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Summary

Human pluripotent stem cells (hPSCs) have the intrinsic ability to self-organize into complex 

multicellular organoids that recapitulate many aspects of tissue development. However, robustly 

directing morphogenesis of hPSC-derived organoids requires novel approaches to accurately 

control self-directed pattern formation. Here, we combined genetic engineering with 

computational modeling, machine learning, and mathematical pattern optimization to create a 

data-driven approach to control hPSC self-organization by knockdown of genes previously shown 

to affect stem cell colony organization, CDH1 and ROCK1. Computational replication of the in 
vitro system in silico using an extended Cellular Potts model enabled machine learning driven 

optimization of parameters that yielded emergence of desired patterns. Furthermore, in vitro the 

predicted experimental parameters quantitatively recapitulated the in silico patterns. These results 

demonstrate that morphogenic dynamics can be accurately predicted through model-driven 

exploration of hPSC behaviors via machine learning, thereby enabling spatial control of 

multicellular patterning to engineer human organoids and tissues.
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One Sentence Summary

Data-driven computational modeling, machine learning-based prediction, and experimental 

validation of self-organized spatial patterns in human induced pluripotent stem cells.

Graphical Abstract

Libby and Briers et al. created a computational model of pluripotent stem cell (PSC) dynamics, 

enabling a machine learning optimization approach to predict experimental conditions that yield 

targeted multicellular patterns. These results demonstrate that cellular dynamics can be predicted 

through model-driven exploration of behaviors, thereby facilitating spatial control of multicellular 

organization.

INTRODUCTION

During the early stages of embryonic development, patterned self-assembly of cells is 

essential for the organization of primitive germ layers, multicellular tissues, and complex 

organ systems (Montero & Heisenberg, 2004). Similarly, human pluripotent stem cells 

(hPSCs) maintain the ability to self-organize, differentiate to all three germ layers, and 

generate 3D organoids that replicate primitive tissue structure and function (Bredenoord, 

Clevers, & Knoblich, 2017; Sasai, 2013; Warmflash, Sorre, Etoc, Siggia, & Brivanlou, 

2014); hence, hPSCs provide a robust and tractable system to observe, quantify, predict, and 

ultimately control collective cellular behaviors (Pir & Le Novère, 2016). The ability to direct 
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heterotypic cell self-organization and concurrently specify cell fate can enable the possibility 

of directing organogenesis via cell-intrinsic routes.

Although several in vitro and in silico frameworks for multicellular patterning have been 

independently developed, the ability to predict and direct de novo multicellular organization 

has yet to be demonstrated. Previously, several groups (M. Molitoris et al., 2016; Tewary et 

al., 2017; Warmflash et al., 2014) have induced radial organization of differentiated germ 

layers by restricting hPSC colonies to micropatterned islands, or have used molecular 

engineering of cell surface and/or substrate properties to extrinsically control cell location 

and subsequent multicellular patterning in vitro (Chandra Ravi A., Douglas Erik S., Mathies 

Richard A., Bertozzi Carolyn R., & Francis Matthew B., 2005; Hsiao et al., 2009; L. 

MacKay, Sood, & Kumar, 2014; M. Molitoris et al., 2016; Toda, Blauch, Tang, Morsut, & 

Lim, 2018). However, the resulting patterns that arise spontaneously afford limited control 

of precise multicellular organization or circumvent the intrinsic mechanisms that regulate 

cell-mediated morphogenic assembly. Theoretical in silico frameworks have been developed 

to computationally model multicellular organization (Bartocci, Gol, Haghighi, & Belta, 

2016; Briers, Haghighi, White, Kemp, & Belta, 2016; Sharpe, 2017) and automate the 

design of non-spatial cellular logic (Nielsen et al., 2016). However, although computational 

approaches can test general principles of biology in silico, it is often difficult to directly map 

these models to specific in vitro mechanisms and perturbations, making it challenging to 

systematically synthesize experimentally tractable perturbations in silico that can be 

accurately reproduced in vitro.

In this proof-of-principle study, we paired CRISPR interference (CRISPRi) driven genetic 

perturbations of human induced pluripotent stem cells (hiPSCs) with computational 

modeling, machine learning, and mathematical optimization to facilitate a “closed loop” 

cycle of in silico hypothesis generation that could be experimentally validated in vitro. To 

predict multicellular pattern formation, we combined a multi-scale Cellular Potts model 

(Graner & Glazier, 1992; Krieg et al., 2008; Magno, Grieneisen, & Marée, 2015; Marée, 

Grieneisen, & Hogeweg, 2007; Ouchi, Glazier, Rieu, Upadhyaya, & Sawada, 2003; Pir & Le 

Novère, 2016) of behavior driven cell sorting with an automated machine learning and 

optimization procedure, referred to as “Multicellular Pattern Synthesis” (Bartocci et al., 

2016; Briers et al., 2016), that consisted of four steps (Fig. 1). First, we created a 

computational model of observed hiPSC self-organization that quantified collective stem cell 

dynamics and captured how targeted changes in the mechanical profiles of sub-populations 

of cells affected stem cell colony patterning. Second, a supervised machine learning 

classifier was trained to quantify pattern similarity to the desired pattern using images from 

our computational model. Third, we employed mathematical optimization, specifically 

Particle Swarm Optimization (PSO), to simulate thousands of potential designs and identify 

specific experimental conditions that yielded unique patterns in in silico simulations. Finally, 

we tested the in silico predicted conditions with hiPSCs in vitro and obtained the desired 

multicellular patterns with similar frequency and quantitative characteristics, thereby 

validating the predictive in silico system. As an initial exploration of the impact of 

patterning, we examined regional changes to cell fate commitment in patterned colonies of 

hiPSCs upon differentiating in response to morphogen treatment (BMP4).
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RESULTS

Pattern Synthesis: in silico prediction and automated discovery of spatial behaviors

To observe multicellular pattern formation, we used a previously established hiPSC line with 

a DOX inducible CRISPRi system, allowing for temporal gene knockdown (KD) wherein 

mixed populations establish KD in only a portion of the colony, creating a symmetry 

breaking event and subsequent pattern formation (Libby et al., 2018; Mandegar et al., 2016). 

However, the generation of new patterns in a predictable manner requires the ability to test 

large numbers of experimental conditions that would require a massive amount of time and 

manual effort to comprehensively test the vast number of experimental parameters possible. 

For example, to experimentally explore the parameter space of a single gene knockdown 

where the following parameters are varied: knockdown timing (3 timing schemes tested), 

duration of experiment (5 durations tested), degree of gene knockdown (5 knockdown levels 

tested), and proportion of population that is knocked down (9 percentages tested), one would 

need to perform 675 total experiments. Given the biological variability we observe within 

our in vitro experiments (Fig. 4), a power analysis suggests that a minimum of 

approximately 13 biological replicates would be necessary to detect significant differences 

between individual experiments (12.85 observations required, with significance assessed at p 

< 0.05, 80% probability of accepting the alternate hypothesis, corrected for multiple 

comparisons), yielding approximately 9,000 total conditions or roughly ninety four 96-well 

plates, where one well represents a single condition. Alternatively, a machine learning and 

optimization algorithm, such as “Pattern Synthesis” (Bartocci et al., 2016; Briers et al., 

2016), can automatically and efficiently discover experimental conditions and robustly 

predict the de novo self-organization of hiPSCs into desired target patterns.

Pattern Synthesis required two inputs: a model of hiPSC behavior, and images of the desired 

pattern (i.e. “goal”) outcomes. First, we developed a computational model of hiPSC colony 

organization as a result of a single gene KD (Fig. 1A). Next, we generated images of desired 

and undesired spatial patterns to train a machine learning algorithm that establishes a pattern 

classifier with a quantitative metric of pattern similarity (Fig. 1B) (Bartocci et al., 2016; 

Haghighi et al., 2015). Given these inputs, we formalized pattern discovery as an 

optimization problem where the objective was to maximize the similarity score of images 

from our computational model to our desired spatial pattern (Fig. 1C). The variation 

between different simulations was based upon five categories of in vitro perturbations that 

could be readily created in hiPSC colonies (Fig. 1D).

Data-Driven Computational Model of Human iPSC Self-Organization

Several different experimental and computational studies support the vital role of local cell-

cell mechanical interactions in the form of interfacial tension in spatial 

patterning(Heisenberg, 2017; Maître et al., 2012). Differences in cell-cell adhesion (Foty & 

Steinberg, 2005; Jia, Dajusta, & Foty, 2007; Maître & Heisenberg, 2013; Steinberg, 1975), 

cell-cell repulsion (Taylor et al., 2017), and cortical tension (Brodland, 2002; Heisenberg & 

Bellaïche, 2013; Krieg et al., 2008) have been shown to collectively orchestrate spatial 

organization in diverse organisms such as Dictyostelium discoideum (slime mold) (Kay & 

Thompson, 2009; Palsson, 2008), Danio rerio (zebrafish) (Merks, Perryn, Shirinifard, & 
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Glazier, 2008), and in mammalian cells (Bentley et al., 2014; Toda et al., 2018). However, it 

is challenging to both predict and control spatial patterning in human iPSCs since the design 

of multicellular systems rapidly increases in complexity when considering the dynamics of 

single cell mechanics and cell-cell interactions. These dynamics include, but are not limited 

to, temporal changes in interfacial tension associated proteins, cell type abundance, cell 

division, and cell migration velocities.

To capture the complex dynamic interactions involved in multicellular patterning, we 

developed a data-driven Cellular Potts model (CPM) to predict spatial patterning in hiPSCs 

due to the time-dependent modulation of cell-cell adhesion and cortical tension 

(Supplementary Text). The CPM represents the spatial environment of stem cells grown in a 

monolayer using a 2D square lattice grid (Fig. 1A). Each square region in the grid (i.e. a 

lattice site) is equal to 1 square micrometer, hence each lattice site represents a partial region 

of a cell’s membrane or the medium surrounding a cell. A cell ID is assigned to each lattice 

site to identify the region of a cell that occupies a lattice site. For example, 100 lattice sites 

each having a cell ID equal to 1 represent a single stem cell with an area of 100 square 

micrometers. Complex behaviors such as preferential cell-cell adhesions, cortical tension, 

and cell migration, are achieved by copying lattice sites to adjacent regions (i.e. moving a 

region of the cell to a new lattice site), which in the CPM is referred to as a copy attempt. 

Each copy attempt is accepted with a probability related to a Hamiltonian function (SI 

Equations 3–5). The Hamiltonian function is the sum of four competing forces influencing 

intracellular behaviors and cell interactions with the environment: 1) conservation of cell 

area, 2) locally polarized cell migration, 3) cell-cell adhesion, 4) and cortical tension (SI 

Equations 5–10). Every competing force is represented by a score and a weight, where the 

score represents a reward or penalty depending on the divergence of a cell from its target 

behavior, while the weight represents the relative importance of the respective cell behavior.

