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Abstract 
Languages differ regarding the depth, structure, and syntactic 
domains of recursive structures. Even within a single language, 
some structures allow infinite self-embedding while others are 
more restricted.  For example, English allows infinite free 
embedding of the prenominal genitive -s, whereas the 
postnominal genitive of is largely restricted to only one level 
and to a limited set of items. Therefore, while the ability for 
recursion is considered as a crucial part of the language faculty, 
speakers need to learn from experience which specific 
structures allow free embedding and which do not. One effort 
to account for the mechanism that underlies this learning 
process, the distributional learning proposal, suggests that the 
recursion of a structure (e.g. X1’s-X2) is licensed if the X1 
position and the X2 position are productively substitutable in 
the input. A series of corpus studies have confirmed the 
availability of such distributional cues in child directed speech. 
The present study further tests the distributional learning 
proposal with an artificial language learning experiment. We 
found that, as predicted, participants exposed to productive 
input were more likely to accept unattested strings at both one- 
and two-embedding levels than participants exposed to 
unproductive input. Therefore, our results suggest that speakers 
can indeed use distributional information at one level to learn 
whether or not a structure is freely recursive. 

Keywords: language acquisition; recursive structure; 
distributional learning; syntax; artificial language 

Introduction 
This study investigates the learning mechanism that enables 
speakers to determine which structures are recursive and 
which are not in a given language. Recursion refers to infinite 
self-embedding of a particular type of linguistic element or 
grammatical structure. Many linguists and cognitive 
scientists agree that the ability for recursion is a crucial part 
of the language faculty and is universal across languages (e.g. 
Hauser, Chomsky, & Fitch, 2002; Pinker, 1994)1. However, 
languages differ regarding the depth, structure, and syntactic 
domains of recursive structures (Pérez-Leroux, Peterson, 
Castilla-Earls, Béjar, Massam, & Roberge, 2018). Indeed, 
even within a single language, some structures are permitted 
to freely recurse while others are more restricted. For 
example, English allows infinite embedding with almost no 

 
1 We are also aware of a long tradition of research on the learning 

and processing constraints on recursion, e.g. center embedding (e.g. 
Christiansen & MacDonald, 2009; Karlsson, 2007; Roth, 1984). Our 
study, though, does not rely on assumptions of the status of 

constraint using the prenominal genitive -s, (1a), whereas the 
postnominal genitive of is limited by a range of semantic, 
pragmatic, and phonetic constraints and usually does not 
allow deep embedding, (1b-c), (see Levi (1978), Biber, 
Geoffrey, Leech, Conrad, & Finegan (1999), and Rosenbach 
(2014) for extensive discussion). In this paper, we use 
“recursive structures” to refer to structures that are 
unrestricted regarding embedding levels and the choice of 
embedded elements, such as English s-genitive, unless 
otherwise specified. Given the cross- and within-linguistic 
differences in recursive structures, speakers have to learn 
from language-specific experience in which syntactic 
domains the ability of recursion can be freely applied. Thus, 
what kind of linguistic experience do they use, and how do 
they make use of it? 

 
(1) a. the man’s neighbor’s computer 

b. ?the computer of the neighbor 
      c. ??/*the computer of the neighbor of the man 
 

One line of research has proposed that explicit evidence for 
deep embedding in the input is necessary to determine that a 
structure can be used recursively (e.g. Roeper, 2011; Roeper 
& Snyder, 2005): Under this account, the learner starts with 
the default assumption that a structure cannot be used 
recursively, and this assumption is only revised when deep 
embedding of the structure is observed in the input (e.g. the 
man’s neighbor’s computer). This mechanism prevents 
learners from wrongly assuming that limited structures like 
of can freely embed (1b-c); however, it is challenged by the 
empirical fact that evidence for deep embedding is rarely 
attested in young children’s input. For example, Giblin, Zhou, 
Bill, Shi, and Crain (2019) examined caregivers’ speech in 
CHILDES (MacWhinney, 2000), where they found only 107 
recursive s-genitives in 3.1 million English utterances, and no 
recursive genitives with the productive genitive marker de in 
three Mandarin corpora. These findings predict the 
acquisition of recursive structures to be very difficult, if not 
impossible, under the deep embedding approach. Yet, despite 
the paucity of explicit evidence in the input, several 
behavioral experiments have reported early acquisition of 

