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Soft materials, such as elastomers, hydrogels, and liquid crystal elastomers (LCEs), exhibit 

unique mechanical properties like hyperelasticity, poroelasticity, and anisotropy, stemming from 

their molecular structures. Elastomers are rubber-like materials composed of cross-linked long-

chain polymer networks, while hydrogels consist of cross-linked polymer networks immersed in a 

solvent. Unlike hydrogels, LCEs combine polymer networks with liquid crystal mesogens, 

exihibiting semisoft elasticity where a finite, though small, stress is required to rotate the 

mesogens. These materials find applications in both natural and artificial structures, including 

biological tissues, soft robots, and flexible sensors. 
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Under extreme external loading conditions, soft materials can display various deformation 

behaviors such as mechanical instability, phase separation, and fracture. These behaviors are 

highly nonlinear and not fully understood. For instance, mechanical instability under extreme 

compression can significantly alter the shape and load-bearing capacity of the materials. Dramatic 

environmental changes can induce phase separation in a homogeneous mixture, causing it to split 

into different phases. Additionally, extreme tension can cause soft materials to fracture into 

multiple pieces. This dissertation aims to study these phenomena and uncover the underlying 

mechanisms driving these complex behaviors. 

First, we study mechanical instability through elastomeric tube structures. Specifically, we 

conduct three-dimensional buckling and postbuckling analysis for thick hyperelastic tubes 

subjected to axial compression under finite deformation by the asymptotic expansion method. Our 

theoretical results successfully predict the deformation and stress-strain curves of buckled tubes 

near the critical loading, which are well validated by finite element analysis. Depending on the 

geometry, three kinds of postbuckling paths, including continuous buckling, snap-through and 

snap-back, are discovered. Our work provides understanding and insights into the buckling and 

postbuckling of thick tubes, and bridges the knowledge gap between postbuckling of thick columns 

and tubes. 

Second, we investigate the underpinning role of mechanical constraints and dynamic 

loading on triggering volume phase transitions and phase separation of hydrogels. Using the Flory-

Rehner free energy, which does not predict phase separation of hydrogels under equilibrium free 

swelling, we show that mechanical constraints can lead to coexistence of multiple phases. We 

systematically obtain the states of equilibrium for hydrogels under various mechanical constraints, 
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and unravel how mechanical constraints change the convexity of the free energy and monotonicity 

of the stress-stretch curves, leading to phase coexistence. Using a phase-field model, we predict 

the pattern evolution of phase coexistence, and show many features cannot be captured by the 

homogeneous states of equilibrium due to large mismatch stretch between the coexisting phases. 

We further reveal that the system size, quenching rate, and loading rate can significantly influence 

the phase behavior, which provides insights for experimental studies related to morphological 

patterns of hydrogels. 

Lastly, we investigate the fracture behavior of liquid crystal elastomers (LCEs). We begin 

by developing a modified semisoft constitutive model to accurately capture their unique 

mechanical responses. Next, we address the gap in understanding the effect of deformation-

director coupling on LCE fracture paths and the lack of established fracture criteria. By combining 

experimental and theoretical approaches, we aim to elucidate fracture propagation in LCEs. We 

stretch edge-cracked monodomain LCE samples, recording their stress-strain responses and crack 

paths under varying initial directors and stretching rates. Our findings reveal that crack propagation 

paths are highly dependent on both the initial director and the stretching rate. To further understand 

LCE fracture behavior, we develop a rate-dependent phase-field fracture model, which is validated 

through experiments and demonstrates the ability to predict complex fracture paths. Our study 

paves the way for designing LCEs with enhanced fracture properties, beneficial for future 

applications. 

  



v 

 

The dissertation of Yu Zhou is approved. 

Ajit Mal 

Mohammed Khalid Jawed 

Samanvaya Srivastava 

Vinay Goyal 

Lihua Jin, Committee Chair 

 

University of California, Los Angeles 

2024 

 

 

  



vi 

 

TABLE OF CONTENTS 

Chapter 1 Introduction .................................................................................................................... 1 

1.1 Basics of Soft Materials ........................................................................................................ 1 

1.2 Intriguing Phenomena under External Loadings .................................................................. 3 

1.3 Motivation and Objectives .................................................................................................... 5 

1.4 Outline of the Dissertation .................................................................................................... 9 

Chapter 2 Three-dimensional Postbuckling Analysis of Thick Hyperelastic Tubes .................... 11 

2.1 Introduction ......................................................................................................................... 12 

2.2 Geometry and Material Model ............................................................................................ 14 

2.4 Linear Bifurcation Analysis ................................................................................................ 19 

2.4.1 Formulation ................................................................................................................................. 19 
2.4.2 Results ......................................................................................................................................... 23 

2.5 Weakly Postbifurcation Analysis ........................................................................................ 28 

2.5.1 Formulation ................................................................................................................................. 28 
2.5.2 Results ......................................................................................................................................... 34 

2.6 Conclusion .......................................................................................................................... 45 

Chapter 3 Mechanics Underpinning Phase Separation of Hydrogels ........................................... 48 

3.1 Introduction ......................................................................................................................... 48 

3.2 Constitutive Models of Hydrogels ...................................................................................... 52 

3.3 Homogeneous State of Equilibrium .................................................................................... 55 

3.3.1 Free swelling ............................................................................................................................... 57 



vii 

 

3.3.2 Swelling under hydrostatic loading ............................................................................................ 60 
3.3.3 Swelling with constrained uniaxial and biaxial deformation ..................................................... 64 

3.4 Numerical Simulations of Phase Separation ....................................................................... 66 

3.4.1 Phase-field model ....................................................................................................................... 67 
3.4.2 Phase separation of hydrogels under constrained uniaxial deformation .................................... 70 
3.4.3 Phase separation of hydrogels under constrained biaxial deformation ...................................... 72 

3.5 Phase Separation Induced by Quench and Stretch .............................................................. 76 

3.5.1 Influence of quenching rate ........................................................................................................ 77 
3.5.2 Influence of stretching rate ......................................................................................................... 79 

3.6 Conclusion .......................................................................................................................... 86 

Chapter 4 A Modified Semisoft Model of Liquid Crystal Elastomers: Application to Elastic and 

Viscoelastic Responses ................................................................................................................. 89 

4.1 Introduction ......................................................................................................................... 89 

4. 2 Experimental Methodology and Theoretical Framework .................................................. 92 

4.2.1 Material and specimen preparation ............................................................................................. 92 
4.2.2 Uniaxial test ................................................................................................................................ 93 
4.2.3 A general continuum model for LCEs ........................................................................................ 93 

4.3 Elastic Response ................................................................................................................. 97 

4.3.1 A modified semisoft free energy ................................................................................................ 97 
4.3.2. Uniaxial tension with homogeneous deformation ................................................................... 100 

4.4 Viscoelastic Response ....................................................................................................... 103 

4.4.1 Constitutive relation and evolution equation ............................................................................ 104 
4.4.2. Uniaxial tension with homogeneous deformation ................................................................... 105 

4.5 Inhomogeneous Deformation ............................................................................................ 107 

4.5.1 Uniaxial tension of an LCE film with an off-center hole ......................................................... 108 



viii 

 

4.5.2 Influence of mesh sizes ............................................................................................................. 111 

4.6 Conclusion ........................................................................................................................ 114 

Chapter 5 Fracture of Liquid Crystal Elastomers ....................................................................... 115 

5.1 Introduction ....................................................................................................................... 115 

5.2 Tilted Fracture Path ........................................................................................................... 116 

5.3 Phase-field Fracture .......................................................................................................... 118 

5.4 Influence of Stretching Rates and Initial Directors ........................................................... 120 

5.5 Influence of Geometry ...................................................................................................... 122 

5.6 Influence of Pre-cracks ..................................................................................................... 124 

5.7 Conclusion ........................................................................................................................ 126 

Chapter 6 Conclusion and Outlook ............................................................................................. 128 

6.1 Conclusion ........................................................................................................................ 128 

6.2 Outlook ............................................................................................................................. 130 

Appendix 1 Supplementary Materials for Three-dimensional Postbuckling Analysis of Thick 

Hyperelastic Tubes ...................................................................................................................... 132 

A1.1 Expressions of 𝑋𝑖	(𝑖 = 1,2, … ,7) ................................................................................... 132 

A1.2 Expressions of 𝑋𝑖[3]	(𝑖 = 1,2, … ,7) .............................................................................. 134 

A1.3 Calculation of displacement field of group [3] .............................................................. 135 

A1.4 Equations of group [2] ................................................................................................... 141 



ix 

 

A1.5 Calculation of displacement field of group [2] .............................................................. 143 

A1.6 Equations of group [1] ................................................................................................... 146 

A1.7 Calculation of displacement field of group [1] .............................................................. 147 

A1.8 Equations of group [0] ................................................................................................... 151 

A1.9 Calculation of displacement field of group [0] .............................................................. 152 

A1.10 Postbuckling analysis of the barreling mode ............................................................... 153 

A1.11 The influence of geometric imperfections ................................................................... 153 

Appendix 2 Supplementary Materials for Mechanics Underpinning Phase Separation of 

Hydrogels .................................................................................................................................... 155 

A2.1 Free Swelling ................................................................................................................. 155 

A2.2 Swelling under Hydrostatic Loading ............................................................................. 156 

Appendix 3 Supplementary Materials for Fracture of Liquid Crystal Elastomers ..................... 159 

A3.1 Material and Specimen Preparation ............................................................................... 159 

A3.2 Supplementary Figures .................................................................................................. 160 

A3.3 Phase-field fracture model ............................................................................................. 161 

A3.4 Derivation of the Anisotropic Crack Geometric Function ............................................. 168 

A3.5 Implementation Details and Material Parameters .......................................................... 169 

Reference .................................................................................................................................... 171 

  



x 

 

LIST OF FIGURES 

Figure 1.1 Examples of soft materials. (a) Inflatable soft jumper made of elastomeric materials [9]. 

(b) Dried hydrogel and swollen hydrogel showing a significant volume change [10]. (c) Liquid 

crystal elastomers lifting a weight in response to temperature change [11]. .................................. 2 

Figure 1.2 Schematic of (a) an elastomer, (b) a hydrogel, and (c) an LCE. ................................... 3 

Figure 1.3 (a) An elastomeric beam structure under compression. Continuous, snap-through, and 

snap-back buckling, and creasing are predicted with different beam width-to-length ratios [39]. (b) 

Pattern formation in a shrinking hydrogel immersed in a poor solvent [43]. (c) Sideways crack 

propagation in a pre-cracked silicone elastomer subjected to vertical stretching. The crack 

terminates at the boundary [44]. ..................................................................................................... 4 

Figure 1.4 Schematic of mechanical instability of a tube structure. ............................................... 7 

Figure 1.5 Schematic of phase separation of a hydrogel. ............................................................... 8 

Figure 1.6 Schematic of fracture of a LCE sheet. ........................................................................... 9 

Figure 2.1 Schematics of a thick tube under axial compression. .................................................. 15 

Figure 2.2 Schematics of the (a) barreling (𝑛 = 0, 𝑘 = 2) and (b) Euler buckling (𝑛 = 1, 𝑘 = 2) 

modes. The coordinates of points 𝐴1, 𝐴2, 𝐵1 and 𝐵2 in the cylindrical coordinate system (𝑅, 𝛩, 𝑍) 

are (𝐴, 𝛩, 𝐻/2), (𝐴, 𝛩, 𝐻), (𝐵, 𝛩, 𝐻/2) and (𝐵, 𝛩, 𝐻), respectively. .............................................. 23 

Figure 2.3 Critical stretches for different buckling modes with different longitudinal wave number 

n of a cylindrical tube as a function of the parameter 𝜂𝐵 at three sets of radius ratios of the tube 

(a) 𝐴/𝐵 = 0.25, (b) 𝐴/𝐵 = 0.5, (c) 𝐴/𝐵 = 0.65. ....................................................................... 27 

Figure 2.4 Phase diagram for the onset of buckling and creasing under axial compression. The 

color represents the value of the critical stretch. ........................................................................... 27 



xi 

 

Figure 2.5 Comparing the deformed shape of the Euler buckling mode predicted by the asymptotic 

expansion method with that from the FEA for a tube with 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.2 at applied 

stretch 𝜆 = 1 − 0.99𝜀𝑐𝑟 = 0.7894. (a) FEA result of 3D buckled shape in a cross-sectional view 

in 𝛩 = 0 and 𝜋  plane. (b) The initial 𝑅𝛩  plane (horizontal cross section) with a constant 𝑍  is 

meshed uniformly. (c) The initial 𝑅𝑍 plane (vertical cross section) with a constant 𝛩 is meshed 

uniformly. (d) The FEA and (e) theoretical results of the projection of the deformed horizontal 

cross section (originally in 𝑍 = 0.25𝐻 ) to the current plane 	𝑧 = 0.25𝜆𝐻 , where the color 

represents the projection distance. The projection of the deformed vertical 𝑅𝑍 cross section (f-g) 

originally in 𝛩 = 0 to the current plane 𝜃 = 0, and (h-i) originally in 𝛩 = 𝜋/4 to the current plane 

𝜃 = 𝜋/4, where (f) and (h) are FEA results and (g) and (i) are theoretical results. ..................... 35 

Figure 2.6 Comparing the deformed shape of the barreling mode predicted by the asymptotic 

expansion method with the FEA results for a tube with 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.6 at applied 

stretch 𝜆 = 1 − 0.99𝜀𝑐𝑟 = 0.6760. (a) The FEA result and (b) theoretical result of the deformed 

shape of a	𝑅𝑍 plane, with the initial state plotted for reference. .................................................. 36 

Figure 2.7 Normalized coordinates of points 𝐴1, 𝐴2, 𝐵1 and 𝐵2 along 𝑅  direction, r/𝑅 , as a 

function of nominal strain, 𝜀, for fixed 𝐴/𝐵 = 0.6 and different 𝐵/𝐻: (a) 𝐵/𝐻 = 0.1; (b) 𝐵/𝐻 =

0.2; (c) 𝐵/𝐻 = 0.48 and (d) 𝐵/𝐻 = 0.6. For (a) and (b), the Euler buckling mode is predicted, 

and the coordinates are shown in the vertical cross section originally in the plane 𝛩 = 0. For (c) 

and (d), the axisymmetric barreling mode is predicted. ................................................................ 38 

Figure 2.8 The postbuckling stress-strain relation for axially compressed tubes with fixed 𝐴/𝐵 =

0.6  and different 𝐵/𝐻 : (a) 𝐵/𝐻 = 0.02 , (b) 𝐵/𝐻 = 0.1 , (c) 𝐵/𝐻 = 0.2 . The corresponding 

buckling mode is Euler buckling. ................................................................................................. 40 



xii 

 

Figure 2.9 The postbuckling stress-strain relation for axially compressed tubes with fixed 𝐴/𝐵 =

0.6 and different 𝐵/𝐻: (a) 𝐵/𝐻 = 0.48, (b) 𝐵/𝐻 = 0.6. The corresponding buckling mode is the 

barreling mode. ............................................................................................................................. 40 

Figure 2.10 Postbuckling slopes as functions of geometric parameters (a) 𝐴/𝐵	(𝐵/𝐻 = 0.2) and 

(b) 𝐵/𝐻	(𝐴/𝐵 = 0.6). .................................................................................................................. 41 

Figure 2.11 Phase diagram for different types of postbuckling paths. In this diagram, we use letters 

“C”, “T” and “B” to represent continuous buckling, snap-though and snap-back, respectively. The 

color contour represents the value of the critical stretch 𝜆𝑐𝑟. ...................................................... 44 

Figure 2.12 (a) (b) 3D plots and (c) (d) side views of the deformed cross section (originally in 𝑍 =

0.25𝐻) at applied stretch 𝜆 = 1 − 1.01𝜀𝑐𝑟 when 𝐴/𝐵 is fixed at 0.6, and (a) (c) 𝐵/𝐻 = 0.12, or 

(b) (d) 𝐵/𝐻 = 0.38. For both tubes, snap-through Euler buckling occurs. ................................. 45 

Figure 3.1 Schematic of the reference, intermediate and current states. The intermediate state is 

chosen as the initial state in numerical simulations. ..................................................................... 53 

Figure 3.2 A hydrogel is in equilibrium with an external solvent without mechanical constraints. 

(a) The free energy as a function of the swelling ratio 𝐽 at various 𝜒. Points 𝑎, 𝑏, and 𝑐 correspond 

to the equilibrium solutions when 𝜇𝑤 = 0, and points 𝑑 and 𝑒 are the solutions to Eq. (3.11). (b) 

The equilibrium solutions under 𝜇𝑤 = 0 (the black curve) and 𝜇𝑤 = 0.15𝑘𝑇 (the blue curve) and 

the spinodal curve (the red curve). Points a-e correspond to the same conditions as in (a), while 

point 𝑓 is the intersection of solutions to Eq. (3.10) (i.e. the equilibrium solutions) and to Eq (3.11) 

when 𝜇𝑤 = 0.015𝑘𝑇. ................................................................................................................... 59 

Figure 3.3 A hydrogel subjected to hydrostatic loading is in equilibrium with an external solvent. 

(a) The free energy 𝑊 as a function of stretch at various 𝜒. Points 𝑎 and 𝑏 are the two intersection 



xiii 

 

points of the 𝑊 − 𝜆 curve and the common tangent line (the red dashed line), and points 𝑐 and 𝑑 

are solutions to Eq. (3.8). (b) The free energy 𝐺 = 𝑊 − 3𝑠𝜆 as a function of stretch for 𝜒 = 0.8 

under different values of 𝑠. (c) Spinodal and binodal curves with their intersection point 𝑒. (d) 

Nominal stress as a function of stretch at various 𝜒. Points 𝑎-𝑑 correspond to the same conditions 

in (a), (b), (c) and (d). (e) The equilibrium solutions under 𝑠 = 0  (the red curve) and 𝑠 =

0.032𝑘𝑇/𝑣	 (the blue curve). ........................................................................................................ 63 

Figure 3.4 A hydrogel is in equilibrium with an external solvent under constrained uniaxial (1D) 

and biaxial (2D) deformation. (a) Spinodal and binodal curves. (b) Critical interaction parameter 

𝜒𝑐 as a function of crosslink density 𝑁𝑣 for constrained uniaxial, biaxial, and hydrostatic (3D) 

deformation. (c) Critical stretch 𝜆𝑐  and the corresponding critical volume 𝐽𝑐  as functions of 

crosslink density 𝑁𝑣. (d) Non-monotonic nominal stress-stretch relations at high 𝜒. ................. 66 

Figure 3.5 Schematic of a hydrogel under constrained uniaxial deformation in the reference, initial 

and current states. In the current state, the hydrogel undergoes phase separation with different 

colors representing different stretch values of the swollen and shrunk phases. ........................... 70 

Figure 3.6 The temporal evolution of stretch as a function of the Lagrangian coordinate X 

associated with the reference state at (a) 𝜒 = 1 and (b) 𝜒 = 1.5. (c) The equilibrium distribution 

of stretch for hydrogels with different ratios of the sample length to the characteristic length, 𝐿/𝑙. 

(d) 𝐿/𝑙-𝜆0 diagram of phase separation at different 𝜒. ................................................................. 72 

Figure 3.7 Schematic of a hydrogel under constrained biaxial deformation in the reference, initial 

and current states. In the current state, the hydrogel undergoes phase separation with different 

colors representing the distribution of the concentration of different phases. .............................. 73 



xiv 

 

Figure 3.8 (a) 𝐿/𝑙-𝜆0 phase diagram of phase separation for 𝜒 = 0.8. Three patterns, solvent rich 

island (𝜆0 = 2, 𝐿𝑙 = 400), strip (𝜆0 = 2.1, 𝐿𝑙 = 400), and solvent poor island (𝜆0 = 2.1, 𝐿𝑙 =

235 ) are shown in snapshots A, B and C, where the color bars represent the normalized 

concentration 𝑣𝐶, and the black solid curves correspond to the initial concentrations. (b) 𝐿/𝑙-𝜆0 

phase diagram of phase separation for 𝜒 = 2. (c) The equilibrium distribution of concentration 

along the diagonal of the hydrogel in the solvent-rich-island pattern with different sizes of the 

hydrogel 𝐿/𝑙 and the initial stretch 𝜆0 = 2. (d) The stretch values in X and Y directions at corner 

A2 in the solvent-rich-island pattern as functions of the sample size 𝐿𝑙. (e) The concentrations at 

corners A1 and A3 in the solvent-rich-island pattern as functions of the sample size 𝐿𝑙. The dashed 

lines are predicted by the common tangent construction. (f) The equilibrium distribution of 

concentration along the edge of the hydrogel in the strip pattern. ................................................ 76 

Figure 3.9 (a) Schematic of a hydrogel under constrained uniaxial deformation with different 

quenching rates. In the current state, the top schematic represents the hydrogel with a single phase 

when the loading time is much longer than the diffusion time across the whole sample 𝑡1 ≫

𝐿12/𝐷, and the bottom schematic represents the hydrogel undergoing phase separation when 𝑡1 ≪

𝐿12/𝐷. In both cases, the hydrogel eventually reaches equilibrium and becomes homogeneous 

(final state). (b) Schematic of the change of 𝜒 as a function of time. ........................................... 77 

Figure 3.10 The evolution of stretch distribution along the length of the hydrogel at different time 

under quenching rates of (a) 𝑡1/𝑡0 = 10 and (b) 𝑡1/𝑡0 = 500000. The maximum stretch (c, d) 

and length change (e, f) as functions of time under different quenching rates. ............................ 79 

Figure 3.11 (a) Schematic of a hydrogel undergoing constrained uniaxial stretch in the reference, 

initial and current states. In the current state, the top schematic represents the hydrogel with two 



xv 

 

inhomogeneous phases when the loading is fast, and the bottom schematic represents the hydrogel 

with two homogeneous phases when the loading is slow. (b) Schematic of the applied stretch as a 

function of time. ............................................................................................................................ 80 

Figure 3.12 Loading, unloading and homogenous equilibrium stress-stretch curves for different 

ratios of the loading time to the diffusion time across the sample, (a) 𝑚 = 1000 and (b) 𝑚 =

50000. The red dashed line represents the stress and critical stretches obtained by the common 

tangent construction. Stretch distribution at different applied stretches in loading and unloading 

for (c) 𝑚 = 1000  and (d) 𝑚 = 50000 , where the solid blue lines correspond to the loading 

process and the dashed black lines correspond to the unloading process. .................................... 82 

Figure 3.13 Schematic of a hydrogel undergoing constrained biaxial deformation in the reference, 

initial and current states. In the current state, different loading rates lead to different patterns of the 

hydrogel. ....................................................................................................................................... 83 

Figure 3.14 Dependence of the normalized stresses in the 𝑋 and 𝑌 directions as functions of stretch 

𝜆1 for the hydrogel subjected to different loading rates (a) 𝑚 = 200	and (b) 𝑚 = 10000	. Contour 

plots of the solvent concentration at different stretches for (c) 𝑚 = 200 and (d) 𝑚 = 10000. 

Maximum and minimum solvent concentrations as functions of stretch 𝜆1 for (e) 𝑚 = 200	and (f) 

𝑚 = 10000. .................................................................................................................................. 85 

Figure 4.1 Schematic of the rheological model with a viscous branch, an equilibrium branch and 

𝑁 nonequilibrium branches. .......................................................................................................... 94 

Figure 4.2 (a) Schematic of a LCE film under uniaxial external tension. (b) Schematic 

configurations of a LCE film before and after a homogeneous deformation under uniaxial tensile 

stress, with the director angles 𝜃0 and 𝜃, respectively. ............................................................... 101 



xvi 

 

Figure 4.3 Theoretical predictions for elastic responses of LCEs under uniaxial tension compared 

with experimental results. (a) Experimental stress-stretch curves for a LCE sample with 𝜃0 = 90°. 

(b) Stress-stretch curves obtained from experiments and theoretical models with different forms of 

𝑎. (c) Stress-stretch curves for different initial directors. Influence of parameter 𝑚 on the (d) stress, 

(e) shear stretch and (f) director rotation as functions of the stretch. ......................................... 103 

Figure 4.4 Theoretical predictions for viscoelastic responses of LCEs under uniaxial tension 

compared with experimental results. Dependence of (a)(d) nominal stress, (b)(e) shear stretch and 

(c)(f) director orientation on external stretch under different stretching rates and initial directors. 

The experimental data are extracted from our previous paper [68]. ........................................... 107 

Figure 4.5 (a) Schematic of a LCE film with an off-center hole subjected to uniaxial tension. (b) 

Experimental and fitted relaxation shear modulus as a function of time. (c) Numerical and 

experimental stress-stretch responses for different loading rates. (d) Experimental and numerical 

results of the deformation under various stretches and loading rates. The color bar represents the 

director field 𝑐𝑜𝑠𝜃. (e) Numerical results of the shape of the hole under various stretches and 

loading rates, with four circles marked on the hole for visualization. ........................................ 110 

Figure 4.6 (a) A generated mesh and polar coordinates defined in the reference configuration. 

Director distribution (b) of the sample and (c) near the hole (𝑅 ≤ 𝜌 ≤ 1.2𝑅) for two different 

mesh sizes (𝐻𝑒 = 0.1	&	0.02). (d) Director distribution along the edge of the hole (𝜌 = 𝑅). .. 112 

Figure 4.7 Influence of mesh sizes on the director distribution along the hole (𝜌 = 𝑅) under an 

applied stretch of (a)	𝜆 = 1.1 and (b)	𝜆 = 2 at a slow loading rate of 0.1%/𝑠. (c) The zoomed-in 

plot of (b) showing detailed director distributions. Influence of mesh sizes on the director 

distribution along the circle (𝜌 = 1.2𝑅) under 𝜆 = 2 (d) at the same low loading rate of 0.1%/𝑠, 



xvii 

 

and (e) at a high loading rate of 10%/𝑠. Simulated shape of the hole for different mesh sizes under 

𝜆 = 2 at loading rates of (f) 0.1%/𝑠 and (g) 10%/𝑠. ................................................................ 113 

Figure 5.1 (a) Schematic of an LCE sample with a tilted initial director and a horizontal edged 

crack subjected to uniaxial tension. The initial director is illustrated by the orange ellipse. (b) 

Stress-stretch responses for two different stretching rates, 𝜆 = 0.1%/𝑠  and 𝜆 = 10%/𝑠 . (c) 

Images showing deformation and crack propagation at different stretches. (d) Relaxed samples 

with a tilted fracture path under two stretching rates. ................................................................. 118 

Figure 5.2 (a) Numerical and experimental comparison of stress-stretch responses for different 

stretching rates. (b) Numerical predictions of the deformation and crack propagation with a 

stretching rate of 0.1%/𝑠. The color bar represents the phase field, and the material with 𝑑 > 0.95 

has been removed. (c) Fractured samples with two stretching rates in the reference configuration. 

(d) Director distribution in front of the crack tip, where the color bar represents the 𝑥 component 

of the director cos𝜃. .................................................................................................................... 120 

Figure 5.3 (a) Numerical and experimental stress-stretch responses for various initial directors and 

stretching rates. (b) Fracture angles obtained from experiments and simulations. ..................... 122 

Figure 5.4 (a) Images of deformation and crack propagation at different stretches under two 

stretching rates, 𝜆 = 0.1%/𝑠 and 𝜆 = 10%/𝑠. The sample near the boundary is obscured by the 

gripper, as illustrated in the schematic (𝜆 = 1). (b) Experimental and numerical fractured samples 

with two stretching rates in the reference configuration. (c) Corresponding fracture paths from 

experiments and simulations. (d) Numerical predictions of deformation and crack propagation. (e) 

Corresponding director distribution. (f) Numerical and experimental comparison of stress-stretch 

responses for different stretching rates. ...................................................................................... 124 



xviii 

 

Figure 5.5 (a) Experiments and simulations of deformation, crack propagation and final fracture 

path. The pre-crack length is 𝑙𝑐 = 0.6𝑊. (b) Director distribution. (c) Schematic of an LCE sample 

with two horizontal edged cracks subjected to uniaxial tension. (d) Experimental snapshots and (e) 

numerical snapshots of deformation and crack propagation at different stretches. (f) Comparison 

of experimental and numerical fractured samples in the reference configuration. ..................... 126 

 

  



xix 

 

LIST OF TABLES 

Table 4.1 Different parameter sets for elastic responses ............................................................ 102 

Table 4.2 Viscosity parameters for uniaxial tension with homogeneous deformation ............... 106 

Table 4.3 Remaining material parameters for uniaxial tension with homogeneous deformation

..................................................................................................................................................... 106 

Table 4.4 Viscosity parameters for uniaxial tension with inhomogeneous deformation ............ 109 

Table 4.5 Remaining material parameters for uniaxial tension with homogeneous deformation

..................................................................................................................................................... 110 

 

  



xx 

 

ACKNOWLEDGMENTS 

First and foremost, I would like to express my deepest and sincerest gratitude to my 

advisor, Prof. Lihua Jin. These past six years have been incredibly challenging for me. Three years 

ago, I experienced profound depression and frustration, feeling unable to achieve my ambitions. I 

reached my loneliest, lowest, and darkest state during my PhD. My life and research were 

completely stuck. I struggled with rest, and for about two years, I had no research outcomes. Prof. 