Briefly, using the CPM, we modeled an in vitro system consisting of two populations of 

iPSCs co-cultured for up to 120 hours. To connect the in silico model to potential genetic 

targets for in vitro experimental manipulation, we focused on using CRISPRi KD, which 

provides precise temporal control over protein expression, of two molecules associated with 

regulating cellular mechanics and cell-cell interactions: E-cadherin (CDH1) and Rho 

associated coiled-coil containing protein kinase (ROCK1). CDH1 is a classical cadherin 

cell-cell adhesion molecule, whose modulation allows for changes in the adhesive 

interactions between neighboring cells, and ROCK1 is a protein kinase that regulates non-

muscle myosin activity and indirectly modulates the actinomyosin cytoskeletal tension 

within and between cells. These two molecules contribute to feedback loops that regulate 

interfacial tension between cells within a tissue and facilitate the physical organization of 

multiple cell types making them ideal candidates that when knocked down alter the cellular 

organization within a pluripotent stem cell colony (Libby et al., 2018).

To fit the in silico model to an in vitro experimental training set, pairwise in vitro 
characterization experiments were performed to determine the relationship between space, 

time, and protein expression (Fig. 2A) in wildtype (WT), CDH1 KD and ROCK1 KD 

hiPSCs. These relations were established by in vitro measurements of single cell 

morphological changes (Fig. S1), migration velocity magnitudes (Fig. 2B–D), protein 
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expression changes (Fig. 2E–G), and colony organization (Fig. 2H–I) before and after 

mosaic KD of CDH1 and ROCK1 in hiPSC colonies. The purpose of these characterization 

experiments was two-fold: 1) to reduce the complex interactions into quantifiable 

relationships, 2) and to create a closed-loop mapping between in vitro perturbations and in 
silico simulation parameters.

To characterize cell morphology, brightfield images of wild-type (WT), CDH1(−), and 

ROCK1(−) cells were collected 6 days (144 hours) after gene knockdown. Single cell in 
vitro cell area and membrane length measurements (Fig. S1) were acquired to set the target 

cell area and target cortical tension in the simulations, respectively (n= 110 per cell type). In 

the CPM, the weight associated with cortical tension constraint regulates how readily a cell 

can change its cell membrane length and relates to cell membrane stiffness. Due to 

differences in cell crowding in the center versus the edge of colonies, cell morphology 

measurements were fixed given a cell’s mechanical modulation and its radial position in the 

colony (n=55 central, 55 edge) (Table S2, Fig. S1). Cell division was assumed to be 

asynchronous amongst the population, and cell division times specific to each type of 

knockdown were incorporated into the model to provide an accurate depiction of population 

growth kinetics.

The relationship between cells in space with respect to time was characterized by measuring 

the in vitro distribution of individual cell velocities, resulting in an empirical median 

velocity magnitude of 0.29 μm/minute and median absolute deviation (MAD) of 0.10 μm/

minute (Figs. 2B, 2D). The distribution of velocity magnitude values was then used to model 

collective cell migration as locally polarized motility where the direction of cell migration is 

influenced by the relative cell adhesion strength of neighboring cells (Czirók, Varga, Méhes, 

& Szabó, 2013). A grid search was performed for cell-cell adhesion and cortical tension 

parameters for WT. We then selected the parameter combination that mostly closely mimics 

the in vitro velocity measurements, producing a comparable distribution with a median in 
silico velocity magnitude of 0.31μm/minute and MAD of 0.15 μm/minute (Figs. 2C, 2D). 

Importantly, the in silico generated velocity distributions were not significantly different 

from the in vitro measured velocities (Mann-Whitney U test, p = 0.29, N=2781). To further 

test how robust these results were to random variation in the initial population size of the 

colony, we generated 24 additional simulations of the optimal parameter combination which 

had a median velocity of .34 um/min and MAD of 0.15 um/min (N=78,747 cells). We then 

performed a Mann Whitney U test (p=0.51, N=78,747 in silico, N=1708 in vitro), showing 

our simulations robustly represent the velocity magnitudes observed experimentally. When 

selecting optimal parameters, we also manually inspected images and only evaluated 

parameter combinations where individual cells remained part of a dense epithelial colony 

without migrating from the exterior borders to match the hiPSC phenotype observed in vitro. 
After fitting the model to empirical data of cell morphology, velocity, and single cell 

morphology, collective cell migration of human iPSC colonies were accurately recapitulated 

(Movies S1–S2).

To characterize how protein expression changes in relation to time, CDH1 and ROCK1 were 

knocked down using CRISPRi, and the relative mRNA and protein expression was assessed 

for 6 consecutive days via qPCR, fluorescence microscopy, (Fig. 2E, Fig S2) and Western 
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blot analyses (Libby et al., 2018). Due to our previous observation of the phenotypic 

robustness of CDH1 knockdown in promoting cell self-organization(Libby et al., 2018), we 

designed several CRISPRi guide RNAs to target CDH1 producing different levels of 

transcriptional knockdown at 10%, 25%, 30%, and 98% compared to WT expression. A 

single guide RNA for ROCK1 knockdown was used to achieve 80% knockdown of WT 

expression levels (Fig. S3). The data was normalized (min-max [0,1]) and Hill Functions 

were fit to the normalized median expression (per day) using least squares optimization to 

create a time-dependent response function for CDH1 knocked down to 90%, 75%,70%, and 

2% of the original mRNA expression (Fig. 2F). This range of knockdown efficiency allowed 

us to computationally model how differing levels of CDH1 expression could impact spatial 

patterning. Using the same approach as the CDH1 knockdown, we created a Hill response 

function for ROCK1 knocked down to 20% mRNA expression. Because of a delay in protein 

knockdown compared to mRNA levels, the Hill functions were shifted by 24 hours to 

account for the delay in protein loss (Fig. 2G), allowing us to model the average change in 

ROCK1 protein expression for individual cells over time.

Given the previous characterization experiments, we were able to model collective cell 

migration and temporal changes in cell mechanics. To model the spatial patterning due to the 

temporal modulation of cell-cell adhesion via CDH1 or cortical tension via ROCK1, either 

inducible ROCK1 knockdown or inducible CDH1 knockdown iPSCs were co-cultured with 

WT iPSCs, where knockdown of gene expression was induced upon mixing the two cell 

types. Then, images of the mixed populations were collected 96 hours after gene knockdown 

and co-culture. As previously reported (Libby et al., 2018), mixed colonies with a 

subpopulation of cells that had reduced CDH1 or ROCK1 expression produced distinct 

mosaic patterns due to reduced cell-cell adhesion and increased membrane stiffness 

properties respectively (Figs. 2H–I (left)). In silico, parameter sweeps were run over a range 

of adhesion strength and membrane length values to explore the phenotypic space resulting 

from decreases in cell-cell adhesion and increases in membrane stiffness. Computationally 

varying the adhesion strength produced a variety of spatiotemporal patterns due to 

progressively weaker cell-cell adhesion or progressively stiffer cell membrane parameter 

values. Double-blind analysis of in silico and in vitro generated data sets was then conducted 

to identify parameters that yielded closely matching multicellular patterns (Figs. 2H–I 

(right)). Given the characterization experiments of cell morphology, cell migration speed, 

time-dependent modulation of cell mechanics, and the resulting spatial organization, the 

computational model was able to recapitulate the spatial patterning due to the CDH1 and 

ROCK1 knockdowns (Movies S3–S6).

Overall, after incorporating in vitro measurements into our computational model, we 

accurately recapitulated hiPSC spatial patterns with the initial experimentally derived 

parameters in mixed colonies of WT and CDH1 KD cells or WT and ROCK1 KD cells 

(Movies S2–S6)(Libby et al., 2018).

Formulating Parameters for Design Automation

Given the success in matching the computational model to the in vitro experimental training 

set, we then introduced five new design parameters to simulate in vitro experimental 
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perturbations, allowing us to model exponentially more permutations of experimental design 

than would be feasible in vitro. The five design parameters were: i) the gene knockdown 

target of cell population 1, ii) the knockdown time for cell population 1, iii) the gene 

knockdown target of cell population 2, iv) the knockdown time for cell population 2, and v) 

the ratio of the distinct cell populations (Fig. 1D, Table S1). These additional design 

parameters allowed us to convert trial-and-error based design into a mathematical 

optimization problem that could be computationally solved in silico without time-consuming 

and costly additional experiments. Although computational design frameworks for 

multicellular spatiotemporal patterning have been used in several previous studies (Krieg et 

al., 2008; Marcon, Diego, Sharpe, & Müller, 2016; Tewary et al., 2017), they often propose 

underlying morphogenic mechanisms with limited perturbation potential in vitro. Thus, an in 
silico optimization framework that directly informs subsequent experimental designs is 

critical to survey the high-dimensional landscape of morphogenesis.

Quantitative Pattern Classification

The second input to the Pattern Synthesis procedure was a supervised image classifier 

known as Tree Spatial Superposition Logic (TSSL) (Bartocci et al., 2016). TSSL uses a 

quadtree data structure to represent spatial relationships in an image at multiple levels of 

detail, where the highest level captures global aspects of an image, while the lower levels 

capture local spatial relationships. For example examining a checkerboard image with some 

variation (Fig. 3Ai), the TSSL would generate a unique quadtree (Fig. 3Aii) representing the 

levels of complexity within the image (Bartocci et al., 2016; Finkel & Bentley, 1974; Jackins 

& Tanimoto, 1983). A rule-based machine learning algorithm (RIPPER) (Cohen, 1995) was 

employed to automatically learn a set of rules over the values of quadtree vertices specific to 

an in silico training set of 3,000 positive and 13,000 negative manually rendered images of 

cells precisely organized into target patterns, such that a quantitative score of pattern 

similarity could be assigned to any image from the associated quadtrees (STAR Methods) 

(Fig 3Aiii). The magnitude of the similarity score, which can range from −1 to +1, indicates 

how strongly a simulation image matches (positive scores) or violates (negative scores) the 

target spatial behavior. Use of a TSSL robustness score replaces qualitative manual 

observation of simulation images with a quantitative score of pattern similarity.