recursion, and explores the learnability problem from a different 
approach, namely how can recursive structures be learned from one-
level embedding input. 
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recursive structures. For instance, 4-year-old English- and 
Mandarin-speaking children can comprehend and produce 
multi-level recursive s- or de-genitives (e.g. Giblin et al., 
2019; Li, Yang, Roeper, Wilson, Yin, Kim, Merritt, Lopez, 
& Tero, 2020) — an unexpected finding if children solely 
rely on direct evidence of deep embedding.  

Moreover, there is a logical problem of learning recursive 
structures: no N-level embedding entails even N+1 levels of 
embedding. Thus, it is difficult for the deep embedding 
approach to explain how native speakers learn that recursive 
structures can embed deeper than have been observed in the 
input, and ultimately, how they learn that recursive structures 
can stack infinitely when examples in the input are always 
finite.  

Recently, an alternative mechanism for learning recursive 
structures was proposed (Grohe, Schulz, & Yang, 2021; Li, 
Grohe, Schulz, & Yang, 2021), which relies on distributional 
learning (e.g. Brain, 1987; Maratsos & Chalkley, 1980). 
Specifically, the distributional learning proposal suggests 
that recursion can be viewed as structural substitutability: 
That is, for a structure such as X1’s-X2, it is freely recursive if 
position X1 and X2 are productively substitutable, i.e. any 
noun that appears in one of those positions can also be used 
in the other position. Therefore, children learn recursion by 
learning the lexicon for which structural substitutability holds. 
For example, if the phrases the mother’s car and the boy’s 
mother are attested in one’s linguistic input, then the s-
possessive is recursive at least for the word mother, and 
therefore mother’s mother… can infinitely embed. Then the 
learner will seek to form generalizations over attested nouns 
such as mother above: If there is sufficient evidence that 
structural substitutability is generalizable — that is, if a 
sufficiently large proportion of nouns attested in one position 
are also attested in the position, like mother — then the child 
will acquire the generalization that all nouns that appear in 
one position can also appear in the other, even though not all 
of them are attested in both positions, and therefore the 
structure is freely recursive; otherwise, the structure is 
restricted to certain lexical items. Thus, under this view, 
children discover whether a structure allows recursion in the 
same way they discover other productive generalizations in 
their language. 

Importantly, the fact that deep embedding is rarely attested 
in input to children is no longer a problem under the 
distributional learning proposal. Learners can discover 
structural substitutability (and therefore that a structure 
allows recursion) by utilizing distributional information at 
one level of embedding. It also addresses the logical problem 
of learning recursive structures, because it predicts that a 
structure is either infinitely recursive or must stop at one-
level. If a structure is productive at one level, then it allows 

 
2 A reviewer pointed out that prenominal adjectives in English do 

not appear to be freely interchangeable, e.g. ‘the big green ball’ 
sounds more natural than ‘the green big ball’. We agree with this 
judgement; but in the definition of the proposal, given ‘the big green 
ball’, ‘the green big ball’ does not have to be attested. It will be 
sufficient to hear ‘adj1 big’ (e.g. ‘beautiful big’) and ‘green adj2’ 

infinite embedding; if it does not reach the productivity 
threshold at one level, then it cannot be freely embedded. 

The distributional learning proposal has been supported by 
findings from corpus studies. Grohe, Schulz, and Yang (2021) 
found that for determiner-adjective1-adjective2-noun strings 
in English and German input corpora, adjective1 and 
adjective2 are fully substitutable in both languages according 
to the Tolerance/Sufficiency Principle (Yang, 2016), a model 
of distributional learning; therefore, the productivity and 
recursion of prenominal adjective stacking can be learned 
though distributional cues in the two languages2. Li et al. 
(2021) examined productively recursive and restricted 
genitive structures in Mandarin Chinese, English, and 
German, and confirmed for all the recursive structures that a 
sufficiently large number of nouns appear in both possessor 
and possessum positions to meet the productivity threshold, 
in contrast, for all the restricted structures, the proportion of 
nouns appearing in both positions fail to meet the threshold, 
thus suggesting that the recursivity of a structure can be 
learned distributionally from language-specific one-level 
experience.  