Jin, you always supported me, no matter what. Your kind words inspired me. I wrote in my 

notebook, “I must do something to repay your patience, kindness, and warmth. I felt I would climb 

a mountain of swords or plunge into a sea of flames.” Gradually, I adjusted myself and emerged 

from that difficult situation. Even though progress has been slow over the last two years, I feel 

happy and determined. As an advisor, Prof. Jin gave me the freedom to pursue my interests and 

consistently provided insightful understanding of physics. With her guidance, I gradually learned 

to identify important and interesting problems, and became more confident as a researcher. Prof. 

Jin has always given me the utmost support for any opportunity. I truly feel fortunate to be one of 

her students. Thank you, Prof. Jin! You are genuinely a great person, friend, and advisor. I wish 

you and the group continued success in research, and I wish you and your family happiness, health, 

and all the best. 

I would also like to thank my committee members: Prof. Ajit Mal, Prof. M Khalid Jawed, 

Prof. Samanvaya Srivastava, Prof. Vinay Goyal, and Prof. Alex Levine, for their invaluable 

suggestions and comments on my research. I deeply appreciate Prof. Ajit Mal for his support and 

for kindly writing recommendation letters for me. I also want to thank Prof. Vinay Goyal for his 



xxi 

 

appreciation when I first arrived at UCLA, which gave me tremendous courage to meet the 

challenges in academia. 

I am thankful to my collaborators. I gained significant knowledge about tumor growth from 

Dr. Jiayi Du and Prof. Ke Sheng. I also appreciate Chen Wei for his work on LCEs. I am grateful 

to Prof. Wei Hong for sharing the COMSOL file with me, which greatly helped me learn the 

software. I am particularly thankful to Prof. Yuzhen Chen for his enormous help in both research 

and life. His support has been priceless, and I will always remember his assistance. I also thank all 

the group members in the Mechanics of Soft Materials Lab. 

I am grateful to Prof. Jinxiong Zhou and Prof. Zishun Liu. I have learned so much from 

their groups, which helped me develop my research skills. Prof. Zishun Liu is one of the kindest 

people in the world. Prof. Liu, thank you for giving me all the opportunities and support. 

I thank the UCLA Martial Arts Program. It was my sole activity outside of research, 

helping me become tougher both physically and mentally. I am grateful to all the incredible people 

I met there. 

I also want to thank all my friends. Your encouragement helped me through the difficulties 

I encountered. I would like to especially thank Zidi Zhou. We share our stories and encourage each 

other. Your constant support motivates me to improve in all aspects. I hope this continues forever. 

Without my parents, I wouldn’t be here. Thank you for your endless love, care, support, 

and understanding. We will always be together. I thank all my family members. To my late 

grandparents, I will explore the wider world for you. I hope you can rest in peace. 



xxii 

 

I often blame myself, but I would like to thank myself lastly. You did well. You have grown 

a lot. You learned to forgive yourself. Thank you for continuing to move forward. Just prepare for 

the next step. You have a lifetime to realize your dream. 

 



xxiii 

 

VITA 

 

2014-2018 B.S. in Engineering Mechanics, Xi’an Jiaotong University, China. 

 

PUBLICATIONS 

[1] Zhou, Y., Chen, Y., & Jin, L. (2023). Three-dimensional postbuckling analysis of thick 

hyperelastic tubes. Journal of the Mechanics and Physics of Solids, 173, 105202. 

[2] Zhou, Y., & Jin, L. (2023). Mechanics underpinning phase separation of 

hydrogels. Macromolecules, 56(2), 426-439. 

[3] Xuan, C.1, Zhou, Y.1, Zhao, Y., He, X., & Jin, L. (2022). Photodriven self-excited hydrogel 

oscillators. Physical Review Applied, 17(1), 014007. (1Equal contributions) 

[4] Zhou, Y., & Jin, L. (2020). Hydrolysis-induced large swelling of polyacrylamide 

hydrogels. Soft Matter, 16(24), 5740-5749. 

[5] Zhou, Y., Hu, J., & Liu, Z. (2019). Deformation behavior of fiber-reinforced hydrogel 

structures. International Journal of Structural Stability and Dynamics, 19(03), 1950032. 

[6] Zhou, Y., Wei, C., & Jin, L. (2024). Fracture of liquid crystal elastomers. In preparation. 

[7] Zhou, Y., Wei, C., & Jin, L. (2024). A modified semisoft model of liquid crystal elastomers: 

application to elastic and viscoelastic responses. In preparation. 

[8] Wei, C., Zhou, Y., Hsu, B., & Jin, L. (2023). Exceptional stress-director coupling at the crack 

tip of a liquid crystal elastomer. Journal of the Mechanics and Physics of Solids, 105522. 



xxiv 

 

[9] Wei, C., Cao, S., Zhou, Y., Lin, D., & Jin, L. (2023). Rate-dependent stress-order coupling in 

main-chain liquid crystal elastomers. Soft Matter, 19(41), 7923-7936. 

[10] Du, J., Zhou, Y., Jin, L., & Sheng, K. (2023). Gell: A GPU-powered 3D hybrid simulator for 

large-scale multicellular system. Plos one, 18(7), e0288721. 

 



1 

 

Chapter 1 Introduction 

Soft materials are prevalent in nature and everyday life, characterized by their ability to 

deform easily. This deformation enables various functions, making soft materials highly versatile. 

In engineering, they have numerous potential applications, including human-machine interfaces 

and use in complex environments [1-4]. Their similarity to biological tissues allows for seamless 

integration between biological systems and electronic devices. Additionally, soft materials can be 

easily activated by stimuli such as temperature, light, magnetic fields, electric fields, and 

mechanical stresses, which allows them to function as actuators and soft robotics [5-8]. Compared 

to traditional robotics, soft robotics offer enhanced safety, adaptability, and flexibility. 

1.1 Basics of Soft Materials 

Soft materials have been extensively developed and investigated over the past few decades. 

Typical soft materials, such as elastomers (Figure 1.1a), hydrogels (Figure 1.1b), and LCEs (Figure 

1.1c), exhibit unique mechanical properties such as hyperelasticity, poroelasticity, and anisotropy. 

Figure 1.1 illustrates examples of soft materials. Figure 1.1a demonstrates a fluidic soft elastomeric 

jumper that utilizes snap-through instability to release energy suddenly and deform quickly [9]. 

Figure 1.1b depicts a polyelectrolyte hydrogel undergoing large volume changes as solvent 

molecules diffuse in and out of the hydrogel [10]. Figure 1.1c shows an image sequence of a LCE 

actuator lifting a weight in response to temperature changes [11]. 

Elastomers are rubber-like materials with elastic properties, which are cross-linked long 

chain polymer networks (Figure 1.2a). The elastic energy change is usually associated with the 

entropy change when the material is deformed [12, 13]. For example, when an elastomer is 
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stretched, the network chains become straight and the entropy decreases. The entropy decrease 

leads to the elastic energy increase. Typical constitutive model to describe them is the neo-

Hookean elastic energy density function, where stress-stretch response is nonlinear [12, 13]. The 

shear modulus is proportional to the cross-link density and temperature. Elastomers can be applied 

in various industries such as automotive sector and medical devices [14-16]. They can also be 

functionalized by adding other components; examples include dielectric elastomers [17, 18] and 

magnetorheological elastomers [19-21] that can be driven by electric and magnetic fields, 

respectively. 

 

Figure 1.1 Examples of soft materials. (a) Inflatable soft jumper made of elastomeric materials [9]. 

(b) Dried hydrogel and swollen hydrogel showing a significant volume change [10]. (c) Liquid 

crystal elastomers lifting a weight in response to temperature change [11]. 

Hydrogels consist of crosslinked polymer networks immersed in a solvent, which are 

essentially elastomers swelled in a solvent (Figure 1.1b). Hydrogels can swell or shrink in response 

to many external stimuli, such as variation of ionic strength, pH, temperature, light and electrical 

fields [22, 23]. These stimuli-responsive hydrogels have wide applications in engineering sectors 

of sensing and actuation [24, 25]. In addition, the mechanical, electrical and biological properties 
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of hydrogels can be easily designed, rendering hydrogels ideal materials to bridge biology and 

electronics [1]. 

 

Figure 1.2 Schematic of (a) an elastomer, (b) a hydrogel, and (c) an LCE. 

Different from hydrogels, LCEs are combinations of polymer networks and liquid crystal 

mesogens (Figure 1.1c). The coupling between polymer networks and mesogens leads to unusual 

mechanical properties of LCEs, such as semisoft elasticity where a finite but small stress is 

required to rotate the liquid crystal mesogens within the polymer network and viscoelasticity [26]. 

LCEs can undergo large deformation in response to various external stimuli [27], including 

temperature [28], light [29], and electric fields [30]. mechanical stress [31]. As a result, LCEs have 

many potential applications, including energy dissipation [32-34], robotics [35, 36], actuation [37, 

38], and so on. 

1.2 Intriguing Phenomena under External Loadings 

Soft materials, with their long flexible polymer chains, can undergo large deformations 

under external loadings. Extreme loading conditions can lead to various deformation behaviors, 
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including mechanical instability, phase separation, and fracture. Soft materials can undergo 

different types of elastic instabilities without permanent deformation. For instance, when an 

elastomeric beam structure is compressed, different types of buckling behavior, such as 

continuous, snap-through, and snap-back buckling, can be obtained depending on the beam’s 

width-to-length ratio (Figure 1.3a) [39]. With such simple geometry, the large deformation of soft 

materials results in geometric nonlinearity, leading to fascinating phenomena. These elastic 

instabilities enable soft materials to achieve desired responses in simple and inexpensive ways, 

allowing for novel designs in sensors, actuators, dampers, and soft robotics [40-42]. 

 

Figure 1.3 (a) An elastomeric beam structure under compression. Continuous, snap-through, and 

snap-back buckling, and creasing are predicted with different beam width-to-length ratios [39]. (b) 

Pattern formation in a shrinking hydrogel immersed in a poor solvent [43]. (c) Sideways crack 

propagation in a pre-cracked silicone elastomer subjected to vertical stretching. The crack 

terminates at the boundary [44]. 

Instabilities can be triggered by mechanical forces or other stimuli such as temperature, 

pH, and electric fields. For example, in hydrogels, a dramatic change in the external environment 
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can cause the material to lose stability, leading to phase separation [43]. This phase separation can 

enhance the material’s properties and induce morphological changes [43, 45, 46]. Additionally, 

mechanical constraints can further influence pattern development (Figure 1.3b). The coupling 

between large deformation, solvent diffusion, and instability makes these phenomena particularly 

challenging to investigate. 

Fracture can occur in thin films under extreme tension, leading to various intriguing 

phenomena depending on the material’s molecular structure. For example, in silicone elastomers, 

sideways crack propagation is observed, with the crack stopping at the boundary, allowing for 

enormous stretchability (Figure 1.3c) [44]. In viscoelastic materials with dynamic bonds, different 

fracture responses occur at different loading rates [47]. At a low loading rate, the precrack opens, 

the crack surface becomes blunted, and no crack propagation occurs. At an intermediate loading 

rate, the crack propagates and then stops. At a high loading rate, the crack propagates and 

ultimately fractures the sample. These phenomena cannot be explained by existing fracture 

theories. 

1.3 Motivation and Objectives 

The above phenomena are highly nonlinear, and some are poorly understood. In addition, 

in material systems such as hydrogels and LCEs, the material response often involves multiple 

physical processes, which further complicates the challenges. These complexities require 

advanced theoretical, numerical and experimental approaches for a comprehensive understanding. 

There are several key knowledge gaps in the field of soft material mechanics. Firstly, 

understanding mechanical instability under finite deformation states is crucial, as these materials 
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undergo large deformations. Secondly, developing new constitutive models to describe material 

behavior is essential. Thirdly, investigating material instability in systems that couple multiple 

physical processes is particularly challenging. Lastly, exploring how materials fracture under 

different conditions is necessary to improve fracture properties for practical applications. 

Addressing these knowledge gaps will provide valuable insights into material responses and help 

develop better-performing materials.  

In this dissertation, we will explore mechanical instability, phase separation, and fracture 

phenomena in the following material systems to address some of these knowledge gaps. 

Elastomers, with their pure elastic deformation, are suitable systems for investigating mechanical 

instability. Hydrogels, composed of polymer networks and solvent, are good candidates for 

studying phase separation. LCEs, as viscoelastic materials combining polymer networks and liquid 

crystals, are ideal systems for exploring interesting fracture behaviors. Specifically, we study 

buckling and postbuckling of elastomeric tube structures (Figure 1.4), phase separation of 

hydrogels (Figure 1.5) under various mechanical constraints and dynamic loading conditions, and 

fracture of viscoelastic LCEs (Figure 1.6).  

As for elastomeric tube structures, they are widely found in biological and engineering 

systems, such as microtubules [48], blood vessels [49], packers [50], foams [51] and  lattices [52]. 

They play critical roles in transporting fluid and nutrition in engineering and biological systems. 

Although the hollow structures of tubes impart them with lightweight properties, tubes are 

susceptible to buckling under axial and lateral loadings (Figure 1.4). Predicting the buckling and 

postbuckling of tubes is essential for their applications. As a particular example, lightweight lattice 

structures composed of hollow tubes are designed to control deformation [53] and absorb energy 
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[54]. By tuning the wall thickness, the buckling and postbuckling of the tubes can be significantly 

altered. As a result, researchers are not only able to change the elastic isotropy of the lattices, but 

also the stress-strain curve and recoverable energy absorption. Despite the wide application of 

instabilities of tube structures, the theoretical postbuckling analysis has barely been done. 

 

Figure 1.4 Schematic of mechanical instability of a tube structure. 

Hydrogels, composed of polymer networks and solvents, can significantly change the 

volume through the transport of solvent molecules. Certain hydrogels can undergo a discontinuous 

volume transition from a swollen state to a shrunk state, which is called a volume phase transition 

[55-57]. Hydrogels capable of a volume phase transition have diverse applications, including 

sensors [58], actuators [59], soft robots [60], drug delivery [61], and so on. During the process of 

a volume phase transition, which is governed by the kinetics of solvent migration, phase separation 

occurs, and the swollen and shrunk states coexist (Figure 1.5). Phase separation has been utilized 

to enhance the mechanical properties, such as stiffness and toughness, of hydrogels [46, 62-66]. 

For example, a soft poly(acrylic acid) hydrogel containing calcium acetate, which helps form 

hydrophobic complexes, can be rapidly switched to a rigid plastic due to phase separation via 
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spinodal decomposition with its volume almost conserved, leading to tremendous enhancement of 

stiffness and strength [67]. Nonetheless, the effect of mechanical constraints on phase separation 

of hydrogels lacks systematic study. 

 

Figure 1.5 Schematic of phase separation of a hydrogel. 

LCEs, coupling the liquid crystal order and elasticity, are promising materials for actuation. 

LCEs are typical viscoelastic materials, with mechanical responses are highly dependent on the 

stretching rate, as characterized by numerous experiments and models, where theoretical models 

for accurately predicting stress, deformation and director (liquid crystal orientation) rotation still 

require improvement [68-70]. Additionally, LCEs are anisotropic [71, 72], exhibiting varying 

fracture energies with different director distributions [73]. Few studies have examined LCE 

fracture, primarily focusing on measuring fracture energy through pure shear tests, with the 

director either parallel or perpendicular to the stretching direction [73, 74]. Their fracture behavior 

remains relatively unknown. Figure 1.6 shows schematic of the unconventional fracture path of 

LCEs. 
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Figure 1.6 Schematic of fracture of a LCE sheet. 

The lack of understanding of these phenomena presents a significant challenge for both 

theoretical modeling and practical applications. Studying these phenomena in different soft 

material systems helps to contribute to broadening the applications of soft materials. 

1.4 Outline of the Dissertation 

Our goal with this dissertation is to uncover the mechanisms behind mechanical instability, 

phase separation, and fracture in soft materials under extreme loading conditions. The dissertation 

comprises the following chapters. 

In Chapter 2, we conduct theoretical postbuckling analysis for hyperelastic thick-walled 

tube structures subjected to axial compression under general three-dimensional (3D) finite 

deformation, and investigate the influence of geometric parameters on the postbuckling response. 

In Chapter 3, we systematically study how mechanical constraints can induce the 

coexistence of multiple phases in hydrogels that do not exhibit phase separation under equilibrium 
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free swelling. We utilize the phase-field modeling to demonstrate phase separation and coexistence 

of hydrogels under different mechanical constraints and loading conditions. 

In Chapter 4, we investigate the constitutive behavior of LCEs through a modified semisoft 

model, studying both elastic and viscoelastic responses. We demonstrated robust predictions of 

our model by comparison with experimental results. 

In Chapter 5, we combine experimental and theoretical approaches to investigate fracture 

propagation in LCEs. Our findings reveal that crack propagation paths are highly dependent on 

both the initial director and the stretching rate. To further understand LCE fracture behavior, we 

develop a rate-dependent phase-field fracture model, which is validated through experiments and 

demonstrates the ability to predict complex fracture paths. 

Chapter 6 concludes the dissertation.   
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Chapter 2 Three-dimensional Postbuckling Analysis of Thick Hyperelastic 

Tubes 

While the buckling of tubes under axial compression has been extensively studied, the 

postbuckling behavior of thick tubes remains elusive. In this chapter, we conduct three-

dimensional buckling and postbuckling analysis for thick hyperelastic tubes subjected to axial 

compression under finite deformation by the asymptotic expansion method. Our theoretical results 

successfully predict the deformation and stress-strain curves of buckled tubes near the critical 

loading, which are well validated by finite element analysis. Depending on the geometry, three 

kinds of postbuckling paths, including continuous buckling, snap-through and snap-back, are 

discovered. We summarize our results in two phase diagrams of the critical stretch for the onset of 

buckling and postbuckling paths with respect to the geometric parameters. In particular, we have 

observed that the postbuckling response can undergo a complex transition among different types 

of postbuckling paths, including continuous buckling, snap-through and snap-back, which is 

attributed to the competition between two modes of deformation, i.e., global deformation and local 

distortion. When a tube is long and thick, it prefers global deformation, and its cross section 

remains almost a plane after buckling, whereas when a tube is relatively short and relatively thin, 

it prefers local distortion and its cross section does not remain a plane any more after buckling. 

Our work provides understanding and insights into the buckling and postbuckling of thick tubes, 

and bridges the knowledge gap between postbuckling of thick columns and tubes.  
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2.1 Introduction 

The theoretical study on buckling can be traced back to Euler’s work, which predicts the 

buckling condition of slender solid columns subjected to axial compression [75]. After the onset 

of buckling, the applied force increases with the increase of the displacement [76]. When a column 

is wide, snap-through buckling occurs and the postbuckling slope of the force-displacement curve 

is negative, where the force decreases as the displacement increases [77]. Lubbers, van Hecke [78] 

developed a one-dimensional (1D) nonlinear elastic beam model to capture the transition from a 

positive to negative postbuckling slope with the increase of the width-to-length ratio. In contrast 

to the 1D beam model, Triantafyllidis, Scherzinger [79] conducted the general asymptotic analysis 

to study the postbuckling of two-dimensional (2D) hyperelastic wide columns subjected to 

compression under finite deformation. The results show that the material model and width-to-

length ratio of the wide column can significantly influence the critical load and the buckling mode. 

Surprisingly, when the width-to-length ratio is large enough, the postbuckling response under 

displacement control is unstable, indicating the occurrence of snap-back buckling. More recently, 

we used experiments, simulations and a theoretical model to prove that when the width-to-length 

ratio of a column is large, the postbuckling response can be snap-through or snap-back, which is 

attributed to the strong coupling between bending and stretching in wide columns [39, 80]. When 

the column is even wider, creasing occurs before the onset of buckling [39, 81].  

In contrast to the postbuckling study of 2D wide solid columns, the majority of work on 

the instability of hyperelastic tube structures under axial compression focuses on predicting the 

onset of buckling and the buckling mode. Wilkes [82] might be the first one to use the finite 

deformation theory to study the buckling condition of hyperelastic thick-walled tubes under axial 
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compression. In his work, an incompressible neo-Hookean material model was assumed, and the 

critical stretch for axisymmetric buckling mode was obtained by solving the linearized equations 

based upon a base state of finite deformation. Haughton and Ogden [83] extended the theory to a 

tube subjected to both uniaxial stretch and inner pressure, and the combined loading conditions, 

and obtained the critical onset conditions for different buckling modes. More recently, Goriely, 

Vandiver [84] revisited the instability of tube structures, where the critical stretch is asymptotically 

expanded as a function of the geometric parameter, and the transition between the Euler buckling 

and barreling modes was also identified. Similar predictions on buckling of hyperelastic tubes 

under axial compression can be found in a considerable body of literature [85, 86]. However, due 

to the complexity of the theory and computation, the postbuckling analysis of hyperelastic thick-

walled tubes has not been solved yet. The difficulty in obtaining the postbuckling response was 

also highlighted by Goriely, Vandiver [84]. It is worth mentioning that Dai, Wang [87] studied the 

postubuckling of a hyperelastic tube under the assumption of axisymmetric deformation. They 

used the Blatz-Ko material model and employed the multiple-scale analysis to find the 

postbuckling solutions. Interestingly, they found that a thick tube can be softer than a thin tube, 

i.e., the postbuckling slope of a thick tube can be smaller than that of a thin tube. Nonetheless, 

their model cannot be applied to tubes with a wide range of thicknesses because of their limit to 

the axisymmetric mode. How the geometry influences the postbuckling behavior of thick-walled 

tubes is still not clear yet.  

In this chapter, we conduct postbuckling analysis for hyperelastic thick-walled tube 

structures subjected to axial compression under general three-dimensional (3D) finite deformation, 

and investigate the influence of geometric parameters on the postbuckling response. The chapter 
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is organized as follows. In Section 2, we describe the geometry and material model used in this 

work. In Section 3, we briefly review the general asymptotic expansion method. In Section 4, we 

obtain the critical load and buckling mode by conducting the linear bifurcation analysis. A 

buckling phase diagram is plotted. In Section 5, we obtain the postbuckling response near the 

critical load by performing weakly postbuckling analysis. The deformed shapes and the nominal 

force-displacement curves are validated by finite element analysis (FEA). A postbuckling phase 

diagram is also constructed. Section 6 concludes the chapter. 

2.2 Geometry and Material Model 

Here we consider a tube under axial compression (Figure 2.1), where the stress-free 

configuration is taken as the reference configuration. The undeformed tube has an inner radius 𝐴, 

outer radius 𝐵 and height 𝐻. We introduce a cylindrical coordinate, and label a material point of 

the tube as  in the reference state. The tube is between two rigid and smooth plates that 

cannot transmit shear. We require that the displacement in the 𝑅-𝛩 plane of an arbitrary point at 

one end of the tube is the same as that of the point with the same 𝑅 and 𝛩 coordinates at the other 

end. The bottom plate is fixed, while the top plate is loaded in the Z direction through a 

displacement control. We can define the load parameter 𝜆 to be the distance of the two plates 

divided by their initial distance. In the deformed configuration, the position of the material point 

moves to  by a displacement  

. (2.1) 

Then the deformation gradient tensor can be given as 

( ), ,R ZQ

( ), ,r zq

R R Z ZU U UQ Q= + +U e e e
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 . (2.2) 

 

Figure 2.1 Schematics of a thick tube under axial compression. 

The tube is modeled as an incompressible neo-Hookean material, which can be described 

by the following strain energy density function, 

,   (2.3) 

where  is the shear modulus. The incompressibility of the material is constrained by , where 

 is the Jacobian of . 

    When the tube is under a displacement-controlled loading, its total potential energy is given by 
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where  represents the reference domain of the tube and  is a Lagrange multiplier to enforce the 

incompressibility of the material. We use to represent the unknown 

displacement field, where the Lagrange multiplier is treated as a generalized displacement field.  

2.3 Asymptotic Analysis 

We will use the asymptotic expansion method to investigate the buckling and weakly 

postbuckling of a hyperelastic thick tube. In this section, we will first briefly review the theory. 

The more detailed derivation and explanation can be referred to the literature [76, 88-90]. 

Given the total potential energy in Eq. (2.4), its stationarity condition with respect to the 

generalized displacement is obtained as 

 .  (2.5) 

where  with  means an arbitrary kinematic admissible virtual 

displacement, and  is the first Gateaux variation (or Gateaux derivative) of the 

functional  in the direction of , namely, 

.  (2.6) 

A fundamental solution to Eq. (2.5) can be obtained, 

, (2.7) 

which corresponds to the equilibrium homogeneous deformation of the tube.  
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Following the asymptotic expansion theory in the literature [76, 79, 88], we expand the 

load parameter  and displacement field  in terms of a small parameter , 

 , (2.8) 

and 

,  (2.9) 

where  is the critical stretch for the onset of buckling. The terms  and  are restricted by 

the orthogonality relation 

,  (2.10) 

where the first equation defines the inner product of  and ,  means the volume of the tube, 

and  and  are the components of  and , respectively. 

Inserting the expansions Eqs. (2.8) and (2.9) into Eq. (2.5) and setting the coefficients of 

the ,  and  terms equal to 0, we obtain a set of equations [76, 89]. At the order of , the 

equation corresponds to the linear bifurcation equation, and is formulated as 

 , (2.11) 

where  is the buckling mode. The critical stretch  and buckling mode  can be analytically 

determined by solving Eq. (2.11). 

l U x

2
1 2cl l xl x l= + + +

( ) 2
0 1 2= l x x+ + +U U U U 

cl 1U 2U

1 2 1 2
1, 0i iV

U U dV
V

=òU U 

1U 2U V

1iU 2iU 1U 2U

x 2x 3x x

d" U ( )( )2
0 1, 0c cD Φ l l d =U U U

1U cl 1U



18 

 

At the order of , we obtain 

  (2.12) 

and 

,  (2.13) 

where the expression of  is obtained by setting  in Eq. (2.12) and vanishing the first 

term of Eq. (2.12) by Eq. (2.11). 

If ,  according to Eq. (2.13), and the initial 

postbuckling path can be determined by calculating  using Eq. (2.13) without solving Eq. 

(2.12). Keeping the first order term of  and  in Eqs. (2.8) and (2.9), the displacement field is 

obtained as  for a given applied stretch . On the other hand, if 

, we have . In order to determine the displacement field,  

and  need to be obtained by the higher order equations. At the order of , we find 

.  (2.14) 
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Making use of , we can rewrite Eq. (2.12) as 

,  (2.15) 

where  is determined by solving Eq. (2.15). 

2.4 Linear Bifurcation Analysis 

In this section, we conduct the linear bifurcation analysis by solving Eq. (2.11) to predict 

the critical stretch and buckling modes. Then we briefly discuss the influence of geometrical 

parameters and plot the buckling phase diagram.  

2.4.1 Formulation 

Since the buckling of hyperelastic tubes has been intensively studied in the literature 

through linear perturbation analysis [84, 86], we only briefly show how to obtain the critical stretch 

 and buckling mode . 

Integrating Eq. (2.11) by parts, we obtain a group of four partial differential equations  

  (2.16) 
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where the first equation represents the incompressibility of the material. 

The boundary conditions at the boundary  and  are 

 (2.17) 

which correspond to the stress-free condition in the R,  and Z directions. The boundary 

conditions at the boundary  and  are 

 (2.18) 

which correspond to zero shear stress components, and zero displacement in the Z direction, 

respectively. 

We introduce two functions  and  to express the displacement field as 

 (2.19) 
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where  is the 2D Laplace operator in polar coordinates. The 

introduction of  and  ensures the incompressibility condition in Eqs. (2.16) is satisfied 

automatically, and the rest equations in Eqs. (2.16) become 

  (2.20) 

The functions ,  and  are sought in the forms 

  (2.21) 

The boundary conditions (2.18) at  and  are satisfied automatically.  and  

 are the circumferential and longitudinal wave numbers, respectively. We require 

the value of the parameter  to be an even number such that the displacement in the  plane 

of an arbitrary point at one end of the tube is the same as that of the point with the same 𝑅 and 𝛩 

coordinates at the other end. Therefore, the minimum value of parameter  is 2. 

The expressions of ,  and  can be obtained from Eqs. (2.20), and the detailed 

calculations can be found in the work by Bigoni and Gei [91].  
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  (2.22) 

where  and   are arbitrary constants,  and  are the modified 

Bessel functions of order ,  is the Bessel operator, and . 

Using Eqs. (2.21), the displacement field can be expressed as 

 (2.23) 

where 

 (2.24) 

Different values of  and  represent different buckling modes (Figure 2.2). Particularly,  

corresponds to axisymmetric buckling modes (Figure 2.2a). 

Substituting the displacement field into the traction-free boundary conditions Eq. (2.17) at 

 and , we formulate an eigenvalue problem, which gives us the critical stretch  

and bifurcation modes. We denote  as 
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, (2.25) 

where  means the displacement field  with the constant  equal to 1. The undetermined 

parameter  will be replaced by another parameter  in the postbuckling analysis.  