Analogous to the checkerboard example, this algorithm can be applied to more complex 

images such as a target organizational pattern within the CPM (Fig. 3Aiv–v) where the 

generated quadtree from the TSSL of each desired pattern is used to recognize and rank 

pattern similarity (Fig. 3Av). As a proof-of-principle, we first attempted a concentric ring 

(i.e. “Bullseye”) pattern, defined as one population of 50 or more connected cells completely 

surrounded by a second population (Fig. 3Ci). The annular Bullseye pattern was chosen 

because similar asymmetric cell organization occurs multiple times in human development, 

such as during early embryo compaction leading to the formation of the inner cell mass in 

the human blastocyst (Deglincerti et al., 2016; Ducibella & Anderson, 1975; Ziomek & 

Johnson, 1980). The second target was a Multi-Island pattern, consisting of at least three 

distinct clusters of 25 or more cells completely surrounded by a separate larger population 

(Fig. 3Cii). The Island pattern was chosen to demonstrate the reproducibility of previously 

observed segregation of cell populations in vitro (Libby et al., 2018) and to test whether this 
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can be predictably controlled. To first demonstrate that the automated classifiers could 

reliably detect and distinguish between desired and undesired spatial patterns, the classifiers 

were tested using an in silico set of 1,000 positive and 5,000 negative images. The TSSL 

classifiers achieved a 98.2% classification accuracy for the Bullseye and 96.9% 

classification accuracy for the Multi-Islands pattern, meaning that the TSSL algorithm can 

properly recognize and score Bullseye or Island patterns nearly 100% of the time.

By quantifying how well images from an in silico multicellular arrangement matched images 

of our target organization, we enabled the optimization algorithm (described in the next 

section) to incrementally improve and learn a unique combination of design parameters that 

could give rise to a desired goal pattern.

Automated Discovery of Pattern Producing Conditions

The CPM allows simulation of more than 40,000 distinct parametric conditions and 

facilitating the study of emerging behaviors of hiPSCs much faster than in vitro experiments. 

Distributing the computation over 12 processors at 2.1 GHz on a server cluster, it only took 

approximately 5 minutes to simulate the evolution of one cell population over 120 hours. To 

recapitulate this same experiment in vitro, 13 96-well plates would need to be cultured in 

parallel for 120 hours, demonstrating that in silico experimentation can accelerate parameter 

exploration more than a 1,000-fold. The simulation speed permitted examination of a wide 

range of different experimental conditions in a rapid and inexpensive manner, taking both 

the labor and reagent costs into account. However, due to the tens of thousands of 

experimental conditions to consider and the resulting months of computation for such a large 

number of simulations, it quickly became impractical to enumerate every possible set of 

conditions to identify parameter combinations that yielded the highest robustness score(s). 

Thus, to automate the discovery of conditions that yielded goal spatial patterns, we 

formulated the selection of experimental conditions as an optimization problem.

Using the TSSL-provided metric of image similarity, a Particle Swarm Optimization 

(Eberhart & Kennedy, 1995) was employed to identify regions of the 5-dimensional design 

space, created by the available design parameters, with the highest probability of producing 

a target pattern (Bullseye or Multi-island) (Fig. 3B). In brief, the Particle Swarm 

Optimization first explores the extremes of the 5-dimensional experimental space, where 

every extreme represents a set of experimental parameters that are run as an in silico 
experiment using the previously described CPM. Then the resulting patterns from this first 

set of in silico experiments are given scores. The algorithm then narrows its focus to the 

experimental space that produced experiments resulting in higher scores, doing this 

iteratively further selecting for the experimental space that is most likely to produce the 

highest TSSL score and therefore the patterns that most closely resemble the goal pattern. A 

full explanation of the particle swarm algorithm can be found in the STAR Methods.

For any in silico simulation, where the previously described design parameters are varied to 

represent a different experimental condition, the Patterning Synthesis algorithm determined 

whether the generated pattern was successful (Fig. S4A), and whether the similarity score 

improved over the simulated period of 120h by at least one order of magnitude, eventually 

reaching a steady state (Fig. S4B). Analyzing the temporal dynamics of robustness scores 
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provided insight into the exact time a pattern emerged in silico, and optimized design 

parameters for target patterns that closely resembled, but still resembled the desired spatial 

behavior. The final output of the particle swarm algorithm is a list of experimental 

parameters that are predicted to generate the desired pattern both in the in silico CPM and 

the in vitro stem cell culture system after 120 hours of mixed culture (Fig. 3C).

In addition to automating the design of de novo spatial patterns, we could also determine the 

feasibility of any spatial pattern given the tunable conditions of the system. Although it is 

impossible to exclude experimentally that a particular pattern can never be generated in vitro 
(it would require testing all possible conditions), in silico certain de novo patterns resulted in 

negative robustness scores (violating the pattern specification), indicating that the cell 

population, under the current perturbations available (knockdowns, mixing ratios, etc.) was 

unable to perfectly recapitulate the desired spatial behavior. For example, the algorithm was 

able to determine that a perfectly symmetrical “Janus” pattern (left-right)(Fig. 3Ciii) was not 

achievable with the primary experimental variables (i.e. timing of CDH1/ROCK1 

knockdowns and the ratio of cell types co-cultured in an approximately 2D monolayer), 

indicating that additional parameters such silencing of other genes may be necessary to yield 

such a pattern.

In Silico Model Accurately Predicts In Vitro Experimental Validation

The Patterning Synthesis algorithm yielded different sets of instructions to produce either a 

Bullseye pattern or a Multi-Island pattern of hiPSCs. The Pattern Synthesis predicted that a 

mixture of 1:4 ROCK1 KD iPSCs to CDH1 KD iPSCs that were independently pretreated 

with DOX for 6 days prior to mixing and cultured together for 4 days would yield a Bullseye 

pattern (Fig. 3Ci) and that a mixture of WT cells with CDH1 KD at a ratio of 1:4 with DOX 

pretreatment of iPSCs for 48h prior to mixing would create the Multi-Island Pattern (Fig. 

3Cii).

Based on these predictions, in vitro experiments were performed using the specified 

conditions, and the incidence of pattern formation was independently analyzed for in silico 
and in vitro results (Figs. 4A–D). The experiments were performed with unrestricted colony 

growth (i.e. no patterned matrix restriction)(Tewary et al., 2017; Warmflash et al., 2014) to 

ensure that cellular organization within the colony was not driven by imposed boundary 

conditions. To account for colony size differences affecting the resulting patterns, only 

colony sizes within two standard deviations of the mean number of cells per colony were 

examined for pattern formation. We characterized the morphology of in silico and in vitro 
generated patterns by interrogating subpopulation cluster circularity, number of clusters, and 

cells per cluster within the colony (Fig. S5). However, the in vitro experimental results were 

more variable and yielded a wider range of results, which may be due to biological 

variability in wet lab experimentation or subtle variations in cellular behavior that the in 
silico model does not take into account. Comparing the robustness scores generated for both 

the parallel in silico and in vitro experiments indicated that the optimal in vitro bullseye and 

islands patterns had larger robustness than their respective control images (at least an order 

of magnitude difference). The robustness scores are highly comparable only when they are 

calculated in the same setting also known as a domain; thus, a simulation vs. a simulation 
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control is quite comparable whereas an in silico simulation vs. an in vitro experimental 

image will inherently differ to some extent. The in silico model and experimental 

optimization predicted that a Bullseye Pattern would be achieved ~12% of the time, which 

closely matched the in vitro frequency (~16%; Fig. 4B). Similarly, a Multi-Island Pattern 

was predicted to occur 100% of the time by the model and was achieved in ~87% of the in 
vitro experiments (Fig. 4D). Overall, these results demonstrate that in silico modeling 

accurately classified and predicted desired pattern formation achieved by hiPSC self-

organization in vitro.

To determine how robust the predicted parameters were within the in vitro system, the 

proposed mixing ratios of the populations were incrementally varied by 10 percent (n=16 

per condition) (Fig. 4E, Fig. S6). Robustness scores for each of the mixing ratios were 

calculated (Fig. 4Ei–ii) to compare how well each condition produced patterns similar to the 

respective target (Bullseye or Island). In Bullseye patterns, a 50 percent change in mixing 

ratio from the predicted parameters (80% CDH1KD : 20% ROCK1 KD) resulted in 

significant decrease in pattern robustness scores (p < 0.05) (Fig. 4Ei). Despite an increase in 

the robustness scores for the Island patterns in the in silico experiments, there were no 

significant differences in the robustness scores calculated for the parallel in vitro 
experiments with varying population ratios (Fig. 4Eii). Robustness scores produced by the 

TSSL algorithm in vitro were uniformly lower and had higher variance than the comparable 

in silico conditions (Fig. 4Ei–ii), reflecting the greater difficulty in classifying natural 

images over the synthetic images generated by the Cellular Potts Model. Due to the domain 

change from in silico to in vitro images, the TSSL algorithm was less able to confidently 

recognize patterns and explain variability both within and across experiments, resulting in 

reduced discrimination between mixing ratios. Additionally, differences could be due to the 

fact that the CPM used is a 2D model that does not account for possible vertical movement 

within a hiPSC colony. However, since the primary goal of the TSSL was to enable in silico 
Pattern Optimization, the decreased classification power for in vitro images did not 

adversely impact the ability of Pattern Optimization to predict conditions that resulted in the 

desired target patterns.

Colony Organization Impacts Initial Patterns of iPSC Differentiation

During human development, cell autonomous pattern formation is intimately coupled with 

cell fate decisions that lead to complex tissue structures. Therefore, we interrogated how the 

experimentally generated multicellular patterns affected subsequent hiPSC differentiation. 

We examined the initial cell fate commitment after treatment with BMP4 for 48 hrs (Fig. 

S7A–B) with a panel of markers descriptive of different differentiation stages (Fig. S7C). In 

brief, hiPSCs were marked by high OCT4 and SOX2 expression in the pluripotent state, then 

as differentiation proceeded, the first lineage fate decision was marked by upregulation of 

markers associated with the gastrulating primitive streak (Brachyury (BRA(T)), SNAIL). 

Cells then transitioned through a mesendodermal fate (EOMES) before displaying 

mesoderm (GATA4) or endoderm (SOX17) specific markers. The ectoderm lineage 

remained SOX2(+). Additionally CDX2 was used to mark both extra embryonic lineages 

and presumptive neural plate cells within the neuroectoderm. (Niwa et al., 2005, p. 2; 

Tewary et al., 2017; Wang, Oron, Nelson, Razis, & Ivanova, 2012; Warmflash et al., 2014). 
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WT colonies displayed a radial differentiation pattern with central SOX2(+) OCT4(+) 

SNAIL(+) cells and a ring of EOMES(+) cells around the periphery indicating the beginning 

of mesendodermal specification (Figure S7C,D). The lack of robust BRA(T) expression was 

likely due to the transient nature of BRA(T) expression during mesendoderm induction so 

the time point examined (48h) in this experiment may have captured the tail end of 

expression. WT colonies displayed a slight increase in SOX17 at the center of the colonies, 

while GATA4 and CDX2 remained low throughout the colonies (Figure S7C,D). A similar 

radial pattern of cell differentiation was maintained in Island patterned colonies, although 

SOX17 expression was reduced and GATA4 and CDX2 expression increased (Figure 

S7C,D). The Bullseye patterned colonies displayed a slight increase in BRA(T) expression 

at the center of the colonies overlapping with the central island that defines a bullseye 

pattern. Additionally, for the Bullseye patterns GATA4 expression was increased across the 

entire colony, the radial ring of EOMES was expanded to the entire colony, and high levels 

of SOX2, OCT4, and SNAIL were displayed in the center of the colony. These results 

suggest that the central region of Bullseye colonies underwent lineage transitions through 

the mesendodermal fate to the mesoderm lineage and displayed an expansion of the CDX2 

positive cells. The Bullseye EOMES expression pattern was distinctly different from the 

control and island patterned colonies that formed a ring of EOMES expression, indicating a 

positional change in fate acquisition dictated by the establishment of the Bullseye pattern. 

