
site (e.g. a spinal reflex pathway or a cortical area) by oper
antly conditioning EMG or EEG features that reflect activity 
in that site.11,44 This plasticity improves function and en
ables wider plasticity that further improves function.14,45,46

For example, a TNP protocol that operantly conditions a 
spinal reflex pathway can improve walking in rats11 or peo
ple with incomplete spinal cord injuries.14 A TNP protocol 
that operantly conditions specific EEG features can enhance 
functional recovery after stroke.7,8,10,46

To date, only a handful of studies have attempted to 
model the mechanisms underlying sensorimotor rehabilita
tion;16,17 none have modelled a TNP protocol. In this pa
per, we do this by building on an approach that employed 
a simplified CS neural network with inherent stochastic 
noise to simulate finger movement recovery after stroke.18

The model used a biologically plausible reinforcement 
learning (operant conditioning) algorithm to optimize CS 
activation patterns over repeated motor practice. This net
work reproduced major clinically observed features of mo
tor recovery after stroke, including exponential recovery 

Figure 6 The benefits of targeted neuroplasticity (TNP): the impact of the area targeted and the TNP dosage. (A) Additional 
residual torque recovered by standard learning plus TNP (given on 20% of trials) over that recovered with standard learning alone, for each of eight 
different cortical regions (M1: primary motor cortex; dPM: dorsal premotor cortex). Results are given as a percentage of the residual capacity for 
recovery left uncaptured by Scenario 2 (i.e. no TNP trials). Positive values indicate a better outcome with TNP. Error bars are standard deviation 
of 20 simulations. (B) Residual torque recovery as a function of the percentage of trials that were TNP trials (results shown for targeting dPM). The 
solid line represents the mean and shaded area indicates the standard deviation of 20 simulations. Recovery improved with increased dosage of 
targeted feedback. Recovery reached a maximum when 20% of trials were given targeted feedback and declined thereafter.
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and latent residual capacity. A subsequent paper extended 
this model to simulate multiple limbs and explore the effects 
of strength and coordination training after neurological in
jury.47 Here, we extend the model using biologically plaus
ible neuronal population parameters and employ it to 
predict the results of combining a standard rehabilitation 
protocol with a TNP protocol.

The computational model presented here suggests that, 
after a stroke damages cortex, traditional rehabilitation 
methods may fail to optimize cortical reorganization, limit
ing motor recovery. Furthermore, this simulation supports 
the hypothesis that appropriate TNP interventions can im
prove cortical reorganization and enhance motor recovery. 
We found that Scenario 2, which simulated traditional re
habilitation, left the network with residual capacity for mo
tor recovery. Scenario 3, which incorporated TNP training, 
was able to access much of this residual capacity.

While mounting evidence suggests TNP interventions af
fect cortical reorganization, it is not clear how to maximize 
their beneficial effects on functional recovery.4 Our reduc
tionist model suggests that targeting neurons that are not 
easily accessed by regular motor practice is particularly bene
ficial. With conventional training, these neurons were 
blocked from full optimization. The simulated stroke pri
marily affected high variability neurons but never completely 
wiped them out. This presents an interesting comparison to 
the real-world physiological situation wherein peri-infarct 
neurons are often hyperexcitable. In fact, the results of this 
model suggest that such peri-infarct neurons would contrib
ute to immediate learning but would eventually block less ex
citable populations in other motor areas that might 
otherwise contribute to motor recovery. TNP circumvents 
this blocking and thereby increases total torque. 
Furthermore, the model results predict the optimal dosage 

Figure 7 Network effect statistics. (A) Total torque generation (as percentage of maximum) over 20 000 training trials. (B–H) Neuronal 
population measures for trials at the beginning of training (dotted lines) and after 20 000 trials (solid lines), calculated by a Monte Carlo simulation. 
(B) Mean activation levels for each population. (C) Probability that each population’s mean change in activation was positive on a successful trial 
(i.e. a trial that increased the total torque). (D) Mean change in each population’s activation level for successful trials. This is effectively the rate of 
optimization. (E) Each population’s mean contribution to the torque change on a successful trial. This indicates which population the model is 
currently optimizing. (F) Probability that a population’s mean change in activation was positive on any given trial. (G) Mean change in a population’s 
activation level for all trials. (H) A population’s mean contribution to the torque change on all trials.
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and target of TNP training. The following sections compare 
the model predictions regarding network reorganization 
with the results of imaging studies, summarize TNP princi
ples derived from the model, and consider the study’s limita
tions and the most promising and important directions for 
further research.

Cortical organization before and after 
cortical injury
Extensive EEG and fMRI data indicate that activation of 
contralateral primary motor areas normally precedes and ac
companies motor actions.48–50 In accord with these experi
mental data, our model, applied prior to stroke, optimized 
mainly the high-variability, high-connectivity (i.e. fast/ 
strong) neurons concentrated in contralateral primary motor 
cortex. Thus, learning a right-hand task optimized activation 
of neurons in the primary motor cortex of the left hemisphere.