2.4.2 Results 

Figure 2.2 shows schematics of two different buckling modes of tubes of different 

geometry, the barreling mode (Figure 2.2a) and Euler buckling mode (Figure 2.2b). The geometric 

parameters of a tube define two dimensionless numbers: the inner-to-outer-radius ratio, 𝐴/𝐵, and 

the radius-to-length ratio, 𝐵/𝐻. Here we will study the effect of the dimensionless geometric 

parameters 𝐴/𝐵 and 𝐵/𝐻 on the critical buckling condition and buckling modes.  

 

Figure 2.2 Schematics of the (a) barreling (𝑛 = 0, 𝑘 = 2) and (b) Euler buckling (𝑛 = 1, 𝑘 = 2) 

modes. The coordinates of points 𝐴!, 𝐴", 𝐵! and 𝐵" in the cylindrical coordinate system (𝑅, 𝛩, 𝑍) 

are (𝐴, 𝛩, 𝐻/2), (𝐴, 𝛩, 𝐻), (𝐵, 𝛩, 𝐻/2) and (𝐵, 𝛩, 𝐻), respectively. 

Figure 2.3a-c plot the critical stretch  as a function of the dimensionless longitudinal 

wave number, 𝜂𝐵 = 𝑘𝜋𝐵/𝐻, for different circumferential wave numbers, n, under three different 

values of radius ratio, 𝐴/𝐵 = 0.25,0.5, and	0.65, respectively. In Figure 2.3a, the critical stretch 
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for the Euler buckling mode (𝑛 = 1 ) monotonically decreases with 𝜂𝐵  (the black curve), 

indicating long-wavelength modes are preferred. The blue and cyan dashed curves correspond to 

the critical stretches for the buckling modes with 𝑛 = 0 (barreling mode) and 𝑛 = 2, respectively, 

which increase with 𝜂𝐵 in the range considered, indicating the preference of short-wavelength 

modes in thick tubes (𝐴/𝐵 = 0.25). For solid columns when 	𝐴/𝐵 = 0, it is predicted that the 

barreling mode with an infinitesimal wavelength is preferred [39, 79]. The red dashed line 

represents the critical stretch  for the onset of creasing, whose value is 0.562. The value was 

predicted by FEA, which is the  most common way to predict the formation and evolution of 

creases [92-95], for the onset of creasing on the surface of an incompressible neo-Hookean solid 

subjected to a uniaxial loading [94, 96, 97]. Since the critical compressive strain for the onset of 

buckling of a short and thick tube is very large [82, 86], creases may form before the onset of 

buckling. This value is chosen to set the boundary between buckling and creasing in the following 

analysis.  

By comparing the critical conditions for the different buckling modes, we can determine 

the highest critical stretch and the corresponding buckling mode, which should occur in reality. 

When 𝐴/𝐵  is fixed, the maximum critical stretch can be found among buckling modes with 

different circumferential wave numbers 𝑛 and crease instability for a given 𝜂𝐵. When 𝐴/𝐵 =

0.25	(Figure 2.3a), the Euler buckling mode (𝑛 = 1) has the maximum critical stretch among 

buckling modes with different 𝑛  and crease instability when 𝜂𝐵 < 1.74 , while the crease 

instability has the maximum critical stretch when 𝜂𝐵 > 1.74. Therefore, Euler buckling (𝑛 = 1) 

occurs when 𝜂𝐵 < 1.74, while crease instability becomes dominant with 𝜂𝐵 > 1.74. The buckling 

cl
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modes 𝑛 = 0  and 𝑛 = 2  never occur. For the Euler buckling mode, the critical stretch 

monotonically decreases as 𝜂𝐵  increases. Therefore, for a tube with a fixed 𝐵/𝐻 , the Euler 

buckling mode with the lowest longitudinal wave number, namely, the largest wavelength, is 

preferred, which enforces the minimum 𝜂𝐵 and maximum stretch. As a result, the value of  is 

always 2 and the corresponding buckling mode is similar to the schematic in Figure 2.2b. The 

theoretical results are validated by FEA via using the buckling analysis step (*BUCKLE keyword) 

in the commercial software Abaqus. 

When the radius ratio 𝐴/𝐵 is increased to 0.5 (Figure 2.3b), The critical stretches for the 

buckling modes with 𝑛 = 0 (barreling mode, blue curve) and 𝑛 = 2 (cyan dashed curve) non-

monotonically increase and then decrease as 𝜂𝐵 increases, indicating the preference of a mode of 

an intermediate wavelength. However, whether a mode can occur or not is still determined by 

whether its critical stretch is the highest among other modes. The result shows that Euler buckling 

occurs when 𝜂𝐵 < 2.80, the barreling mode occurs when 𝜂𝐵 ranges from 2.80 to 3.89, while the 

crease mode occurs when 𝜂𝐵 > 3.89. When 𝜂𝐵 < 3.89, the maximum critical stretch decreases 

with the increase of 𝜂𝐵, so the value of  should be 2 for both the Euler buckling and barreling 

modes. Using the relation 𝐵/𝐻 = 𝜂𝐵/(𝑘𝜋) = 	𝜂𝐵/(2𝜋), we can determine that Euler buckling 

occurs when 𝐵/𝐻 < 0.45, the barreling mode occurs when 𝐵/𝐻 ranges from 0.45 to 0.62, while 

the crease instability occurs when 𝐵/𝐻 > 0.62. When 𝐴/𝐵 = 0.65	(Figure 2.3c), Euler buckling 

occurs when 𝜂𝐵 < 3.13 and the barreling mode occurs when 𝜂𝐵 ranges from 3.13 to 5. The crease 

instability does not occur in the range of 𝜂𝐵 considered here. Since the maximum critical stretch 

also decreases with the increase of 𝜂𝐵, the value of  is 2. Correspondingly, 𝐵/𝐻 = 0.50 is the 

k

k
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boundary between the onset of the Euler buckling and barreling mode. When 𝐴/𝐵 goes beyond 

0.65, i.e., the wall of the tube becomes relatively thin, the 𝜆# − 𝜂𝐵 curve for the mode 𝑛 = 2 

intersects with that of the Euler buckling mode, and moreover, the critical stretch 𝜆# for the Euler 

buckling mode changes non-monotonically with the increase of 𝜂𝐵  [86]. This leads to richer 

buckling modes as 𝐵/𝐻 varies. In particular, the buckling modes with high wave numbers can 

occur in thin tubes, which has been reported for thin cylindrical shells [98, 99]. 

From these results, one can tell that a thick tube prefers a buckling mode with a small wave 

number, because it costs much higher energy for a thick tube to buckle with a short wavelength (

 and ) than a long wavelength (  and ). It is worth noticing that the critical 

stretches for all the buckling modes asymptotically approach 0.444 [82, 86] when 𝜂𝐵 approaches 

infinite; this condition is the same as the critical stretch for the onset of surface instability 

(wrinkling) of neo-Hookean materials under uniaxial compression, which was first determined by 

Biot [100]. This asymptotic stretch is smaller than the critical stretch for crease. Therefore, 

creasing occurs first when 𝜂𝐵 → ∞ . In addition, Euler buckling always occurs when 𝜂B 

approaches 0. 

 

 

2k > 2n ³ 2k = 0,1n =
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Figure 2.3 Critical stretches for different buckling modes with different longitudinal wave number 

n of a cylindrical tube as a function of the parameter 𝜂𝐵 at three sets of radius ratios of the tube 

(a) 𝐴/𝐵 = 0.25, (b) 𝐴/𝐵 = 0.5, (c) 𝐴/𝐵 = 0.65. 

Limiting ourselves to the barreling, Euler buckling and crease instability, we plot a phase 

diagram describing different instability modes in the geometric parameter range of 0.05 < 𝐴/𝐵 <

0.65  and 0.01 < 𝐵/𝐻 < 0.95  in Figure 2.4, where the corresponding critical stretch is 

represented by the color. When 𝐵/𝐻 is small, corresponding to a long tube, the Euler buckling 

mode occurs. When 𝐵/𝐻 is large and 𝐴/𝐵 is small, corresponding to a short and thick tube, the 

crease mode occurs in a wide range of the geometric parameters. When both 𝐵/𝐻 and 𝐴/𝐵 are 

large, corresponding to a short and relatively thin tube, the barreling mode occurs. 

 

Figure 2.4 Phase diagram for the onset of buckling and creasing under axial compression. The 

color represents the value of the critical stretch. 
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2.5 Weakly Postbifurcation Analysis 

In this section, we conduct postbuckling analysis near the critical loading. We first solve 

the high order equations. Thereafter, we predict the deformed shapes and nominal force-

displacement curves and plot the postbuckling phase diagram. 

2.5.1 Formulation 

Using the obtained  in Eq. (2.25), we find the value of expression 

 is zero. Therefore, the calculation of  and  

is required to determine the postbuckling path. 

From the equation at the order of , Eq. (2.12), another group of four partial differential 

equations is obtained for the unknown  as follows, 

  (2.26) 

The corresponding boundary conditions at the boundary  and  are 
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  (2.27) 

where   are functions of , which are explicitly expressed in Appendix A1.1. 

The boundary conditions at the boundary  and  are 

  (2.28) 

In order to solve Eqs. (2.26)-(2.28), both homogeneous and particular solutions need to be 

found. Comparing Eqs. (2.26)-(2.28) with Eqs. (2.16)-(2.18), we can see that the homogeneous 

solution of  can be  multiplied by an arbitrary constant . Making use of the restriction 

(2.10), the constant  should vanish. 

To seek the particular solution of , we assume that  is given by 
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Functions  and  are set to be zero to ensure that the boundary conditions at the boundary 

 and  are satisfied automatically. 

Substituting Eqs. (2.29) into Eqs. (2.26)-(2.27), we can separate Eqs. (2.26)-(2.27) into 4 

groups in terms of , ,  and 1. Noting the validity of the 

equations for all 𝛩 and 𝑍, we require all the coefficients to be zero independently, which gives us 

4 groups of linear ordinary differential equations and boundary conditions. We name them as group 

[3], group [2], group [1] and group [0], respectively. In the main text, we only show equations of 

group [3]. The equations of group [2], [1] and [0] are given in Appendix A1.4, A1.6 and A1.8, 

respectively. For all the indices related to the displacement field , the superscripts correspond 

to the different groups. For brevity,  is expressed as 

,  (2.30) 

where  . 

For group [3], the linear differential equations can be obtained as 
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The corresponding boundary conditions at  and  are 

  (2.32) 

The expressions of   are listed in Appendix A1.2. 

The solution to the coupled inhomogeneous ordinary differential equation set Eqs. (2.31)-

(2.32) is given in Appendix A1.3. Briefly, we first decouple the equations by introducing velocity 

potentials and eliminating unknown functions, followed by solving the homogeneous and 

particular solutions of one decoupled ordinary differential equation containing one unknown 

function. This solution gives the displacement field of group [3] 

.  (2.33) 

The solutions of the displacement field to the equations of group [2], [1] and [0] are derived in 

Appendix A1.5, A1.7, and A1.9, respectively. 

The second order displacement field  can be denoted as  

. (2.34) 
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        Substituting Eqs. (2.25) and (2.34) into Eq. (2.14), we can obtain 

,  (2.35) 

where  means the value of  when the constant  equals to 1.  

        Substituting  and Eq. (2.35) into Eq. (2.8),  is expressed as 

 . (2.36) 

Defining another parameter  and keeping the second order of expansion  in Eq. (2.8), 

we can rewrite Eq. (2.36) as 

. (2.37) 

Similarly, the displacement field can be written as 

.  (2.38) 

From Eq. (2.37), the parameter  can be obtained for a prescribed . Then substituting into 

Eq. (2.38), the displacement field  can be obtained. Once the displacement field is known, the 

weakly postbuckling problem is solved. Substituting into Eq. (2.2), the deformation gradient 

can be calculated. 
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        Specially, if the value of  is negative, then  according to Eq. (2.37), and 

 is smaller than , which makes the bifurcation supercritical. When the value of  is 

positive,  and the bifurcation is subcritical. 

        We define the normalized average nominal compressive stress as 

,  (2.39) 

where the negative sign means the tube is under compression, and  is its magnitude. We define 

the nominal compressive strain as 

. (2.40) 

We further define the normalized postbukling slope based on the nominal strain and stress as 

,  (2.41) 

where  and  are the critical strain and stress for the onset of buckling, and stress  and strain 

 are beyond the buckling point.  

        The postbuckling analysis is still valid for the barreling mode by setting 𝑛 as 0, which is 

discussed in the Appendix A1.10. 
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2.5.2 Results 

We first compare the morphology of a tube in postbuckling predicted by the asymptotic 

theory and FEA to validate the theory (Figure 2.5). For the FEA, Riks method is used in Abaqus. 

To trigger the instability, we introduce into the perfect geometry a small imperfection in the shape 

of the buckling mode obtained from the linear perturbation with an amplitude less than 10$% times 

the thickness of the tube. The results are compared at a fixed applied stretch, which is chosen as 

𝜆 = 1 − 1.01𝜀#& if the value of  is negative, while which is chosen as 𝜆 = 1 − 0.99𝜀#& if 

 is positive. For a tube with 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.2, both the linear bifurcation theory 

and FEA predict the Euler buckling mode occurs, the critical stretch is 0.7872, and the value of 

 is positive. Figure 2.5a shows the 3D buckled shape of the tube at 𝜆 = 0.7894 in a cross-

sectional view in 𝛩=0 and 𝜋 plane from FEA. The deformed shape of the cross section originally 

in the horizontal plane 𝑍 = 0.25𝐻 in the reference configuration (Figure 2.5b) is projected to the 

plane	𝑧 = 0.25𝜆𝐻 in the current configuration, with the color showing the relative displacement 

defined as ∆𝑈' = 𝑈' + (1 − 𝜆)𝑍  (Figure 2.5d-e). The predicted deformation by the theory 

(Figure 2.5e) agrees well with that by FEA (Figure 2.5d). Similarly, the deformed shape of vertical 

𝑅𝑍 cross section originally in 𝛩 = 0 and 𝛩 = 𝜋/4 planes (Figure 2.5c) is projected to the plane 

𝜃 = 0  and 𝜃 = 𝜋/4 , respectively, in the current configuration, where the projection distance 

defined as ∆𝑈( = 𝑈( is represented by the color shown in Figure 2.5f-i.  

For a tube with 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.6, the theory predicts that the barreling mode 

occurs, the critical stretch is 0.6727, and the value of  is also positive. Figure 2.6b shows 

the predicted vertical cross section at 𝜆 = 0.6760, which agrees well with the FEA results (Figure 

( )12 1al =

( )12 1al =

( )12 1al =

( )12 1al =
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2.6a). The distorted mesh shows that the tube undergoes large shear deformation, due to the large 

thickness-to-length ratio. 

 

Figure 2.5 Comparing the deformed shape of the Euler buckling mode predicted by the asymptotic 

expansion method with that from the FEA for a tube with 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.2 at applied 
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stretch 𝜆 = 1 − 0.99𝜀#& = 0.7894. (a) FEA result of 3D buckled shape in a cross-sectional view 

in 𝛩 = 0 and 𝜋  plane. (b) The initial 𝑅𝛩  plane (horizontal cross section) with a constant 𝑍  is 

meshed uniformly. (c) The initial 𝑅𝑍 plane (vertical cross section) with a constant 𝛩 is meshed 

uniformly. (d) The FEA and (e) theoretical results of the projection of the deformed horizontal 

cross section (originally in 𝑍 = 0.25𝐻 ) to the current plane 	𝑧 = 0.25𝜆𝐻 , where the color 

represents the projection distance. The projection of the deformed vertical 𝑅𝑍 cross section (f-g) 

originally in 𝛩 = 0 to the current plane 𝜃 = 0, and (h-i) originally in 𝛩 = 𝜋/4 to the current plane 

𝜃 = 𝜋/4, where (f) and (h) are FEA results and (g) and (i) are theoretical results. 

 

Figure 2.6 Comparing the deformed shape of the barreling mode predicted by the asymptotic 

expansion method with the FEA results for a tube with 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.6 at applied 

stretch 𝜆 = 1 − 0.99𝜀#& = 0.6760. (a) The FEA result and (b) theoretical result of the deformed 

shape of a	𝑅𝑍 plane, with the initial state plotted for reference. 

We then keep track of the current coordinates along 𝑅  direction normalized by the 

coordinates in the reference state, r/𝑅, of points 𝐴!, 𝐴", 𝐵! and 𝐵", which are labeled in Figure 
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2.2, as nominal strain 𝜀 increases for tubes with 𝐴/𝐵 = 0.6 and 𝐵/𝐻 varying from 0.1, 0.2, 0.48 

to 0.6, where the green dashed curve represents the homogenous soluion, the solid curves are 

predicted by the theory and the dots are FEA results (Figure 2.7). For 𝐵/𝐻 = 0.1 (Figure 2.7a) 

and 𝐵/𝐻 = 0.2 (Figure 2.7b), the Euler buckling mode is predicted, and we show the coordinates 

of the points in the 𝑅𝑍 plane with 𝛩 = 0 in the initial configuration. For 𝐵/𝐻 = 0.48 (Figure 

2.7c) and 𝐵/𝐻 = 0.6  (Figure 2.7d) the axisymmetric barreling mode is predicted, and the 

coordinates in an arbitrary plane are plotted. As Figure 2.7 shows, the normalized coordinates of 

points 𝐴! , 𝐴" , 𝐵!  and 𝐵"  initially coincide with the homogenous solution as the applied strain 

increases. Upon a critical strain, the tube buckles and the normalized coordinates deviate from the 

homogenous solution. For both the Euler buckling and barreling modes, taking point 𝐴! as an 

example, the coordinate can increase with either the increase or decrease of the nominal strain after 

the onset of buckling, which corresponds to the supercritical (Figure 2.7a and c) or subcritical 

(Figure 2.7b and d) bifurcation, respectively. The theoretically predicted normalized coordinates 

for all four cases agree well with the FEA results.  
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Figure 2.7 Normalized coordinates of points 𝐴! , 𝐴" , 𝐵!  and 𝐵"  along 𝑅  direction, r/𝑅 , as a 

function of nominal strain, 𝜀, for fixed 𝐴/𝐵 = 0.6 and different 𝐵/𝐻: (a) 𝐵/𝐻 = 0.1; (b) 𝐵/𝐻 =

0.2; (c) 𝐵/𝐻 = 0.48 and (d) 𝐵/𝐻 = 0.6. For (a) and (b), the Euler buckling mode is predicted, 

and the coordinates are shown in the vertical cross section originally in the plane 𝛩 = 0. For (c) 

and (d), the axisymmetric barreling mode is predicted. 

We further calculate the average nominal stress by Eq. (2.39). Figure 2.8 shows the average 

nominal stress-strain curves of tube structures under axially compression in the vicinity of the 

buckling point. We fix 𝐴/𝐵 = 0.6, and widely vary 𝐵/𝐻 from 0.02, 0.1, 0.2, 0.48 to 0.6 (Figure 

2,8 and 9). Although, Euler buckling occurs in all the tubes with 𝐵/𝐻 = 0.02, 0.1, 0.2, different 

postbuckling paths are predicted. In Figure 2.8a (𝐵/𝐻 = 0.02), after the tube buckles, both the 



39 

 

nominal stress and strain increase, the postbuckling response of which is called continuous 

buckling. In Figure 2.8b (𝐵/𝐻 = 0.1), after the tube buckles, the nominal stress decreases while 

the strain increases along the equilibrium path, which is called snap-through buckling. In Figure 

2.8c (𝐵/𝐻 = 0.2), after the tube buckles, both the nominal stress and strain decrease, which is 

called snap-back buckling. The increasing strain corresponds to a negative value of , while 

the decreasing strain corresponds to a positive value of . Therefore, the postbuckling 

response can be either supercritical or subcritical. When the tube becomes shorter, i.e., 𝐵/𝐻 is 

increased to 0.48 and 0.6, the barreling mode occurs. The corresponding average nominal stress-

strain curves are shown in Figure 2.9. A snap-through buckling path is predicted for 𝐵/𝐻 = 0.48, 

while a snap-back buckling path is predicted for 𝐵/𝐻 = 0.6. For all the above mentioned cases, 

no matter the Euler buckling or barreling mode occurs, the theoretical results of the average 

nominal stress-strain relations in the weakly postbuckling region agree very well with the FEA 

results. 
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Figure 2.8 The postbuckling stress-strain relation for axially compressed tubes with fixed 𝐴/𝐵 =

0.6  and different 𝐵/𝐻 : (a) 𝐵/𝐻 = 0.02 , (b) 𝐵/𝐻 = 0.1 , (c) 𝐵/𝐻 = 0.2 . The corresponding 

buckling mode is Euler buckling. 

 

Figure 2.9 The postbuckling stress-strain relation for axially compressed tubes with fixed 𝐴/𝐵 =

0.6 and different 𝐵/𝐻: (a) 𝐵/𝐻 = 0.48, (b) 𝐵/𝐻 = 0.6. The corresponding buckling mode is the 

barreling mode. 

The postbuckling slope is calculated by Eq. (2.41) and plotted in Figure 2.10. When we fix 

𝐵/𝐻 = 0.2, and vary 𝐴/𝐵 from 0.15 to 0.55, Euler buckling always occurs (Figure 2.10a). As 

𝐴/𝐵 increases from 0.15 to 0.254, the slope first increases from a positive value to positive infinite. 

At 𝐴/𝐵 = 0.254, the slope changes from positive infinite to negative infinite, indicating the 

transition of the postbuckling path from snap-back to snap-through. When 𝐴/𝐵 increases from 

0.254 to 0.479, the postbuckling slope remains negative, and the postbuckling path remains snap-

through. At 𝐴/𝐵 = 0.479 , the postbuckling slope transits from negative infinite to positive 

infinite, indicating a transition of the postbuckling path from snap-through to snap-back again. 
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Then we fix 𝐴/𝐵 = 0.6, and vary 𝐵/𝐻 from 0.01 to 0.8 (Figure 2.10b). Euler buckling 

occurs when 𝐵/𝐻 is between 0.01 and 0.474, while barreling mode exists when 𝐵/𝐻 is between 

0.474 and 0.8. Within the Euler buckling range, the slope first gradually decreases from positive 

to zero when 𝐵/𝐻 increases from 0.01 to 0.033, where the postbuckling path is continuous. As 

𝐵/𝐻 further increases from 0.033 to 0.131, the postbuckling slope decreases from zero to negative 

infinite, and the postbuckling path is snap-through. At 𝐵/𝐻 = 0.131  and 𝐵/𝐻 = 0.431 , the 

postbuckling slope transits from negative infinite to positive infinite, indicating a transition of the 

postbuckling path from snap-through to snap-back, whereas at 𝐵/𝐻 = 0.325, the postbuckling 

slope transits from positive infinite to negative infinite, indicating a transition of the postbuckling 

path from snap-back to snap-through. The postbuckling slope flips its sign multiple times, 

demonstrating complex postbuckling behaviors as the geometric parameters vary. Within the 

barreling range, at 𝐵/𝐻 = 0.516, the postbuckling slope transits from negative infinite to positive 

infinite, indicating the transition of the postbuckling path from snap-through to snap-back. 

 

Figure 2.10 Postbuckling slopes as functions of geometric parameters (a) 𝐴/𝐵	(𝐵/𝐻 = 0.2) and 

(b) 𝐵/𝐻	(𝐴/𝐵 = 0.6). 
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To thoroughly investigate the influence of parameters 𝐴/𝐵 and 𝐵/𝐻 on the postbuckling 

path, a phase diagram of the postbuckling path is plotted (Figure 2.11). In the diagram, we use 

letters “C”, “T” and “B” to represent different phases, i.e., different types of postbuckling path, 

continuous buckling, snap-though and snap-back, respectively, with black curves demarcating the 

different phases. When 𝐵/𝐻 is small, less than 0.02, a tube can be treated as a traditional slender 

column. Correspondingly, the buckling mode is Euler buckling, and the continuous buckling path 

occurs in the entire range of 𝐴/𝐵 from 0.05 to 0.65. When 𝐵/𝐻 becomes larger, snap-through 

Euler buckling occurs. When 𝐴/𝐵 is smaller than 0.477, with further increase of 𝐵/𝐻, snap-back 

Euler buckling occurs. However, when 𝐴/𝐵 is larger than 0.477, there is another island of snap-

back Euler buckling surrounded by the snap-through Euler buckling. As a result, when 𝐵/𝐻 

increases while 𝐴/𝐵 is fixed (e.g., 𝐵/𝐻 is varied from 0.01 to 0.474, while 𝐴/𝐵 is fixed as 0.6), 

although the buckling mode remains Euler buckling, the postbuckling path can undergo a complex 

transition from continuous, snap-through, snap-back, to snap-through, and finally back to snap-

back; the corresponding postbuckling slope is shown in Figure 2.10b. In the region where the 

barreling mode exists, when 𝐴/𝐵 increases while 𝐵/𝐻 is fixed (e.g., 𝐴/𝐵 increases from 0.48 to 

0.65, while 𝐵/𝐻 is fixed as 0.55), the postbuckling path transits from snap-back to snap-through. 

When 𝐴/𝐵 is fixed (e.g., 𝐴/𝐵 = 0.6), the postbuckling slope as a function of 𝐵/𝐻 is shown in 

Figure 2.10b. 

To understand the transition from continuous, snap-through to snap-back Euler buckling, 

in our previous work (Chen and Jin [39]), a discrete model was established to predict the buckling 

of wide columns. By assuming that the cross section of a column remains a plane after buckling, 

the discrete model reveals that the coupling between the stretching and bending energy leads to 
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the snap-through and snap-back buckling. As the width-to-length ratio increases, the ratio of the 

bending to stretching energy increases, and the column can undergo a transition from continuous, 

snap-through to snap-back buckling. When 𝐴/𝐵 of a tube is very small, 𝐵/𝐻 becomes the only 

dimensionless geometric parameter, so the buckling behavior of the tube shows similar 

dependence on 𝐵/𝐻 to that on the width-to-length ratio of a solid cylinder. However, when 𝐴/𝐵 

is large, the buckling behavior is more complex. For a long and relatively thin tube, i.e., 𝐴/𝐵 is 

large and 𝐵/𝐻 is small, its cross-section approximately remains a plane after buckling (Figure 

2.12a). Therefore, the tube still undergoes a transition from continuous, snap-through to snap-back 

as 𝐵/𝐻 increases. However, in a relatively short and relatively thin tube, i.e., when both 𝐴/𝐵 and 

𝐵/𝐻 are large, although Euler buckling still occurs, the cross section does not remain a plane 

anymore during buckling, but undergoes a complex local distortion (Figure 2.12b). Essentially, 

the tube behaves like two solid columns connected in parallel, with (𝐵 − 𝐴)/𝐻 as the effective 

width-to-length ratio, which leads to another transition from the snap-through to snap-back Euler 

buckling. Consequently, the competition between the two deformation modes, i.e., the global 

deformation vs local distortion, gives rise to the complex postbuckling behavior of a tube with 

relatively large 𝐴/𝐵, i.e., an island of snap-back buckling is formed and surrounded by the snap-

through buckling in the phase diagram. 

Noticing that in the Euler buckling region, there is one boundary between the continuous 

buckling and snap-through buckling (“C”-“T”) and another boundary between the snap-through 

and snap-back buckling (“T”-“B”) other than the boundary of the island of the snap-back buckling. 

The phase diagram shows that across the “C”-“T” boundary under fixed 𝐵/𝐻, a thinner tube tends 

to undergo snap-through buckling. In such a case, the tube is long and prefers the global 
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deformation. Therefore, the increase of 𝐴/𝐵 increases the ratio of the bending to stretching energy, 

leading to the transition from continuous buckling to snap-through buckling at lower 𝐵/𝐻. In 

contrast, across the “T”-“B” boundary under fixed 𝐵/𝐻, a thicker tube tends to undergo snap-back 

buckling. In this case, the tube is short and prefers local distortion, i.e., it behaves like two solid 

columns connected in parallel. As a result, a thicker tube gives rise to a larger effective width-to-

length ratio, leading to the transition from the snap-through and snap-back instability at lower 

𝐵/𝐻. 

 

Figure 2.11 Phase diagram for different types of postbuckling paths. In this diagram, we use letters 

“C”, “T” and “B” to represent continuous buckling, snap-though and snap-back, respectively. The 

color contour represents the value of the critical stretch 𝜆#&.  
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Figure 2.12 (a) (b) 3D plots and (c) (d) side views of the deformed cross section (originally in 𝑍 =

0.25𝐻) at applied stretch 𝜆 = 1 − 1.01𝜀#& when 𝐴/𝐵 is fixed at 0.6, and (a) (c) 𝐵/𝐻 = 0.12, or 

(b) (d) 𝐵/𝐻 = 0.38. For both tubes, snap-through Euler buckling occurs. 

2.6 Conclusion 

In this work, we conduct buckling and postbuckling analysis for axially compressed thick 

hyperelastic tubes under finite deformation by the asymptotic expansion method. Depending on 

the inner-to-outer radius ratio, 𝐴/𝐵, and radius-to-length ratio, 𝐵/𝐻, the buckling mode can be the 

Euler buckling or barreling mode. A phase diagram for the critical onset stretch of buckling is 

constructed for the different buckling modes. The result shows that when a tube is relatively long, 

it prefers the Euler buckling mode, while when it is short, either crease or barreling occurs, 

depending on the inner-to-outer radius ratio. 