Thus, the genetic manipulations used to control multicellular organization of human PSCs 

also influenced the initial differentiated phenotypes of the patterned colonies.

DISCUSSION

Cell-intrinsic patterning of multicellular stem and progenitor populations is a critical feature 

of morphogenic events that occur throughout early development (Deglincerti et al., 2016; 

Ducibella & Anderson, 1975; Montero & Heisenberg, 2004; Sasai, 2013). Thus, systems in 

which multicellular organization can be robustly controlled and perturbed will help to 

elucidate key mechanisms in development and symmetry breaking events. Currently, the 

study of symmetry breaking events often involves the manipulation of cell extrinsic factors, 

for example, varying morphogen gradients (Demers et al., 2016; Geun Chung et al., 2005), 

changes in substrate patterning (Hsiao et al., 2009; Théry et al., 2006) and/or the creation of 

restrictive boundary conditions (Tewary et al., 2017; Théry, 2010; Warmflash et al., 2014). 

In contrast, attempts to influence patterning events using synthetic biology approaches often 

rely on implementation of an artificial circuit that uses reaction diffusion gradients to 

establish multicellular patterns (Greber & Fussenegger, 2010; Sekine, Shibata, & Ebisuya, 

2018; Sohka et al., 2009; Toda et al., 2018).

In this study, we demonstrate the induction of active multicellular organization through 

controlled perturbation of intrinsic cell mechanisms without imposing exogenous boundary 

conditions. We developed a computational model capable of predicting empirically testable 

experimental perturbations (combinations of time dependent gene KDs, mixing ratios) to 

generate desired multicellular spatial patterns in hiPSC colonies. Using agent-based model 

predictions of spatiotemporal pattern formation, we were able to predict and achieve new 

patterns in silico and in vitro without using extrinsic patterning methods (i.e. hydrogels, 

micropatterning). Optimized design parameters achieved desired organization of cells within 
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a colony, providing a new platform to interrogate questions of cell patterning and lineage 

fate acquisition. Ultimately, these results demonstrate that machine learning and 

mathematical optimization enable predictive and controlled spatial self-organization of 

heterogeneous populations of pluripotent cells, which is a critical first step for hiPSC self-

assembly prior to lineage commitment and subsequent organoid and tissue formation.

Previous attempts to pair computational models with experimental morphogenic systems 

have been largely observational and rarely demonstrate the ability to design phenotypes in 
silico that can be recapitulated in vitro. In this study, both the in silico and in vitro aspects 

can be adapted to additional parameters, truly taking advantage of machine learning and 

optimization to generate desired multicellular patterns. With respect to extending in vitro 
perturbations, CRISPR technology can be adapted to repress or activate any accessible genes 

related to cell patterning and organogenesis. As additional biological parameters are 

considered, we can quantitatively characterize the effect on cell patterning, and the in silico 
model can be refined to take those factors into account (Briers et al., 2016; E. White et al., 

2015), enabling interrogation beyond cell mechanics and into other realms of cell-cell 

communication such as paracrine signaling gradients and gap junction connectivity to allow 

for more robust pattern formation than that described by only manipulating cellular 

mechanics (Glen, McDevitt, & Kemp, 2018; White, Kinney, McDevitt, & Kemp, 2013). 

Ultimately, the combination of agent-based modeling, machine learning, and directed 

symmetry breaking provides a unique route to engineer complex multicellular tissue 

structures that go far beyond simple observation of pattern formation, and facilitate targeted 

mechanistic studies that address fundamental principles of development and morphogenesis 

leading to robust practices for complex in vitro tissue formation.

STAR Methods

Lead Contact and Materials Availability

Further information and requests for resources, reagents, or source code should be directed 

to the lead contact, Todd McDevitt (todd.mcdevitt@gladstone.ucsf.edu).

Materials Availability—This study did not generate new unique reagents.

Experimental Model and Subject Details

Cell Lines—All work with human iPSC lines was approved by the University of 

California, San Francisco Human Gamete, Embryo and Stem Cell Research (GESCR) 

Committee. Cell lines were derived from the parent line WTC (Coriell Cat. # GM25256) 

where the species of origin was confirmed by a LINE assay. All cell lines tested negative for 

mycoplasma using a MycoAlert Mycoplasma Detection Kit (Lonza). All human induced 

pluripotent stem cells (hiPSCs) were cultured at 37 °C, seeded at a density of 12,000 cells 

per cm2 in feeder-free media conditions on growth factor-reduced matrigel (BD 

Biosciences), and daily fed MTeSR™ medium (STEMCELL Technologies)(Ludwig et al., 

2006). When hiPSC confluency reached 75%, cells were dissociated and singularized using 

Accutase (STEMCELL Technologies). Single cells were counted using a Invitrogen 

Countess Automated Cell Counter (Thermofisher Scientific), re-plated at previously 
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described density, and in the first 24hrs after passaging, fed with MTeSR™ medium 

supplemented with the small molecule Rho-associated coiled-coil kinase (ROCK) inhibitor 

Y-276932 (10μM; Selleckchem) to promote survival(Park, Kim, Jung, & Roh, 2015; 

Watanabe et al., 2007).

Method Details

Generation of CRISPRi knockdown iPSC lines—CRISPRi knockdown lines were 

previously generated as described in (Mandegar et al., 2016), where 20 base pair guides 

were designed using the Broad Institute sgRNA design website (Doench et al., 2016). 20 

base pair sequences were cloned into the gRNA-CNKB vector using restriction enzyme 

BsmBI digestions, followed by ligation with T4 DNA ligase as described in (Mandegar et 

al., 2016). 200,000 cells of the CRISPRi-Gen1C or CRISPRi-Gen2 hiPSC lines from the 

Conklin Lab were nucleofected with individual gRNA vectors using the Human Stem Cell 

Nucleofector Kit 1 solution with the Amaxa nucleofector 2b device (Lonza). Cells were then 

plated at increasing dilutions into 3 wells of a 6-well plate coated with growth factor-

reduced matrigel (BD Biosciences) in MTeSR™ supplemented with Y-276932 (10μM) for 2 

days. Then the nucleofected hiPSCs were treated with blasticidin (10μg/ml) for a selection 

period of 7 days. Surviving colonies for each gRNA were pooled and passaged in MTeSR™ 

with blasticidin (10μg/ml) and Y-27632 (10μM) for a single day then transitioned to 

MTeSR™ media only. After stable polyclonal populations of hiPSCs were established for 

each gRNA, cells were karyotyped by Cell Line Genetics (Libby et al., 2018)(Fig. S8). 

Finally, knockdown efficiency was tested by the addition of doxycycline (2μM) to the 

culture media for 6 days and subsequent qPCR of mRNA levels of respective genes 

compared to time matched controls of the same line without CRISPRi induction.

Mixed Colony Generation—Mixed population hiPSC colonies were generated using 

forced aggregation via PDMS microwells in a 24-well tissue culture plate (~975 

400X400μm wells per well)(Hookway, Butts, Lee, Tang, & McDevitt, 2016; Libby et al., 

2018). hiPSCs were dissociated and singularized using Accutase (STEMCELL 

Technologies) and subsequently counted using a Invitrogen Countess Automated Cell 

Counter (Thermofisher Scientific). The proper ratios of cells to create 100 cell aggregates 

were then seeded into PDMS wells in MTeSR™ with Y-27632 (10μM), centrifuged at 200g 

for 5 minutes, and allowed to compact overnight (~18h). Aggregates were then washed out 

of the PDMS wells with fresh MTeSR™ and re-plated into a growth factor reduced matrigel 

(BD Biosciences) coated PerkinElmer CellCarrier™−96 plates at ~10/aggregates/cm2 and 

fed daily with MTeSR™.

Immunofluorescence Staining and Imaging—Human iPSCs were fixed for 25 

minutes with 4% paraformaldehyde (VWR) and subsequently washed 3 times with PBS. 

Fixed colonies were simultaneously blocked and permeablized with a 1X PBS solution with 

0.3% Triton X-100 (Sigma Aldrich) and 5% Normal Donkey Serum (Jackson 

Immunoresearch) for 1 hour at room temperature. Samples were then incubated with 

primary antibodies overnight at 4 °C in a 1X PBS solution with 1% Bovine serum albumin 

(Sigma Aldrich) and 0.3% Triton-X. Samples were washed 3 times and then incubated for 1 

hour at room temperature with secondary antibodies. Primary antibodies used were: anti-
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OCT4 (SantaCruz 1:400), anti-SOX2 (AbCAM 1:400), and anti-Ecadherin (AbCAM 1:200). 

All secondary antibodies were used at 1:1000 and purchased from Life Technologies. 

Images were taken in one focal plane on the apical surface of hiPSC colonies.

Mixed colonies were imaged using a Ziess Observer.Z1 (Ziess) and an InCell Analyzer2000 

(GE Healthcare) with a 10X objective, and confocal images were obtained using a Zeiss 

LSM880 Confocal w/ Airyscan (Ziess) microscope with a 10X objective. Images were 

analyzed in ImageJ and in python using the skimage package (Walt et al., 2014).

Protein Quantification—Protein quantification for CDH1 KD was first quantified by 

immunofluorescence imaging of mixed colonies of WT-GFP hiPSCs and CDH1 KD 

colonies (Libby et al., 2018). Total fluorescence of CDH1 was measured by a python script 

that compared fluorescence of the CDH1 channel normalized to the amount of WT cells vs 

KD cells (determined by GFP fluorescence)(Fig. S2). This data was supplemented by 

Western blot data from the previously published KD of CDH1 and ROCK1 in (Libby et al., 

2018).

mRNA quantification—The relative gene expression following CRISPRi knockdown was 

previously reported in (Libby et al., 2018) and used as a reference to establish knockdown 

timing curves used in our in silico simulations. As previously reported (Libby et al., 2018), 

total mRNA isolation from dissociated hiPSCs was performed using an RNeasy Mini Kit 

(QIAGEN) according to manufacturer’s instructions and quantified with a Nanodrop 2000c 

Spectrometer (ThermoFisher). Obtained mRNA was then used to synthesize cDNA using an 

iScript cDNA Synthesis kit (BIORAD). A StepOnePlus Real-Time PCR system (Applied 

Biosciences) was used to quantify and detect gene expression by Fast SYBR Green Master 

Mix (ThermoFisher Scientific). Relative gene expression was determined by normalizing 

comparative threshold(Ct) values to the house keeping gene 18S rRNA. Gene expression 

was then displayed as a fold change comparison to the day 0 control before the start of gene 

knockdown. The NCBI Primer-BLAST website was used to design the primers. Statistical 

analysis was conducted using a two-tailed unpaired t-test between any two groups (p<0.05, 

n=3).