After the simulated stroke destroyed primary motor 
cortical neurons, the model exhibited a profound but sub
optimal reorganization of network recruitment. This phe
nomenon is prominent in clinical data.40,48,51 Injuries to 
sensorimotor regions often result in extension of motor re
presentation into perilesional regions.38,52–54 Another effect 
is increased activation in the uninjured hemisphere;55,56 this 
is especially prominent for unilateral movements of the af
fected limb.25,39,48 In accord with these clinical data, after 
the stroke, the model produced diffuse perilesional activa
tion in the lesioned hemisphere and a prominent increase 
in activation of the uninjured hemisphere.

The model provides insight into the possible mechanisms 
of this suboptimal reorganization. For a network that uses 
stochastic search to optimize neuronal activation, the 
trial-to-trial variability of each neuron, and, secondarily, 
its connectivity to the MN pool, determines the rate at which 
the network is able to recruit that neuron (i.e. to increase its 
contribution to the total finger extension torque). Once the 
most quickly optimized neurons (e.g. those in contralateral 
primary motor areas) are saturated, they can only remain sa
turated or incrementally decrease their activity as they ex
perience trial-to-trial variability. After stroke, these 
incremental decreases in their activity block optimization 
of other neurons. While the shift towards bilateral activation 
does increase torque, it is suboptimal because it blocks re
cruitment of high-connectivity (but more slowly recruited) 
neurons in other areas that could better enhance total torque. 
This leaves a substantial residual (i.e. unused) capacity for 
further recovery of torque.

Simulating TNP training partially re-lateralized hemi
spheric activity and improved torque recovery. Such re- 
lateralized activity has also been found to accompany better 
functional outcome in the stroke recovery literature.57 The 
model provides insight into how TNP can improve motor re
covery. As discussed above, neurons in secondary motor 
areas with the potential to contribute to torque production 
may be blocked from optimization by neurons in primary 
motor cortical areas with higher trial-to-trial variability 

(i.e. neurons that are rapidly recruited). The model predicts 
that TNP therapies may remove the blocking effect by modi
fying the roles of specific cortical areas in determining the 
teaching signal (i.e. in determining whether a trial is success
ful and thus updates the activation levels of all the CS neu
rons). Simulated TNP therapy removed the block by 
ignoring the high-connectivity/high variability neurons con
centrated in primary motor areas and deriving the teaching 
signal solely from the low-variability neurons concentrated 
in secondary motor areas.

In summary, the model replicated the patterns of network 
organization that are found in people before and after a uni
lateral cortical injury (e.g. a stroke). Furthermore, it identi
fied a mechanism that can account for both the normal 
(pre-stroke) and abnormal (post-stroke) patterns: the dy
namics of a stochastic search. With a stochastic search, the 
final topography of activation reflects the topographies of 
neuronal variability and connectivity across the two hemi
spheres. Stroke changes those topographies, and thereby 
changes the results of the stochastic search. If the blocking 
and reorganization effects predicted by the model do occur 
in vivo, appropriate TNP training could improve functional 
recovery.

Computational principles of TNP
These results provide a rationale for using TNP training to en
hance neuronal recruitment after injury and thereby improve 
recovery of motor function. The first principle is that inter
spersing TNP trials that enable recruitment of under-used 
neuronal populations with standard trials can access residual 
torque capacity inaccessible to standard training alone. This 
principle is consistent with animal and human evidence that 
appropriately designed TNP therapy can induce widespread 
adaptive plasticity leading to network reorganization and en
hanced motor function.3,4,7,8,10,11,13,14,46,58 In these TNP 
studies, real-time neuroimaging (i.e. EEG or fMRI) or meas
urement of a key physiological parameter (e.g. an H-reflex) 
provides the teaching signal. Stated in behavioural termin
ology, this teaching signal operantly conditions the person 
to modify key aspects of CNS activity (e.g. the activation levels 
of neurons in a specific cortical area).

A second principle based on the model is that, as TNP dose 
(i.e. TNP trials as % of all trials) increases, overall motor re
covery increases up to a maximum and then declines. For the 
model presented here, maximum recovery occurs with a dose 
of ∼20%. This optimum exists because standard trials alone 
leave a large latent residual capacity; and TNP trials alone 
leave most neurons untrained. A proper balance between 
them is essential. This suggests that studies such as,7 which 
provided only TNP trials, might achieve still better results 
by interspersing TNP trials with standard, non-targeted 
trials.

The prevalence of stroke is highly correlated with age59

and there is increasing evidence for the alteration of firing 
rates throughout the ageing brain.60 It is not clear whether 
these changes affect aging, or share a common underlying 
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age-related mechanism. We found that altering the max
imum firing rate of the network did not change the optimal 
TNP target or dosage result (Supplementary Fig. 1). In other 
words, the model suggests that age may not be a critical vari
able when for optimizing TNP target and dosage.

Mechanisms
Why did activity lateralize in the undamaged brain? The net
work favours optimization of high-variability/strong- 
connectivity (fast/strong) neurons, which are located mainly 
in M1 contralateral to the finger movement.

Why did activity become bilateral after the simulated stroke? 
After injury deprived the network of fast/strong neurons, it 
preferentially optimized fast/weak neurons, which are lo
cated mainly in M1 ipsilateral to the finger movement 
(Fig. 5B).

Why did targeted plasticity improve torque recovery and re- 
lateralize hemispheric activity? Standard training blocked op
timization of slow neurons. By focusing on secondary motor 
areas (where slow neurons are mainly located), TNP training 
overcame the blocking and enabled optimization of the slow 
neurons, which are stronger contralaterally.

Model limitations and future 
directions
Our model simplifies cortical control of movement and the 
potential consequences of cortical stroke. It reduces 
the many pathways that interconnect the cortex and other 
brain areas with the spinal cord and the motoneurons to a 
group of weighted connections. After injury, white matter 
hyperintensities and glial cell perturbations may alter system 
activity, and thus affect function. Effects like these, i.e. 
outside of direct CS-MN connection, would not be captured 
by this model; they may be important for understanding the 
phenomenology of stroke injury and recovery with respect to 
plasticity and TNP therapy. It also ignores the numerous and 
poorly understood effects of a stroke (e.g. the impact of im
pairment of the somatosensory input that guides and main
tains motor performance). Furthermore, human CS 
neurons reside in multiple cortical areas (i.e. primary motor, 
supplementary motor, premotor, somatosensory, cingulate 
and parietal). The model simplifies this complex reality 
into high and low-variability neurons that represent primary 
and secondary motor areas, respectively. Nevertheless, the 
model’s results are consistent with clinical data. It displays, 
and helps to explain, phenomena that underlie both normal 
motor learning and rehabilitation after stroke.16

The model’s value might increase with additional com
plexity. For example, a particularly valuable addition could 
be capacity for changes in neuronal connectivities to the 
motoneuron pools; in addition to training neural activation 
patterns, the network would also train the strengths of indi
vidual neuronal connections to the motoneurons. This add
ition would be particularly relevant given the ongoing 
discussion within the motor learning literature concerning 

the multiple learning mechanisms that drive short-term 
adaptation and long-term learning.15,61,62

Clinical TNP protocols that are designed based on the re
sults of the simulation presented here could use recent ad
vances in neural recording technology. For example, it may 
be possible to use high resolution EEG,63 implanted record
ing arrays,64 or ultrasound,65 to generate teaching signals 
from a targeted population of sub-optimized neurons. The 
teaching signal could then be presented to the patient during 
rehabilitative movement practice to help optimize involve
ment of the targeted population. Alternately, it may be pos
sible to inhibit populations of already optimized neurons 
using brain stimulation technologies such as TMS.

The modelling results might also shape the task that a clin
ical protocol presents to the patient. For example, the simula
tion presented here shows that incorporating trials that 
remove the influence of fast/strong CS neurons can access re
covery capacity that is inaccessible to standard training alone. 
As with standard training in our model, traditional rehabilita
tion for finger extension may improve the performance of 
stronger, but not weaker, motor units. Stronger motor units 
are easily fatigued, while weaker units are not.66 Thus, a proto
col that requires prolonged maintenance of position against a 
steady-state torque could eliminate the contributions of stron
ger motor units and focus training on the weaker units; it might 
thereby access otherwise inaccessible capacity for torque re
covery. Alternatively, a protocol that requires precise mainten
ance of a specific force level could discourage activation of 
strong motor units, which cannot provide such precise control, 
and encourage activation of weak motor units, which can pro
vide precise control. A combination protocol might incorpor
ate both methods for focusing on weak units.

Although this model applies well to CS control of a mus
cle, it might not apply as well to other rehabilitation pro
blems. To be useful for a given problem, a model must 
simulate the motor behaviour to be restored and the CNS 
mechanisms that underlie the behaviour and its impairment 
by injury or disease. A variety of existing or conceivable TNP 
protocols might target plasticity related to specific temporal, 
kinematic, physiological or anatomical components of a var
iety of important sensorimotor behaviours. For example, a 
TNP protocol could target plasticity: in individual joint con
trol during complex arm movements;67 in responses to per
turbations during movement;68 in physiological measures 
of activity in key neuronal pathways;14 or by using precisely 
paired stimuli to change a key CNS site.69 As CNS imaging 
and stimulation technologies continue to improve, the var
iety and precision of TNP protocols should increase. 
Hopefully, parallel advances in computational modelling 
will enable models to facilitate and enhance these advances.

In summary, computational models can accelerate the cre
ation and development of novel neurorehabilitation therap
ies. In contrast to clinical studies, which are generally 
demanding and time-consuming for both patients and inves
tigators, modelling allows rapid assessment of many differ
ent designs and parameter selections. Properly applied, 
modelling could guide selection of the most promising 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac264#supplementary-data
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protocols for actual clinical study and could thereby enable 
efficient and effective realization of new therapies.
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