Our postbuckling analysis successfully predicts the deformed shapes, the displacement 

fields, and the stress-strain curves of buckled tubes near the critical loading, which are well 
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validated by FEA. In particular, the postbuckling slope of the stress-strain curve is calculated. 

Depending on the geometry, three kinds of postbuckling paths, the continuous buckling, snap-

through and snap-back, are discovered for the Euler buckling mode, and two kinds of postbuckling 

paths, the snap-through and snap-back paths, are discovered for the barreling mode. A phase 

diagram of different postbuckling paths is further constructed with respect to the geometric 

parameters. As the geometric parameters vary, the postbuckling response can transit among 

different types of paths, which are attributed to the competition between the global deformation 

and local distortion. In particular, when a tube is long and thick, it prefers global deformation, and 

its cross section remains almost a plane after buckling, whereas when a tube is relatively short and 

relatively thin, it prefers local deformation and its cross section does not remain a plane any more 

after buckling. This work provides insights into the buckling and postbuckling of thick tubes, 

bridges the knowledge gap between postbuckling of thick columns and tubes, and lays foundations 

for the design of tube structures and hollow-tube lattices. 

 Yet, this theoretical analysis is limited to perfect tubes. In practical applications, 

imperfections are inevitable, and can have substantial influences on the buckling and postbuckling 

behavior of tubes. It is known that subcritical bifurcations are particularly sensitive to 

imperfections [90, 101]. We demonstrate in Appendix A1.11 using FEA that when an imperfection 

exists in a tube, the critical stress is reduced for snap-through buckling, and both the critical stress 

and critical strain are reduced even more significantly for snap-back buckling. Moreover, snap-

back buckling can transit to a snap-through buckling, when the imperfection has a large enough 

amplitude [102, 103], or a small imperfection is added to a tube with geometric parameters close 

to the boundaries of snap-through and snap-back buckling. As a result, the phase boundaries of 



47 

 

both phase diagrams of buckling and postbuckling can be shifted by geometric imperfections. 

However, theoretical postbuckling analysis of imperfect thick tubes under finite deformation is 

extremely challenging, and is left to be studied in the future. Other than the geometric 

imperfections, knowing the influence of boundary conditions on the buckling and postbuckling 

behavior of tubes is important for practical applications of tubes. It is expected that the boundary 

condition can affect the buckling modes and postbuckling paths, particularly for short tubes. In our 

model, we do not consider shear stresses at the two ends of the tube. More realistic boundary 

conditions, such as the fixed boundary condition and including friction at the two ends, could be 

considered. Nonetheless, such boundary conditions lead to difficult theoretical analysis since the 

tube undergoes inhomogeneous deformation before the onset of buckling, which are to be 

addressed as future work.   
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Chapter 3 Mechanics Underpinning Phase Separation of Hydrogels 

This chapter reveals the underpinning role of mechanical constraints and dynamic loading 

on triggering volume phase transitions and phase separation of hydrogels. Using the Flory-Rehner 

free energy that does not predict phase separation of hydrogels under equilibrium free swelling, 

we show that mechanical constraints can lead to coexistence of multiple phases. We systematically 

obtain the states of equilibrium for hydrogels under various mechanical constraints, and unravel 

how mechanical constraints change the convexity of the free energy and monotonicity of the stress-

stretch curves, leading to phase coexistence. Using a phase-field model, we predict the pattern 

evolution of phase coexistence, and show many features cannot be captured by the homogeneous 

states of equilibrium due to large mismatch stretch between the coexisting phases. We further 

reveal that the system size, quenching rate, and loading rate can significantly influence the phase 

behavior, which provides insights for experimental studies related to morphological patterns of 

hydrogels. 

3.1 Introduction 

 Volume phase transitions and phase separation of hydrogels have been experimentally 

demonstrated in various hydrogels [104]. Tanaka et al. found that neutral polyacrylamide (PAAm) 

hydrogels immersed in a basic solution can become polyelectrolyte hydrogels via hydrolysis [105, 

106]. While neutral PAAm hydrogels undergo a continuous volume change with the acetone 

concentration, the resultant polyelectrolyte hydrogels in an acetone solution can undergo a 

discontinuous volume transition by changing the acetone concentration, which is attributed to the 

osmotic pressure of dissociated hydrogen ions [105]. Hirokawa and Tanaka reported that neutral 
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poly(N-isopropylacrylamide) (PNIPAM) hydrogels immersed in water could also exhibit a volume 

phase transition by changing temperature [107]. Shen et al. demonstrated that blisters form on the 

surface of neutral PNIPAM hydrogels when they are subjected to heating, where an impermeable 

skin layer is formed during phase separation, and water fills into the defects under the skin layer, 

forming inflated blisters [108]. When subjected to heating, a neutral PNIPAM hydrogel cylinder 

shows coexistence of swollen and shrunk phases along the radial direction, while a weakly ionized 

PNIPAM hydrogel cylinder shows phase coexistence along the axial direction [109, 110].  

 Most theoretical studies on the volume phase transition of hydrogels are based on double-

well free energy. Cai and Suo successfully demonstrated a volume phase transition of thermo-

responsive hydrogels by obtaining the state of equilibrium through minimizing a properly 

constructed free energy function, and predicted phase coexistence based on the assumption of a 

sharp interface between the swollen and shrunk phases [111]. A continuum field theory was 

developed by Yu et al. to predict the volume phase transition of polyelectrolyte hydrogels induced 

by changing the salt concentration of an external solution [112]. The above models are based on 

the Flory-Rehner theory, where the Flory-Huggins interaction parameter 𝜒 , describing the 

interaction between a polymer and a solvent, is modelled as a function of the polymer volume 

fraction to obtain double-well free energy, thus, to capture the phase coexistence and the 

discontinuous volume change [55]. Considering a sharp interface between the swollen and shrunk 

phases of a one-dimensional cylindrical or spherical hydrogel, Tomari and Doi numerically studied 

the kinetic process of the hydrogel undergoing a volume phase transition [113-115]. By the 

introduction of interfacial energy and kinetics of diffusion, a phase-field model was developed to 

simulate the evolution of different phases and interfaces under two-dimensional deformation using 
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a double-well free energy [116]. Bao et al. utilized the phase-field model with proposed new free 

energy including the processes of detachment of polymer chains from and reattachment onto 

crosslinks to simulate the three-dimensional morphology evolution of nanocomposite hydrogels 

during a phase separation process [117].  

 Of particular interest is the influence of mechanical constraints on phase transitions and 

phase separation of hydrogels. Although it is well known that PAAm hydrogels do not have 

volume phase transitions under free swelling, Matsuo and Tanaka found that subjected to different 

axial stretches, PAAm hydrogels immersed in an acetone solution show different shapes and phase 

separation patterns [43]. In particular, an impermeable skin layer forms on the surface of a PAAm 

hydrogel cylinder, which provides extra mechanical constraints [43]. Based on the Flory-Rehner 

model with a constant Flory-Huggins interaction parameter 𝜒 , Hennessy et al. studied phase 

separation of a hydrogel under constrained uniaxial deformation, i.e. free deformation in one-

dimension but constrained in the other two dimensions. They found that a volume phase transition 

cannot occur when the hydrogel is in equilibrium with a solvent of zero chemical potential, but 

two phases can coexist when the hydrogel is in equilibrium with a solvent of higher chemical 

potential [118, 119]. Cirillo et al. predicted that when a hydrogel is subjected to a pressure load, a 

swollen and a shrunk phase only coexist under constrained uniaxial deformation, instead of 

constrained biaxial or three-dimensional volumetric deformation [120]. Contradictorily, Duda et 

al. theoretically showed that hydrogels under hydrostatic loading could have multiphase equilibria, 

which indicates the possibility of a volume phase transition [121]. Yamamoto et al. predicted that 

composite hydrogels with cofacially aligned nanosheets could undergo discontinuous deformation 

with a constant volume [122-124]. The above models are based on the Flory-Rehner free energy 
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with the parameter 𝜒  independent of polymer concentration, which is not double-well, and 

consequently, no volume phase transition can be predicted under free swelling. However, the 

introduction of mechanical constraints changes the total free energy, leading to possible phase 

coexistence. It’s worth mentioning that Dušková-Smrčková and Dušek showed that the volume 

phase transition can be either induced or suppressed by expansive and compressive strain [125]. 

Though the above-mentioned theoretical works based on the Flory-Rehner model with a constant 

Flory-Huggins interaction parameter 𝜒 show possible phase transitions of hydrogels under certain 

constraints [118, 120, 121], they focus on the equilibrium states under one specific stress state or 

chemical potential loading, and some of the results seem even contradictory. This chapter will 

systematically investigate the effect of mechanical constraints on the equilibrium states based on 

single-well Flory-Rehner free energy. We will not only identify the conditions for existence of 

multiple homogeneous equilibrium states, but also use the phase field model to demonstrate the 

pattern evolution of phase coexistence. Our results will show that the predicted multiple 

homogeneous equilibrium states cannot always well represent the swollen and shrunk phases in 

phase separation, attributed to the large stretch mismatch between the two separated phases. 

 Phase separation of hydrogels is limited by the diffusion process of solvent molecules, and 

therefore loading rates can also play an important role in the phase behavior. When subjected to 

different heating rates, PNIPAM hydrogels could show different phase morphologies, including 

the fine and coarse surface patterns, and the bubble pattern [109, 110]. Chang et al. demonstrated 

that a toroid-shaped PNIPAM hydrogel subjected to slow heating remains toroidal shape, while 

the hydrogel subjected to rapid heating buckles and undergoes mechanical instability [126]. 

Considering the kinetics of diffusion, Hennessy et al. have shown that temporary phase separation 
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can occur in a neutral hydrogel under free swelling by quenching it through a sudden increase of 

the interaction parameter 𝜒	[127]. However, how a quenching rate, which is different from the 

diffusion time scale, affects the texture and morphology of phase-separated hydrogels still needs 

to be investigated. In addition, when a hydrogel is mechanically loaded, the influence of stretching 

rates on its phase separation is yet to be explored. To address the above questions, we utilize the 

phase-field modeling to demonstrate phase separation and coexistence of hydrogels under different 

mechanical constraints and loading conditions. The influence of system size, stretching rate and 

quenching rate on the volume phase transition and phase separation of hydrogels will be studied. 

 In this chapter, we first briefly introduce the constitutive models of hydrogels in Section 2. 

We then obtain homogeneous solutions and the onset conditions of phase separation of hydrogels 

under free swelling, hydrostatic loading, constrained uniaxial deformation and constrained biaxial 

deformation in Section 3. Using the phase-field model, we simulate the phase separation and 

pattern evolution of hydrogels under one-dimensional and two-dimensional settings with finite 

system sizes in Section 4. We further investigate the effect of quenching and stretching rates in 

Section 5. Section 6 concludes the chapter. 

3.2 Constitutive Models of Hydrogels 

 Here we consider the deformation of a hydrogel subjected to applied mechanical loadings 

and solvent exchanges with an external solvent. The dry polymer is taken as the reference state, 

where the material point of the hydrogel labeled with a coordinate 𝑿 is displaced to a coordinate 

𝒙 in the current state at time 𝑡 (Figure 3.1). The deformation gradient tensor of the hydrogel is 

defined as 𝐅 = 𝜕𝒙 𝜕𝑿⁄  or 𝐹)* = 𝜕𝑥) 𝜕𝑋*⁄ , whose determinant 𝐽 = det 𝐅 represents the volume 
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change of the material point. The number of solvent molecules per unit reference volume is 

denoted as 𝐶. The polymer network and solvent are assumed to be incompressible, which gives  

,  (3.1) 

where 𝑣 is the volume of a solvent molecule. The inverse of the swelling ratio is related to the 

polymer concentration 𝜙 via 1/𝐽 = 𝜙. 

 

Figure 3.1 Schematic of the reference, intermediate and current states. The intermediate state is 

chosen as the initial state in numerical simulations. 

 The free energy of the hydrogel per unit reference volume is contributed by the stretching 

of the network and the mixing of the polymer and solvent [12, 128, 129],  

,   (3.2) 
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where 𝑁 is the crosslink density of the hydrogel in the dry state, 𝑘 is the Boltzmann constant, 𝑇 is 

the temperature, and 𝜒 is the interaction constant measuring the enthalpy of mixing between the 

polymer and solvent. The parameter 𝜒 is often a function of polymer concentration 𝜒 = 𝜒(𝜙), 

empirically fitted from experimental results [125, 130]. Specifically, 𝜒 often increases with 𝜙 for 

poor solvents, while is nearly independent of 𝜙 for good solvents [131]. There is not a universal 

𝜒(𝜙) function. Although a frequently used form is a polynomial relation, the fitted parameters can 

vary widely. Here our goal is to demonstrate that mechanical constraints can lead to coexistence 

of multiple phases in hydrogels where coexistence does not occur without constraints. The Flory-

Rehner free energy with the parameter 𝜒 independent of 𝜙 describs such hydrogels, and it does 

not predict volume phase transitions of these hydrogels under equilibrium free swelling. Therefore, 

instead of choosing a specific 𝜒(𝜙) function with a specific set of parameters, here we simply 

assume 𝜒  is independent of 𝜙  for the majority of the demonstration in this chapter. The 

dependence of	𝜒 on other external fields, such as temperature 𝜒 = 𝜒(𝜙), is directly prescribed as 

variations of 𝜒 within a reasonable range from 0 to 2, comparable to that in the literature [122, 

125]. To further show that our method can be easily extended to different 𝜒(𝜙) functions, in 

Appendix A2, we demonstrate the phase behavior of a hydrogel with 𝜒 = 𝜒! + 𝜒"𝜙  as an 

example. It is worth mentioning that there are many other forms of stretching energy considered 

in the literature, and the stretching energy can also be formulated by choosing the initial fabrication 

state as the relaxation state of the polymer network [57, 132-134], the energy which tends to 

become double-welled more easily under mechanical constraints. Therefore, here we show that 

even with the current stretching energy in (3.2), a hydrogel with a single phase under equilibrium 
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swelling can undergo complex phase behaviors under mechanical constraints. Our method and 

results can be easily extended to hydrogels with other forms of free energy. 

 Given the free energy, the nominal stress can be obtained as [135] 

,  (3.3) 

where Π is a Lagrange multiplier to enforce the incompressibility condition (3.1), and 𝐻)* defined 

by 𝐻)* = (1 𝐽⁄ ) 𝜕𝐽 𝜕𝐹)*⁄  leads to 𝐇 = 𝐅$+. The chemical potential of the solvent molecules in the 

hydrogel can be calculated as [135] 

.  (3.4) 

When the hydrogel reaches chemical equilibrium, the chemical potential 𝜇 equals the chemical 

potential of the solvent in the environment, 𝜇,. We assume 𝜇, = 0, unless otherwise mentioned. 

Several cases of homogeneous deformation are studied in the next section. 

3.3 Homogeneous State of Equilibrium  

 In this section, we study homogeneous deformation of a hydrogel, its energy landscape and 

stability under various mechanical constraints. A local minimum of free energy corresponds to an 

equilibrium state of the hydrogel. Therefore, the coexistence of multiple phases is identified by the 

existence of multiple local minima and via analyzing the non-convexity of the free energy. 

 We consider a hydrogel immersed in a solvent subjected to a certain mechanical constraint. 

Four cases are studied here: (1) free swelling, (2) swelling under hydrostatic loading, (3) swelling 
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with constrained uniaxial deformation, and (4) swelling with constrained biaxial deformation. For 

case (1), no mechanical constraint is applied on the hydrogel, and the swelling is assumed to be 

isotropic so that 𝐹)* = 𝜆𝛿)* = 𝐽!/.𝛿)*, where 𝜆 is the stretch in all directions. For case (2), the 

hydrogel is subjected to a hydrostatic loading with a fixed nominal stress 𝑠 . The swelling is 

assumed to be isotropic, 𝐹)* = 𝜆𝛿)* . It is noted that this hydrostatic loading defined by fixed 

nominal stress is different from the usual hydrostatic stress defined by fixed true stress. For case 

(3), two principal stretches of the hydrogel are assumed to be one, and in the other principal 

direction the hydrogel exerts a nominal stress 𝑠. The deformation gradient can be written as 𝐅 =

𝑑𝑖𝑎𝑔(𝜆, 1,1). For case (4), the hydrogel is assumed to undergo isotropic in-plane deformation with 

fixed equi-biaxial nominal stress 𝑠 . The other principal stretch is assumed to be one. The 

deformation gradient can be written as 𝐅 = 𝑑𝑖𝑎𝑔(𝜆, 𝜆, 1). 

 Combining with the incompressibility constraint (3.1), the free energy (3.2) becomes 

,  (3.5) 

where 𝑑	(= 1,2,3) represents the dimension of deformation. 𝑑 = 1 corresponds to case (3), 𝑑 =

2 corresponds to case (4), and 𝑑 = 3 corresponds to cases (1) and (2). Selecting the system to be 

the hydrogel, the environment and the load, we obtain the total free energy of the system to be the 

sum of that of all the components 

.  (3.6) 

( ) ( )2 1 11 2ln ln12

d d
d

d d

d kTW NkT
v

l ll l cl l l
é ù- -= - - + +-ê úë û

( ) ( ) ( )2 1 11 2ln ln 112

d d
w dd

d d

d kTG NkT ds
v v

µl ll l lc ll l l
é ù- -= - - + - -+ --ê úë û



57 

 

 When the system is in equilibrium, the first derivative of the free energy 𝐺 with respect to 

𝜆 vanishes, 

.  (3.7) 

 The stability criterion for the system is determined by the second derivative of 𝐺 with 

respect to 𝜆, 

  (3.8) 

When 𝜕"𝐺/𝜕𝜆" > 0, the system is stable. 

3.3.1 Free swelling 

 When the hydrogel is under free swelling, we have 𝑠 = 0. Eqs. (3.7) and (3.8) determine 

the condition of equilibrium and the stability of the system. For the free swelling case, we use the 

swelling ratio 𝐽 as a variable and obtain the equivalent forms to Eqs. (3.7) and (3.8). The free 

energy (3.2) expressed as a function of 𝐽 is  

.  (3.9) 

When the hydrogel is in equilibrium, Eq. (3.7) is equivalent to the following equation, 

.  (3.10) 
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The free energy 𝑊 is plotted as a function of 𝐽 at different values of 𝜒, and points 𝑎, 𝑏 and 𝑐 

correspond to the equilibrium solutions when 𝜇, = 0 (Figure 3.2a). 

 Whether the system is stable or not can also be determined by the second derivative of 𝑊 

with respect to 𝐽, 

.  (3.11) 

Eq. (3.11) is equivalent to Eq. (3.8), if 𝜇, is eliminated by substituting Eq. (3.7) into Eq. (3.8). Eq. 

(3.11) determines the stability of the system regardless of the value of 𝜇, . When 𝜕"𝑊/𝜕𝐽" is 

positive, the hydrogel prefers to stay homogeneous, while when 𝜕"𝑊/𝜕𝐽"  is negative, phase 

separation occurs. The solutions to Eq. (3.11) are shown as points 𝑑 and 𝑒 in Figure 3.2a, where 

we have 𝜕"𝑊/𝜕𝐽" > 0	 when the swelling ratio is smaller than that of point 𝑑 or 𝑒. When 𝜒 =

0.2, the solution to Eq. (3.11) is 𝐽 = 29.3, which is not shown in Figure 3.2a. Clearly, when 𝜇, =

0, all three equilibrium solutions 𝑎, 𝑏 and 𝑐 are stable. 

 Solutions to Eq. (3.10) under 𝜇, = 0 (the black curve) and 𝜇, = 0.015𝑘𝑇 (the blue curve) 

and to Eq. (3.11) (the red curve) are plotted as functions of 𝜒  (Figure 3.2b). The red curve, 

corresponding to the solution to Eq. (3.11), is called the spinodal curve. Above the curve, we have 

𝜕"𝑊/𝜕𝐽" < 0 and the system is unstable. The black curve of the equilibrium solutions when 𝜇, =

0 is always below the spinodal curve, indicating the equilibrium states are stable. The blue curve 

of the equilibrium solutions when 𝜇, = 0.015𝑘𝑇  intersects with the red curve at point 𝑓 

corresponding to 𝐽 = 3.02 and 𝜒 = 0.75. Under a given 𝜒 larger than 0.75, there are two solutions 

of 𝐽 to Eq. (3.10). The solution corresponding to 𝐽 smaller than 3.02 is stable, since it is below the 
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red curve, while the other solution is unstable. In general, for 𝜇, > 0, there are either zero, one or 

two solutions to Eq. (3.10) for a given 𝜒, where the one solution corresponds to the intersection of 

solutions to Eq. (3.10) and Eq (3.11), for example, point 𝑓 for 𝜇, = 0.015𝑘𝑇. When there are two 

solutions, one solution is stable and the other one is unstable. Since there is at most one stable 

solution, there is no phase coexistence when the hydrogel is under equilibrium. According to the 

literature and the discussion of Figure A2 in Appendix A2, when the parameter 𝜒 depends on the 

swelling ratio 𝐽, there might exist two stable equilibrium solutions.[111] As a conclusion, although 

phase coexistence can be predicted when the parameter 𝜒 depends on the swelling ratio 𝐽, for the 

case of free swelling, the free energy (3.9) with constant 𝜒 cannot predict equilibrium phase 

coexistence. 

 

Figure 3.2 A hydrogel is in equilibrium with an external solvent without mechanical constraints. 

(a) The free energy as a function of the swelling ratio 𝐽 at various 𝜒. Points 𝑎, 𝑏, and 𝑐 correspond 

to the equilibrium solutions when 𝜇, = 0, and points 𝑑 and 𝑒 are the solutions to Eq. (3.11). (b) 

The equilibrium solutions under 𝜇, = 0 (the black curve) and 𝜇, = 0.15𝑘𝑇 (the blue curve) and 

the spinodal curve (the red curve). Points a-e correspond to the same conditions as in (a), while 
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point 𝑓 is the intersection of solutions to Eq. (3.10) (i.e. the equilibrium solutions) and to Eq (3.11) 

when 𝜇, = 0.015𝑘𝑇. 

3.3.2 Swelling under hydrostatic loading 

 We next consider a hydrogel under a hydrostatic loading immersed in a solvent with 𝜇, =

0. The free energy 𝑊  is plotted as a function of 𝜆 at different values of 𝜒 (Figure 3.3a). The 

convexity of the curve changes when 𝜒 increases. When 𝜒 is small, the free energy is convex for 

the entire range of stretch 𝜆; the corresponding examples of 𝜒 = 0.2 and 0.5 are shown in Figure 

3.3a. As Eq. (3.7) shows, the system reaches equilibrium when 𝜕𝐺 𝜕𝜆⁄ = 𝜕𝑊 𝜕𝜆⁄ − 3𝑠 = 0 , 

where the slope of the free energy 𝑊 equals to 3𝑠. Since 𝜕"𝐺/𝜕𝜆" = 𝜕"𝑊/𝜕𝜆" > 0 when 𝜒 is 

small, there is only one solution of stretch for a given external stress. On the other hand, when 𝜒 

is large, the free energy becomes concave for an intermediate range of stretch 𝜆. For example for 

𝜒 = 0.8 there is a common tangent line (the red dashed line in Figure 3.3a) intersecting the 𝑊 − 𝜆 

curve at points 𝑎 and 𝑏. The slope of the common tangent 3𝑠∗	corresponds to the critical stress 𝑠∗ 

for coexistence, when the free energy 𝐺 for the coexisting phases are equal. We further plot the 

free energy of the system 𝐺 = 𝑊 − 3𝑠𝜆 defined in Eq. (3.6) as a function of 𝜆 in Figure 3.3b. 

When 𝑠 = 𝑠∗, the free energy 𝐺 indeed has two local minima with equal values, indicating that the 

two phases can coexist when stress 𝑠∗ is applied. When 𝑠 is slightly smaller (𝑠 = 0.9𝑠∗) or larger 

(𝑠 = 1.2𝑠∗) than 𝑠∗, the free energy 𝐺 is still double-well, but the shrunk phase has lower or higher 

free energy than the swollen phase, respectively. As 𝑠 further decreases (𝑠 = 0.75𝑠∗) or increases 

(𝑠 = 1.35𝑠∗), the free energy 𝐺 becomes single-well, with the single minimum corresponding to 

one stable equilibrium shrunk or swollen phase, respectively. The two local minima in Figure 3.3b 
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correspond to the two tangent points in Figure 3.3a. Using the condition 𝜕"𝐺/𝜕𝜆" = 0, we identify 

points 𝑐 and 𝑑. When a stretch is between points 𝑐 and 𝑑, we have 𝜕"𝐺/𝜕𝜆" < 0, which indicates 

that the system is unstable and phase separation might occur. Connecting all the tangent points for 

various 𝜒, we obtain the binodal curve (the red curve in Figure 3.3c). The spinodal curve and the 

binodal curve merge at the critical point 𝑒, corresponding to a critical interaction parameter 𝜒# and 

a critical stretch 𝜆#, where 𝜒# is the smallest value of 𝜒 that can induce phase separation. Solving 

Eq. (3.7), we plot the nominal stress 𝑠 as a function of 𝜆 at different values of 𝜒 (Figure 3.3d). 

When 𝜒 is smaller than 𝜒# , the nominal stress increases monotonically as 𝜆 increases, and the 

corresponding free energy is convex (Figure 3.3a). When 𝜒 is larger than 𝜒#, the stress-stretch 

curve becomes non-monotonic, and there might exist three stretch solutions under a fixed stress 

value. The non-monotonic stress-stretch curves are also plotted with 𝜒 = 𝜒! + 𝜒"𝜙  (Figure 

3.S1e). The volume phase transition might occur with two phases coexisting when the hydrogel is 

gradually stretched to a certain range. It is worth mentioning that the stretch for coexisting phases 

may not be predicted accurately. Taking 𝜒 = 0.8 as an example, if both two coexisting phases 

follow the assumed deformation 𝐹)* = 𝜆𝛿)*, the stretch values of the two phases correspond to 

those of points 𝑎 and 𝑏 in Figure 3.3, which minimizes the free energy of the system consists of 

the hydrogel and the load. However, the two separated phases may not follow the assumed 

homogeneous deformation due to the stretch mismatch between the two phases. Therefore, the free 

energy 𝑊 of the hydrogel may not be simply written as Eq, (3.5). The solution to this issue will 

be discussed in Sec. 4. 

 Figure 3.3e shows the equilibrium solutions under free swelling (the red curve) and 

hydrostatic loading (the blue curve). It is noted that the free swelling case (𝜇, = 0 and 𝑠 = 0) is 
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a special case of swelling under hydrostatic loading when the applied stress equals zero. From 

Figure 3.3e, it is shown that when the stress equals zero there exists only one solution of stretch 

for a given parameter 𝜒, and the stretch decreases monotonically with the increase of 𝜒. In contrast, 

when 𝑠 = 0.032𝑘𝑇/𝑣, the stretch changes non-monotonically with the increase of 𝜒, and there 

might exist three solutions of stretch for a given 𝜒  in certain range of value, verifying the 

predictions of Duda et al [121]. Meanwhile, Cirillo et al. predicted that when a hydrogel is 

subjected to a hydrostatic true stress, no phases coexist under three-dimensional volumetric 

deformation [120]; in their study, the defined pressure load is equivalent to 𝜇, in our manuscript. 

According to our studies of hydrogels under free swelling, there is at most one stable solution for 

given 𝜇,, which also validates the results of Cirillo et al. The seemingly contradictory results come 

from different mechanical loadings. 
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Figure 3.3 A hydrogel subjected to hydrostatic loading is in equilibrium with an external solvent. 

(a) The free energy 𝑊 as a function of stretch at various 𝜒. Points 𝑎 and 𝑏 are the two intersection 

points of the 𝑊 − 𝜆 curve and the common tangent line (the red dashed line), and points 𝑐 and 𝑑 

are solutions to Eq. (3.8). (b) The free energy 𝐺 = 𝑊 − 3𝑠𝜆 as a function of stretch for 𝜒 = 0.8 

under different values of 𝑠. (c) Spinodal and binodal curves with their intersection point 𝑒. (d) 

Nominal stress as a function of stretch at various 𝜒. Points 𝑎-𝑑 correspond to the same conditions 
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in (a), (b), (c) and (d). (e) The equilibrium solutions under 𝑠 = 0  (the red curve) and 𝑠 =

0.032𝑘𝑇/𝑣	 (the blue curve). 

3.3.3 Swelling with constrained uniaxial and biaxial deformation 

 For a hydrogel with constrained uniaxial deformation, the free energy of the total system 

is 

.  (3.12) 

 The equilibrium condition (3.7) can be rewritten as 

.  (3.13) 

Clearly from Eqs. (3.12) and (3.13), the applied stress plays the same role as the chemical potential 

of the solvent in the equilibrium state for the constrained uniaxial case, which is not true for the 

constrained biaxial case.  