Time Lapse Imaging—Mixed hiPSC colonies were imaged at the basal surface on 

optically clear PerkinElmer CellCarrier™−96 plates on an inverted AxioObserver Z1 (Ziess) 

with an ORCA-Flash4.0 digital CMOS camera (Hamamatsu) with a 10X objective, where 

that single plane was used for parameter estimations. Using ZenPro software, colony 

locations were mapped and a single colony was imaged every 30 minutes over the course of 

12 hours. Time lapse imaging occurred from hours 24–36 and from hours 96–108 after 

mixed colony plate down. The 12 hour series of images were then used to compare in silico 
to in vitro pattern formation and organization of cells. Additionally, mixed colonies of 

wildtype and CRISPRi-Gen1C without knockdown guides were imaged for 6 hours every 5 

minutes with a 20X objective from hours 60–66 after plate down. These 6 hour image series 

were used to generate velocity values as previously described in section 2.2 (Velocity 

Characterization).
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Comparison of in vitro and in silico Spatial Patterns—We used in vitro and in 
silico images to calculate the total number of cells in an image, the number of clusters, and 

the circularity of each cluster (Fig. S1). Our work-flow for comparing patterns (Fig. S9) 

involved splitting the images into single color RGB channels using the python module 

scikit-image (Walt et al., 2014).

For in silico images each channel represented a different cell type. After splitting the image 

into color channels we detected the number of islands in a colony. For in silico images, cells 

were separated by a black border so we sequentially masked out the border, dilated the 

image, removed small objects, then removed small holes in the mask with scikit-image. 

Contiguous regions (8-connected) were considered clusters. We then overlaid a mask of 

individual cells onto each cluster using a logical AND comparison of the image masks to 

determine if the cell cluster met our criteria to be considered an island. Using only the cell 

clusters we considered islands, we then calculated the number of cells per island and the 

circularity of the islands using the formula Circularity = 4π ∗ Area/Perimeter2.

In contrast to the work-flow for simulation images, for in vitro images one channel 

represented all cell nuclei and the other channel represented cells stained for the protein 

CDH1, which delineated the CDH1 knockdown cells from the WT or ROCK1 knockdown 

cells. For the in vitro images, the CDH1 channel was thresholded and then dilated to create a 

CDH1+ cell mask followed by removal of small objects and holes to create a smooth 

segmentation. To generate the island masks, isolated CDH1 negative clusters were identified 

using the “label” function on the inverse of the CDH1+ mask. Individual cells were localized 

by detecting local maximum intensity in the DAPI channel images then the number of DAPI 

peaks per island were calculated using the logical AND of the island and CDH1 negative 

masks. Finally, we used the function “regionprops” to calculate the cluster area and 

perimeter for each island, which were then employed to calculate the island circularity with 

the above formula.

BMP4 differentiations—Successfully patterned hiPSC colonies were differentiated for 

48h in MTeSR™ cell culture medium (STEMCELL Technologies) supplemented with 

BMP4 (R&D Systems) at a 50 μM/ml concentration. The colonies were then fixed with 4% 

PFA for 25 min and subsequently analyzed.

Cellular Potts Model Environment—We modeled the mechanical properties of 

interacting human induced pluripotent stem cells (hiPSCs) with an extended Cellular Potts 

Model (CPM). In the model of mechanically driven self-organization in hiPSCs, cell—cell 

interaction mechanics were explained by four physical properties of cells. 1) cell-cell 

adhesion, 2) cortical tension, 3) conservation of volume, 4) and directionally persistent cell 

migration. Below, we describe how the extended CPM was used to recapitulate 

spatiotemporal patterns and predictively design de novo spatiotemporal behaviors.

We defined the environment of a CPM simulation S on a 2D square lattice domain S ∈ ℤ+
2. 

Each lattice site, x = (m, n) ∈ S, represented a coordinate location where m ∈ ℤ+ and n ∈ ℤ+ 

were the horizontal and vertical coordinates of each lattice site respectively. The spatial 
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resolution of each lattice site was 1 μm2 so that each square region of the grid is equal to 1 

square micrometer.

To represent the location of hiPSCs, each lattice site x was assigned a value σx, 

conventionally called the spin or cell index (cell ID) of a site, from the set of cell indices k ∈ 
K given K = {1, …, N(t)} where N(t) was the number of cells in the simulation at time t. 
Lattice sites that represent empty space where there is no hiPSC covering the lattice site 

were assigned a cell index of 0. In the CPM, a cell Ck was composed of multiple lattice sites 

where each lattice cite represents a partial region of a cell or the surrounding media. A cell 

Ck was defined as the set of lattice sites with the same cell ID Ck = {x ∈ S: σx = k}. Since a 

single cell was composed of multiple lattice sites, the CPM was able to capture fluctuations 

in a cell’s shape with a granularity that is not possible with Type A cellular automaton or 

center-based models. Each cell was also assigned a cell type τ to notate the type of genetic 

perturbation (i.e. KD) of that cell which determined its intracellular and extracellular 

behaviors.

Next, we summarize two common metrics to describe cell morphology in a CPM simulation; 

cell area and cell membrane length. These metrics are important since their values in the 

model were directly measured from microscopy images. For a discussion of these metrics 

see.

Given that each lattice site had an area of 1 μm, the area of a cell at time t in the simulation 

was defined as the number of lattice sites encompassed by a cell:

ak, t = x ∈ S :σx = k ,

where | ⋅ | denoted the cardinality of a set. The time varying membrane length of a cell pk,t, 

synonymously called the perimeter or surface length in other studies, was defined as the 

number of lattice interfaces bordering other cells or empty space:

lk, t = 0.5 × ∑
interfaces x, x′

δ k, σx ,

where x′ represented any of the lattice sites adjacent to x, (m ± 1, n) ∨ (m, n ± 1) in 2D. The 

Kronecker symbol δ was defined by δ(u, v) = 1 if u = v and δ(u, v) = 0 if u ≠ v. An interface 

(x, x′) was a shared border between lattice sites. To avoid counting adjacent lattice sites 

inside a cell, the CPM only summed interfaces between lattice sites with different cell ID’s; 

when δ σx, σx′ = 0. Put simply, we were measuring the perimeter of each stem cell.

Cellular Potts Model Dynamics—The CPM uses a function called the Hamiltonian H 
to describe the energy (favorable behaviors) for any configuration of cells. Cell motility 

evolved by choosing a random lattice site x, a region of a cell-cell interface or a cell-media 

interface and attempted to copy it to a random neighboring lattice site x′. The Hamiltonian 

was defined as the sum of four constraints that represent four physical properties of 

simulated stem cells: 1) conservation of cell area, 2) locally polarized cell migration, 3) cell-

cell adhesion, 4) and cell membrane length which commonly represents cortical tension. In 
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the CPM, the goal was to minimize the Hamiltonian or minimize violations of the desired 

cellular behaviors. Therefore, each constraint calculated a decrease (reward) or increase 

(penalty) in the configuration energy due the collective properties of cells in the simulation.

When a change in a lattice site was proposed, this affects H. If the proposed change was 

accepted, the change in H was defined as Δ H. A proposed change for a cell’s lattice site was 

accepted with the following probability:

if Δ H < − Y , P σ σ′ = 1
otℎerwise, P σ σ′ = e−(ΔH + Y )/T ,

where the yield Y = 0.1 and the temperature T = 10. Simply, if the proposed change in local 

cell position resulted in less energy, then the change was accepted. If the proposed update 

would have resulted in greater energy (ΔH), then the change was only accepted with a very 

low probability. In this way, complex behaviors such as preferential cell-cell adhesions, 

cortical tension, and cell migration, are represented by a score and a weight, where the score 

represents a reward or penalty depending on the divergence of a cell from its target behavior, 

while the weight represents the relative importance of the respective cell behavior.

CPM Configuration Energy

The free energy for a configuration of cells was defined as the sum of four constraints: local 

cell-cell/cell-ECM adhesion, cell area conservation, cell membrane length, and locally 

polarized cell migration:

H = Hadℎesion + Harea + HmembraneLengtℎ + Hmigration

For a configuration of cells, the free energy due to cell adhesion was

Hadℎesion = ∑
k ∈ K

Jτ σx , τ σx′ 1 − δ σx, σx′ ,

where Jτ σx , τ σx′  represented the cell adhesion strength between lattice sites σx and σx′ that 

was defined by their cell type τ σx′ . 1 − δσx, σx′  restricted these calculations to interfaces 

between cells instead of all lattice sites, and improved the efficiency of the simulation. 

Although not explicit in our notation, the cell adhesion strength was a time-dependent 

function controlled by protein expression to mimic changes in cell behavior with inducible 

gene knockdown. The energy due to cells resisting changes from their resting area was 

defined as

Harea = ∑
k ∈ K

λa ak, t − Ak, t
2,

where Ak,t represented the target area of a cell, ak,t represented the current area of a cell, and 

λa was the relative strength of area conservation term.
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The cortical tension constraint was defined as:

HmembraneLengtℎ = ∑
k ∈ K

λl lk, t − Lk, t
2,

where lk,t represented the current membrane length of a cell at time t, Lk,t was the target 

membrane length, and λl was the strength of the cortical tension constraint. As a proxy for 

increasing or decreasing the cell membrane length, the Equivalent Circular Perimeter (ECP) 

was used to set the membrane length for a cell given its current area. The ECP of a non-

circular 2D object was defined as the perimeter of a circle with equivalent surface area as the 

non-circular object:

ECP (k) = 2 ak, tπ .

The target membrane length was calculated using a membrane length proportionality 

constant:

Lk, t = rkECP k ,

where rk was the membrane proportionality constant. To find rk the membrane length and 

area of cells were measured and divided by the ECP of the cell. This ratio of membrane 

length to ECP was equal to the membrane proportionality constant rk. The ECP allowed us 

to calculate the membrane length of a cell of any area that would have a comparable shape to 

empirical measurements.