In summary, previous corpus studies have provided strong 
evidence that there is reliable distributional information at 
first level in the input for learners to acquire recursive 
structures. However, it is necessary to examine whether 
learners indeed utilize such distributional information as 
predicted by the distributional learning proposal. In the 
present study, we use an artificial language learning paradigm 
to test the proposal experimentally. In two conditions, 
participants were exposed to one-level X1-ka-X2. strings in an 
artificial language. We manipulated the distribution of words 
in the exposure so that the X1 and X2 positions are 
productively substitutable in one condition, but not in the 
other. At test, we asked participants to rate one- and two-level 
X1-ka-X2 strings that were never attested during exposure, 
together with attested and ungrammatical controls. If 
speakers indeed use one-level distributional information to 
learn recursive structures as predicted by the distributional 
learning proposal, then participants exposed to productive 
input should rate the unattested strings higher than 
participants exposed to unproductive input, since only the 
former group are predicted to generalize substitutability and 
recursivity to unattested words. We present and discuss the 
experiment in the following sections. 

Experiment  

Methods 
Participants 50 adults participated in the experiment: 25 in 
the Unproductive condition, and 25 in the Productive 

(e.g. ‘green wooden’). Besides, although ‘the green big ball’ is 
usually not preferred, it is not ungrammatical, and can actually be 
preferred in certain contexts (e.g. ‘Which big ball?’ ‘The green big 
ball!’). The distributional learning proposal only concerns whether 
a structure can possibly be allowed by grammar; the preference will 
be learned via other mechanisms. 
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condition. Participants were native English speakers with 
normal hearing and normal to corrected-to-normal vision 
recruited online using Prolific (www.prolific.ac).  
Participants were paid $9/hour for their participation. 

 
Stimuli We exposed learners to strings generated from an 
artificial grammar of the form X1-ka-X2. In addition to the 
functional morpheme -ka-, the artificial language contained 
12 nonsense words adapted from Ruskin (2014), all of which 
were mono- or bi-syllabic words and conformed to English 
phonotactics. Some words were more frequent than others in 
order to imitate word frequency in natural language input, but 
the total token frequency of each word was kept the same 
across two conditions. 

In both conditions, all 12 words were attested in the X1 
position.  Crucially, we manipulated the number of words 
attested in the X2 position so that there was sufficient 
evidence for structural substitutability in the Productive 
condition (10 of the 12 words attested in X2) but not in the 
Unproductive condition (6 of the 12 words attested in X2). We 
selected these values because they are consistent with several 
metrics of productivity.  For example, some metrics require a 
pattern to apply to the majority of types in order to meet the 
threshold for productive generalization (e.g. Bybee, 1995). 
Here, such a metric would require at least 7 of our 12 words 
to be attested in X2 position. Other metrics require a larger 
proportion for words to be attested in X2 position in order to 
meet the threshold for productivity. For example, the 
Tolerance/Sufficiency Principle (Yang, 2016) proposes that 
a rule R defined over N items productively generalizes iff the 
number of exceptions to the rule is less than or equal to the 
number of items divided by the natural log of the number of 
items (e ≤ N/lnN). Here, the Tolerance/Sufficiency Principle 
requires no more than 4 exceptions to structural 
substitutability (12/ln12 = 4.83), so at least 8 of our 12 words 
must also be attested in X2 position for the rule to generalize. 
Still other metrics generate an index of productivity — 
typically a value between 0 and 1 — to capture the intuition 
that the more items a pattern applies to, the more likely it is 
to be productive. The Word-Form Rule (Aronoff, 1976; 
Baayen & Lieber, 1991), for example, states that the 
productivity of a given structure can be quantified as the 
number of  items  the structure applies to divided by the 
number of items it could potentially apply to. Here, our 
values of 6 (Unproductive condition) and 10 (Productive 
condition) out of 12 words correspond to a productivity index 
of 0.50 and 0.83 respectively.  We would like to point out that 
it is not our goal to distinguish the different metrics with the 
current experiment; instead, our stimuli were designed to 
meet all of them to make sure that only one condition 
provides productive input. 

 
3  A reviewer suggested that the distribution is potentially 

problematic since in the Productive condition, we have the vast 
majority of the stimuli featuring one single very high frequent word. 
But as shown in Table 1, the most frequent word is productively 
attested in both X1 and X2 positions in the Unproductive condition 

In both conditions, the most frequent word was attested in 
both positions. The words not occurring in position X2 
included both words of higher token frequency and words of 
lower token frequency. We randomly combined the X1 words 
and the X2 words to create an exposure corpus of 44 X1-ka-X2 

strings for each condition. The distribution of the words and 
their frequencies across conditions and X-positions are shown 
in Table 13. 
 

Table 1: The distribution of words in the 44 string 
exposure corpus and word frequency in X1/X2 position 

 

Word Frequency 
Unproductive  Productive  
X1 X2 X1 X2 

nogi 36 6 30 12 24 
sane 10 10 0 10 0 
tesa 6 6 0 3 3 
waso 6 6 0 3 3 
sito 6 2 4 3 3 
kosi 6 2 4 3 3 
mito 4 2 2 2 2 
kewa 4 2 2 2 2 
bila 4 2 2 2 2 
seta 2 2 0 1 1 
sasa 2 2 0 1 1 
tana 2 2 0 2 0 
Total 88 44 44 44 44 

 
Procedure The experiment consisted of an exposure phase 
and a test phase. In the exposure phase, participants were told 
they would hear strings from a new language, and their task 
was to pay attention to the strings, because they would be 
tested on their knowledge of the language later. The exposure 
phase consisted of two repetitions of the exposure corpus (44 
X1-ka-X2 strings) presented in pseudo-random order, with no 
accompanying referential world. There was 1.5s of silence 
between each string, and participants were offered a break 
after each repetition of the 44 strings to prevent fatigue. In 
order to make sure that the participants were paying attention, 
other sounds were randomly dispersed among the linguistic 
strings, such as bird chirping sounds, and participants were 
later asked how many such sounds they heard. All 
participants answered those questions correctly. 

Once the exposure phase was completed, the test phase 
began. On each test trial, participants heard a test string, and 
were asked to rate the acceptability of the string on a scale of 
1 to 5. Participants were told to decide if those strings came 
from the language they had just heard (e.g. whether they think 

as well; and as our results will show, participants in the 
Unproductive condition do not generalize even though the 
dominantly frequent word exhibits substitutability.  Therefore, we 
think there is strong evidence that learners use the overall 
distributional information to learn recursive structures. 
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a native speaker of the language would have said that 
particular string). 1 meant the string was definitely not from 
the language; 2 meant the string may not have come from the 
language; 3 meant the string may or may not have come from 
the language; 4 meant the string may have come from the 
language; 5 meant the string definitely came from the 
language. The test strings were generated to include either 
one (X1-ka-X2) or two levels (X1-ka-X2-ka-X3) of embedding. 
At each level, there were three types of test strings: attested 
strings, unattested strings, and ungrammatical strings. 
Attested strings were strings or combinations of two strings 
that had been heard during exposure. For example, in the 
sample attested test strings in Table 2, waso-ka-mito, sane-
ka-kewa, and kewa-ka-nogi have all been attested. Unattested 
strings were strings or combinations of two strings whose 
post-ka position (X2 or X3) was occupied by a word that never 
appeared in X2 position during exposure. Thus, in the 
unattested strings in Table 2, sane, tesa and tana have never 
been attested after ka. Finally, ungrammatical strings were 
strings with wrong word order, such as ka-X1-X2 or ka-X1-X2-
X3-ka. There were six test strings of each type at each level, 
leading to 36 test strings in total. We designed our test strings 
such that in each string type, there were both words of higher 
frequency and words of lower frequency, in order to avoid 
the influence of token frequency in the test. The test strings 
were delivered in random order. 
 

Table 2: Sample test strings in Unproductive condition.  
 

Type One-level Two-level 
attested waso-ka-mito sane-ka-kewa-ka-nogi 

unattested nogi-ka-sane waso-ka-tesa-ka-tana 

ungrammatical ka-bila-kosi ka-waso-kosi-sito-ka 
 

In both conditions, participants are expected to rate attested 
strings significantly higher than ungrammatical strings at 
both levels. Of particular interest are the unattested strings. 
According to the distributional learning proposal, only 
participants in the Productive condition would learn position 
X1 and position X2 are productively substitutable in the X1-ka-
X2 structure, and thus generalize this pattern to unattested 
words: If a word appeared in position X1 during exposure, it 
must be able to appear in position X2 as well, even though it 
was never attested there in the input. On the other hand, 
participants in the Unproductive condition would not learn 
that position X1 and position X2 are productively substitutable: 
for words that only appeared in position X1, they would be 
more likely to assume that they cannot appear in position X2 
than participants in the Productive condition. Therefore, it is 
predicted that participants in the Productive condition would 
rate one-level unattested strings higher than participants in 
the Unproductive condition. Furthermore, given the 
productivity of the structure at level-one, participants in the 
Productive condition would acquire the generalization that all 
of the 12 words can be freely embedded in recursive X1-ka-
X2 structures, but for participants in the Unproductive 

condition this structure cannot be generalized beyond the 
attested examples. Thus, participants in the Productive 
condition are predicted to rate two-level unattested strings 
higher than participants in the Unproductive condition as well.  

Results 
The rating scores for one-level and two-level test strings were 
shown in Figure 1 and Figure 2 respectively.  

We analyzed the results using ordinal regression, with 
rating score as an ordered factor from 1 to 5, test string Type 
(attested, unattested, or ungrammatical) and Condition 
(Unproductive, Productive) as fixed effects, and by-
participant random intercepts and random slopes for Type.At 
one level, there was no main effect of Condition (χ2(1) = 0.02, 
p = 0.90), but there was a significant main effect of Type (χ2(2) 
= 253.00, p < 0.001). Post-hoc pairwise comparisons 
suggested that in the Unproductive condition, unattested 
strings were rated significantly lower than attested strings 
(𝛽	= 1.65, SE = 0.22, z = 7.43, p < 0.0001), and significantly 
higher than ungrammatical strings, but to a lesser degree (𝛽= 
0.75, SE = 0.21, z = 3.57, p = 0.001); in the Productive 
condition, unattested strings were rated significantly lower 
than attested strings (𝛽= 1.15, SE = 0.22, z = 5.20, p < 0.0001), 
and significantly higher than ungrammatical strings (𝛽= 1.62, 
SE = 0.22, z = 7.51, p < 0.0001). There was also a significant 
interaction between Type and Condition (χ2(2) = 8.67, p = 
0.01). Thus, overall, in both conditions, unattested strings 
were rated lower than attested strings and higher than 
ungrammatical strings, but unattested strings were regarded 
more similar to ungrammatical strings in the Unproductive 
condition than in Productive condition. Comparisons 
between conditions showed that unattested strings were rated 
marginally lower in the Unproductive condition than in the 
Productive condition (𝛽= -0.48, SE = 0.28, z = -1.71, p = 
0.09).  

 
 

 
 

Figure 1: Mean rating scores for each type of one-level 
test strings. Error bars indicate standard errors of the mean. 
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For two-level test strings, again there was no main effect 
of Condition (χ2(1) = 0.06, p = 0.81), but a significant main 
effect of Type (χ2(2) = 323.82, p < 0.001). Post-hoc pairwise 
comparisons revealed that in the Unproductive condition, 
unattested strings were rated significantly lower than attested 
strings (𝛽= 3.35, SE = 0.25, z = 13.45, p<0.0001), but were 
not different from ungrammatical strings (𝛽= 0.26, SE = 0.22, 
z = 1.18, p = 0.47); in the Productive condition, unattested 
strings were rated significantly lower than attested strings 
(𝛽= 1.10, SE = 0.21, z = 5.22, p < 0.0001), and significantly 
higher than ungrammatical strings (𝛽= 1.39, SE = 0.22, z = 
6.44, p < 0.0001). There was a significant interaction between 
Type and Condition as well (χ2(2) = 52.74, p < 0.001). 
Therefore, the two conditions shared the pattern that the 
rating scores for unattested strings were between those for 
attested strings and ungrammatical strings, but unattested 
strings were rated significantly higher than ungrammatical 
strings only in the Productive condition. Comparison 
between conditions showed that unattested strings were rated 
significantly lower in the Unproductive condition than in the 
Productive condition (𝛽	= -1.18, SE = 0.39, z = -3.02, p < 
0.01). These results suggest that, while learners in the 
Productive condition learned that the X1-ka-X2 structure 
allows recursion, learners in the Unproductive condition treat 
additional levels of embedding as ungrammatical. 
 

 
 

Figure 2: Mean rating scores for each type of two-level 
test strings. Error bars indicate standard errors of the mean. 

 
In summary, at both one level and two level, participants 

rated unattested strings lower than attested strings and higher 
than ungrammatical strings, but unattested strings were rated 
higher in the Productive condition than in the Unproductive 
condition. In particular, recursive unattested strings were 
only distinguished from ungrammatical controls in the 
Productive condition. Therefore, the results suggest that as 
the distributional learning proposal predicted, speakers can 
use one-level distributional information to learn about 
recursive structures. 

General Discussions 
In this study, we investigated whether speakers can learn 
freely recursive structures purely based on the productivity of 
the structure in simple one-level embedding data. The 
distributional learning proposal argues that for a structure 
such as X1-ka-X2 if a large enough proportion of words are 
attested in both the X1 and X2 positions in one-level input, 
then speakers can acquire the generalization that the two 
positions are productively substitutable, so a word attested in 
one position is able to appear in the other position as well, 
even though it has never been attested in the other position in 
the input. Furthermore, once a structure is productive at one 
level, speakers will learn it can be freely embedded to any 
level. In contrast, if the number of words attested in both 
positions in the input does not reach the productivity 
threshold, speakers will assume the positions are not 
substitutable and thus the structure cannot be embedded 
further, except for specific items that have been attested in 
the input. We found that as predicted, participants exposed to 
productive input were more willing to accept one- and two-
level unattested strings than participants exposed to 
unproductive input; moreover, only participants exposed to 
productive input treated recursive unattested strings as 
significantly better than ungrammatical strings. Therefore, 
our results suggest that learners can indeed access the 
distributional information and perform the necessary 
computations as the distributional learning approach 
proposes. Together with previous corpus studies which 
demonstrated the availability and reliability of distributional 
information about structural productivity in naturalistic data 
(Grohe, Schulz, & Yang, 2020; Li et al., 2020), the findings 
indicate that the recursivity of a structure can be learned 
distributionally from language-specific level-one experience. 
Therefore, overall, the results imply that recursitivity can be 
viewed as a productive generalization, which can be acquired 
through distributional learning. This learning mechanism 
also avoids the logical problem of learning recursive 
structures, since it does not rely on explicit evidence of deep 
embedding; instead, it predicts that a structure can be freely 
embedded once it is productive at one level. Therefore, this 
learning mechanism enables speakers to acquire knowledge 
of infinite embedding from finite input data.  

The results of this study add to a body of work that 
investigates how distributional information can be utilized to 
acquire higher-order linguistic representations (e.g., Reeder, 
Newport, & Aslin, 2013; Schuler, Reeder, Newport, & Aslin, 
2017). We would like to make it clear that we are not arguing 
that children acquire the ability of recursion through 
distributional learning. Instead, we are interested in whether 
learners can use distributional information to learn to which 
specific structures recursion can be freely applied, which 
must be learned from language specific experience. 
Furthermore, the present study is focused on what speakers 
can learn about recursive structures from distributional 
information alone, and our results indicate distributional 
information itself already allows learners to distinguish 
structures that can be embedded freely from those that cannot. 
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However, we do not deny the important role of other factors, 
such as the well-recorded semantic, pragmatic, and phonetic 
constraints for the English of-genitive (e.g. Rosenbach, 2014), 
in the acquisition of recursive structures. Rather, we consider 
this work a first step toward future investigations into how 
learners coordinate and exploit different cues to learn which 
structures are recursive and the constraints on this recursion 
in the language they are acquiring.  

There is a curious question about the results: namely, if 
unattested strings were considered acceptable in the 
Productive condition, why were they still rated lower than 
attested strings? Although ideally one might expect 
unattested strings to receive the same scores as attested 
strings, we do not find this result surprising, given the 
complexity of the structure to be learned and the short 
duration of the exposure phase. Indeed, even experiments 
with natural language found that ratings from native speakers 
get lower as the number of embeddings in a sentence go up  
(e.g. Christianson & MacDonald, 2009). Crucially, only 
participants in the Productive condition of our experiment 
distinguished recursive unattested strings from 
ungrammatical strings, and they always rated unattested 
strings higher than participants in the Unproductive condition. 

Another important question is whether the learners in our 
experiment acquired a hierarchical structure from the 
artificial language input or if they simply acquired the linear 
order of strings.  Generalizing the X1-ka-X2 structure to X1-
ka-X2-ka-X3 involves tail-recursion, which, in the absence of 
a referential world, could be accomplished with simple 
iteration. We agree that our design does not rule out the 
possibility that learners may not have acquired a hierarchical 
structure from our language input. However, some artificial 
language learning studies have found that if human learners 
can apply certain distributional learning strategy to linear 
strings, they are also able to apply it to hierarchical structures 
(Takahashi & Lidz, 2008; Thompson & Newport, 2007). 
Therefore, even though what our participants have learned is 
a linear structure, we think they are also likely to learn 
hierarchical structures with the same mechanism. We plan to 
test this by constructing an explicitly hierarchical language as 
in Takahashi & Lidz (2008) and Thompson & Newport 
(2007). 

Another possible interpretation of the results is that 
participants were learning categories: In the Productive 
condition, they learned all the words belong to one productive 
category, whereas in the Unproductive condition, they 
learned the words belong to different categories and are thus 
uninterchangeable. We suggest this interpretation is not 
necessarily inconsistent with the distributional learning 
proposal. For example, the corpus study in Li et al. (2021) 
showed that for freely recursive structures in English, 
Mandarin, and German, there is no constraint on the words 
that can appear in either position, i.e. all words can be viewed 
as belonging to one productive category; in contrast, for 
restricted structures, the words which can be used in certain 
position do form semantic subcategories. For instance, for the 
restricted possessive structure  X1’s-X2  in German, words that 

are attested in X1 are limited to close kinship terms. We will 
examine the exact relation and distinction between categories 
and recursion in future research. 

Finally, the present experiment was conducted with adult 
participants. However, it is unknown whether young learners 
can also fully utilize such distributional information, given 
their more limited cognitive abilities. Previous studies have 
suggested that children and even infants can learn 
grammatical rules through distributional learning (e.g. 
Emond & Shi, 2020; Marcus, Vijayan, Rao, & Vishton, 1999), 
but the rule to be learned in this study is more abstract than 
those investigated before. In addition, some studies suggested 
that distributional learning is an ability available from birth 
(e.g. Aslin, 2017; Grevain, Macagno, Cogoi, Pena, & Mehler, 
2008; Teinonen, Fellman, Naatanen, Alku, & Huotilainen, 
2009). Therefore, it is necessary for future research to 
examine whether young learners exploit the distributional 
cues in the same way as the adults in the present study, and 
at what age this distributional learning is available. 
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