 For both the constrained uniaxial and biaxial cases, the phase diagram under 𝜇, = 0 is 

shown in Figure 3.4a, where the solid curves correspond to the constrained uniaxial swelling, while 

the dashed curves correspond to the constrained biaxial case. Under a fixed value of 𝜒, there could 

exist multiple solutions of stretch 𝜆. The critical interaction parameter 𝜒# of the biaxial case is 

lower than that for the uniaxial case, both of which are higher than that of the hydrostatic case 

(Figure 3.4a & b). This could be understood by the fact that lower-dimensional deformation means 

a higher degree of anisotropy of the deformation, which leads to higher elastic energy and requires 

higher 𝜒# . 𝜒#  increases with the increase of the normalized modulus 𝑁𝑣, which means poorer 
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solvent is required to achieve phase separation when the network is more densely crosslinked 

(Figure 3.4b). Figure 3.4c shows the critical stretch 𝜆# and the corresponding critical volume 𝐽# 

decrease as 𝑁𝑣	increases,	while 𝐽# increases but 𝜆# decreases as the dimension of deformation 

increases (Figure 3.4c). When 𝜒 is beyond 𝜒#, the stress-stretch curves are non-monotonic for both 

constrained uniaxial and biaxial cases (Figure 3.4d). Therefore, two phases might coexist for both 

cases. 

 It’s worth mentioning that Cirillo et al. theoretically showed that two phases could coexist 

when a hydrogel is under constrained uniaxial deformation subjected to a fixed stress while the 

chemical potential is zero [120]. Under similar constrained uniaxial deformation, Hennessy et al. 

also demonstrated that two phases could coexist when a hydrogel is prescribed with a fixed 

chemical potential while the stress is zero [118]. Our equilibrium equation (3.13) shows the 

equivalent roles of applying a chemical potential and stress in phase separation of hydrogels with 

constrained uniaxial swelling. Kim et al. demonstrated composite PNIPAM hydrogels with 

cofacially aligned nanosheets could rapidly respond to temperature changes [124]. In their 

experiments, two neighboring paralleled nanosheets confine the deformation of the hydrogel in-

between to be constrained uniaxial deformation. Parameter 𝜒 increases as temperature increases, 

leading to an increase of the chemical potential inside the hydrogel. According to our predictions, 

multiple equilibrium states could exist when a hydrogel with constrained uniaxial deformation is 

prescribed with a fixed chemical potential. Therefore, the hydrogel may transit from one state to 

another state, whose deformation is discontinuous and can occur rapidly. Our results could further 

justify the explanations of Yamamoto et al. on the experiments, which predicted that such 

constrained hydrogels can undergo discontinous deformation with a constant volume [122].  
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Figure 3.4 A hydrogel is in equilibrium with an external solvent under constrained uniaxial (1D) 

and biaxial (2D) deformation. (a) Spinodal and binodal curves. (b) Critical interaction parameter 

𝜒# as a function of crosslink density 𝑁𝑣 for constrained uniaxial, biaxial, and hydrostatic (3D) 

deformation. (c) Critical stretch 𝜆#  and the corresponding critical volume 𝐽#  as functions of 

crosslink density 𝑁𝑣. (d) Non-monotonic nominal stress-stretch relations at high 𝜒. 

3.4 Numerical Simulations of Phase Separation 

 Our previous analysis is based on an assumption of homogeneous deformation. However, 

when a hydrogel is unstable, and separates into two phases, it does not follow homogeneous 

deformation, but highly inhomogeneous deformation with a large misfit between the two separated 

phases. In addition, the previous analysis is also not able to predict what the morphology of the 
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separated phases is and how the phases evolve. To address these problems, the phase-field method 

is used to simulate the phase behaviors of hydrogels in this section. 

3.4.1 Phase-field model 

 Selecting the concentration of solvent molecules 𝐶  as the conservative phase-field 

variable, we introduce the gradient of the concentration to describe a diffuse interface between 

different phases. Following Hong and Wang, the free energy is assumed to be [116] 

 (3.14) 

where the second term is an energy penalty to enforce the incompressibility (3.1) with 𝜅 the bulk 

modulus, and the last term is an ideal interface energy. The interfacial parameter 𝜂 in Eq. (3.14) 

penalizes the formation of sharp interfaces, and plays a role of surface tension. The mixing and 

interfacial energy defines a characteristic length 𝑙 = �𝜂 𝑣𝑘𝑇⁄ . The mixing energy in Eq. (3.14) is 

different from the one used by Hong and Wang, where their mixing energy has double wells under 

free swelling when 𝜒 is large.[116] 

 By minimizing the total free energy of the system and combining the conservation of the 

solvent molecules, the stress equilibrium and the evolution equation of the phase field are obtained 

as[116] 
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,  (3.16) 

where  

  (3.17) 

.  (3.18) 

The Cauchy stress is related to the nominal stress by . The characteristic length 𝑙 

and the diffusivity 𝐷  lead to a characteristic time 𝑡0 = 𝑙" 𝐷⁄ . To solve the above equations, 

chemical and mechanical boundary conditions are further needed. Assuming the hydrogel is 

always immersed in a pure solvent, then we have 

,  (3.19) 

at the interface between the hydrogel and the environmental solvent. Since the expression of 

chemical potential 𝜇  includes a second derivative of the concentration 𝐶 , another boundary 

condition is needed. For all the boundaries, we require 
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where 𝑛)  is the unit outer normal of the boundaries in the current state. For the mechanical 

boundary conditions, either displacement or traction can be prescribed, which will be given in the 

following examples. 

 The weak form of Eqs. (3.15)- (3.18) is implemented into the commercial software 

COMSOL to determine the temporal evolution of the fields of displacement, concentration and 

chemical potential. The cubic Lagrange element is used for the discretization of the displacement 

field, while the linear Lagrange element is used for the discretization of the concentration and 

chemical potential. The MUMPS solver and an implicit time discretization has been used for 

computation. Unless otherwise stated, a mesh size equal to the characteristic length has been used, 

achieving a good convergence of results. To enforce the incompressibility, 𝜅 = 1000𝑁𝑘𝑇  is 

chosen. Due to the singularity of the chemical potential in the dry state, an intermediate state with 

zero chemical potential is introduced as the initial state in numerical simulations (Figure 3.1). The 

total deformation gradient is decomposed as 𝐅 = 𝐅!𝐅0, where 𝐅0 maps the reference state to the 

intermediate state, and 𝐅! maps the intermediate state to the current state. The intermediate state 

chosen to be homogeneous, and the initial stress obtained from Eq. (3.7) is applied to the hydrogel. 

In the section 3.4.2 and 3.4.3, we start the simulations with a constant 𝜒 of a high value, and the 

hydrogels in the intermediate state are unstable. As a result, phase separation occurs, and swollen 

and shrunk phases evolve with time. To trigger the onset of the phase separation, a random small 

perturbation ranging from −5 × 10$1𝐶0 to 5 × 10$1𝐶0 is imposed on the initial concentration 𝐶0 

for all simulations. The amplitude of the perturbation only influences the speed of the coarsening 

process in the early stage (𝑡	~	𝑙"/𝐷), and a slightly larger perturbation leads to faster initial 

coarsening. The initial small perturbation has little influence on the phase evolving process in the 
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later stage, i.e., statistically equivalent patterns are obtained under different initial perturbations 

after 𝑡	~	𝑙"/𝐷, and identical patterns are obtained after 𝑡~𝐿"/𝐷 with 𝐿 the size of the hydrogel. 

3.4.2 Phase separation of hydrogels under constrained uniaxial deformation 

 We start from a hydrogel with two fixed ends and initial stretch 𝜆0 = 3, where the length 

of the hydrogel in the initial state is denoted as 𝐿 (Figure 3.5). At the two ends of the hydrogel, we 

impose 

,  (3.21) 

where 𝑢 is the displacement of the hydrogel in the current state with respect to the hydrogel in the 

initial state. As shown in Figure 3.4a, the hydrogel is unstable when the parameter 𝜒 is high, where 

phase separation is expected to occur. The total deformation gradient of the hydrogel with respect 

to the reference state is denoted as 𝐅 = 𝑑𝑖𝑎𝑔(𝜆, 1,1).  

 

Figure 3.5 Schematic of a hydrogel under constrained uniaxial deformation in the reference, initial 

and current states. In the current state, the hydrogel undergoes phase separation with different 

colors representing different stretch values of the swollen and shrunk phases. 

 The evolution of stretch as a function of the Lagrangian coordinate X associated with the 

reference state is shown in Figure 3.6a & b for different values of 𝜒. The initial fluctuation grows 

and coarsens as a function of time. The domains near the boundary grow faster than those in the 

0u =
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bulk, because the gradient of the chemical potential is higher near the boundary than that in the 

bulk. The hydrogel finally reaches equilibrium after a long time, e.g., 𝑡!/𝑡0 = 2 × 102 in Figure 

3.6a. When 𝜒 is higher, phase separation occurs easier and faster in the hydrogel. Moreover, more 

domains are observed during the phase separation process, and the stretch ratio between the 

swollen and shrunk domains is higher when the hydrogel reaches equilibrium. Figure 3.6c shows 

the influence of the system size on the distribution of stretch when the hydrogel reaches 

equilibrium. The red dashed line is the theoretical prediction of the common tangent construction, 

while the solid lines are the simulation results, which approach the theoretical prediction when the 

ratio of the sample length to the characteristic length, 𝐿/𝑙, is large. On the other hand, when 𝐿/𝑙 is 

small, we cannot obtain two phases corresponding to the homogenous solutions, and the stretch 

distribution cannot be predicted by the common tangent construction. When 𝐿/𝑙 is small enough, 

the system is stabilized by the interfacial energy, and phase separation can be suppressed. Figure 

3.6d shows the 𝐿/𝑙-𝜆0 diagram of phase separation at different 𝜒. For a given 𝜒, phase separation 

occurs above the curve, while phase separation does not occur below the curve. A higher 𝜒 is 

required for the occurrence of phase separation of a smaller system. 
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Figure 3.6 The temporal evolution of stretch as a function of the Lagrangian coordinate X 

associated with the reference state at (a) 𝜒 = 1 and (b) 𝜒 = 1.5. (c) The equilibrium distribution 

of stretch for hydrogels with different ratios of the sample length to the characteristic length, 𝐿/𝑙. 

(d) 𝐿/𝑙-𝜆0 diagram of phase separation at different 𝜒. 

3.4.3 Phase separation of hydrogels under constrained biaxial deformation 

 We next consider that a hydrogel under constrained biaxial deformation with initial stretch 

𝜆0 undergoes phase separation (Figure 3.7). On the boundaries, the hydrogel is assumed to be able 

to move freely in the parallel direction but have no displacement in the perpendicular direction, 

i.e. we impose the boundary conditions 
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where 𝑢 and 𝑣 are the displacements of the hydrogel in the X and Y directions in the current state 

with respect to the initial state. It’s worth mentioning that large mesh size (≈ 5𝑙) is used for the 

simulation of the large sample, where the coarse meshes still give a good convergence of results. 

 

 

Figure 3.7 Schematic of a hydrogel under constrained biaxial deformation in the reference, initial 

and current states. In the current state, the hydrogel undergoes phase separation with different 

colors representing the distribution of the concentration of different phases. 

 Figure 3.8a is the 𝐿/𝑙 -𝜆0  diagram of phase separation for 𝜒 = 0.8, with the different 

regions in the phase plane showing no phase separation, and phase separation with different 

morphologies. The three simulation contour plots demonstrate the distribution of the normalized 

concentration 𝑣𝐶 for the hydrogel under equilibrium, where the black solid curves correspond to 

the initial concentrations of the hydrogel, and the mesh grids, which are uniform in the initial state, 

show the deformation of the hydrogel. Three patterns, solvent rich island, strip, and solvent poor 

island, are observed. Since the interfacial energy is proportional to the length of the interface 

between the swollen and shrunk phases, the length of the interface needs to be minimized to reduce 

the total energy of the system. Therefore, the solvent-rich-island pattern is expected to occur when 

the solvent concentration of the hydrogel is relatively low, and the solvent-poor-island pattern 
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occurs when the solvent concentration is relatively high. It is also noted that the deformation of 

the swollen and shrunk phases in the strip pattern is highly anisotropic. When 𝜒 is increased to 2, 

the boundary between phase separation and no phase separation is significantly lower, indicating 

phase separation can occur in much smaller hydrogels (Figure 3.8b). Moreover, the solvent-poor-

island pattern can occur in a much broader region in the phase plane.  

 We next plot the concentration distribution along the diagonal A1A3 to characterize the 

solvent-rich-island pattern for different sample sizes 𝐿/𝑙 (Figure 3.8c). Due to the strain mismatch 

between the two phases, we see an inhomogeneous distribution of concentration. When the sample 

size is large, the concentration distribution along the diagonal A1A3 is non-monotonic. In the 

shrunk region, the concentration reaches the minimum close to the interface, and slightly increases 

when the position is away from the interface until reaching a plateau, indicating a homogeneous 

shrunk phase. It is noted that the portion of the inhomogeneous region is finite in the shrunk phase 

(Figure 3.8c). When the sample size becomes smaller, the concentration distribution is smoothened 

due to the influence of the interfacial energy. The two phases at corners A1 and A3 are almost 

homogeneous and isotropic when the sample size is large enough, while the deformation at corners 

A2 and A4 is anisotropic (Figure 3.8a), which violates the assumption of the constrained biaxial 

deformation for the homogeneous solutions. The stretch values in X direction differ a lot from that 

in Y direction at corner A2 for hydrogels with different sample sizes (Figure 3.8d). The 

concentrations of the swollen and shrunk phases at corners A1 and A3 are plotted as functions of 

the sample size (Figure 3.8e), where the concentration of the swollen phase shows particularly 

strong size-dependent. The dashed lines are obtained by the common tangent construction for the 

homogeneous solutions, which agrees well with the simulation results when the sample size is 
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large. The similar size effect on the concentrations of the swollen and shrunk phases is also 

observed in the solvent-poor-island pattern. Different from the solvent-rich-island and solvent-

poor-island patterns, the strip pattern shows a concentration distribution similar to the 

homogeneous solution of the constrained uniaxial deformation, instead of the constrained biaxial 

deformation (Figure 3.8f), and the deformation gradient can be assumed to be 𝐅 = 𝑑𝑖𝑎𝑔(𝜆, 𝜆0, 1). 
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Figure 3.8 (a) 𝐿/𝑙-𝜆0 phase diagram of phase separation for 𝜒 = 0.8. Three patterns, solvent rich 

island (𝜆0 = 2, 𝐿 𝑙⁄ = 400), strip (𝜆0 = 2.1, 𝐿 𝑙⁄ = 400), and solvent poor island (𝜆0 = 2.1, 𝐿 𝑙⁄ =

235 ) are shown in snapshots A, B and C, where the color bars represent the normalized 

concentration 𝑣𝐶, and the black solid curves correspond to the initial concentrations. (b) 𝐿/𝑙-𝜆0 

phase diagram of phase separation for 𝜒 = 2. (c) The equilibrium distribution of concentration 

along the diagonal of the hydrogel in the solvent-rich-island pattern with different sizes of the 

hydrogel 𝐿/𝑙 and the initial stretch 𝜆0 = 2. (d) The stretch values in X and Y directions at corner 

A2 in the solvent-rich-island pattern as functions of the sample size 𝐿 𝑙⁄ . (e) The concentrations at 

corners A1 and A3 in the solvent-rich-island pattern as functions of the sample size 𝐿 𝑙⁄ . The dashed 

lines are predicted by the common tangent construction. (f) The equilibrium distribution of 

concentration along the edge of the hydrogel in the strip pattern. 

3.5 Phase Separation Induced by Quench and Stretch 

 Since phase separation of a hydrogel is limited by diffusion of solvent molecules, it is 

expected that the phase behavior of a hydrogel undergoing a phase transition depends on 

quenching and loading rates. As discussed in Section 3, quenching a hydrogel under a free swelling 

condition might induce temporary phase separation, while changing the interaction parameter 𝜒 

slowly induces homogeneous deformation of the hydrogel without phase separation. Similarly, we 

anticipate and will show that stretching rates can also affect the volume phase transition of 

hydrogels. Investigating how quenching and stretching rates influence the response of hydrogels 

can help us explain some experimental phenomena and provide guidance for material and loading 

designs. 
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3.5.1 Influence of quenching rate 

 Here we demonstrate the effect of a quenching rate on phase separation using an example 

of a hydrogel under constrained uniaxial deformation. As Figure 3.9a shows, the hydrogel is 

expected to follow different deformation paths depending on the quenching rate. After the 

hydrogel is allowed to undergo one-dimensionally free swelling in a solvent to reach equilibrium 

initial stretch 𝜆0, the system is quenched by a sudden increase of parameter 𝜒, which induces phase 

separation (Figure 3.9a). We consider a linear increase of 𝜒 from 𝜒0 = 0.5 to 𝜒! =1.5 within time 

𝑡! prior to holding 𝜒 as a constant (Figure 3.9b). The initial system size is 𝐿! = 500𝑙. Therefore, 

the diffusion time scale across the whole hydrogel is 𝐿!"/𝐷 = 2.5 × 10%𝑡0 , where 𝑡0  is the 

diffusion time scale across the characteristic length 𝑙. At the two ends of the hydrogel, we impose 

the boundary conditions as 

  (3.23) 

 

Figure 3.9 (a) Schematic of a hydrogel under constrained uniaxial deformation with different 

quenching rates. In the current state, the top schematic represents the hydrogel with a single phase 

when the loading time is much longer than the diffusion time across the whole sample 𝑡! ≫ 𝐿!"/𝐷, 
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and the bottom schematic represents the hydrogel undergoing phase separation when 𝑡! ≪ 𝐿!"/𝐷. 

In both cases, the hydrogel eventually reaches equilibrium and becomes homogeneous (final state). 

(b) Schematic of the change of 𝜒 as a function of time. 

 The evolution of stretch distribution along the length of the hydrogel is plotted at different 

time for different quenching rates (𝑡!/𝑡0 = 10 for Figure 3.10a and 𝑡!/𝑡0 = 5 × 10% for Figure 

3.10b), where solvent diffuses out of the hydrogel through the two ends. When the quenching rate 

is higher, more domains are observed during the phase separation process. The maximum stretch 

(Figure 3.10c & d) and length change (Figure 3.10e & f) are plotted as functions of time for 

different quenching rates. Although the length monotonically increases with time, the maximum 

stretch can non-monotonically increase and decrease with time, attributed to phase separation, and 

the evolution of the swollen phase. The curves are rough under a high quenching rate, due to the 

coarsening of different domains, while the curves are smooth when the quenching rate is low. 

When the quenching rate is extremely low, namely 𝑡! is much larger than the diffusion time across 

the whole sample (𝑡! ≫ 𝐿!"/𝐷), the hydrogel almost always reaches equilibrium and remains 

homogeneous with the change of 𝜒 (Figure 3.10d & f), which can be validated by the overlapping 

of the maximum stretch-time and length change-time curves with those predicted by Eq. (3.13). 

As a result, phase separation does not occur and the maximum stretch decreases monotonically 

(Figure 3.10d). Bai and Suzuki experimentally studied the influence of heating rates on the 

morphologies of weakly ionized PNIPAM hydrogels [110], where the increase of temperature is 

equivalent to the increase of the parameter 𝜒. They observed that a low heating rate leads to a 

smooth surface of the hydrogel, while a high heating rate produces a rough surface, which agrees 

with our simulation results. 
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Figure 3.10 The evolution of stretch distribution along the length of the hydrogel at different time 

under quenching rates of (a) 𝑡!/𝑡0 = 10 and (b) 𝑡!/𝑡0 = 500000. The maximum stretch (c, d) and 

length change (e, f) as functions of time under different quenching rates.  

3.5.2 Influence of stretching rate 

We next study the effect of stretching rates on phase transition. A hydrogel first undergoes one-

dimensionally free swelling in a solvent to reach equilibrium initial stretch 𝜆0 (Figure 3.11a). Then 

it is gradually stretched at a constant rate from the initial state (𝐿! = 𝜆0𝐿0) to the current state with 
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stretch 𝜆! (𝐿" = 𝜆!𝐿0) under a constant 𝜒 (Figure 3.11a & b). After the stretch reaches 𝜆! = 𝜆3 

at 𝑡 = 𝑡!, it is gradually released to the initial state at the same rate until 𝑡 = 2𝑡! (Figure 3.11b). 

The total deformation gradient of the hydrogel with respect to the reference state is denoted as 𝐅 =

𝑑𝑖𝑎𝑔(𝜆, 1,1). 

 

Figure 3.11 (a) Schematic of a hydrogel undergoing constrained uniaxial stretch in the reference, 

initial and current states. In the current state, the top schematic represents the hydrogel with two 

inhomogeneous phases when the loading is fast, and the bottom schematic represents the hydrogel 

with two homogeneous phases when the loading is slow. (b) Schematic of the applied stretch as a 

function of time. 

 We consider a hydrogel with 𝜒 = 1.5 so that the equilibrium stretch is 𝜆0 = 1.16. Then 

the hydrogel is stretched to 𝜆3 = 20  within 𝑡! . We introduce a dimensionless parameter 𝑚 

defined as 𝑚 = 𝑡!/(𝐿!" 𝐷⁄ ), which characterizes how fast the loading is compared to diffusion 

across the sample. Assuming the ratio of the initial sample length to the interfacial characteristic 

length is 𝐿! 𝑙⁄ = 𝑛, we obtain 𝑚 = 𝑡!/(𝑛" 𝑙" 𝐷⁄ ) = 𝑡! (𝑛"𝑡0)⁄ . Here 𝑛 = 100 is chosen in our 

simulations. 
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 The stress-stretch curves are plotted under different stretching rates, where the blue and 

black curves represent the loading and unloading processes, respectively (Figure 3.12a & b), while 

the red solid curve is the homogenous equilibrium solution obtained from Eq. (3.13). As Figure 

3.12a, b, c & d show, the hydrogel remains a shrunk phase when the applied stretch 𝜆! is low. 

Upon a critical stretch that corresponds to the spinodal point (see Figure 3.3d, point 𝑐 ), the 

hydrogel becomes unstable, and the swollen phase appears and coexists with the shrunk phase. 

The shrunk phase gradually transits into the swollen phase as the applied stretch increases. Finally, 

the hydrogel becomes a single phase again before the applied stretch approaches the stretch value 

of the binodal point (see Figure 3.3d, point 𝑏). The equilibrium stress-stretch relation under the 

homogeneous assumption obtained in Eq. (3.13), where the hydrogel is either in the homogeneous 

shrunk or swollen phase, is used to compare with the numerical results from the phase-field model. 

When the loading is fast, the stress deviates from the equilibrium solution from Eq. (3.13) with a 

large hysteresis between loading and unloading (Figure 3.12a). Higher stress is required to drive 

the solvent into the hydrogel, while lower stress is needed during unloading. When the loading is 

slow, the numerical results agree with the theoretical prediction in a wide range of stretch (Figure 

3.12b). A stress plateau is predicted by the numerical solution in both loading and unloading, and 

it overlaps with the stress obtained by the common tangent construction (the red dashed line in 

Figure 3.12b). Figure 3.12c & d demonstrate the stretch distributions at different applied stretches, 

where the solid blue lines correspond to the loading process and the dashed black lines correspond 

to the unloading process. The results show that a volume phase transition through phase separation 

is captured by the phase-field model. For a fast loading with 𝑚 = 10., the swollen phase is highly 

inhomogeneous because it takes time for the diffusion of solvent molecules (Figure 3.12c). In 
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contrast, the stretch is more homogenously distributed for a slow loading with 𝑚 = 5 × 101 

(Figure 3.12d). It is worth mentioning that 𝑚 is defined based on the diffusion time scale in the 

initial state, 𝑡!/(𝐿!" 𝐷⁄ ), instead of in the current state, 𝑡!/(𝐿"" 𝐷⁄ ), which leads to the large value 

of 𝑚 even for the case of slow loading. 

 

Figure 3.12 Loading, unloading and homogenous equilibrium stress-stretch curves for different 

ratios of the loading time to the diffusion time across the sample, (a) 𝑚 = 1000 and (b) 𝑚 =

50000. The red dashed line represents the stress and critical stretches obtained by the common 

tangent construction. Stretch distribution at different applied stretches in loading and unloading 

for (c) 𝑚 = 1000  and (d) 𝑚 = 50000 , where the solid blue lines correspond to the loading 

process and the dashed black lines correspond to the unloading process. 
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 Similarly, a hydrogel undergoing constrained biaxial deformation with the initial stretch 

𝜆0 at zero stress is gradually stretched equi-biaxially under a constant 𝜒 from the initial state (𝐿! =

𝜆0𝐿0) to the current state with stretch 𝜆! (𝐿" = 𝜆!𝐿0) in both X and Y directions (Figure 3.13). The 

initial system size is 𝐿! = 50𝑙. 

 

Figure 3.13 Schematic of a hydrogel undergoing constrained biaxial deformation in the reference, 

initial and current states. In the current state, different loading rates lead to different patterns of the 

hydrogel. 

 Figure 3.14a & b show the stress-stretch curves of the hydrogel under different stretching 

rates	𝑚 = 200 and	𝑚 = 101, where 𝑚 is defined in the same way as that for the uniaxial case. 

The average nominal stresses along 𝑋  and 𝑌  directions defined as 𝐹4𝑣/𝐿0𝑘𝑇  and 𝐹5𝑣/𝐿0𝑘𝑇 , 

where 𝐹4  and 𝐹5  are the total forces on the surfaces in the 𝑋  and 𝑌  directions, are plotted as 

functions of stretch 𝜆! (Figure 3.14a & b). The homogeneous stress-stretch solution predicted by 

Eq. (3.7) is also plotted for comparison. During the loading process, the morphology evolves with 
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𝜆!, as shown in Figure 3.14c & d, where the black lines represent the boundaries of the initial 

states. It is noted that different loading rates can lead to different paths of pattern evolution, where 

the transitions between different patterns lead to sharp changes of stresses (Figure 3.14a, b, c & 

d). When the loading is fast, the stress obtained from the simulation deviates from the equilibrium 

solution to Eq. (3.7) after phase separation, due to inhomogeneous solvent distributions. The 

stresses in the two directions are not equal attributed to the occurrence of the strip pattern (𝑐!), 

which eventually evolves to the solvent-poor-island pattern (𝑐"	&	𝑐.) at high enough 𝜆! (Figure 

3.14a & c). In contrast, under a slow loading, the solvent-rich-island pattern (𝑑!) transits to the 

solvent-poor-island pattern (𝑑") as 𝜆! increases (Figure 3.14b & d). The morphology is always 

symmetric with respect to one diagonal, and the stresses in 𝑋 and 𝑌 directions are equal (Figure 

3.14b). The stress-stretch relations from the simulation overlap with the theoretical prediction 

when the hydrogel is either completely in the shrunk or swollen phase. The maximum and 

minimum concentrations of the hydrogel for different loading rates are plotted as functions of 𝜆! 

for different loading rates (Figure 3.14e & f). When 𝜆! is larger than a critical value, the hydrogel 

under slow loading becomes homogeneous again, with the maximum and minimum concentration 

almost equal (Figure 3.14f). In contrast, for a fast loading, the maximum concentration is still 

higher than the minimum concentration when 𝜆! is above the critical value, since it takes longer 

time for solvent to diffuse into the hydrogel to achieve the equilibrium homogeneous state (Figure 

3.14e). 
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Figure 3.14 Dependence of the normalized stresses in the 𝑋 and 𝑌 directions as functions of stretch 

𝜆! for the hydrogel subjected to different loading rates (a) 𝑚 = 200	and (b) 𝑚 = 10000	. Contour 

plots of the solvent concentration at different stretches for (c) 𝑚 = 200 and (d) 𝑚 = 10000. 

Maximum and minimum solvent concentrations as functions of stretch 𝜆! for (e) 𝑚 = 200	and (f) 

𝑚 = 10000.  
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3.6 Conclusion 

In this chapter, we reveal the underpinning role of mechanical constraints on triggering 

the volume phase transitions and phase separation of hydrogels. We show that even for a hydrogel 

that does not phase separate during equilibrium free swelling modeled by the Flory-Rehner free 

energy with a constant interaction parameter 𝜒, multiple phases can coexist when the hydrogel is 

subjected to mechanical constraints. We obtain the states of equilibrium for the hydrogel under 

free swelling, hydrostatic loading, constrained uniaxial deformation, and constrained biaxial 

deformation, and unravel how mechanical constraints change the convexity of the free energy and 

monotonicity of the stress-stretch curves. In contrast to the existence of only one homogenous 

solution under equilibrium free swelling, coexistence of multiple solutions, corresponding to 

multiple phases, can occur in the hydrogel under the above mentioned mechanical constraints. 

 By introducing interfacial energy and kinetics of diffusion, we further develop a phase-

field model to investigate the pattern evolution in the phase separation of hydrogels under 

mechanical constraints. For constrained uniaxial deformation, the common tangent construction 

predicts well the concentrations and fractions of coexisting phases when the hydrogel reaches 

equilibrium. For constrained biaxial deformation, the two separated phases have large strain misfit, 

and the homogeneous deformation determined by the common tangent construction is inaccurate, 

while the concentrations predicted agree quite well with the simulation results when the system 

size is large enough. As the system size decreases, simulation results deviate from the common 

tangent predictions. Moreover, the system could be stabilized by the interfacial energy, and phase 

separation can be suppressed.  
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 We further study the effect of quenching rates and loading rates on the phase behavior of 

hydrogels. As a result, a quenching rate can significantly influence the pattern evolution of phase 

separation. Particularly, a fast quenching rate leads to more small domains, resulting in a temporary 

rough texture of the hydrogel. Although phase coexistence does not occur in a neutral hydrogel 

under free swelling, fast quenching can trigger temporary phase separation. Similarly, a stretching 

rate can also influence the pattern evolution of phase separation, and stress-stretch responses. A 

fast loading results in large hysteresis between loading and unloading stress-stretch curves, and 

deviation from the theoretical prediction.  