To capture directionally persistent cell migration, we modeled “polarized cell migration” as 

the tendency of cells to bias their movement in the same direction as their previous direction 

of movement as described in. Cells had a target direction t  based on previous movement 

where CPM updates in this direction were preferred (they decreased the energy in H). For 

each copy attempt x → x′, the cell center was displaced in direction s′ . The change in 

energy due to migration in this direction was defined as:

Hmigration = − μak( t ⋅ s′ ),

where μ was the strength of cell migration, ak,t was the cell area at time t, t  was a unit 

vector giving the target direction, and s  was a unit vector giving the current direction of a 

stem cell if the CPM update (x → x′) was to be accepted. The function was multiplied by 

−1 since updates in the direction of t  have a dot product that approached +1 as the angle 

between t  and s  approached zero. Multiplying by −1 resulted in decreased configuration 

energy for cells moving in the same direction as the target direction vector.

For every MCS, the target direction at any time ( tt ) was updated continuously given the 

displacement of a cell’s centroid wΔO = Ot – Ot−1 then transformed into a unit vector 
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s = ΔO/ |ΔO|. This target direction included how ‘decay-time’ D of the previous direction 

and the current cell displacements contributed to the current polarity of the cell:

tt = (1 − D)tt − 1 + D s .

Physical Units and Other Cellular Phenomena of CPM—Cell division was 

symmetrical (the parent cell divided into 2 equally sized daughter cells), and the timing of 

cell division was asynchronous. This was achieved by assigning a uniformly distributed 

“division counter” dc for each cell at t = 0 between 0 and the division time dt. This counter 

was incremented at each time step of the simulation, and a cell would divide when dc = dt. dc 

was then reset to 0 for both daughter cells. Cell division was assumed to be asynchronous 

amongst the population, and cell division times specific to each type of knockdown were 

incorporated into the model to provide an accurate depiction of population growth kinetics. 

Cell division times were calculated from in vitro doubling rates and modeled to be 18 hours 

for CDH1(−) cells, and 20 hours for all other cells.

Model Fitting to Empirical data—In the main text we provide a brief explanation of the 

characterization experiments to fit our computational model. Here we describe the 

mathematical transformations, mapping functions, and model parameters associated with 

these characterization experiments. The parameters fit during this process are summarized in 

Table S2.

Morphology Characterization: Three types of colonies were characterized; purely 

wildtype, wildtype and CDH1 knockdown in a 1:1 ratio, and wildtype:ROCK1 knockdown 

in a 1:1 ratio. We measured the cell area, perimeter, and ECP at the center and periphery of 

colonies (Figure S1). The median cell area was used to set the target cell area (Ak,t) in our 

simulations (Figure S1, Table S2). The median membrane proportionality constant (rk = 

perimeter / ECP) was used to set the target membrane length Lk,t in our simulations (Figure 

S1, Table S2).

Velocity Characterization (Space vs. Time): We characterized space vs. time by 

measuring the velocity (change in distance over time) of wildtype cells in dense colonies. 

Mixed aggregates of 90% WT and 10% CRISPRi cells without a targeting guide were 

generated. With the addition of doxycycline (DOX) to the cell culture media, the CRISPRi 

no guide population expressed a cytoplasmic mCherry marker which allowed individual 

cells to be distinguished from the untagged WT background (Figure 2B). 24 colonies were 

imaged for 6 hours at 5 minutes/image at 20X magnification creating a time series of 73 

frames. Each frame was individually normalized and thresholded using non-local means. 

Cell migration tracks were generated by following matching contours between frames where 

matching contours share at least ten pixels overlap. We used watershed segmentation to 

separate adjacent cells. Instantaneous frame to frame velocity was calculated as

vinst = xcm, 2 − xcm, 1 /Δt, ycm, 2 − ycm, 1 /Δt ,
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where xcm,2 was the center of mass of each segmented cell body at the currently observed 

frame and xcm,1 was the center of mass of each segmented cell body at the previous frame, 

and Δt was 5 minutes. Taking the average magnitude of the per-cell instantaneous velocity 

over 24 colonies gave a median velocity of 0.29 μm/minute.

We then ran parameter sweeps to fit model parameters that affect cell migration (Table S1):

• MCS - copy attempts per simulation hour.

• JWT,WT - adhesion energy or reward per micrometer of cell border between 

wildtype cells.

• μ - strength of self-propulsion

• λl - strength of cortical tension.

We chose the parameter combination where the simulation velocity distribution matched the 

empirical velocity distribution and remained a dense colony (0.34 um/minute). It is 

important to note that we chose optimal model parameters using the distribution of cell 

velocities and not the median cell velocity. We ran 24 simulations to mimic the the 

experimental setup of the in vitro characterization. Using the Mann Whitney U test, there 

was no significant difference in the distribution of cell velocities; p-value threshold of 0.05 

and p-value for 24 in silico colonies was 0.051. After fitting the model to empirical data of 

cell morphology and velocity, we could recapitulate the cell morphology and collective cell 

migration of wildtype stem cell colonies without genetic modulation (Movies S1–S2).

Temporal Knockdown Characterization (Protein Expression vs. Time) - CDH1: We 

characterized the time dependent knockdown of CDH1 expression which was responsible 

for changes in cell-cell adhesion (J). CDH1 was knocked down using CRISPRi, and the 

relative expression was measured for 6 consecutive days. The relative mRNA expression of 

CDH1 was quantified by quantitative PCR (n=3) and protein expression of CDH1 was 

measured by immuno-fluorescence microscopy (n=10), which displayed a 24 hour delay 

from the mRNA knockdown. The data was min-max normalized to a domain of [0,1] using 

the median expression for each day:

y tk ′ = y tk − ymin / ymax − ymin ,

where tk was the time since the knockdown, y(tk) was the expression at k hours after 

knockdown, ymax was the max expression from all days, and ymin was the minimum 

expression over all days. It is important to note that tk is the time since knockdown and t is 

time since the initiation of co-culture experiments. Using least squares optimization ( Python 

scipy.optimize.curve_fit function), the Km (repression coefficient) and n (Hill coefficient) of 

the Hill Function for repression were fit to the normalized median expression to create a 

response function using least squares optimization:

F (t) = 1/ 1 + Km/tk
n ,
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where Km was the time half expression occurs, and n was the hill coefficient. Functions were 

fit to the normalized median expression (per day) to create a time-dependent response 

function for CDH1 knocked down to 90%, 75%,70%, and 2% of the original mRNA 

expression (Figure 2F, Figure S3). This range of knockdown efficiencies allowed us to 

computationally model how differing levels of CDH1 expression could impact spatial 

patterning. Given value for the parameters km and n (Table S2) we now had a continuous 

response function for the expression of CDH1 given a knockdown time that we could 

modulate. It is important to note that normalizing the relative expression to a domain of [0,1] 

allows us to stretch the response function to different parameter ranges in the spatial pattern 

characterization experiments.

Temporal Knockdown Characterization (Protein Expression vs. Time) - 
ROCK1: Using the same approach as the CDH1 knockdown, we created a Hill response 

function for ROCK1 knocked down to 20% mRNA expression. ROCK expression is 

represented by the strength of cortical tension (λl) parameter in our computational model. 

We assumed mRNA expression changed 24 hours ahead of protein expression, so we shifted 

the time axis forward by one day to account for the delay. The median expression for each 

day was min-max normalized to a domain of [0,1] (Equation S13). The Km(repression 

coefficient) and n (Hill coefficient) of the hill function for repression were fit to the 

normalized median expression to create a response function using least squares optimization 

(Equation S14, Figure 2,Table S2). Due to the delay in protein knockdown compared to 

mRNA levels, the Hill functions were shifted by 24 hours to account for the delay in protein 

loss (Figure 2G), allowing us to model the average change in ROCK1 protein expression for 

individual cells over time.

Spatial Pattern Characterization (Protein Expression vs. Space): Given the previous 

characterization experiments, we were able to model cell proliferation, cell morphology, 

wildtype cell migration, and temporal changes in the expression of CDH1 and ROCK1. 

However, the time-dependent modulation of protein express had to be mapped to changes in 

multi-cellular self-organization. To model the the time-dependent modulation of cell-cell 

adhesion via CDH1 and cortical tension via ROCK1, fluorescent microscopy images were 

collected 96 hours after mixing either ROCK1 KD or CDH1 KD cells with wildtype hiPSCs. 

Then in silico parameter sweeps were run overlaying a range of parameters controlling the 

strength of adhesion or membrane stiffness. These two parameters rescaled their respective 

Hill Functions and produced a range of spatial patterns due to progressively weaker cell-cell 

adhesion or progressively stiffer cell membrane parameter values. We then conducted 

double-blind experiments to fix adhesion strength and membrane stiffness parameters which 

most closely matched in vitro spatial patterning for CDH1 and ROCK1 knockdowns 

respectively (Figure 2H–I).

F ′(t) = yknockdown + ywildtype − yknockdown ∗ 1 + Km/t n ,

where yknockdown was the adhesion strength (J) or target membrane length (Lk, t) of 

knockdown cell lines in the model, and ywildtype was the adhesion strength (J) or target 

membrane length of wildtype cells in the model. In Equation 15, we scaled the normalized 

Libby et al. Page 22

Cell Syst. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response function from [0,1] to the range of model parameters [yknockdown, ywildtype]. Given 

the characterization experiments of cell morphology, cell migration velocity, time-dependent 

modulation of cell mechanics, and the resulting spatial organization, the computational 

model was able to recapitulate the spatial patterning due to the CDH1 and ROCK1 

knockdowns (Movies S3–S6).

TSSL Scoring and Pattern Optimization—In order to automatically compare patterns 

produced by the model from different parameterizations and determine optimal parameter 

values, we needed a measure capable of quantifying how close any given pattern was to the 

desired one. A very effective algorithm was proposed in for this purpose.

Quad-Tree Representation of an Image: Consider an RGB representation of an m × n 

image as the matrix A where the element aij = aij
(r), aij

(g), aij
(b)  is the normalized RGB values 

for the pixel located on the ith row and jth column of the image. Thus,

0 ≤ aij
(c) ≤ 1 for c ∈ r, g, b .

Given a matrix A, A[is, ie, js, je] was used to denote the submatrix created by selecting rows 

with indices from is to ie and columns from js to je. Following, we represented the matrix A 
as a quad-tree. A quad-tree Q = (V, R) is a quaternary tree representation of matrix A where 

each vertex v ∈ V represents a submatrix of A and the relation R ⊂ V × V defines four 

children for each vertex that is not a leaf.

Figure 3Ai–ii demonstrates how a quad-tree is built from a matrix. In this figure, we label 

each edge in the quad-tree with the direction of the sub-matrix represented by the child: 

north west (NW), north east (NE), south west (SW), and south east (SE). In Figure 3Ai:

• v0 represents the complete matrix A at quadrant level 1.