 Our theoretical predictions are to be experimentally validated. The effect of mechanical 

constraints on the phase separation of hydrogels that we predicted is consistent with some reported 

experiments. Matsuo and Tanaka demonstrated that cylindrical PAAm hydrogels immersed in an 

acetone solution with different concentrations show different stable patterns with coexistence of 

swollen and shrunk phases [43]. Even though PAAm hydrogels undergo continuous volume 

transitions [136], the high 𝜒  due to the high acetone concentration and the constant volume 

constraint induced by a dense impermeable skin layer on the surface of the hydrogels lead to phase 

separation of the hydrogels and morphology changes, consistent with our theory. Regarding the 

effect of loading rates on phase separation of hydrogels, Bai and Suzuki experimentally observed 

that heating a weakly ionized PNIPAM hydrogel via a low heating rate leads to a smooth surface 

of the hydrogel, while a high heating rate produces a rough surface [110], consistent with our 

simulations. However, experimental results that can be quantitatively compared with our theory 

are lacking. Since our theory is relatively general, we expect that many hydrogels under 

mechanical constraints can show rich phase behavior. We here call for more experimental studies 
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to quantify the phase separation of hydrogels under various mechanical constants and loading 

conditions. 

 In summary, our study successfully captures rich phase behavior of neutral hydrogels under 

different mechanical constraints and dynamic loading conditions. It provides design guidelines for 

hydrogels with a volume phase transition for various applications.  
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Chapter 4 A Modified Semisoft Model of Liquid Crystal Elastomers: 

Application to Elastic and Viscoelastic Responses 

 LCEs are emerging actuating materials composed of polymer networks and liquid crystal 

mesogens. A plateau in the stress-strain curve of LCEs, typical of the semisoft characteristics, is 

commonly observed. Although the classical semisoft model based on compositional fluctuations 

intends to capture this feature, it does not accurately predict the stress plateau. Moreover, the 

extended viscoelastic model performs inadequately in predicting stress, deformation, and director 

rotation. To address these limitations, we phenomenologically modify the semisoft model, 

applying it to both elastic and viscoelastic responses. The modified model is further implemented 

in finite element simulations and used to study intriguing inhomogeneous deformation of LCEs. 

We demonstrate more robust predictions of our model by comparison with experimental results. 

4.1 Introduction 

 LCEs are combinations of polymer networks and liquid crystal mesogens. The coupling 

between polymer networks and mesogens leads to unusual mechanical properties of LCEs, such 

as semisoft elasticity and viscoelasticity [26]. LCEs can undergo large deformation in response to 

various external stimuli [27], including temperature [28], light [29], and electric fields [30]. 

mechanical stress [31]. As a result, LCEs have many potential applications, including energy 

dissipation [32-34], robotics [35, 36], actuation [37, 38], and so on. 

 Of particular interest are monodomain LCEs, where the mesogens are aligned in a certain 

direction, namely the director. A director can reorient in response to external loading. Bladon, 

Terentjev [137] proposed the neo-classical elastic energy to describe LCEs by considering the 
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anisotropy of the network. The energy could capture the soft elastic response, allowing a director 

to reorient towards a stretch direction under zero stress. A classical semisoft model was further 

proposed in [138], by adding a semisoft elastic energy term to the neo-classical elastic energy to 

explain the experimental observation that a finite, albeit small, stress is required to rotate the 

director, possibly due to variations in chain anisotropy [139]. The energy term has a constant 

coefficient, the semisoft parameter, to describe the degree of variations. Experimental results 

demonstrate that a LCE sample under uniaxial tension exhibits a plateau in the stress-stretch curves 

when the initial director and the loading direction are nearly perpendicular, i.e. the angle between 

them vary from 75 to 90 degrees [140]. However, the semisoft elasticity model fails to capture 

such a plateau when the angle deviates from 90 degrees. Here we address this limitation by 

modifying the semisoft elastic energy term, treating the original semisoft parameter as a function 

of deformation.  

 Meanwhile, LCEs are typical viscoelastic materials, and the mechanical responses are 

highly dependent on the loading rate [68, 141]. Several works have measured the stress, director 

rotation, and deformation in main-chain nematic LCEs with different initial directors subjected to 

uniaxial tension at various loading rates [68, 142]. It was shown that the relaxation of director 

orientation is rapid, with a characteristic timescale of approximately 0.1 seconds, whereas the 

relaxation time of the network is much larger [69]. Several viscoelastic models have been proposed 

to model the rate-dependent response. Zhang, Xuan [143] proposed a viscoelastic model that 

considers both the viscous network and director by adding dissipation terms as a function of the 

deformation rate and director rotation rate to the free energy. However, such a Kelvin-Voigt model 

is not suitable for accurately describing large deformation of the polymer network. Wang, Chehade 
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[70] developed a viscoelastic model using the multiplicative decomposition of the deformation 

gradient into elastic and viscoelastic parts, and attributed the semisoft effect to the viscous director 

reorientation. Their predictions have shown qualitative agreement with experiments, capturing the 

nonmonotonic stress response and stress plateau. Chung, Luo [69] further considered the evolution 

of the mesogen alignment degree, namely, the order parameter, influenced by the deformation, and 

applied their model to examine the LCE response under extremely high strain rates. Although they 

demonstrated good quantitative agreement between the model and experimental results, the 

model's reliance on empirical fitting between the modulus and director orientation could restrict 

its application to LCEs with simple deformations. A straightforward viscoelastic model that 

incorporates realistic parameters derived from experimental measurements remains elusive. 

Moreover, despite several numerical implementations pertaining to LCEs [143-147], a simple and 

effective finite element implementation capable of solving numerous equations related to the 

viscoelastic response of LCEs is still lacking. 

 In this work, we aim to model the semisoft elasticity and viscoelasticity of LCEs with 

experimental validation, implement the model in COMSOL, and provide benchmarks for complex 

deformations. The chapter is organized as follows. Section 2 introduces the experimental 

methodology and a general continuum framework for LCEs. In Section 3, we present the modified 

semi-soft model, study homogeneous deformation under uniaxial tension, and validate the elastic 

predictions. Section 4 extends the model to a framework that includes viscoelastic responses and 

demonstrates its predictability. Section 5 showcases inhomogeneous deformation of LCEs by the 

finite element method (FEM) via COMSOL and compares the predictions with our experimental 

results. Section 6 concludes the chapter. 



92 

 

4. 2 Experimental Methodology and Theoretical Framework 

4.2.1 Material and specimen preparation 

 The main-chain monodomain LCEs were synthesized via a two-stage thiol-acrylate 

Michael addition-photopolymerization reaction [148]. The diacrylate mesogen, 1,4-Bis-[4-(3-

arcyloyoxypropyloxy) benzoyloxy]-2-methylbenzene (RM257, 95%), crosslinker, pentaerythritol 

tetrakis(3-mercaptopropionate) (PETMP, 95%), chain extender, 2,2-(ethylenedioxy) diethanethiol 

(EDDET, 95%), catalyst, dipropylamine (DPA, 98%), and photoinitiator, (2-hydroxyethoxy)-2-

methylpropiophenone (HHMP, 98%), were used. RM257 (6.4g) was first dissolved in toluene (4g) 

at 80 ℃  and then cooled to room temperature. EDDET (1.465g), PETMP (0.347g), HHMP 

(0.041), and DPA solution (0.768g, DPA:toluene = 1:50) were subsequently added to the solution, 

and thoroughly mixed using a vortex mixer at 3200 rpm for 5 mins. The solution was degassed, 

poured into a mold, and cured at room temperature for 24 hours. Then the cured film was placed 

in an oven at 80 ℃ for 24 hours to remove the solvent. Afterward, the film was stretched by two 

times and exposed to UV light for 1 hour for the second-stage crosslinking process, producing 

monodomain LCEs with the director in the stretching direction. We cut rectangular strips at 

different angles with respect to the stretching direction to obtain specimens of different initial 

directors (Figure 4.2a). A large length-to-width ratio (>5) is adopted to eliminate the boundary 

effect. The angle between the transverse direction of the specimen and initial director is defined as 

𝜃0 (Figure 4.2a). For the tests of inhomogeneous deformation, a hole was cut from the rectangular 

specimens (Figure 4.5a).  
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4.2.2 Uniaxial test 

 We conducted uniaxial tension tests to LCEs using an Instron universal testing machine 

(Model 5944). A sample was clamped to two pneumatic grips. The applied stretch and nominal 

stress are denoted as 𝜆 and 𝑠, respectively. Experimental data were collected to validate the models 

in Sections 3 and 5. In Section 3 a relatively low strain rate 0.05%/𝑠 was used to validate the 

elastic model, while in Section 5 strain rates ranged from 0.1%/𝑠  to 10%/𝑠  to study rate-

dependent inhomogeneous deformation. 

4.2.3 A general continuum model for LCEs 

 To model the elastic and viscoelastic responses of LCEs, we follow the approaches by 

Wang, Chehade [70] and Wei, Cao [68] with some modifications. Supposing a material point of 

the solid labeled with a coordinate 𝐗 moves to a coordinate 𝐱 in the current state at time 𝑡, the 

deformation gradient 𝐅 is defined as 𝐅 = 𝜕𝐱 𝜕𝐗⁄ . The director n is defined in the current state to 

describe the mesogen alignment. Since our stretching rate is limited below 10%/𝑠  and the 

timescale for director relaxation is approximately 0.1s, the director is expected to undergo 

quasistatic reorientation. Therefore, we assume the viscosity originates from the polymer network 

rather than the director. To describe the viscoelastic response, we parallelly connect the Kelvin-

Voigt model and Maxwell model with 𝑁  branches (Figure 4.1). Compared to the classical 

generalized Maxwell model, an additional dashpot is added in parallel. 
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Figure 4.1 Schematic of the rheological model with a viscous branch, an equilibrium branch and 

𝑁 nonequilibrium branches.  

In the Maxwell branches, the deformation gradient 𝐅 is multiplicatively decomposed into the 

elastic part 𝐅)6 and viscous part 𝐅)7, 

  for  𝑖 = 1,2, … , 𝑁,  (4.1) 

The free energy density of the material is formulated as a function of the state variables 𝐅, 𝐅)7 and 

n, 

,  (4.2) 

where 𝜓0  and 𝜓)  are the free energy densities of the equilibrium branch and nonequilibrium 

branches, respectively. 

 Considering an isothermal process and neglecting the body force, the energy balance of the 

system is  
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where �̇� is the dissipated energy per unit time and per unit volume through viscous deformation, 

t is the traction acting on the surface. The thermodynamics requires that the dissipated energy 

shouldn’t decrease, namely, �̇� ≥ 0. The dissipation rate is contributed by all the dashpots, 

,  (4.4) 

where we assume 

,  (4.5) 

and 

 .  (4.6) 

The terms 𝜑0	and 𝜑) 	are usually referred to as the dissipation potential [149]. 

 Organizing Eqs. (4.1-6), we obtain 

,  (4.7) 

where Div denotes the gradient with respect to X, and N is the unit outward-pointing normal vector. 

Utilizing the energy balance Eq. (4.7), and the independence of 𝐱, 𝐅)7  and 𝐧, the mechanical 

equilibrium equation, the evolution of 𝐅)7 , and the equilibrium equation for the director n are 

obtained as follows. By defining the nominal stress P as 

( ) ( ) ( )0
1

, v v
iii

N

i
f f f

=

= +åF F FF  

( ) ( )0
0 :j
f

¶
=

¶
F FF F






( ) ( )
:

v
i vv

ii v
i

i
i

j
f

¶
=

¶
F

FF
F







0

1

0

Div : d

d 0

N
i i v

iv
i

v
ii

V

A

y j yjy

jy

=

é ¶ ¶ ùæ ö ¶¶¶æ ö +- × + + ×+ç ÷ê úç ÷¶ ¶ ¶¶ ¶è ø è øë û
é ¶ ù¶æ ö+ × - × =+ç ÷ê ú¶ ¶è øë û

åò

ò

F
x

F

F n
F nF

N t

F

x
F





 





96 

 

,  (4.8) 

we obtain the mechanical equilibrium and the corresponding boundary condition as 

,  (4.9) 

and 

.  (4.10) 

The evolution of 𝐅)7 is 

.  (4.11) 

Noticing �̇� cannot be arbitrary due to the relation 𝐧 ∙ 𝐧 = 1, the constraint 𝐧 ∙ �̇� = 0 must be 

satisfied. Introducing a Lagrange multiplier 𝜆𝐧 to enforce the constraint, we obtain 

, (4.12) 

and thus,  

.  (4.13) 

Multiplying the above equation with 𝐧 , we obtain 𝜆𝐧 = − 9:
9𝐧
∙ 𝐧 . Therefore, the equilibrium 

equation for the director is 
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 In summary, the mechanical equilibrium Eq. (4.9), the constitutive relation Eq. (4.8), the 

traction boundary condition Eq. (4.10), the evolution of the viscous state variable Eq. (4.11), and 

the equilibrium equation for the director Eq. (4.14) provide the closed-loop equations necessary to 

predict the temporal behavior of LCEs subjected to external loading. To solve the equations 

described above, both the free energy density and the dissipation potential need to be explicitly 

specified. 

4.3 Elastic Response 

 In this section, we analyze the elastic response of LCEs. We begin by specifying the free 

energy densities for the equilibrium branch and then apply the model to study homogeneous 

deformation of a LCE film subjected to uniaxial tension. 

4.3.1 A modified semisoft free energy 

 We only consider the equilibrium brunch for the elastic response. To predict the elastic 

response of LCEs more accurately, we slightly modify the free energy function proposed by 

Verwey and Warner [138]. 

.  (4.15) 

The first term in the free energy, , is the neo-classical free energy, where 𝜇0 

is the shear modulus, 𝐥 = (𝑟 − 1)𝐧⨂𝐧 + 𝐈  is the dimensionless shape tensor, and 𝐥0 = (𝑟 −

1)𝐧0⨂𝐧0 + 𝐈 is the dimensionless initial shape tensor, with 𝑟  representing the average shape 
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anisotropy of the network distribution, 𝐧0 the initial director, and I the identity tensor. Adding the 

term  ensures the total free energy and stress are both zero when 𝐅 = 𝐈. The 

term  accounts for material stiffening at large deformations, where 𝜇; is 

the coefficient of nonlinear elasticity. The next term, , describes the nonideal part due 

to compositional fluctuation, where 𝑎 is the semisoft parameter that indicates the degree of chain 

anisotropy variation, and ‖𝐧𝐅‖" = 𝑡𝑟[𝐧⨂𝐧 ∙ 𝐅(𝐈 − 𝐧0⨂𝐧0)𝐅+]. The last term represents the bulk 

energy, controlling compressibility, with 𝐾 the bulk modulus. 

 In order to capture the plateau in the stress-strain curves when the initial director and the 

loading direction are nearly perpendicular, we propose to model 𝑎 as a function of deformation, 

instead of a constant, based on the following rationale. From the compositional fluctuation model, 

the semisoft parameter is given by 〈1/𝑟〉 − 1/〈𝑟〉, where 𝑟 is directly related to the mesogen order 

parameter, and a larger 𝑟 means better mesogen alignment [138]. Literature shows that the order 

parameter varies with deformation and this variation is rate-dependent [69, 142]. Supposing 𝑟 

increases from 𝑟0  to 𝑘 ∙ 𝑟0	(𝑘 > 1) , the semisoft parameter decreases from 〈1/𝑟0〉 − 1/〈𝑟0〉  to 

(〈1/𝑟0	〉 − 1/〈𝑟0	〉)/𝑘. Therefore, 𝑎 is expected to decrease when a LCE sample is stretched. For 

simplicity, we don’t model the evolution of 𝑟. Instead, we treat 𝑟 as a constant and model 𝑎 as a 

function of deformation. The variation degree of chain anisotropy is the strongest at the onset of 

deformation and the semi-soft elastic contribution gradually weakens when a LCE is further 

deformed. Here, we assume 
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,  (4.16) 

where 𝑎= is a constant contribution, and 

,  (4.17) 

is the transient part of the semisoft parameter, with 𝑎0 the semisoft constant without deformation 

and 𝑚 a positive scaling factor. The model recovers the conventional semisoft model when 𝑎0 or 

𝑚 equals zero. Supposing a LCE is stretched to the same deformation state at different stretching 

rates, 𝑎  should decrease more for slower stretching rates, and the corresponding 𝑚 should be 

larger. Nonetheless, we treat 𝑚 as a constant in this work.  

 It is important to note that the original free energy is nonconvex [150]. Microstructures 

such as stripe domains can be predicted when the loading axis is nearly perpendicular to the initial 

director [151]. Domain walls could also form when a LCE sample is under complex loading 

conditions, such as near a crack tip [144]. When treating 𝑎 as a decreasing function of deformation, 

the free energy may become more nonconvex. To avoid erroneous results, parameters related to 𝑎 

should be chosen carefully.  

 The nominal stress can be derived from the free energy as 

,  (4.18) 

where  describes the increasing stiffness with deformation, 

and  represents the volume change. It is evident from the stress expression that the 
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contribution of the transient part of the semisoft contribution to the stress will diminish as the 

deformation increases. 

 The derivative of the free energy with respect to the director is 

.  (4.19) 

4.3.2. Uniaxial tension with homogeneous deformation 

 We study a LCE film subjected to homogeneous uniaxial tension (Figure 4.2). The 

deformation gradient is expressed as 

,  (4.20) 

where 𝜆!! , 𝜆, 𝜆..  are the stretches in 𝑋 , 𝑌  and 𝑍  directions, respectively, and 𝜆"!  is the shear 

stretch due to director rotation. The director is related to the angle 𝜃 via 𝐧 = [cos 𝜃 , sin 𝜃 , 0]. 

Combined with the conditions that the stress 𝑃!!,	𝑃"!, and 𝑃.. vanish, the deformation and director 

can be numerically solved through Eqs. (4.10) and (4.14) using Matlab. We assume the LCE is 

nearly incompressible, 𝐾/𝜇0 ≫ 1.	
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Figure 4.2 (a) Schematic of a LCE film under uniaxial external tension. (b) Schematic 

configurations of a LCE film before and after a homogeneous deformation under uniaxial tensile 

stress, with the director angles 𝜃0 and 𝜃, respectively. 

 We first compare the theoretical predictions with experimental results. The shear modulus 

is obtained from the uniaxial test of a LCE sample with an initial angle 𝜃0 = 90° (Figure 4.3a). A 

small initial angle 𝜃0 = 15°  is of particular interest to validate our model (Figure 4.3b). 

Theoretical predictions using different forms of  𝑎 are compared with experimental results, where 

the black circles represent experimental data and solid lines are obtained from the theoretical model 

(Figure 4.3b). The parameters used in the model are listed in Table 4.1.	A	nonmonotonic stress-

stretch curve and a stress plateau are clearly observed in experiments. The neo-classical model 

(𝑎 = 0) predicts a zero stress plateau, which significantly deviates from the experimental results. 

The stress from the semisoft model (𝑎 = 𝑎= ) increases monotonically and the model fails to 

capture the stress plateau. In contrast, the modified semisoft model successfully captures the initial 

high stiffness and the stress plateau of the semisoft response, aligning well with the experimental 
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observations. The model is further validated with different initial directors, showing better 

predictions compared to the original semisoft model (Figure 4.3c). It’s also noted that the stress 

for 𝜃0 = 15° is larger than that of 𝜃0 = 30° and 45° at a low stretch, whereas the stress for 𝜃0 =

15°  is smaller at a high stretch. A higher stress for smaller 𝜃0  at low stretch is due to the 

penalization of the semisoft elasticity, and a lower for smaller 𝜃0 at high stretch is due to higher 

spontaneous strain and more director rotation. 

 The influence of parameter 𝑚  on stress, shear deformation and director is further 

investigated (Figure 4.3d, e & f). The initial angle 𝜃0 is set to be 15° and 𝑟 is set to be 5. As shown 

in Figure 4.3d, the model predicts the same initial stiffness for different 𝑚 when 𝑎0 and 𝑎= are 

fixed. The stress as well as shear deformation approaches the same value for different positive 𝑚 

(𝑚 > 0), and the director aligns with the loading axis when the stretch is large. The parameter 𝑚 

controls how fast 𝑎> decays to 0, with a larger 𝑚 leading to a smaller stress value under a given 

applied stretch. It’s noted that when 𝑚 = 0 and 𝑎0 > 0, 𝑎 becomes a constant 𝑎0 + 𝑎= and the 

stress and shear deformation approach different values compared to those with 𝑚 > 0 . A 

nonmonotonic stress-stretch curve is predicted for a large 𝑚 value, indicating the nonconvexity of 

the free energy and the potential prediction of phase coexistence along the longitudinal direction. 

To avoid possible impractical theoretical predictions and numerical errors, parameters resulting in 

a monotonic stress response under homogeneous deformation are suggested. 

Table 4.1 Different parameter sets for elastic responses 

Parameter set 𝜇! (MPa) 𝑟 𝑎! 𝑎" 𝑚 𝜇# 
P1 0.7 5 0.095 0.045 2 0 
P2 0.7 5 0 0.045 N/A 0 
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P3 0.7 4.2 0 0 N/A 0 
 

 

Figure 4.3 Theoretical predictions for elastic responses of LCEs under uniaxial tension compared 

with experimental results. (a) Experimental stress-stretch curves for a LCE sample with 𝜃0 = 90°. 

(b) Stress-stretch curves obtained from experiments and theoretical models with different forms of 

𝑎. (c) Stress-stretch curves for different initial directors. Influence of parameter 𝑚 on the (d) stress, 

(e) shear stretch and (f) director rotation as functions of the stretch. 

4.4 Viscoelastic Response 

 In this section, we apply the modified semisoft free energy to study the viscoelastic 

response, including the contribution of the nonequilibrium branch in the free energy. We first 

derive the constitutive relation and evolution equation of 𝐅)7 , and then apply the model to 

investigate the rate-dependent homogeneous deformation of LCEs under uniaxial tension. 
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4.4.1 Constitutive relation and evolution equation 

 The free energy density for the nonequilibrium branch (Figure 4.1) is assumed to follow a 

form similar to that of the equilibrium branch, and is expressed as 

,  (4.21) 

where . 

The dissipation potentials are assumed to be 

,  (4.22) 

and 

.  (4.23) 

We assume that the viscosity 𝜂) changes nonlinearly with deformation and it follows the relation 

 (𝑖 = 0,1, … , 𝑁), where 𝜂),0 is a constant. 

Combining Eqs. (4.8) (4.15) (4.21) and (4.22), the nominal stress is obtained as 

,  (4.24) 
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where  and . 

Utilizing Eqs. (4.11) (4.21) and (4.23), the evolution of 𝐅)7 is 

.  (4.25) 

Denoting the relaxation timescale 𝜏) = 𝜂),0 𝜇)⁄ , the evolution equation (4.25) is rewritten as 

.  (4.26) 

4.4.2. Uniaxial tension with homogeneous deformation 

        In this section, we predict the response of LCEs under uniaxial tension at different rates, and 

compare the theoretical results with our previous experiments [68]. We determine the viscosity 

parameters using the stress relaxation test of a sample with 𝜃0 = 90°, where the relaxation follows 

a power law 𝑠 = 1.99𝑡$0.1 + 0.89. Since the loading rate we consider ranges from 0.1%/s to 

10%/s, we select the timescales from 0.2s to 336s, shown in Table 4.2. The relaxation modulus is 

expressed as 

.   (4.27) 

The fitted moduli of nonequilibrium branches are listed in Table 4.2. The equilibrium shear 

modulus and other parameters are detailed in Table 4.3. 
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Table 4.2 Viscosity parameters for uniaxial tension with homogeneous deformation 

𝜏$(𝑠) 0.2 1 6 42 336 
𝜇$/𝜇! 2.641959 1.526881 0.838750 0.383747 0.237739 

 

Table 4.3 Remaining material parameters for uniaxial tension with homogeneous deformation 

𝜇!(MPa) 𝑟 𝑎! 𝑎" 𝑚 𝐾/𝜇! 𝐾$/𝜇$ 𝜂!,!(MPa ∙ s) 𝜇# 
1.591 5.5 0.08 0 0.3 1000 1000 1.6 1/16 

 

        We analyze homogeneous deformation of an LCE film with a tilted initial director subjected 

to uniaxial tension at various stretching rate (Figure 4.2b). The mechanical balance (4.10), director 

equilibrium (4.14) and the evolution of inelastic deformation 𝐅)7 (4.26) are directly solved using 

the Distributed ODEs and DAEs Interfaces in COMSOL. We investigate how different loading 

rates influence the mechanical response. As shown in Figure 4.4, the director rotates towards the 

stretching direction, inducing a semisoft stress-strain response and large shear deformation. The 

solid lines are predictions from our viscoelastic model based on the modified semisoft free energy, 

the dash lines are obtained from the classical semisoft model, and the circles represent 

experimental data extracted from our previous paper [68]. As expected, higher loading rates result 

in higher stress. The stress predictions agree well with the experiments under different stretching 

rate. It is also noted from the experiments that the semisoft region is larger at a lower stretching 

rate, which could be attributed to higher average shape anisotropy 𝑟 at a lower stretching rate. Our 

model shows good prediction of the shear stretch and director orientation at the lower stretching 

rate. Yet it underestimates the shear deformation at a higher loading rate, potentially due to missing 

the evolution of 𝑟 in reality. The theoretical prediction shows that as the stretching rate increases, 
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both the shear stretch and director rotation decrease because of the delayed response of the director 

rotation, consistent with the experimental observations. Compared to the conventional semisoft 

model (𝑚 = 0), our model achieves larger shear stretch and director rotation for a given applied 

stretch, and agrees with the experiments better. 

 

Figure 4.4 Theoretical predictions for viscoelastic responses of LCEs under uniaxial tension 

compared with experimental results. Dependence of (a)(d) nominal stress, (b)(e) shear stretch and 

(c)(f) director orientation on external stretch under different stretching rates and initial directors. 

The experimental data are extracted from our previous paper [68]. 

4.5 Inhomogeneous Deformation 

        In this section, we examine the inhomogeneous deformation of a LCE film with a slightly 

off-center hole subjected to an external uniaxial tension (Figure 4.5a). We first analyze the overall 
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stress, deformation, and director response under varying loading rates. We then discuss the 

simulation results using different mesh sizes. 

4.5.1 Uniaxial tension of an LCE film with an off-center hole 

        The sample, with a tilted initial director, is subjected to uniaxial tension at different stretching 

rates. Cartesian coordinates are defined in the reference configuration (𝑋, 𝑌)  and current 

configuration (𝑥, 𝑦) . The geometry parameters of the film are defined as: 𝐻 = 36𝑚𝑚 , 𝑊 =

12𝑚𝑚, 𝑅 = 2.5𝑚𝑚, and 𝑊! = 5.65𝑚𝑚. The initial director, as depicted in the schematic, is 

𝜃0 = 45°. The viscosity parameters are obtained from a relaxation test of a long LCE rectangular 

film with 𝜃0 = 90°. The sample is stretched to 20% strain in 0.1s and held for 3600s. Figure 5b 

shows the relaxation curve, where the black dots represent experimental data and the red line is 

fitted through Eq. (4.27). The fitted viscosity parameters as listed in Table 4.4, with additional 

parameters listed in Table 4.5.  

        The viscoelastic model under the plane stress condition is implemented in COMSOL. The 

mechanical equilibrium (4.9), plane stress condition, and evolution equations for the director 

(4.14) and inelastic deformation (4.26) are implemented using the weak form; the COMSOL file 

is provided. Linear Lagrange interpolation is used for the displacement field 𝒖	(= 𝒙 − 𝑿) and the 

director 𝜃 , while discontinuous linear Lagrange interpolation is chosen for the inelastic 

deformation 𝐅)7 and the out-of-plane stretch 𝜆... The convergence of stress-stretch response and 

deformation is achieved through mesh refinement. The influence of the mesh size on the director 

field is discussed in the next section.  
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        Figure 4.5c compares numerical and experimental stress-stretch responses for different 

loading rates. Figure 4.5d shows snapshots of the deformation of the film from both experiments 

and simulations under different applied stretches and loading rates, along with the director 

distribution cos 𝜃 from the numerical simulations. Blue lines from the experimental samples and 

black lines from the simulations, in the X and Y directions in the reference states, are drawn for 

comparison. The overall deformation predictions agree well with the experimental results. As the 

stretch increases, the circular hole becomes more elliptical, and the horizontal lines near the hole 

rotate due to the shear deformation caused by director rotation (Figure 4.5d & e). The shape of the 

hole is plotted under different stretches and loading rates, showing that the hole shapes almost 

overlap for the two different loading rates (Figure 4.5e). At high stretches, the shear deformation 

near the clamped boundary in the experiments is more significant than that in the simulations, 

possibly due to sample sliding from the gripper; see the blue line at the top left corner of the sample 

at 𝜆 = 2. When 𝜆 = 2, the horizontal lines near the hole rotate more at a lower stretching rate, 

indicating higher shear deformation, and the director distribution near the two sides of the hole is 

more homogeneous. The hole at the higher loading rate is slightly shorter since it takes time for 

materials to relax (Figure 4.5e). Our model demonstrates robust predictive capabilities for the 

mechanical responses of LCEs. 