• v1 represents the first quadrant of level 2 or A[1, ⌊m/2⌋; 1, ⌊n/2⌋], where m is the 

total number of rows and n is the total number of columns in A.

• v2 represents A[⌊m/2⌋ + 1, m; 1, ⌊n/2⌋].

• v3 represents A[⌊m/2⌋ + 1, m; ⌊n/2⌋ + 1, n].

• v4 represents A[1, ⌊m/2⌋; ⌊n/2⌋ + 1, n].

• v5 represents represents the first quadrant of level 3 or A[1, ⌊m/4⌋; 1, ⌊n/4⌋],

• etc.

We used the procedure described in to construct quad-trees, which is slightly different from. 

In, the assumption was made that A has a size of 2k × 2k so that each submatrix could be 

divided into four equal-sized partitions. Here, we relaxed this requirement by allowing non-

equal submatrices to be children of a node. Furthermore, defined a leaf as a vertex of the 

quad-tree for which all the elements of a submatrix had the same values. While this 

approach works perfectly for the 32 × 32 network that is studied in that paper, it can be 

problematic for larger images since the number of vertices in a quad-tree grows 
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exponentially as more levels are added to it. In this paper, we constructed quad-trees with a 

fixed depth of 5, regardless of the size and other characteristics of A.

The representation function μ(c)(v):V [0, b] × [0, b] was defined for sub-matrix A[is, ie; js, 
je] represented by vertex v ∈ V of the quad-tree Q = (V, R) as follows:

μ(c)(v) = (μ1
(c), μ2

(c))

μ1
(c) = 1

ie − is + 1 je − js + 1 ∑
i, j ∈ is, ⋯, ie × js, ⋯, je

aij
(c),

μ2
(c) = 1

ie − is + 1 je − js + 1 ∑
i, j ∈ is, ⋯, ie × (js, ⋯, je

(aij
(c) − μ1

(c))
2
,

where c ∈ {r, g, b} was an RGB color. The function μ(c) provided the mean value and 

variance for the concentration of RGB colors in a particular region of the space represented 

by the vertex v.

Quad-trees can be interpreted as multi resolution representation of images, as the nodes that 

appear in deeper levels provide statistical information for higher resolutions and nodes that 

appear on higher levels correspond to more global characteristics of an image.

Tree Spatial Superposition Logic: In, a formal logic, called tree spatial superposition logic 

(TSSL), was introduced. TSSL is capable of formally specifying global patterns in a 

network of locally interacting agents. The authors showed that this logic is sophisticated 

enough to describe complicated patterns such as Turing patterns in biochemical reaction-

diffusion systems. In this paper, we used this logic to express various patterns that are 

studied here (Figure 4). First, we present a brief introduction to TSSL. The reader can refer 

to for a thorough explanation of this logic, definitions of syntax and semantics, and its 

properties.

A TSSL formula is recursively constructed using the following:

• Linear predicates over valuations for the representation function (Equation S16). 

For example: μ1
(r) > 0.8 or μ1

(b) < 0.5.

• Boolean operators, such as ¬ϕ, ϕ1 ∧ ϕ2, and ϕ1 ∨ ϕ2.

• Spatial operators: ∃B ○ ϕ, ∀B ○ ϕ, where B is a nonempty subset of the set of 

directions {NW, NE, SW, SE}

The spatial operators ∃B ○ and ∀B ○ are read as there exists in directions B next and for all 
directions B next, respectively. ∃B ○ ϕ is interpreted as follows: For at least one of the nodes 

located in the next level of the quad-tree labeled with one of the directions in B, ϕ must be 

satisfied. ∀B ○ ϕ specifies that for all such nodes ϕ must be satisfied. We demonstrate how 

TSSL can be used to express spatial patterns through an example. Consider a 4 × 4 pattern as 

illustrated in Figure 3A. This pattern can be expressed as the following TSSL formula φ. A 

portion of the quad-tree satisfying this formula is shown in Figure 3B.
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φ =
∀ NE, SW , SE ∘ ∀ NW , SE ∘ φwhite ∧ ∀ NE, SW ∘ φcolored ∧
∀NW ∘ ∀NW ∘ φwhite ∧ ∀ NE, SW ∘ φblue ∧

∀SE ∘ ∀ NW , SE ∘ φwhite ∧ ∀ NE, SW ∘ φblue ,

where

φwhite = μ1
(r) = 1 ∧ μ1

(g) = 1 ∧ μ1
(b) = 1,

φcolored = μ1
(r) < 1 ∨ μ1

(g) < 1 ∨ μ1
(b) < 1,

φblue = μ1
(r) = 0 ∧ μ1

(g) = 0 ∧ μ1
(b) ≥ 0.5.

TSSL formulas can be viewed as formal pattern descriptors or pattern classifiers. For 

instance, the formula of Equation S17 accepts a quad-tree derived from a checkerboard 

pattern and rejects any other quad-tree. Although TSSL is capable of describing complicated 

spatial behaviors in an image, it is difficult in general to write a formula that describes a 

complex pattern. In, the authors proposed to use machine learning techniques in order to find 

such a formula from a given set of positive and negative examples.

Assume a set of positive images Y+ , illustrating a desirable pattern, and a set of negative 

images Y− , in which the desirable pattern was not present, were available. We created a set 

ℒ from these images as:

ℒ = Qy, + y ∈ Y+ ∪ Qy, − y ∈ Y− ,

where Qy was the quad-tree generated from image y. The set ℒ was separated into a 

learning set ℒL (used to train a classifier) and a testing set ℒT  (used to test the classifier 

obtained from ℒL) such that ℒ = ℒL ∪ ℒT . A rules-based learner called RIPPER was used 

to learn a set of classification rules from ℒL. Each of these rules was in the form:

Ri:Ci Labeli,

where Ci was a Boolean formula over linear predicates over the representation values of the 

nodes of a quad-tree and Labeli ∈ {+, −}. We used the Weka workbench for implementing 

RIPPER. Each Ci was then translated into an equivalent TSSL formula Φi. Since the 

classification rules were interpreted as nested if-else statements, the TSSL formula 

equivalent to the entire set of classification rules corresponding to the positive class was 

written as:

Φ+ = ⋁
j ∈ R+

Φj ∧ ⋀
i = 1, ⋯, j − 1

¬Φi ,

where R+ was the set of indices of rules labeled positive.
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Quantitative Robustness: A TSSL formula can be created for any desired spatial pattern by 

following the procedure described in the previous section. If this formula is evaluated as true 

for a given image, it means that the image contains the required pattern. On the other hand, a 

false evaluation of the formula means that the pattern does not exist. However, this 

qualitative evaluation of TSSL descriptors does not provide any information about how 

strongly an image demonstrates the required pattern.

In order to provide information about how strongly an image satisfies or violates the given 

property, TSSL was also equipped with a recursive quantitative semantics definition which 

assigned a real value to a TSSL formula ϕ with respect to vertex v ∈ V of quad-tree 

Q = (V, R); denoted by ρ(ϕ, v). The TSSL quantitative valuation was derived recursively as 

follows:

• ρ(μi
(c) ≥ d, v) = μi

(c)(v) − d .

• ρ(μi
(c) ≤ d, v) = d − μi

(c)(v) .

• ρ(¬ϕ, v) = −ρ(ϕ, v).

• ρ(ϕ1 ∧ ϕ2, v) = min(ρ(ϕ1, v), ρ(ϕ2, v)).

• ρ(ϕ1 ∨ ϕ2, v) = max(ρ(ϕ1, v), ρ(ϕ2, v)).

• ρ ∃B ∘ ϕ, v = 0.25 max
b ∈ B

ρ ϕ, vb  where vb was the child vertex of v with label b.

• ρ ∀B ∘ ϕ, v = 0.25 min
b ∈ B

ρ ϕ, vb  where vb was the child vertex of v with label b.

It was proven in that TSSL quantitative semantics are sound. In other words, a quad-tree Q 
satisfied a formula ϕ (Q ⊨ ϕ) if ρ(ϕ, v0) > 0 where v0 was the root of Q, and Q violated ϕ 
($Q\not\models\phi$) if ρ(ϕ, v0) < 0. Therefore, the problem of checking whether an image 

contains a pattern expressed as a TSSL formula was reduced to computing its quantitative 

valuation ρ(ϕ, v0). Moreover, the absolute value of ρ(ϕ, v0) was viewed as a measure of how 

strongly ϕ was satisfied (or violated) by Q. Hence, the quantitative valuation of a formula 

with respect to a quad-tree was called its robustness. This property is demonstrated in Figure 

3.

Particle Swarm Optimization: Consider an agent-based model with a set of parameters 

p ∈ Ω ⊂ ℝNp, where Ω was the possible set of parameter ranges and Np was the total number 

of parameters. For instance, in the model described in Section S1, we had Np = 5 parameters 

with ranges specified in Table S1.

The output of the model was a sequence of T images where A[t] was the image 

corresponding to time step t ∈ {0,1, …, T} and T was the total duration of simulation. Our 

goal was to determine parameter values that result in emergence of a required pattern in the 

sequence of images derived from the model. Recall that we could specify the pattern using a 

TSSL formula ΦPattern. Moreover, each image A[t] could be translated into a corresponding 

quad-tree Q[t] with root v0[t]. Therefore, for a fixed parameterization p, we could quantify 

the resulting sequence of images with S(p) using the following equation:
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S(p) = max
0 ≤ t ≤ T

ρ ΦPattern, v0[t] ,

where ρ was the TSSL robustness as described in the previous section. Note that since the 

model was stochastic in nature, S(p) was a random variable and would have a different value 

every time a sample simulation was produced using the model with the parameters. p. If S(p) 

> 0, there exists at least one image in that particular sequence for which the TSSL robustness 

was positive and the pattern was present. On the other hand, the pattern had not emerged in 

the sample simulation if S(p) < 0. We called S(P) the robustness degree for parametrization p 
Now, the problem became finding the parameterization p* that maximized the score S(p). 

Since S(p) was a random variable, we choose to maximize its expected value:

p* = arg max
p ∈ Ω

E(S(p)),

which means that we were looking for the parameterization p* that on average produced 

patterns with highest possible robustness score. If we simulated the model n times from 

parameters p, the expected value could be approximated with the sample mean:

E(S(p)) ≈ S(p) = 1
n ∑

i = 1

n
Si(p),

where Si(p) was the robustness score for parameters p. in the ith simulation. In general, a 

large sample is needed to achieve an accurate approximation. however, it was shown in that 

in practice, a relatively small n suffices for the purpose of optimization in Equation S20. In 

this paper, we computed the average robustness for three sample simulations in every case (n 
= 3).