Table 4.4 Viscosity parameters for uniaxial tension with inhomogeneous deformation 

𝜏$(𝑠) 0.1 0.5 3.5 31.5 346.5 
𝜇$/𝜇! 14.115440 2.565638 0.934889 0.581484 0.338014 
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Table 4.5 Remaining material parameters for uniaxial tension with homogeneous deformation 

𝜇!(MPa) 𝑟 𝑎! 𝑎" 𝑚 𝐾/𝜇! 𝐾$/𝜇$ 𝜂!,!(MPa ∙ s) 𝜇# 
0.5932 5 0.09 0.0 0.2 1000 1000 1 1/4 

 

 

Figure 4.5 (a) Schematic of a LCE film with an off-center hole subjected to uniaxial tension. (b) 

Experimental and fitted relaxation shear modulus as a function of time. (c) Numerical and 

experimental stress-stretch responses for different loading rates. (d) Experimental and numerical 



111 

 

results of the deformation under various stretches and loading rates. The color bar represents the 

director field 𝑐𝑜𝑠 𝜃. (e) Numerical results of the shape of the hole under various stretches and 

loading rates, with four circles marked on the hole for visualization. 

4.5.2 Influence of mesh sizes 

        It is known that the neoclassical and semisoft free energy densities are nonconvex (Warner, 

Desimone), which can lead to multiple equilibrium solutions due to director rotation. 

Consequently, the numerical results may be sensitive to mesh discretization. We examine the 

director field near the hole using various mesh densities. A typically generated mesh is shown in 

Figure 4.6a. A polar coordinate system (𝜌, 𝜃A) is defined in the reference configuration, with the 

origin at the center of the hole. The region (𝑅 ≤ 𝜌 ≤ 1.2𝑅) near the hole contains structured 

meshes, with the maximum mesh size denoted as 𝐻6.  

 Figure 4.6b shows the director distributions of the sample with two different mesh sizes 

under an applied stretch of 𝜆 = 2 and at a loading rate 0.1%/𝑠. No significant differences are 

observed except in the top and bottom regions near the hole (Figure 4.6b & c). When the mesh 

size is small (𝐻6 = 0.02), two clear domain walls are seen in these regions, with the director on 

the opposite sides of the wall rotating in opposite directions (Figure 4.6c & d). The domain walls 

are very close to the edge of the hole, and their influence on the director distribution decays rapidly 

along the radial direction (Figure 4.6c & d). Contrary to the existing literature, we observe that 

mesh refinement doesn’t necessarily lead to a converged director distribution. The local director 

distribution near the domain walls is indeed sensitive to mesh densities. Proper mesh needs to be 

generated to balance result convergence and computation cost to capture the microstructure.  
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Figure 4.6 (a) A generated mesh and polar coordinates defined in the reference configuration. 

Director distribution (b) of the sample and (c) near the hole (𝑅 ≤ 𝜌 ≤ 1.2𝑅) for two different 

mesh sizes (𝐻6 = 0.1	&	0.02). (d) Director distribution along the edge of the hole (𝜌 = 𝑅). 

 The influence of mesh sizes is further detailed in Figure 4.7. The director angle 𝜃 is plotted 

as a function of the angular coordinate 𝜃A  along the edge of the hole for different mesh sizes 

(Figure 4.7a-e). Figure 4.7a & b show the director distribution along the hole (𝜌	 = 	𝑅) at applied 

stretches of 𝜆 = 1.1 and 𝜆 = 2 under a slow loading rate of 0.1%/s, respectively. Figure 4.7c 

provides a zoomed-in view of Figure 4.7b. When the applied stretch is small (𝜆 = 1.1), the domain 

wall doesn’t form. When the applied stretch is large (𝜆 = 2), formation of domain walls is 

observed for small enough mesh sizes. However, the locations of the domain walls slightly shift 

with the changes in the mesh size. The director does not converge over a large range of 𝜃A , 

particularly within −135° ≤ 𝜃A ≤ 45° and 45° ≤ 𝜃A ≤ 135°, while converges in the remaining 

regions (Figure 4.7a-c). The influence of the domain wall decays quickly in the radial direction, 

and the director distribution along the circle 𝜌 = 1.2𝑅 shows overall convergence with respect to 

different mesh sizes (Figure 4.7d). At a high loading rate, formation of domain walls is observed 
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for a larger mesh size (Figure 4.7e). Figure 4.7f & g show that the simulated shape of the hole for 

different mesh sizes overlaps at loading rates of 0.1%/𝑠 and 10%/𝑠, respectively. One possible 

way to obtain a converged director field is to introduce the Frank energy into the free energy. The 

introduction of the Frank energy provides a certain length scale, allowing the director to change 

smoothly across the domain wall. When the mesh size is much smaller than this length scale, the 

director field could converge with respect to different mesh sizes.  

 

Figure 4.7 Influence of mesh sizes on the director distribution along the hole (𝜌 = 𝑅) under an 

applied stretch of (a)	𝜆 = 1.1 and (b)	𝜆 = 2 at a slow loading rate of 0.1%/𝑠. (c) The zoomed-in 

plot of (b) showing detailed director distributions. Influence of mesh sizes on the director 

distribution along the circle (𝜌 = 1.2𝑅) under 𝜆 = 2 (d) at the same low loading rate of 0.1%/𝑠, 
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and (e) at a high loading rate of 10%/𝑠. Simulated shape of the hole for different mesh sizes under 

𝜆 = 2 at loading rates of (f) 0.1%/𝑠 and (g) 10%/𝑠.  

4.6 Conclusion 

 We have developed a modified semisoft model capable of predicting both elastic and 

viscoelastic behaviors for LCEs. The classical semisoft elastic energy term was revised by treating 

the original semisoft parameter 𝑎 as a function of deformation. We postulate that the non-constant 

nature of 𝑎 arises from the varying shape anisotropy 𝑟 with both deformation and deformation rate, 

because the order parameter varies. With our modification, the model accurately predicts the 

stress-stretch curves of LCEs, successfully capturing the stress plateau. We extend the modified 

free energy to a viscoelastic model and implement it in COMSOL. The model shows overall good 

predictions of the viscoelastic response. 

 The modified model and numerical implementation can be further improved in a few 

aspects. To enhance the agreement between the experiments and theoretical predictions of rate-

dependent deformation and director orientation, we can model 𝑎 as a function of 𝑟 in accordance 

with the compositional fluctuation model and consider the evolution of 𝑟. Moreover, LCEs can 

generate large shear deformation under stretching, causing undesired boundary deformation in 

practical setups. Ensuring proper boundary conditions in both theoretical frameworks and 

experiments is essential for more accurate predictions. Given the nonconvexity of the free energy, 

the computational cost might be high to obtain converged results. The additional evolution 

equation of the inelastic deformation further increases the computational burden. 

  



115 

 

Chapter 5 Fracture of Liquid Crystal Elastomers 

 While the mechanical responses of LCEs have been extensively studied, their fracture 

behavior remains largely unexplored. Specifically, the effect of the deformation-director coupling 

on LCE fracture paths is unknown, and fracture criteria for LCEs are not yet established. To 

address this gap, we combine experimental and theoretical approaches to investigate fracture 

propagation in LCEs. We stretch edge-cracked monodomain LCE samples, recording their stress-

strain responses and crack paths under varying initial directors and stretching rates. Our findings 

reveal that crack propagation paths are highly dependent on both the initial director and the 

stretching rate. To further understand LCE fracture behavior, we develop a rate-dependent phase-

field fracture model, which is validated through experiments and demonstrates the ability to predict 

complex fracture paths. Our study paves the way for designing LCEs with enhanced fracture 

properties, beneficial for future applications. 

5.1 Introduction 

 Although the mechanical properties of LCEs have been extensively studied, their fracture 

behavior remains relatively unknown, possibly due to the complex director rotation of LCEs [144]. 

The influence of stretching rates further increases the complexity. The effects of the director, 

stretching rates, and geometry on LCE fracture behavior remain unresolved. For example, the 

relationship between the liquid crystal alignment and fracture behavior is not fully understood due 

to insufficient experimental characterizations. Additionally, the absence of established fracture 

criteria for LCEs makes predicting their fracture behavior under various stretching conditions 

challenging. Moreover, there is a lack of simulation tools for studying the fracture process of LCEs. 
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 To address these issues, we combine experiments and theoretical approaches to 

systematically study fracture of monodomain LCEs. We stretch edge-cracked monodomain LCE 

samples, record their stress-strain relations and crack paths with varying initial directors and 

stretching rates. We establish fracture criteria that the crack prefers to propagate perpendicular to 

the director in LCEs and develop a rate-dependent phase-field fracture model to predict crack 

propagation. Our model is validated through experiments with different geometries and stretching 

rates, showing its capability to predict complex fracture paths in LCEs. 

5.2 Tilted Fracture Path 

 We conducted fracture tests on LCE samples with a length of 𝐻 = 30𝑚𝑚 and a width of 

𝑊 = 5𝑚𝑚 (Figure 5.1a). A sample with a tilted initial director 𝜃0 = 45° and a horizontal edged 

crack of length 𝑙# = 0.4𝑊 was subjected to axial tension at two different stretching rates, �̇� =

0.1%/𝑠 and �̇� = 10%/𝑠. Figure 5.1b shows the stress-stretch curves for both stretching rates, 

where the red curve corresponds to 0.1%/𝑠 and the reddish-grey curve to 10%/𝑠. Specific points 

(𝑖 − 𝑣) along the lower stretching rate curve (0.1%/𝑠) mark different stages of deformation and 

crack propagation, as shown in Figure 5.1c. The nominal stress increases with the applied stretch. 

At a certain applied stretch, the sample begins to fracture, and then the nominal stress reaches its 

maximum with increasing stretch, followed by a decrease to zero when the sample is completely 

broken. In the test, two blue horizontal lines serve as visual references. As the stretch increases, 

the pre-crack opens asymmetrically, and the blue lines rotate, indicating substantial shear 

deformation. As images 𝑖𝑣 and 𝑣 show, the crack propagates almost horizontally in the deformed 

configuration. After full relaxation, the fracture path is tilted (Figure 5.1d). We define the fracture 
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angle 𝜃# through the average slope of the crack region between 𝑋 = 3/5𝑊 and 𝑋 = 𝑊. The final 

crack orientations differ for the two stretching rates, which whose values are different from the 

initial director. These observations suggest that stretching rate significantly influences crack 

propagation path and the overall fracture behavior of the LCE samples. 

 The observed fracture behavior is quite different from the conventional fiber-reinforced 

hyperelastic materials, where the fracture path is usually parallel to the fiber direction in the 

reference configuration [152]. The fracture path in the deformed configuration should be tilted. 

The deformed fiber orientation is directly calculated by the multiplying of the deformation gradient 

and the initial fiber orientation. In contrast, the director in LCEs is an additional state variable, 

whose orientation is determined by an additional governing equation. Since the fracture orientation 

of LCEs is different from the initial director, it is reasonable to think that the fracture path is related 

to the current director in the deformed configuration. In addition, the director rotates to the 

stretched direction. According to our previous uniaxial tension study of LCE samples with 

homogeneous deformation, when the applied stretch is around 2.5, the director is expected to be 

almost vertical. From the observation of the horizontal fracture propagation and expected vertical 

director distribution, we hypothesize that the crack prefers to propagate perpendicular to the 

director. A recent study of the fracture of blood clots made up of platelets and fibrin has shown 

that cracks propagate perpendicular to the stretched fiber direction [153, 154], which aligns with 

our assumption. 
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Figure 5.1 (a) Schematic of an LCE sample with a tilted initial director and a horizontal edged 

crack subjected to uniaxial tension. The initial director is illustrated by the orange ellipse. (b) 

Stress-stretch responses for two different stretching rates, �̇� = 0.1%/𝑠 and �̇� = 10%/𝑠. (c) 

Images showing deformation and crack propagation at different stretches. (d) Relaxed samples 

with a tilted fracture path under two stretching rates.  

5.3 Phase-field Fracture 

 To quantitatively understand the observed rate-dependent fracture phenomena and predict 

other possible fracture behaviors, we developed a phase-field fracture model (Appendix A3.3). We 

constructed a thermodynamically consistent phase-field fracture framework to simulate the 

fracture process of viscoelastic LCEs. The phase field 𝑑 ∈ [0,1] is introduced to describe the 
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damage degree of the material. With the assumption that the crack prefers to propagate 

perpendicular to the director, the evolution of the crack phase field 𝑑 can be formulated. The 

developed model is implemented in the commercial software COMSOL. 

 We numerically studied the sample with the same geometry, initial director and boundary 

conditions as the experiments. Figure 5.2a shows the numerical and experimental comparison of 

stress-stretch responses for two stretching rates, where the solid lines are obtained from the 

simulation. The stress-stretch response and the stretch for the onset of fracture obtained from the 

simulation agree well with the experiments. The snapshots for the numerical deformation and 

crack propagation of the LCE sample under �̇� = 0.1%/𝑠 with the contours of phase field 𝑑 are 

shown (Figure 5.2b). The black lines are shown for visual reference. Significant shear deformation 

is shown with the rotation of the black lines. The deformation and horizontal crack propagation 

are similar to the experimental observations. The final fracture paths with two stretching rates are 

shown in Figure 5.2c, where two different fracture angles are obtained, consistent with the 

experimental findings. It’s noted that the numerical prediction under a higher stretching rate 

underestimates the crack angle quite significantly. The tilted fracture path can be explained by the 

intriguing deformation and director rotation of LCEs (Figure 5.2b & d). Figure 5.2d shows the 𝑥 

component of the director cos 𝜃 near the crack tip, where 𝜃 is the angle between the director and 

𝑥 axis. Near the crack tip, we can clearly see that cos 𝜃 is close to 0 in front of the crack tip, which 

means the director is almost vertical. The vertical director leads to horizontal fracture propagation, 

based on our assumption that the crack prefers to propagate perpendicular to the director (Figure 

5.2b). After the sample fully relaxes, the horizontal fracture path in the deformed configuration 
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becomes tilted in the reference configuration. The combined shear deformation and the director 

lead to the tilted fracture path. 

 

Figure 5.2 (a) Numerical and experimental comparison of stress-stretch responses for different 

stretching rates. (b) Numerical predictions of the deformation and crack propagation with a 

stretching rate of 0.1%/𝑠. The color bar represents the phase field, and the material with 𝑑 > 0.95 

has been removed. (c) Fractured samples with two stretching rates in the reference configuration. 

(d) Director distribution in front of the crack tip, where the color bar represents the 𝑥 component 

of the director cos 𝜃. 

5.4 Influence of Stretching Rates and Initial Directors 

 We further conducted simulations and experiments to investigate the influence of 

stretching rates and initial directors. Our model predicts the stress-stretch response and the stretch 
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for LCEs to fracture completely reasonably well (Figure 5.3a). Nonetheless, some discrepancies 

are evident. When 𝜃0 = 30°, the predicted stress is higher than that from the experiments, and the 

predicted fracture stretch is smaller than the experiments. Conversely, when 𝜃0 = 75° , the 

predicted stress is lower than that from the experiments, and the predicted fracture stretch is larger 

than the experiments. It is also notable that the critical stretch for fracture increases when the 

stretching rate increases from 0.1%/𝑠 to 1%/𝑠, and there is no definite trend for the critical stretch 

when the stretching rate increases from 1%/𝑠 to 10%/𝑠. More experimental data are provided in 

Appendix A3.2 (Figure A3.1 & A3.2). In addition, the maximum stress increases with the increases 

of the initial director. Higher stress but lower stretch is required to break the LCE sample with a 

higher initial director 𝜃0. It is noted that for 𝜃0 = 75°, a quite amount of stretch is needed from 

the point of maximum applied stress to complete fracture, making the fracture more quasi-brittle.  

 Figure 5.3b shows the crack angle 𝜃# from experiments and numerical simulations. From 

the simulation, the crack angle decreases with the increase of the stretching rate. A similar trend is 

observed from the experiments, particularly for a smaller initial director (𝜃0 = 30°	&	45° ). 

Combing with our previous viscoelastic study that a higher stretching rate leads to smaller shear 

deformation, a higher stretching rate should result in a smaller crack angle. The simulation greatly 

underestimates the crack angle when the stretching rate is high, which can be explained by the 

significant underestimation of shear stretch under the high stretching rate by our model. Both 

simulations and experiments show that the crack angle 𝜃#  changes nonmonotonically with the 

angle of the initial director 𝜃0, where the crack angle 𝜃# first increases and then decreases with the 

increase of 𝜃0. Despite these differences, our model predicts overall trends consistent with the 

experimental results. The typical fracture paths from the experiments and simulations under the 
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stretching rate 1%/𝑠 are shown in Figure A3.3. The fracture path with higher 𝜃0 is more curved, 

correlating to the quasi-brittle fracture behavior. 

 

Figure 5.3 (a) Numerical and experimental stress-stretch responses for various initial directors and 

stretching rates. (b) Fracture angles obtained from experiments and simulations. 

5.5 Influence of Geometry 

 We further explore the influence of geometry using LCE samples with a length of 𝐻 =

10𝑚𝑚 and a width of 𝑊 = 15𝑚𝑚. The initial director is 𝜃0 = 45°, and the pre-crack length is 

𝑙# = 0.4𝑊. Figure 5.4a & d show the experimental and numerical results of the deformation and 

crack propagation under two stretching rates, �̇� = 0.1%/𝑠 and �̇� = 10%/𝑠. The blue and black 

lines are for visual reference. At the beginning of the crack propagation, the blue line remains 

almost horizontal in front of the crack tip, and the crack propagates upward. It is worth mentioning 

that the lines are slightly titled before the crack propagation (Figure A3.4). The crack tip under the 

lower stretching rate is more rounded due to the material relaxation. After the fractured sample 

fully relaxes, the final fracture path exhibits an initial upward trajectory followed by a downward 

trend (Figure 5.4b). The fracture paths abstracted from experiments and simulations agree 

relatively well (Figure 5.4c). The initial slope under the higher stretching rate is smaller. Figure 
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5.4e shows the director distribution in the early stage of the crack propagation, where the director 

in front of the crack tip is tilted, leading to the upward fracture path in the deformed configuration. 

Combining the horizontal black line, indicating little shear component 𝜆!", the initial fracture path 

in the undeformed configuration is expected to exhibit an initial upward trajectory, where the initial 

slope is highly correlated with the director distribution and deformation state. The subsequent 

downward trend can be explained similarly to the previous sample with a large length-to-width 

ratio.  

 Figure 5.4f shows the numerical and experimental comparison of stress-stretch responses 

for different stretching rates. The stress response at a lower stretching rate agrees with each other 

very well. The theoretical results overestimate the critical stretch and maximum stress compared 

to the experiments at higher stretching rates. In addition, more stretch is required to completely 

break the sample. These discrepancies indicate a need for a better viscoelastic constitutive model 

and fracture criterion. Nonetheless, our model shows good overall predictions of the deformation, 

stress-stretch response, and fracture path. 
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Figure 5.4 (a) Images of deformation and crack propagation at different stretches under two 

stretching rates, �̇� = 0.1%/𝑠 and �̇� = 10%/𝑠. The sample near the boundary is obscured by the 

gripper, as illustrated in the schematic (𝜆 = 1). (b) Experimental and numerical fractured samples 

with two stretching rates in the reference configuration. (c) Corresponding fracture paths from 

experiments and simulations. (d) Numerical predictions of deformation and crack propagation. (e) 

Corresponding director distribution. (f) Numerical and experimental comparison of stress-stretch 

responses for different stretching rates. 

5.6 Influence of Pre-cracks 

 We further explore the influence of pre-cracks on the fracture path using two examples, 

including changing the pre-crack length and introducing two pre-cracks. The height of all samples 

is 10mm. An initial director orientation of 𝜃0 = 45° and a stretching rate of �̇� = 1%/𝑠 are used 
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for both tests. For the single edged crack, the width is 𝑊 = 15𝑚𝑚 and the pre-crack length is 

𝑙# = 0.6𝑊 (Figure 5.5a). Figure 5.5a shows the experiments and simulations of deformation, crack 

propagation and final fracture path. The fracture initially propagates upward, and the black and 

blue lines are tilted upward in the deformed configuration. Compared to the short pre-crack, the 

slope of the initial upward trajectory is smaller in the reference configuration. The combined 

deformation and director distribution lead to the fracture path (Figure 5.5b). With further increase 

of the pre-crack length, an initial downward trajectory should be expected.  

 Two pre-cracks are introduced to observe the interaction of the cracks, with a width of 

𝑊 = 20𝑚𝑚 and a pre-crack length of 𝑙# = 0.25𝑊 (Figure 5.5c). The experimental and numerical 

deformation and fracture propagation are shown in Figure 5.5d & e. Both the blue lines and black 

lines are tilted downward when the stretch is small. The left pre-crack propagates upward, and the 

right pre-crack propagates downward, with the blue lines and black lines tilting upward. When the 

two cracks propagate to the centerline, the blue lines and black lines become almost vertical. In 

the experiment, the two crack tips do not meet, and the final fracture occurs at one crack tip. In 

contrast, in the simulation, due to the large damage bands of the model, the two cracks change the 

crack tip location to the center, and the fracture finally occurs at the center of the sample. Figure 

5.5f shows the corresponding experimental and numerical fracture paths in the reference 

configuration, where the simulation shows a sharp turn of the crack path, indicating the location 

change of the crack tip. Overall, the simulation can capture the experimental observations.  
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Figure 5.5 (a) Experiments and simulations of deformation, crack propagation and final fracture 

path. The pre-crack length is 𝑙# = 0.6𝑊. (b) Director distribution. (c) Schematic of an LCE sample 

with two horizontal edged cracks subjected to uniaxial tension. (d) Experimental snapshots and (e) 

numerical snapshots of deformation and crack propagation at different stretches. (f) Comparison 

of experimental and numerical fractured samples in the reference configuration. 

5.7 Conclusion 

 The fracture behavior of LCEs has been rarely studied. To address this gap, we combine 

experiments and theory to investigate fracture propagation in LCEs. We study the influence of 

stretching rates, initial directors, and geometry on the fracture of LCEs, revealing that LCEs exhibit 

unusual fracture behavior depending on these factors. We propose that cracks prefer to propagate 

perpendicular to the director. Our developed phase-field fracture model predicts the crack 

propagation in LCEs with different initial directors and under varying stretching rates. Our theory 
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is validated by experiments and demonstrates the capability to predict complex fracture paths in 

LCEs. We uncover that the crack path is highly correlated with the director distribution and 

deformation state.  

 Although our models show overall great predictability, there are many open questions to 

be answered to better understand the fracture of LCEs. For instance, how can the fracture energy 

of the LCEs be experimentally measured? What is the influence of the director distribution and 

stretching rates on fracture energy. The assumption that cracks prefer to propagate perpendicular 

to the director needs further experimental validation. What is the range of deformation rates that 

this assumption validates? The assumption should be invalid at extremely high stretching rates, 

where the director doesn’t have time to rotate. Both the viscoelastic and fracture models need 

further improvement. Accurate predictions of stress, deformation and director rotation under 

different stretching rates are still lacking. The current fracture model doesn’t capture the crack 

propagation speed well, especially under high stretching rates. Nonetheless, we have obtained 

promising results. We hope this work paves the way for further studies of LCE fracture and the 

design of LCEs with superior fracture properties. 
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Chapter 6 Conclusion and Outlook 

6.1 Conclusion 

 This dissertation has investigated the mechanical instability, phase separation, and fracture 

in soft materials under extreme loading conditions. The theoretical models, experimental results, 

and numerical simulations developed in this research have practical applications in designing and 

developing new materials and structures with extreme mechanical properties. The main 

contributions are summarized as follows: 

 In Chapter 2, we use elastic tubes as model systems to investigate postbuckling behaviors 

that have been elusive so far. We employ a combination of theoretical and numerical methods to 

study the morphologies, displacement fields, and stress-strain curves near the critical loading of 

tubes undergoing axial compression. By providing a theoretical solution to the postbuckling 

problem, this work sheds light on the buckling and postbuckling behavior of thick tubes, laying 

the foundation for the design of tube structures. Moreover, the developed general method is 

applicable to other structures exhibiting diverse mechanical instability, thereby contributing to the 

advancement of related fields. 

 In Chapter 3, we focus on how mechanical constraints can induce the coexistence of 

multiple phases in hydrogels that do not exhibit phase separation under equilibrium free swelling. 

Through a systematic analysis of the states of equilibrium for hydrogels under different mechanical 

loadings, we reveal the role played by mechanical constraints in altering the convexity of the free 

energy, thereby resulting in phase coexistence. Moreover, we apply a phase-field model to 

investigate the pattern evolution of phase separation and predict various patterns and processes of 
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phase separation under different geometric and material parameters. Our findings provide valuable 

insights into the rich phase behavior of hydrogels under diverse mechanical constraints and loading 

conditions, offering critical insights for experimental studies related to the morphological patterns 

of hydrogels. 

 In Chapter 4, we develop a modified semisoft model capable of predicting both elastic and 

viscoelastic behaviors for LCEs. The classical semisoft elastic energy term was revised by treating 

the original semisoft parameter 𝑎 as a function of deformation. With our modification, the model 

accurately predicts the stress-stretch curves of LCEs, successfully capturing the stress plateau. We 

extend the modified free energy to a viscoelastic model and implement it in COMSOL. The model 

shows overall good predictions of the viscoelastic response. Our numerical models are provided 

to study general LCE constitutive behavior. 

 In Chapter 5, we combine experiments and theory to investigate fracture propagation in 

LCEs. We study the influence of stretching rates, initial directors, and geometry on the fracture of 

LCEs, revealing that LCEs exhibit unusual fracture behavior depending on these factors. We 

propose that cracks prefer to propagate perpendicular to the director. Our developed phase-field 

fracture model predicts the crack propagation in LCEs with different initial directors and under 

varying stretching rates. Our theory is validated by experiments and demonstrates the capability 

to predict complex fracture paths in LCEs. We uncover that the crack path is highly correlated 

with the director distribution and deformation state. Our study fills the gap of little research on 

LCE fracture. 
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6.2 Outlook 

There are still many great opportunities to study mechanics of soft materials. Several 

interesting problems need to be solved in the near future. What is the influence of material laws 

on structure instability? Can we obtain stable domains with a finite size after phase separation? 

Can anisotropic phase separation lead to fast macroscopic deformation? What is the fracture 

criterion for viscoelastic materials? Is the intrinsic fracture energy a constant for a viscoelastic 

material? How do we measure the fracture energy of monodomain LCEs? How do we model the 

fracture propagation of stiffening materials? 

Firstly, material laws definitely play a role on structure instability. We usually use simple 

elastic or hyperelastic constitutive model to study the mechanical instability. Some interesting 

phenomena could occur, such as delayed instability if we use poroelastic or viscoelastic 

constitutive model, since the material response involves certain time scales. The time evolving 

response could provide more functionality for the structure. In addition, a new constitutive model 

adds complexity to theoretical analysis. We can contribute to developing a more general 

asymptotic model to describe the time evolving response. 

Secondly, in our study, the domain always prefers to coarsen when phase separation occurs. 

However, very recently, researchers experimentally observed elastic arrested phase separation, 

where the domain size doesn’t change over time [155]. The exact mechanism is not clear, and our 

current model cannot explain the phenomenon either. Possible solutions include introducing 

nonlocal damage and active force as a function of solvent concentration. We hope we can figure 

out the mechanism and contribute to the community. 
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Thirdly, can we increase the response speed of hydrogels through phase separation? There 

is an intriguing experiment on fast actuation of hydrogels by Takuzo Aida [123]. The authors 

prepare a composite PNIPA gel with cofacially aligned nanosheets aligned nanosheets. The gel 

sheet with a thickness of 1 mm shows fast deformation in the order of seconds, which is 

significantly faster than the typical swelling or shrinking process of hydrogels that usually takes 

hours. The authors attribute the deformation to the electrostatic force change between the 

nanosheets. We hypothesize that the fast response is due to the anisotropic phase separation, where 

the length scale of the initial phase separation doesn’t depend on the sample size. If this hypothesis 

validates, we can design hydrogels with anisotropic phase separation to avoid the drawback of the 

slow response of hydrogels, which can dramatically broaden the application of hydrogels on 

actuation. 

Last but not least, monodomain LCEs are typically viscoelastic and anisotropic materials, 

which also show stress stiffening. When studying LCE fracture, it is found there are many 

questions about fracture of materials with properties different from conventional elastic materials. 

For LCEs, the director is always evolving with the loading, which makes it difficult to define the 

fracture energy of LCEs with a certain director. We need to provide a standard or protocol to 

measure the fracture energy. In addition, we would also like to further work on fracture of 

viscoelastic and stiffening materials, focusing on developing the fracture criterion and numerical 

tools. 
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Appendix 1 Supplementary Materials for Three-dimensional Postbuckling 

Analysis of Thick Hyperelastic Tubes 

A1.1 Expressions of 𝑋!	(𝑖 = 1,2, … ,7)  

     In this appendix, we list the expressions of  . In the below analysis, the 

constant  is set as 1. To simplify our expression, we use the following expression 
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A1.2 Expressions of 𝑋!
[#]	(𝑖 = 1,2, … ,7) 
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,  (A1.2.4) 

,  (A1.2.5) 

,  (A1.2.6) 

.  (A1.2.7) 

A1.3 Calculation of displacement field of group [3] 

     In this appendix, we show how to solve Eqs. (2.31)-(2.32) and obtain the displacement 

field of group [3]. We introduce two functions  and , and express functions , 

 and  as 
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     Inserting (A1.3.3) to the third equation of Eq. (2-31), we obtain 

. 

  (A1.3.4) 

We use  to express the right hand side of Eq. (A1.3.4). Then Eq. (A1.3.4) becomes 
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        Substituting (A1.3.1)-( A1.3.3) into the first and second equations of Eq. (2-31), we have 
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Using (A1.3.6) and (A1.3.7) to vanish , we obtain 
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We use  to represent the right hand of Eq. (A1.3.8). Then Eq. (A1.3.8) becomes 
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        We introduce a function  

.  (A1.3.10) 

Inserting (A1.3.10) into (A1.3.9), we obtain 

.  (A1.3.11) 

The solution to (A1.3.11) can be separated into two parts 

,  (A1.3.12) 

where  represents the homogenous solution and  represents the particular solution. The 

homogenous solution to Eq. (A1.3.11) can be written as 

.  (A1.3.13) 

Knowing the homogenous solution, we obtain the particular solution to Eq. (A1.3.11)  

,  (A1.3.14) 

where  is a constant and we have used the Wronskian relation

. 

        After we insert (A1.3.12) into (A1.3.10), Eq. (A1.3.10) can be written as 

.  (A1.3.15) 
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The solution to Eq. (A1.3.15) can be 

.  (A1.3.16) 

where  represents the homogenous solution.  and  are two parts of the particular 

solution. They can be written separately as 

,  (A1.3.17) 

,  (A1.3.18) 

.  (A1.3.19) 

        Omitting  by using (A1.3.5) and (A1.3.7), we can obtain 

  (A1.3.20) 

The term  can be expressed as 

.  (A1.3.21) 

Then, Eq. (A1.3.20) becomes 
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  (A1.3.22) 

We use  to represent one part of the right hand side of Eq. (A1.3.22), which does not include 

the unknown constant  and , 

.  (A1.3.23) 

Then Eq. (A1.3.22) becomes 

.  (A1.3.34) 

        We introduce another function 

.  (A1.3.25) 

Then Eq. (A1.3.24) becomes 

.  (A1.3.26) 

The solution to Eq. (A1.3.26) can be separated into three parts 

.  (A1.3.27) 

The homogeneous solution is 
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.  (A1.3.28) 

The other two parts of particular solution can be obtained as 

,  (A1.3.29) 

.  (A1.3.30) 

        Inserting Eq. (A1.3.27) into Eq. (A1.3.25), we obtain 

.  (A1.3.31) 

The solution to Eq. (A1.3.31) can be separated into four parts 

.  (A1.3.32) 

The homogeneous solution is 

.  (A1.3.33) 

The other three parts of the particular solution are 
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,  (A1.3.35) 
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.  (A1.3.36) 

        Substituting (A1.3.16) and (A1.3.32) into (A1.3.1)-( A1.3.3), we find that  and  give 

null displacement field, which means the variation of parameters  and  does not influence 

the displacement field. Therefore, we set  and  as 0. We set constant  as 1. Then, the 

parameters  and   can be solved by substituting (A1.3.1)-( A1.3.3) into 

the boundary conditions (2.32) at  and , after which functions ,  and 

 are obtained.  can be calculated from Eq. (2.31). From Eq. (2.33), the displacement 

field of group [3], is known. The calculation of the displacement field of other groups is 

similar to the procedure described above. 

A1.4 Equations of group [2] 

    In this appendix, we list the linear differential equations of group [2]. The governing equations 

are 

,  (A1.4.1) 

,  (A1.4.2) 

,  (A1.4.3) 

[ ] [ ] [ ]( )3 3 32 2
3 3 4

1
2

n n
p c R c Rw

h
-= - +

2nR 2nR-

[ ]3
3c

[ ]3
4c

[ ]3
3c

[ ]3
4c 0R

[ ]3
ic [ ]3

ja ( )1,2; 1,2,3,4i j= =

R A= R B= [ ] ( )3
2f R [ ] ( )3

2g R

[ ] ( )3
2h R [ ]3

2q

[ ]3
2U

[ ] [ ] [ ]
2

2 2 22
2 2 12 2

1 1 4 cf q X
R R R R R

µ h l
æ ö¶ ¶ ¶

- - + + =ç ÷¶ ¶ ¶è ø

[ ]
2

22
22 2

1 1 4 0g
R R R R

µ h
æ ö¶ ¶

- - + =ç ÷¶ ¶è ø

[ ] [ ] [ ]
2

2 2 22
2 2 22

1 14 2
c

h q X
R R R

µ h h
l

æ ö¶ ¶
+ - + =ç ÷¶ ¶è ø



142 

 

.  (A1.4.4) 

The boundary conditions at  and  are 

,  (A1.4.5) 

,  (A1.4.6) 

.  (A1.4.7) 

The expressions of   are 

  (A1.4.8) 

  (A1.4.9) 
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,  (A1.4.10) 

,  (A1.4.11) 

.  (A1.4.12) 

A1.5 Calculation of displacement field of group [2] 

        In this appendix, we show how Eqs. (A1.4.1)-( A1.4.7) are solved. 

        The displacement field of group [2] can be denoted as 

.  (A1.5.1) 

From the governing equations and boundary conditions, we can easily see . 

        We introduce one function  and express functions  and  as 

,  (A1.5.2) 

.  (A1.5.3) 
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The introduction of (A1.5.2) and (A1.5.3) ensures Eq. (A1.4.4) is satisfied automatically. 

        Inserting (A1.5.3) to (A1.4.3), we obtain 

.  (A1.5.4) 

We use  to express the right hand of Eq. (A1.5.4). Then Eq. (A1.5.4) becomes 

.  (A1.5.5) 

        Using (A1.4.1) and (A1.5.5) to vanish , we obtain 

.  (A1.5.6) 

We represent the right hand of Eq. (A1.5.6) as . The integration of Eq. (A1.5.6) gives 

.  (A1.5.7) 

The constant  does not influence the displacement field. We set  as 0. 

        We use  to represent the right hand of Eq. (A1.5.7) and introduce a function 

.  (A1.5.8) 

Eq. (A1.5.7) becomes 

.  (A1.5.9) 
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The solution to (A1.5.9) can be separated into two parts 

.  (A1.5.10) 

The homogeneous solution is 

.  (A1.5.11) 

The particular solution is 

.  (A1.5.12) 

        After we insert Eq. (A1.5.10) into Eq. (A1.5.8), Eq. (A1.5.8) becomes 
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The solution to Eq. (A1.5.13) can be separated into three parts  

.  (A1.5.14) 
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.  (A1.5.15) 

The other two parts of the particular solution are 
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.  (A1.5.17) 

The parameters   can be solved by the boundary conditions (A1.4.5) and (A1.4.7). 

Then the displacement field of group [2] can be obtained. 

A1.6 Equations of group [1] 

        In this appendix, we list the linear differential equations of group [1]. The governing 

equations are 

,  (A1.6.1) 

,  (A1.6.2) 
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.  (A1.6.4) 
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,  (A1.6.6) 
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.  (A1.6.7) 

The expressions of   are 
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  (A1.6.9) 
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,  (A1.6.11) 

.  (A1.6.12) 

A1.7 Calculation of displacement field of group [1] 

        In this appendix, we show how Eqs. (A1.6.1)-( A1.6.7) are solved. 
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        The displacement field of group [1] can be denoted as 

. (A1.7.1) 

From the governing equations and boundary conditions, we can easily see . 

        We introduce one function  and express functions  and  as 

,  (A1.7.2) 

.  (A1.7.3) 

The introduction of (A1.7.2) and (A1.7.3) ensures Eq. (A1.6.4) is satisfied automatically. 

        Substitution of (A1.7.2) and (A1.7.3) into (A1.6.1) gives 

.  (A1.7.4) 
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.  (A1.7.6) 

We use  to express the right hand of Eq. (A1.7.6). Then Eq. (A1.7.6) becomes 

.  (A1.7.7) 

        Using (A1.7.5) and (A1.7.7) to vanish , we obtain 

.  (A1.7.8) 

We use  to express the right hand of Eq. (A1.7.8). Then Eq. (A1.7.8) becomes 

.  (A1.7.9) 

        We introduce a function  

.  (A1.7.10) 

Then (A1.7.9) becomes 

.  (A1.7.11) 

The solution to (A1.7.11) can be separated into two parts 

.  (A1.7.12) 

The homogenous solution to Eq. (A1.7.11) can be written as 
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.  (A1.7.13) 

The particular solution to Eq. (A1.7.11) can be written as 

.  (A1.7.14) 

        Inserting (A1.7.12) into (A1.7.10), we obtain 

.  (A1.7.15) 

The solution to Eq. (A1.7.15) can be 

, where  represents the homogenous solution, and  and  are the 

two parts of the particular solution. They can be written separately as 

,  (A1.7.16) 

,   

(A1.7.17) 

.  (A1.7.18) 

The parameters   can be solved by the boundary conditions (A1.6.5) and (A1.6.6). 

Then the displacement field of group [1] can be obtained. 
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A1.8 Equations of group [0] 

        In this appendix, we list the linear differential equations of group [0]. The governing 

equations are 

,  (A1.8.1) 

,  (A1.8.2) 

,  (A1.8.3) 

.  (A1.8.4) 

The boundary conditions at  and  are 

,  (A1.8.5) 

,  (A1.8.6) 

.  (A1.8.7) 

The expressions of   are 
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  (A1.8.8) 

,  (A1.8.9) 

.  (A1.8.10) 

A1.9 Calculation of displacement field of group [0] 

        In this appendix, we show how Eqs. (A1.8.1)-( A1.8.7) are solved. 

        The displacement field of group [0] can be denoted as 

.  (A1.9.1) 

From the governing equations and boundary conditions, we can easily see  and . 

        From Eq. (A1.8.4),  can be calculated as 

.  (A1.9.2) 
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        After we substitute (A1.9.2) to (A1.8.1),  can be calculated as 

.  (A1.9.3) 

        Substituting (A1.9.2) and (A1.9.3) to the boundary condition (A1.8.5), we can obtain the 

parameters  and . Then the displacement field of group [0] is known. 

A1.10 Postbuckling analysis of the barreling mode 

        For the barreling mode, by setting 𝑛 as 0, letting the displacement field of group [3] equal the 

displacement field of group [2] and the displacement field of group [1] equal the displacement 

field of group [0], and removing  in Eq. (29), we rewrite the particular solution of  as 

 

 (A1.10.1) 

        All the postbuckling analysis for the Euler buckling mode in the main text and appendix is 

still valid for the barreling mode. The particular solution of  for the barreling mode can be 

obtained as Appendix A1.5 and 1.9. 

A1.11 The influence of geometric imperfections 

        In this appendix, we show two examples about the influence of geometric imperfections on 
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𝛿0 is introduced into the simulations as an imperfection; specifically, the imperfection amplitude 

𝛿0/(𝐵 − 𝐴) = 2% is chosen here. Figure A1.11a and A1.11b show the average nominal stress-

strain curves of tube structures in the vicinity of the buckling point. The blue curves are the 

theoretical predictions for the perfect tubes, while the black curves are the simulation results for 

the corresponding imperfect tubes. When 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.1, the tube undergoes snap-

through buckling. The introduction of the imperfection smoothens the stress-strain curve, and 

reduces the critical stress by 2%, although the reduction of the critical strain is as small as 0.3%. 

When 𝐴/𝐵 = 0.6 and 𝐵/𝐻 = 0.2, the tube undergoes snap-back buckling. When the imperfection 

is introduced, both the critical strain and stress are significantly reduced by 6.5% and 10.5%, 

respectively.  

 

Figure A1.11. The postbuckling stress-strain relation for axially compressed tubes with fixed 

𝐴/𝐵 = 0.6 and different 𝐵/𝐻: (a) 𝐵/𝐻 = 0.1, (b) 𝐵/𝐻 = 0.2. The blue curves correspond to 

perfect tubes and the black curves correspond to imperfect tubes with imperfection amplitude 

𝛿0/(𝐵 − 𝐴) = 2%. 
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Appendix 2 Supplementary Materials for Mechanics Underpinning Phase 

Separation of Hydrogels 

In this appendix, we study phase behavior of hydrogels with 𝜒 = 𝜒! + 𝜒"𝜙 . The interaction 

parameters 𝜒 for many hydrogels depend on their polymer concentration 𝜙. Here we demonstrate 

that our analysis can be easily extended to different 𝜒(𝜙) functions. A representative linear 𝜒 − 𝜙 

relation, 𝜒 = 𝜒! + 𝜒"𝜙  with positive 𝜒!  and 𝜒"  constants, is adopted. We study the phase 

behavior of the hydrogel under free swelling and swelling under hydrostatic loading, and 

demonstrate that similar to a hydrogel with a constant 𝜒, mechanical constraints can induce phase 

separation in hydrogels with non-constant 𝜒.  

A2.1 Free Swelling 

When the hydrogel is under free swelling, we have 𝑠 = 0. Similar to the main text, using the 

swelling ratio 𝐽 as a variable, the free energy of the hydrogel is written as 

.  (A2.1) 

When the hydrogel is in equilibrium, we obtain 

.  (A2.2) 

The stability of the system is determined by the following equation, 

.  (A2.3) 
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A2.2 Swelling under Hydrostatic Loading 

    We consider a hydrogel under a hydrostatic loading immersed in a solvent with 𝜇, = 0. 

The total free energy of the system is 

,  (A2.4) 

where 𝑑 = 3. The equilibrium condition is rewritten as 

.  (A2.5) 

The corresponding stability condition becomes 

  (A2.6) 

    We first consider free swelling. The solutions to Eq. (A2.2) and to Eq. (A2.3), 𝐽 as functions 

of 𝜒! , for three different 𝜒"  are plotted in Figure A2.a-A2.c, respectively. The equilibrium 

solutions and the spinodal curves at 𝜒" = 0.1 in Figure A1.a show the similar trend to that in 

Figure 3.2b. When 𝜒" = 0.4, the spinodal curve in red becomes non-monotonic, where 𝜒! first 

decreases, then increases, and decreases again as the swelling ratio 𝐽 increases. The black curve of 

the equilibrium solutions for 𝜇, = 0 is also always below the spinodal curve in red, and therefore, 

there is only one equilibrium solution for a given 𝜒!. The green curve of the equilibrium solutions 

for 𝜇, = 0.0025𝑘𝑇 intersects with the spinodal curve at three points, and therefore, there exist 

two stable equilibrium solutions for certain range of 𝜒!. The blue curve of the equilibrium solutions 
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when 𝜇, = 0.015𝑘𝑇 also shows the similar trend with that in Figure 3.2b. When 𝜒" = 0.7, the 

black curve of the equilibrium solutions for 𝜇, = 0 becomes non-monotonic, and there are two 

points of intersection with the spinodal curve, for 𝜒! between which two phases can coexist.  

    Next, solving Eq. (A2.6), we show the spinodal curves of a hydrogel subjected to 

hydrostatic loading, 𝜆 as functions of 𝜒!, at different values of 𝜒" in Figure A2.d. The curves with 

non-zero 𝜒" show a similar trend to that with a zero 𝜒". Setting 𝜒! = 0.8 and solving Eq. (A2.5), 

we plot the nominal stress 𝑠 as a function of 𝜆 at different values of 𝜒" in Figure A2.e. All the 

stress-stretch curves are non-monotonic. Though the hydrogel under free swelling may show 

different phase behaviors at different values of 𝜒" (Figure A2.a-A2.c), the swelling behaviors are 

similar when external loading is applied (Figure A2.d-A2.e). Therefore, the effects of mechanical 

constraints on triggering phase separation of hydrogels are carefully studied in the main text for 

constant 𝜒. 
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Figure A2 The equilibrium solutions and the spinodal curves of a hydrogel under equilibrium free 

swelling at (a) 𝜒" = 0.1, (b) 𝜒" = 0.4 and (c) 𝜒" = 0.7. (d) The spinodal curves of a hydrogel 

subjected to hydrostatic loading at various 𝜒". (e) Nominal stress as a function of stretch for a 

hydrogel subjected to hydrostatic loading at various 𝜒".  
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Appendix 3 Supplementary Materials for Fracture of Liquid Crystal 

Elastomers 

A3.1 Material and Specimen Preparation 

The main-chain monodomain LCEs were synthesized via a two-stage thiol-acrylate Michael 

addition-photopolymerization reaction [148]. The chemicals used include diacrylate mesogen, 1,4-

Bis-[4-(3-arcyloyoxypropyloxy) benzoyloxy]-2-methylbenzene (RM257, 95%), crosslinker, 

pentaerythritol tetrakis(3-mercaptopropionate) (PETMP, 95%), chain extender, 2,2-

(ethylenedioxy) diethanethiol (EDDET, 95%), catalyst, dipropylamine (DPA, 98%) and 

photoinitiator, (2-hydroxyethoxy)-2-methylpropiophenone (HHMP, 98%). RM257 (6.4g) was 

first dissolved in toluene (4g) at 80 ℃ and then cooled to room temperature. EDDET (1.465g), 

PETMP (0.347g), HHMP (0.041g), and DPA solution (DPA:toluene = 1:50, 0.768g in total) were 

subsequently added and thoroughly mixed using a vortex mixer at 3200rpm for 15mins. The 

solution was then degassed, poured into a mold, and cured at room temperature for 24 hours in the 

absence of light. After curing, the film was placed in an oven at 80 ℃ for 24 hours to remove the 

solvent. The film was then stretched to twice its original length and exposed to UV light for 1 hour 

to complete the second-stage crosslinking process. The specimens were cut into rectangular shapes 

with a pre-crack, each with a certain initial director (Figure 5.1a).  
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A3.2 Supplementary Figures 

 

Figure A3.1 Stress-stretch curves of various samples. The fixed ratio of the applied stretch in the 

second cross-linking step is around 88~89%. 

 

Figure A3.2 Stress-stretch curves of nonmonotonic stretch. The fixed ratio of the applied stretch 

in the second cross-linking step is about 85%. 
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Figure A3.3 Fracture paths from (a) experiments and (b) simulations for different initial directors 

under the stretching rate �̇� = 1%/𝑠. 

 

Figure A3.4 Tilted black line in front of the crack tip under 𝜆 = 1.5 and �̇� = 0.1%/𝑠. 

A3.3 Phase-field fracture model 

We have developed a thermodynamically consistent phase-field fracture framework to simulate 

the fracture process of viscoelastic LCEs. Much of the theory below follows our previous work. 

Unlike other fracture model such as XFEM or cohesive zone model, the phase-field method uses 

a phase-field variable to implicitly trace interfaces without dealing with a sharp boundary, which 

is ideal for the LCE fracture with complex fracture paths [156]. The phase field 𝑑 ∈ [0,1] is 

introduced to describe the damage degree of the material. The director 𝐧	 = 	 (𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃, 0) is 
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defined in the current state to describe the liquid crystal alignment, where 𝜃 is the angle between 

the director and 𝑥 axis in the deformed configuration. We assume the viscosity originates from the 

network instead of the director. Using our developed viscoelastic model, we employ a rheological 

model by connecting the Kelvin-Voigt model and Maxwell model with 𝑁 branches in parallel. The 

deformation gradient 𝐅 in the Maxwell branches is decomposed to the elastic and viscous parts,	

𝐅 = 𝐅)6𝐅)7 (𝑖 = 1,2, … , 𝑁). The free energy density of the material is formulated as a function of 

the state variables 𝐅, 𝐅)7, n, and 𝑑,  

,  (A3.1) 

where 𝑔(𝑑) is the degradation function describing the material degradation due to damage, 𝜓0 and 

𝜓)  are the intact free energy densities of the equilibrium branch and nonequilibrium branches 

respectively. We use the phase-field regularized cohesive zone model developed to describe the 

quasi-brittle fracture [157, 158], where the degradation function is assumed to be 

,  (A3.2) 

where 𝑎! =
"
B
C!"
C#

 with a phase field length scale 𝑏0  for numerical regularization and the 

fractocohesive length 𝑏#D. 

The free energy density of the equilibrium branch is  

,  (A3.3) 
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where 𝜇0 is the shear modulus, 𝜇; is a coefficient of nonlinear elasticity, 𝐾 is the bulk modulus, 

𝑎 = $!
%&'()𝐅"𝐅+,-./0

 with 𝑎0  being the semisoft parameter and 𝑚  being a positive scaling factor, 

‖𝐧𝐅‖" = 𝑡𝑟[𝐧⨂𝐧 ∙ 𝐅(𝐈 − 𝐧0⨂𝐧0)𝐅+] , 𝐥 = (𝑟 − 1)𝐧⨂𝐧 + 𝐈  is the dimensionless shape tensor, 

and 𝐥0 = (𝑟 − 1)𝐧0⨂𝐧0 + 𝐈  is the dimensionless initial shape tensor, where 𝑟  represents the 

average shape anisotropy of the network distribution, 𝐧0 	= 	 (𝑐𝑜𝑠𝜃0, −𝑠𝑖𝑛𝜃0, 0)  is the initial 

director with 𝜃0 being the angle between the director and 𝑥 axis in the initial state (Figure 5.1a), 

and I is the identity tensor. 

The free energy density for the nonequilibrium branch is 

,  (A3.4) 

where 𝜇)  is the shear modulus of the 𝑖 -th branch, 𝐾)  is the parameter controlling the 

incompressibility of 𝐅)6,	𝑎1 = $!
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= 𝑡𝑟[𝐧⨂𝐧 ∙ 𝐅)6(𝐈 − 𝐧0⨂𝐧0)𝐅)6+]. 

Considering an isothermal process and neglecting the body force, the energy balance of the system 

is  

, (A3.5) 

where �̇� is the dissipated energy per unit time and per unit volume through viscous deformation 

and fracture, t is the traction acting on the surface. Thermodynamics requires the dissipated energy 

shouldn’t decrease, namely, �̇� ≥ 0. 
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The dissipation rate is contributed from the dashpot and fracture process, 

,  (A3.6) 

where �̇�0  is the dissipation rate from the dashpot of the Kelvin-Voigt model, �̇�)  is from the 

dashpot of the 𝑖-th branch of the Maxwell model, and �̇�E is due to fracture. 

We assume 

,  (A3.7) 

and 

.  (A3.8) 

The term 𝜑) 	is the so-called dissipation potential [149]. We assume the following form 

,  (A3.9) 

and 

,  (A3.10) 

where 𝜂0  is a viscosity constant, 𝐽 = 𝑑𝑒𝑡𝐅, and 𝜂)  is the viscosity changing nonlinearly with 

deformation. 
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.  (A3.11) 

The mechanical equilibrium equation, the evolution of 𝐅)7, and the equilibrium equation for the 

director n can be obtained as follows. 

The mechanical equilibrium and the corresponding boundary condition are 

,  (A3.12) 

and 

,  (A3.13) 

where the nominal stress P is defined as 

.  (A3.14) 

The evolution of 𝐅)7 is 

.  (A3.15) 

The equilibrium equation for the director is 

.  (A3.16) 
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,  (A3.17) 

where the thermodynamics requirement �̇�E ≥ 0 is satisfied when �̇� ≥ 0, since 9F(H)
H

< 0. 

Instead of using Eq. (A3.17), we describe the fracture process based on the finding that the fracture 

propagation is determined by the competition between the equilibrium elastic energy and intrinsic 

fracture energy [159], with the following form 

,  (A3.18) 

where 𝐺# is the intrinsic fracture energy and the crack surface density function 𝛾 is expressed as, 

,  (A3.19) 

where 𝐀 is the second order structural tensor related to the director orientation, where the exact 

form 𝐀 = 𝐈 + 𝛼𝐅$!𝐧J⨂𝐅$!𝐧J is derived in Appendix A3.4 based on the assumption that the 

crack prefers to propagate perpendicular to the director,	 𝛼  representing the coefficient of 

anisotropy of the fracture energy, and 𝐧J being the unit vector perpendicular to the director. 

Combining Eqs. (A3.3), (A3.4), (A3.9) and (A3.14), the nominal stress is 

,  (A3.20) 
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where  and  decribe 

the nonlinear dependence of the stiffness on the deformation, and . 

Utilizing Eqs. (A3.4), (A3.10) and (A3.15), the evolution of 𝐅)7 is 

.  (A3.21) 

We assume that the viscosity 𝜂)  follows the relation  (𝑖 = 0,1, … , 𝑁), where 𝜂),0 is a 

constant. 

The evolution of the phase field is 

.  (A3.22) 

In ensure the irreversibility of the phase field, the history variable  

  (A3.23) 

is introduced [160, 161], where we assume the intrinsic fracture energy is rate-dependent [162, 

163], expressed as 

,  (A3.24) 
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where  represents the deformation rate, 𝛽  is a scaling 

factor, and 𝐺#0 is the reference fracture energy with the reference deformation rate 𝑟H0. 

The fracture response is governed by the mechanical equilibrium equation (A3.12), the evolution 

of 𝐅)7 (A3.21), the equilibrium equation for the director n (A3.16), and the evolution of the phase 

field 𝑑 (A3.22). The model is implemented in COMSOL. The implementation details and material 

parameters are described in Appendix A3.5. 

A3.4 Derivation of the Anisotropic Crack Geometric Function 

We simply assume the material is incompressible, with 𝐽 = 𝑑𝑒𝑡𝐅 ≡ 1. To realize that the 

crack prefers to propagate perpendicular to the director, the crack surface is assumed to be the 

following form 

,  (A3.25) 

where 𝛼 is the coefficient of anisotropy of the fracture energy. The first two terms correspond to 

the isotropic crack surface density function, and the additional term adds the energy penalty for 

crack that does not propagate perpendicular to the director. To reduce the fracture energy, large 

value of 𝛼 can lead to  

,  (A3.26) 

which means the damage gradient is parallel to the director. Namely, the crack path is 

perpendicular to the director. We rewrite the above form  

( ) ( )1 11 :
2

T T T T
dr - - - -= + +FF F F FF F F   

( ) ( )22
0 0

0

11
2 xb d d b J d dVd db

a
p ^
é ù+ Ñ ×Ñ + Ñ ×G = -ê ú
ë û

ò n

0xd ^Ñ × =n



169 

 

.  (A3.27) 

Then we obtained the expression of the structural tensor 𝐀 in Eq. (A3.19). 

A3.5 Implementation Details and Material Parameters 

The developed model is implemented in COMSOL under plane stress conditions. The 

mechanical equilibrium, plane stress condition, and equations for the director, inelastic 

deformation and phase field are implemented using the weak form. Linear Lagrange interpolation 

is used for the displacement field, the director 𝜃 and the phase field, and discontinuous linear 

Lagrange interpolation is used for the inelastic deformation 𝐅)7 and the out-of-plane stretch 𝜆... 

An additional equation for the phase field can be implemented easily based on our previously 

provided COMSOL file.  In the simulation, the thickness of the crack is 𝑤# = 0.5𝑏0. In order to 

avoid fracture from boundary, when solving the phase field, only the region within 1/6𝐻 ≤ 𝑌 ≤

5/6𝐻  is solved for the long sample and 1/5𝐻 ≤ 𝑌 ≤ 4/5𝐻  for the short sample. Converged 

results are obtained through mesh refinement. The mesh size around the fracture path is smaller 

than 0.5𝑏0. 

Similar to our work in Chapter 4, the viscosity parameters are determined by the stress 

relaxation test. The corresponding parameters and parameters related to the constitutive relations 
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are listed in the tables. For the parameters related to the fracture, we set the following parameters 

𝑏0 = 0.1𝑚𝑚, 𝑏#D = 1𝑚𝑚, 𝛼 = 20, 𝐺#0 = 589.2𝑁/𝑚, 𝛽 = 0.08, and 𝑟H0 = ¦	.
"
	 × 10$./𝑠.  

Table 1. Viscosity parameters for fracture experiments 

𝜏$(𝑠) 0.1 0.5 3.5 31.5 346.5 
𝜇$/𝜇! 10.910671 2.985292 1.368842 0.583728 0.282026 

 

Table 2. Other material parameters for fracture experiments 

𝜇!(MPa) 𝑟 𝑎! 𝑚 𝐾/𝜇! 𝐾$/𝜇$ 𝜂!,!(MPa ∙ s) 𝜇# 
0.3928 5.5 0.07 0.3 1000 1000 0.1964 1/2 

 

Table 3. Parameters related to fracture properties 

𝑏!(mm) 𝑏&'(mm) 𝛼 𝐺&!	(𝑁/𝑚) 𝛽(;𝑁/𝑚) 𝑟(!	(𝑠)*) 
0.1 1 20 589.2 0.08 √	1.5	 × 10)+ 
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