Many optimization methods can be used to solve this optimization problem. Inspired by, we 

employed particle swarm optimization (PSO) to solve this problem. PSO is a heuristic 

solution to unconstrained optimization problems that is capable of solving problems with 

irregular search spaces, is easily distributable, and does not require the objective function to 

be differentiable.

The PSO algorithm worked as follows: The procedure began by randomly initializing a set 

of M particles with positions zi ∈ Ω and velocities z′i. The position of a particle was a 

candidate solution to Equation S20, and the velocity was a search direction from the current 

solution. Next, n simulations were produced and n sequences of quad-trees Q[t](zi) were 

created for each particle and the average robustness degree S zi  was evaluated for each set 

of simulations represented by particle zi. The position of the ith particle that had performed 

best so far was stored in the variable zi*, and the optimal value of zi* was denoted by z∗. 

After all particles had been evaluated, the positions and velocities were updated according to 

the following relations:
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z′i W zi + η rp zi* − zi + η rg z* − zi
zi zi + z′i,

where η(ri) was a random number uniformly distributed over [0, ri] and the parameters 

W ∈ ℝ, rp, rg are tuned by the user. This iterative process continued until a termination 

criterion was met.

If S p*  was positive or negative but sufficiently close to zero, we had found the optimal 

parameterization of the model for the required pattern. This occurred for the Bullseye and 

Multi-Islands patterns. The optimal parameterization is shown in Figure 4. On the other 

hand, S(p*) ≪ 0 indicated that even for the best possible parameterization of the model, the 

required pattern did not emerge, meaning that the model was not capable of producing that 

pattern at all. This occurred for the Janus (Left-Right) pattern (Figure 4F).

Figure S4a demonstrates two sample simulations, one for the Bullseye pattern and one for 

the Multi-Islands pattern. Figure S4b shows how the corresponding TSSL scores evolve over 

time for each simulation. It is seen in this figure that the scores gradually improve until at 

some points the desired patterns are formed.

Quantification and Statistical Analysis

Mann-Whitney U-tests were used to compare in vitro and in silico experimental populations 

in Figure 2. Unpaired T-tests with Welch’s correction were used to compare in vitro and in 
silico experimental populations in Figure 5. Error bars depicted in graphical representations 

signify 1 standard deviation unless otherwise specified in the figure legend. For each 

statistical test the number of replicates is described in the figure legend. Throughout the 

manuscript the symbol * signifies statistical significance at the 0.05 level unless otherwise 

specified.

Data and Code Availability

Software—Model fitting of single-cell morphology, cell velocities, temporal knockdown 

characterizations, and spatial pattern characterizations were performed with custom Python 

code generated for these studies (modules: scipy, numpy, matplotlib, pandas, seaborn, scikit-

image) (Jones, Oliphant, & Peterson, 2001). Image preprocessing, segmentation, and 

quantification of cell and colony morphology was performed with custom Python code 

(modules: numpy, scipy, scikit-image). Quantification of pattern similarity and pattern 

optimization were performed with custom code for TSSL. All custom code can be accessed 

from: https://github.com/dmarcbriers/Multicellular-Pattern-Synthesis.

Data Availability—All data is available in the main text or supplementary materials. A 

GitHub repository of analysis code can be found at: https://github.com/dmarcbriers/

Multicellular-Pattern-Synthesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Extended Cellular Potts Model captures pluripotent stem cell organization 

dynamics

• Machine learning optimization yields conditions for multicellular patterns

• In silico predicted experimental parameters generate desired patterns in vitro
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Figure 1: Overview of Synthesis of Spatial Patterns.
Pattern Synthesis is a computational procedure used to predict the in vitro conditions needed 

to produce target spatial patterns. A) The first input to pattern synthesis is a parameterized 

computational model of mechanically driven spatial patterning in iPSC colonies. Five 

parameters of the computational model map directly to perturbations that can be made by 

experimentalists, and the output of the model was a series of images. B) The second input to 

pattern synthesis in a trained image classifier that produces a numerical score indicating the 

similarity of an image to the desired pattern class. In this scenario our desired pattern was a 

“Bullseye” pattern. C) Given the parameterized model and pattern classifier, Particle Swarm 

Optimization was used to explore parameter combinations, which map directly to in vitro 

perturbations, in order to identify the optimal conditions to produce the desired pattern in 
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silico. D) Given the “recipe” of perturbations suggested by parameter optimization, we 

validate the control strategy is able to produce the desired pattern in vitro.
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Figure 2: Pairwise experiments to characterize dynamic changes in spatiotemporal behaviors.
A) We characterize cellular behaviors in a pairwise manner to reduce the complexity of 

possible interactions. Space, time, and protein expression are the minimally necessary 

properties to characterize and model spatiotemporal behaviors. Space-time relationships are 

captured with velocity characterizations, time-protein expression is captured characterizing 

the relative protein expression for several days after knockdown, and protein-space 

relationships are characterized by confocal microscopy imaging of spatial behavior due to 

cell mechanical perturbations. B) We performed paired in vitro and C) in silico experiments 

Libby et al. Page 36

Cell Syst. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to match the velocity distributions of iPSCs. D) The grey swarm plot represents the 

distribution of in vitro velocity magnitudes (N = 1,708), while the cyan swarm plot 

represents the distribution of in silico velocity magnitudes (N = 2,781). Using the Mann-

Whitney U test, there was no statically significant difference in cell velocity (p value = 

0.29). E) Representative images of DOX inducible modulation of protein expression. F) We 

used Hill Functions to mathematically model CDH1 knockdown over time from 

quantification of mRNA by qPCR (n=3) and then adding a 24h delay to account for protein 

production depicted by light blue lines. Grey circles represent the normalized median 

expression 0–6 days after CDH1 knockdown. Error bars represent 1 standard deviation from 

the mean. Dark blue line depicts Hill Function models of partial KD of CDH1. G) We use a 

Hill Function to model ROCK1 knocked down over time as previously described for CDH1 

knockdown. (n=3) H) Paired in vitro and in silico images of spatial patterning 96 hours after 

CDH1 knockdown in a subpopulation of cells (blue). I) Paired in vitro and in silico images 

of spatial patterning 96 hours after ROCK1 knockdown in a subpopulation of cells (red). 

Given the previous characterizations, the relative strength of cell-cell adhesion and cortical 

tension can be tuned in the in silico simulations to recapitulate the spatiotemporal patterns 

observed in vitro.
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Figure 3: Quantitative Pattern Classifier with TSSL.
A quadtree is used to represent an image at multiple levels of detail. Ai-ii) Shows a 

representative quad tree for an example checkerboard image. An image Ai) is subdivided 

into sequential quadrants until each quadrant is one singular color. This is then depicted as a 

tree Aii) where both the values and branches of the tree are specific to each image. Aiii) 
Given a quadtree representation of a target image, TSSL produces a numerical score 

corresponding to the similarity of an image to the desired target image. This score can then 

be used to rank images by similarity to the desired image. Aiv) An example image of a 
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desired pattern generated in the CPM. Av) A pictorial example of how the TSSL would be 

able to distinguish different CPM images and score them against the desired pattern. B) 
Schematic representation of a particle swarm algorithm depicted in a 3D search space where 

each particle represents an in silico simulation. With each iteration of the algorithm, PSO 

reduces the breadth of exploration in the experimental space and travels towards increasing 

TSSL scores, indicating that the optimization procedure has located in silico experiments 

that are generating patterns of increasing similarity to the goal pattern. C) Schematics of 

example target patterns given as classifiers in the machine learning pattern synthesis process 

and parameters produced by Pattern Synthesis that predict the creation of the desired 

patterns: Ci) Bullseye, Cii) Island, Ciii) Janus.
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Figure 4: Computational synthesis of de novo spatial patterns and in vitro validation
A-D) Comparisons of three simulations of patterns predicted in silico and the resulting 

patterns seen in vitro under the same experimental conditions (scale bars = 200μm). 

Pluripotent colonies stained for DAPI (blue) and CDH1 (red/orange) to distinguish 

populations by presence or absence of CDH1. TSSL robustness scores show how well a 

simulation matches our specification compared to parallel control in silico or in vitro 
experiment. Scores are only comparable if they are calculated in the same environment 

(simulation vs simulation but not simulation vs experimental image). Image classification in 
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different environments is a well-known limitation in machine learning. B,D) Successful 

pattern creation rates, comparing in silico to in vitro results (Bullseye n = 286 colonies, 

Multi-Island n = 168 colonies). E) Proposed KD populations for the Bullseye Pattern and the 

Island Pattern were varied by 10% in silico and in vitro (n=10). Example target patterns 

(left) from the image set used to train the image classifier to identify and score Island and 

Bullseye patterns. i-ii) Robustness scores for the respective in vitro colonies as KD 

populations were varied by 10% where an increase in robustness score indicates more 

similarity to the target pattern. The predicted parameters from the in silico optimization are 

highlighted in grey and the in vitro are in black. Significance is indicated by * with p values 

< 0.05 where n = 16 colonies per condition and error bars indicate standard deviations.

Libby et al. Page 41

Cell Syst. Author manuscript; available in PMC 2020 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	One Sentence Summary
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Pattern Synthesis: in silico prediction and automated discovery of spatial behaviors
	Data-Driven Computational Model of Human iPSC Self-Organization
	Formulating Parameters for Design Automation
	Quantitative Pattern Classification
	Automated Discovery of Pattern Producing Conditions
	In Silico Model Accurately Predicts In Vitro Experimental Validation
	Colony Organization Impacts Initial Patterns of iPSC Differentiation

	DISCUSSION
	STAR Methods
	Lead Contact and Materials Availability
	Materials Availability

	Experimental Model and Subject Details
	Cell Lines

	Method Details
	Generation of CRISPRi knockdown iPSC lines
	Mixed Colony Generation
	Immunofluorescence Staining and Imaging
	Protein Quantification
	mRNA quantification
	Time Lapse Imaging
	Comparison of in vitro and in silico Spatial Patterns
	BMP4 differentiations
	Cellular Potts Model Environment
	Cellular Potts Model Dynamics

	CPM Configuration Energy
	Physical Units and Other Cellular Phenomena of CPM
	Model Fitting to Empirical data
	Morphology Characterization
	Velocity Characterization (Space vs. Time)
	Temporal Knockdown Characterization (Protein Expression vs. Time) - CDH1
	Temporal Knockdown Characterization (Protein Expression vs. Time) - ROCK1
	Spatial Pattern Characterization (Protein Expression vs. Space)

	TSSL Scoring and Pattern Optimization
	Quad-Tree Representation of an Image
	Tree Spatial Superposition Logic
	Quantitative Robustness
	Particle Swarm Optimization


	Quantification and Statistical Analysis
	Data and Code Availability
	Software
	Data Availability


	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:



