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Many prokaryotic and eukaryotic cells metabolize glucose to organism-specific 
by-products instead of fully oxidizing it to carbon dioxide and water—a phenomenon 
referred to as the Warburg Effect. The benefit to a cell is not fully understood, given that 
partial metabolism of glucose yields an order of magnitude less adenosine triphosphate 
(ATP) per molecule of glucose than complete oxidation. Here, we test a previously 
formulated hypothesis that the benefit of the Warburg Effect is to increase ATP pro-
duction rate by switching from high-yielding respiration to faster glycolysis when excess 
glucose is available and respiration rate becomes limited by proteome occupancy. We 
show that glycolysis produces ATP faster per gram of pathway protein than respiration 
in Escherichia coli, Saccharomyces cerevisiae, and mammalian cells. We then develop a 
simple mathematical model of energy metabolism that uses five experimentally esti-
mated parameters and show that this model can accurately predict absolute rates of 
glycolysis and respiration in all three organisms under diverse conditions, providing 
strong support for the validity of the ATP production rate maximization hypothesis. 
In addition, our measurements show that mammalian respiration produces ATP up 
to 10-fold slower than respiration in E. coli or S. cerevisiae, suggesting that the ATP 
production rate per gram of pathway protein is a highly evolvable trait that is heavily 
optimized in microbes. We also find that E. coli respiration is faster than fermentation, 
explaining the observation that E. coli, unlike S. cerevisiae or mammalian cells, never 
switch to pure fermentation in the presence of oxygen.

Warburg Effect | cancer metabolism | energy metabolism | modeling | systems biology

 The Warburg Effect remains one of the most well-documented, yet incompletely understood 
phenomena in metabolism and cancer biology. In 1924, Otto Warburg made the observation 
that in vivo tumors preferred converting glucose to lactic acid via fermentation in the pres-
ence of oxygen instead of complete oxidation to carbon dioxide and water ( 1 ,  2 ). Mammalian 
respiration yields more than ten times more adenosine triphosphate (ATP) per molecule of 
glucose than fermentation. The rationale for why cells prefer lower ATP-yielding fermen-
tation for ATP production in the presence of oxygen is not fully understood.

 Although the initial discovery was made in tumor cells, Warburg Effect–like metab-
olism has since been observed for numerous proliferating cells, including acetate pro-
duction through the phosphotransacetylase-acetate kinase (Pta-AckA) pathway in 
﻿Escherichia coli,  ethanol fermentation in Saccharomyces cerevisiae,  and lactic acid fer-
mentation in nontransformed mammalian cells. This phenomenon is also referred to 
as the Crabtree Effect in S. cerevisiae  and “overflow metabolism” in E. coli . To simplify 
nomenclature, we will collectively refer to various organism-specific pathways for partial 
metabolism of glucose (i.e., fermentation in E. coli , S. cerevisiae , and mammalian cells 
and the respiro-fermentative Pta-AckA acetate pathway in E. coli ) as glycolysis , to 
organism-specific pathways for complete oxidation of glucose to carbon dioxide and 
water as respiration , and to the preference for incomplete oxidation of glucose in the 
presence of oxygen as the Warburg Effect .

 No unifying hypothesis is widely accepted to explain the occurrence of the Warburg 
Effect ( 3     – 6 ) in a variety of organisms. Otto Warburg himself proposed that high glycolysis 
rates in cancer cells were due to an impairment in respiration ( 2 ). However, numerous 
studies have since demonstrated a prominent role of respiration in ATP production during 
cell proliferation ( 7 ,  8 ). Other proposed mechanisms for why the Warburg Effect occurs 
include satisfying biosynthetic demand ( 9 ,  10 ), regulating redox balance ( 11 ), limiting 
reactive oxygen species ( 12 ,  13 ), allowing for faster growth in hypoxic conditions ( 14 ), 
increasing the ATP production rate ( 15 ,  16 ), outcompeting other microorganisms for 
resources ( 17   – 19 ), and optimizing metabolism under the constraints of the proteome 
space ( 20     – 23 ), mitochondrial respiratory capacity ( 24   – 26 ), or bacterial plasma membrane 
area ( 18 ,  19 ).
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 We focus on testing the previously formulated hypothesis that the 
Warburg Effect allows cells to maximize ATP production rate ( 15 , 
 16 ). There is strong evolutionary pressure for cells and organisms to 
be able to generate ATP at a maximal rate under given conditions ( 15 , 
 16 ). For example, unicellular organisms can grow faster than compe-
tition, cells in multicellular organisms can divide faster to speed up 
the immune response and wound healing, and multicellular organisms 
can move faster to evade predators or catch prey if they can generate 
ATP at a higher rate. To produce ATP at a faster rate, cells can either 
use a high-yield biochemical pathway that produces more ATP per 
molecule of glucose or a high-rate pathway that consumes more mol-
ecules of glucose per unit of time ( 15 ,  16 ). The switch to a high-rate 
pathway can only be beneficial when there is some constraint that 
prevents cells from simply increasing the activity of a high-yield path-
way. Such a constraint can come from a finite proteome space that 
can be allocated to ATP-producing pathways while allowing for the 
expression of other pathways such as translation, biosynthesis, protein 
folding machinery, cytoskeleton components, etc. Here, our work 
builds on the resource allocation models of microbial growth ( 20       – 24 ). 
Several groups have proposed that microbes maximize their growth 
rate under different conditions by optimally allocating their proteome 
to translation, biosynthesis, energy production, and other processes. 
Resource allocation models are based on the observation that intra-
cellular protein concentration is relatively stable ( 27 ,  28 ) and, thus, 
to increase the expression of one pathway, another pathway’s expres-
sion must be decreased. Within the resource allocation framework, 
glycolysis has been proposed to be more proteome efficient than res-
piration, and, therefore, switching from respiration to glycolysis allows 
microbial cells to either increase their allocation to ATP-producing 
enzymes or allocate more of their proteome to ribosomes and other 
biosynthetic enzymes ( 20 ,  22 ) to grow faster.

 Here, we extend the resource allocation models to mammalian cells 
and provide a simple unifying explanation for the occurrence of 
Warburg Effect–like metabolism in E. coli , S. cerevisiae , and mamma-
lian cells. Specifically, we test the hypothesis that the Warburg Effect 
allows cells to produce ATP at a maximal rate depending on glucose 
availability and irrespective of cell growth. At low glucose availability, 
respiration produces ATP faster due to its higher yield, while at high 
glucose availability, glycolysis produces ATP faster due to its higher 
rate. To test this hypothesis, we developed a coarse-grained mathemat-
ical model that predicts the occurrence of the Warburg Effect at specific 
values of five biochemical parameters, including yield and specific 
activity of respiration and glycolysis, and maximal proteome fraction 
that can be occupied by ATP-producing enzymes. Our model has a 
unique analytical solution and no adjustable parameters, allowing for 
the direct prediction of experimental results. We experimentally esti-
mated the values of the five biochemical parameters for each organism. 
Using these biochemical parameters, we show that our model quanti-
tatively predicts the onset of the Warburg Effect, as well as glycolytic 
and respiration rates under various conditions in E. coli , S. cerevisiae , 
and mammalian cells, irrespective of growth rate. The ability of our 
model to predict the results of experiments in diverse organisms and 
conditions and without adjustable parameters provides strong evidence 
for the validity of this hypothesis. 

Results

The Warburg Effect Emerges from a Simple Model of Energy 
Metabolism That Maximizes ATP Production Rate. We test a 
hypothesis that the Warburg Effect results from cells switching 
between glycolysis and respiration to achieve maximal ATP 
production rates at different environmental conditions. The 
ATP production rate is controlled to meet cellular ATP demand. 

In proliferating cells, ATP demand correlates with growth as it 
supports biosynthesis. In differentiated cells, ATP demand can 
increase from nongrowth activities, such as muscle contraction 
or biosynthesis of macromolecules for secretion. We assume 
cells obey three biochemical constraints while optimizing ATP 
production (Fig. 1A): i) Glucose consumption is limited by either 
its availability in the surrounding media or by glucose uptake 
capacity of the cell. We assume that oxygen is present at saturating 
levels, but this assumption is not required, as we describe at the 
end of this section. ii) A limited fraction of the proteome can 
be allocated to ATP-producing enzymes. We assume that cells 
are free to shift the relative rates of glycolysis and respiration 
through a combination of changes in the expression of enzymes 
and transporters, posttranslational modifications, and allosteric 
regulation as long as the sum of glycolysis and respiration enzymes 
stays within the proteome fraction allocated to ATP-producing 
enzymes. iii) The maximal ATP production rate by either glycolysis 
or respiration pathways is limited by the maximal activity of 
respective enzymes. To describe the maximal ATP production 
rate by glycolysis or respiration, we utilize a metric that we call 
the specific activity of the pathway. The specific activity of the 
pathway (Vmax) is defined as the µmol of substrate per minute 
per milligram of pathway protein. This metric is analogous to 
the widely used specific activity of enzymes and has also been 
referred to as proteome efficiency in previous studies (14, 22).  
We will use specific activities of glucose consumption and ATP 
production, where the latter is obtained by multiplying the former 
by the ATP yield per glucose of the relevant pathway.

 To test the feasibility of our hypothesis, we constructed a math-
ematical model ( Fig. 1B  ). Our aim was to keep the mathematical 
model as simple as possible to keep the interpretation of results 
straightforward. Our model calculates the cellular rates of glyco-
lysis (Vglyc  ) and respiration (Vresp  ) that yield maximal ATP produc-
tion rate (VATP  ) at a given glucose uptake rate (Vglucose  ), which are 
all in units of µmol per minute per milligram of cellular protein. 
The model uses five biochemical parameters, including the ATP 
yield ( �glyc    and  � resp ) and specific activity of glycolysis and respi-

ration ( V glyc
max    and  V resp

max ) and fraction of the proteome that is occu-
pied by ATP-producing enzymes ( �ATP

total
 ). The model must also 

satisfy two simple constraints that i) the rate of glycolysis and 
respiration cannot proceed faster than what is allowed by the pro-
teome allocation for ATP-producing enzymes  (�ATP

total
)    and ii) glu-

cose uptake rate cannot be larger than the combined rates of 
glycolysis and respiration.

 The model can be written as an optimization problem:
﻿﻿  

﻿﻿   

﻿﻿  

 The model can either be solved numerically using linear program-
ming, which guarantees identification of a global maximum, or 
analytically using Lagrange multipliers with Karush–Kuhn–Tucker 
conditions ( 29 ) (see SI Appendix  for details). The solution predicts 
that if one pathway has both a greater yield of ATP per molecule of 
glucose (γ) and a higher specific activity of ATP production ( V ∙ � ), 
that pathway allows for maximal ATP production rate, independent 
of the glucose uptake rate ( Fig. 1 C  and D  ). However, if the yield is 
greater for one pathway (e.g., respiration such that  𝛾glyc < 𝛾 resp ), but 

[1]Maximize: VATP = Vglyc ∙ �glyc + Vresp ∙ � resp,

[2]Subject to:
Vglyc

V
glyc
max

+

Vresp

V
resp
max

≤ �ATP
total

,

[3]Vglyc + Vresp ≤ Vglucose.

http://www.pnas.org/lookup/doi/10.1073/pnas.2409509121#supplementary-materials
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the specific activity of ATP production is higher for the other path-
way (e.g., glycolysis such that ﻿V glyc

max ∙ 𝛾glyc > V
resp
max ∙ 𝛾 resp ), each path-

way allows for maximal ATP production rate depending on glucose 
availability ( Fig. 1E  ). The analytical solution of the model with 

respect to the glucose availability assuming that  𝛾glyc < 𝛾 resp    and 
﻿V glyc
max ∙ 𝛾glyc > V

resp
max ∙ 𝛾 resp    is given by the following equations:

﻿﻿  
[4]If V

resp
max ⋅ 𝜙

ATP
total

> Vglucose then Vglyc = 0,Vresp = Vglucose.

  ATP
G

lu
co

se Lactate

Pr
ot

eo
m

e

CO2  ATP

Mathematical ModelModel Inputs Model Outputs
Objective function: 

Constraints: 

Independent variable: Model output: 

Parameter estimates:

Values for:

That maximize:

A B

C

D

F G H

E

Fig. 1.   The Warburg Effect emerges from a simple model of energy metabolism that maximizes ATP production rate. (A) Illustration of the model. (B) Overview 
of the mathematical model. (C) Preferred ATP-producing pathways if parameters of yield of ATP per molecule of glucose (γ) and the specific activity of ATP 
production ( � ∙ V  ) are both higher for respiration, (D) both higher for glycolysis, or (E) if the yield is higher for respiration ( 𝛾

resp
> 𝛾

glyc
 ), but the specific activity of 

ATP production is higher for glycolysis ( 𝛾
resp

∙ V
resp

max
< 𝛾

glyc
∙ V

glyc

max
 ). In each case, the total ATP production rate is represented by the dashed line. (F) Increasing the 

proteome space dedicated to ATP-producing enzymes increases ATP production rate across glucose uptake rates and (G) delays the switch from respiration to 
glycolysis. The box in Fig. 1G is shown in (H) to highlight the delayed onset of glycolysis.
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﻿
﻿﻿  

﻿﻿   

 Eqs.  4 –6   predict that only respiration is used at low glucose 
uptake rates when  V resp

max ⋅ 𝜙
ATP
total

> Vglucose  (Eq.  4  ); respiration proves 
beneficial when glucose is limited as it maximizes ATP production 
per glucose molecule ( Fig. 1E  , blue shaded region). As the glucose 
uptake rate increases, the limiting factor shifts from substrate 
availability to the capacity of the proteome ( �ATP

total
  ) ( Fig. 1E  ). 

When the proteome allocation to ATP-producing enzymes is filled 
by respiratory enzymes, glycolysis can be substituted for respira-
tion to further increase the ATP production rate since it generates 
ATP more rapidly per unit of protein ( Fig. 1E  , yellow shaded 
region). The rate of this trade-off is defined by Eq.  5  . The shift 
from respiration to glycolysis occurs as a gradual substitution until 
only glycolysis is utilized; glycolysis is favored at high glucose 
uptake rates when  V glyc

max ∙ 𝜙ATP
total

< Vglucose  (Eq.  6  ) ( Fig. 1E  , red 
shaded region). In other words, a cell can produce ATP at the 
fastest rate using high-yielding respiration at low glucose availa-
bility ( Fig. 1E   and SI Appendix, Fig. S1 A  and E ), a mixture of 
high-yielding respiration and high rate glycolysis at intermediate 
glucose availability ( Fig. 1E   and SI Appendix, Fig. S1 B , C, F , and G ),  
and with glycolysis alone at high glucose availability to achieve 
the maximal ATP production rate ( Fig. 1E   and SI Appendix, 
Fig. S1 D  and H ).

 While the specific values of the yield and specific activity predict 
the benefit of switching from respiration to glycolysis, the glucose 
uptake rate when the switch occurs is determined by the total pro-
teome space dedicated to ATP-producing enzymes ( �ATP

total
 ) (Eq. ﻿2  ). 

Without the proteome constraint, cells would always be able to 
express more respiratory proteins to increase ATP production with-
out compromising on ATP yield. Increasing the proteome fraction 
dedicated to ATP-producing enzymes ( �ATP

total
 ) increases the capacity 

for ATP production across glucose uptake rates ( Fig. 1F  ) and delays 
the switch from respiration to glycolysis ( Fig. 1 G  and H  ).

 Our simple model assumes that glucose is used as the substrate 
for both glycolysis and respiration; however, the conclusions stay 
the same if a respiratory substrate other than glucose is used for 
respiration, such as acetate, glycerol, fatty acids, or amino acids 
(SI Appendix, Fig. S2  and see SI Appendix  for details). The latter 
can be intuitively understood by considering that the majority of 
respiratory ATP is produced by the tricarboxylic acid (TCA) cycle 
and electron transport chain (ETC) enzymes for physiologically 
relevant respiratory substrates, and thus, the specific activity of 
respiratory ATP production is similar for different substrates.

 All data used for parameter estimation and prediction validation 
in the following sections were collected under oxygen-rich con-
ditions, therefore we assume oxygen saturation in our model. 
However, our model can also be extended to include an oxygen 
consumption constraint to simulate anaerobic or hypoxic envi-
ronments (see SI Appendix  for model formulation). In these 
oxygen-limiting conditions, our model predicts that glycolysis will 
be utilized for ATP production at a lower glucose uptake rate as 

compared to oxygen-rich environments (SI Appendix, Fig S3 ). 
Furthermore, our model predicts the Pasteur Effect, where glyc-
olysis is inhibited as oxygen becomes more available (SI Appendix, 
Fig S3 ) ( 30 ) and is well known to be driven by the maximization 
of the ATP production rate ( 31     – 34 ).

 In summary, our model predicts a transition from respiration 
to glycolysis as glucose availability increases (i.e., the Warburg 
Effect) under certain combinations of yield and specific activity 
of glycolysis and respiration.  

Glycolysis Produces ATP at a Faster Rate than Respiration. We 
next estimated the yields ( �glyc  and � resp  ) and specific activities 
of ATP production of glycolysis and respiration ( V glyc

max ∙ �glyc  and 
V

resp
max ∙ � resp  ) to determine whether their values fall into the range 

where our model predicts the occurrence of the Warburg Effect: 
𝛾glyc < 𝛾 resp  and V glyc

max ∙ 𝛾glyc > V
resp
max ∙ 𝛾 resp  . To test the general 

applicability of our hypothesis, we chose to focus on three 
organisms, E. coli, S. cerevisiae, and mammalian cells since they 
span multiple kingdoms of life, exhibit a Warburg Effect–like 
metabolic switch, have unique bioenergetic pathways (SI Appendix, 
Fig. S4), and have been extensively studied.

 We first compiled the ATP yields of each pathway per molecule 
of glucose (SI Appendix, Fig. S5 A –C  and Datasets S1–S3 ). We 
found that respiration yields 10-, 8-, and 12-fold more ATP per 
glucose than fermentative glycolysis in E. coli , S. cerevisiae , and 
mammalian cells, respectively (SI Appendix, Fig. S5 A –C ). In 
﻿E. coli , we considered the respiro-fermentative Pta-AckA pathway 
as it is one of the main ATP-producing pathways in E. coli  in the 
presence of both oxygen and glucose ( 35   – 37 ). This pathway, 
involving Pta and AckA, is a distinct form of glycolysis because it 
is not strictly fermentative. Unlike fermentative pathways, the 
Pta-AckA pathway uses ETC to oxidize nicotinamide adenine 
dinucleotide (NADH) produced by glycolysis, but unlike respi-
ration, it does not use the TCA cycle to produce more NADH. 
Consequently, it requires both glycolysis and the ETC to function. 
This integration leads to obligate oxygen consumption and results 
in a higher ATP yield per glucose molecule as compared to fer-
mentation. However, respiration in E. coli  still yields twofold more 
ATP per glucose than the Pta-AckA pathway.

 We used experimental data to estimate the specific activities of 
ATP production for each pathway (V∙γ). To that end, we compiled 
an extensive dataset of physiological measurements to estimate 
the maximal rate of glycolysis and respiration per mg of cellular 
protein and divided those values by the fraction of the proteome 
occupied by glycolysis and respiration, respectively, determined 
from proteomics data (SI Appendix, Fig. S5 D –I  and Datasets 
S1–S3 ). Our estimates showed that glycolysis has 0.54- (2.1- for 
the Pta-AckA pathway), 2.1-, and 3.1-fold faster rates per mg of 
pathway protein than respiration for E. coli , S. cerevisiae , and 
mammalian cells, respectively ( Fig. 2 ). Our estimates allowed us 
to calculate the maximal ATP production rates of fermentative 
glycolysis and respiration in 11 transformed mammalian cell lines 
(SI Appendix, Fig. S6 ).        

 Previous studies have used different methodology to estimate 
the ratios of specific activities of ATP production (referred to as 
proteome efficiencies) of the Pta-AckA pathway and respiration 
in E. coli  to be 1.92 ( 22 ) and 2.31 ( 23 ) and for fermentation and 
respiration in S. cerevisiae  to be 1.66 ( 23 ) and 1.63 ( 38 ), which 
are all within the 95% CI of our estimates ( Fig. 2 A  and B  ). 
Absolute values for E. coli  were reported ( 22 ) to be 65 and 
34 μmol mg pathway−1  min−1  for Pta-AckA and respiration, 
respectively (converted from 750 and 390 mM per OD600  per 
hour using OD600  = 192.5 mg protein/L), which are the same 

[5]

If 𝜙ATP
total

∙V
glyc
max>>Vglucose>>𝜙ATP

total
∙V

resp
max

thenVglyc=

𝜙ATP
total

∙V
glyc
max ∙V

resp
max −Vglucose ∙V

glyc
max

V
resp
max −V

glyc
max

,

Vresp=

V
resp
max (𝜙

ATP
total

∙V
glyc
max ∙V

resp
max −Vglucose)

V
glyc
max−V

resp
max

.

[6]If V
resp
max ∙ 𝜙

ATP
total

< Vglucose then Vglyc = V
glyc
max ⋅ 𝜙

ATP
total

,Vresp = 0.
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ratio but approximately threefold higher absolute values com-
pared to our estimates. The values of acetate secretion and per-
cent proteome allocation of the Pta-AckA pathway appear to be 
similar between the latter study and our estimates. However, 
the difference in absolute values remains unclear and might be 
attributed to minor discrepancies in unit conversion. Absolute 
values for S. cerevisiae  were previously estimated ( 38 ) using a 
genome-scale flux balance model and molecular weights of 
enzymes to be 4.6 and 7.5 μmol mg pathway−1  min−1  for respi-
ration and glycolysis, respectively, which are within the 95% CI 
of our estimates. Finally, one study ( 14 ) found that respiration 
is more proteome efficient than glycolysis in S. cerevisiae  and 
CD8+  T cells. The study reported experimental values that differ 
from those observed in several previous studies, including a 
10-fold higher oxygen consumption in activated T cells and 
~fourfold higher ratio of glycolysis to respiration proteome 
occupancy in S. cerevisiae , which likely contributed to a different 
conclusion (SI Appendix, Fig. S7 ).

 In addition to direct experimental measurements, we estimated 
the molecular weight of glycolysis and respiration by summing up 
the molecular weights of the individual components multiplied by 
their stoichiometry in the relevant pathway (SI Appendix, Fig. S5 
﻿J –L  and Datasets S1–S3 ). Respiration pathways were dramatically 
larger than glycolysis pathways in all three organisms (SI Appendix, 
Fig. S5 J –L  and Datasets S1–S3 ). Strikingly, the increase in the size 
of respiration in relation to glycolysis is larger than the increase in 
yield afforded by respiration for all pathways except for fermentation 
in E. coli  (SI Appendix, Fig. S5 M –O ). Furthermore, 1.2 to 2.5-fold 
differences between the ratios of ATP yield to pathway size of gly-
colysis and respiration are similar to the respective differences in 
specific activity of ATP production ( Fig. 2 ). These calculations fur-
ther support our conclusion that the ATP production rate per mg 
of protein is higher for glycolysis than for respiration.

 Our estimates for ATP yield ( 𝛾glyc < 𝛾 resp  ) and specific activity of 

ATP production ( V glyc
max ∙ 𝛾glyc > V

resp
max ∙ 𝛾 resp  ) satisfied the parameter 

requirements in which our model predicts the switch from respira-
tion to glycolysis at high glucose availability for the respiro-
fermentative Pta-AckA pathway in E. coli , and redox-neutral 
fermentative glycolysis in S. cerevisiae  and mammalian cells. If addi-
tional mitochondrial proteins are included in  �resp  , the specific activ-
ity of respiration would be even lower for ﻿S. cerevisiae  and mammalian 
cells, reinforcing the robustness of our conclusion that glycolysis is 

faster than respiration per mg protein (SI Appendix, Fig. S8 ). 
Importantly, our results do not predict a benefit for switching from 
respiration to fermentative glycolysis in E. coli . Thus, in addition to 
explaining why E. coli , S. cerevisiae,  and mammalian cells exhibit the 
Warburg Effect, our model provides an explanation for why E. coli  
exclusively use the respiro-fermentative Pta-AckA pathway in the 
presence of glucose and oxygen and not redox-neutral fermentative 
glycolysis as is the case for S. cerevisiae , and mammalian cells. Finally, 
we note that the specific activities of ATP production increase from 
mammalian cells to E. coli  by over an order of magnitude for respi-
ration and over fivefold for glycolysis, suggesting that these param-
eters can evolve and that there might be evolutionary pressure for 
microbes to increase the specific activity of ATP production.  

The Model with No Adjustable Parameters Quantitatively 
Predicts the Onset of Warburg Effect. Having demonstrated that 
our hypothesis predicts the benefit of the Warburg Effect, we next 
tested whether our model can quantitatively predict the onset of the 
Warburg Effect as well as rates of glycolysis and respiration measured 
under different experimental conditions in E. coli, S. cerevisiae, and 
mammalian cells. The additional biochemical parameter that we 
needed for this test was the total fraction of the proteome allocated 
to ATP-producing enzymes ( �ATP

total
 ) that we estimated from 

proteomics data (SI Appendix, Fig. S5 D–F and Datasets S1–S3). 
We used glucose uptake rate as the only model input. For each 
given glucose uptake rate, the model used the four organism-specific 
biochemical parameters as described in the last section ( �glyc , � resp , 
V

glyc
max , and V resp

max ) and the total fraction of the proteome allocated 
to ATP-producing enzymes ( �ATP

total
 ) to determine the onset of the 

Warburg Effect as well as the glycolysis and respiration rates that 
allow cells to achieve a maximal ATP production rate (Fig. 3).

 The datasets used for parameter estimation and model valida-
tion are entirely independent and differ qualitatively in several 
ways. Here, we detail how the datasets differ and how these data-
sets enable us to make quantitative predictions. To estimate model 
parameters, we use data collected under conditions that maximize 
either glycolysis or respiration rates. Conditions used to estimate 
glycolysis parameters include saturating glucose concentrations, 
respiratory inhibitors, or anaerobic cultures, while respiration 
parameters are estimated using nonfermentable substrates at sat-
urating concentrations or ETC uncouplers. These experimentally 
derived parameter estimates enable our model to predict absolute 

8.9

Fermentation Respiration

21.8

Fermentation Respiration

A B CE. coli S. cerevisiae Mammalian

10.4

5.6

Pta-AckA

4.2

Fermentation Respiration

1.6

0.52

Fig. 2.   Specific activities of ATP production of relevant pathways for E. coli, S. cerevisiae, and mammalian cells. (A) Specific activity of ATP production (μmol mg 
pathway−1 min−1) for fermentation (red), the Pta-AckA pathway (green), and respiration (blue) for E. coli. (B and C) Specific activity of ATP production (μmol mg 
pathway−1 min−1) for fermentation (red) and respiration (blue) for S. cerevisiae and mammalian cells, respectively. Specific activity of ATP production rate is given 
by V

max
∙ � . Error bars are the 95 percent CI calculated from 10,000 bootstrap iterations.
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rates of glycolysis and respiration rates depending on glucose 
uptake rate and proteome allocation to ATP-producing enzymes. 
We compared our predictions to independent data collected under 
aerobic conditions with variable glucose availability and no inhib-
itors or ETC uncouplers. Under these conditions, such as in a 
chemostat at low growth rates, glycolysis and respiration rates are 
typically much lower than the maximal rate determined by our 
parameter estimation. Therefore, the model output is not simply 
a fit of the data, but a demonstration of our model’s ability to 
predict independently generated data.

 Our model accurately predicted the absolute rates of acetate, 
ethanol, and lactate production, and oxygen consumption over two 
orders of magnitude of glucose consumption rates in E. coli ,  
﻿S. cerevisiae,  and mammalian cells ( Fig. 3 ). Importantly, the results 
in  Fig. 3  are not data fitting but predictions of the model using 
biochemical parameters estimated from independent experiments 
and no adjustable parameters. Most of the experimental data are 
within the 95% CI of model predictions. Our predications for 
﻿E. coli  indicate that the Pta-AckA pathway ( Fig. 3A  , green) is utilized 
for acetate production, while fermentation ( Fig. 3A  , red) is never 
utilized in the presence of oxygen ( Fig. 3A  ). These model predictions 
align with our expectations based on the relative ATP yield per 
glucose and the specific activities of each pathway ( Fig. 2A  ). Our 
predictions were robust to different methods of accounting either 
contribution of each pathway to biomass formation (SI Appendix, 
Fig. S9 ) in all three organisms or for mitochondrial proteome size 
in the estimation of  �ATP

total
    and  V resp

max    for S. cerevisiae  and mammalian 
cells (SI Appendix, Fig. S10 ). Finally, we note that we used average 
proteome allocation to ATP-producing enzymes across many con-
ditions for each organism. This assumption is supported by our 
observation of the conservation of the proteome allocation to ATP-
producing enzymes as compared to the protein translation space in 
response to changes in growth rate in glucose-limited chemostats 
in E. coli  and S. cerevisiae  or between mammalian cell lines 
(SI Appendix, Fig. S11 ). However, the size of ATP-producing space 
could change depending on cell type, nutrient availability, or disease 
state, so the accuracy of our model predictions could be further 
improved by measuring the proteome allocation to ATP-producing 
enzymes under relevant conditions.  

The Model Predicts the Onset of the Warburg Effect Independent 
of Growth Rate. Our model proposes that glucose availability and 
not the growth rate is driving the onset of the Warburg Effect. 
To tease apart the role of growth rate and glucose availability, 
we have used E. coli and S. cerevisiae datasets from nitrogen, and 
phosphorus-limited growth conditions where carbon uptake rate 
and growth rate diverge significantly (Datasets S1–S3). In these 
datasets, the correlation between growth rate and glycolysis is weak 
(ρ = 0.50 and ρ = 0.43 for E. coli and S. cerevisiae, respectively) 
(Fig. 4 A and B) as compared to the correlation between the carbon 
uptake rate and glycolysis (ρ = 0.68 and ρ = 0.99, respectively), 
which has been previously observed for S. cerevisiae (39) (Fig. 4 C 
and D). Our model accurately predicted the relationship between 
the carbon uptake and glycolytic rates in S. cerevisiae irrespective 
of growth rate and nutrient limitation (Fig. 4D). Furthermore, 
our model can predict the onset of glycolysis for various carbon 
substrates, including glucose, maltose, and galactose without any 
alterations to the model as were done in a previous study to fit 
the data (38). For E. coli, our model overestimated the shift to 
acetate production under nitrogen-limited conditions (yellow 
points) (40). We speculate this is due to the known preference 
of E. coli to decrease the proteome fraction allocated to ATP-
producing enzymes ( �ATP

total
  ) at high glucose availability (22, 41). 

The latter challenges the constant �ATP
total

  assumption of our simple 
model under these specific conditions in E. coli, but is entirely 
consistent with our overall hypothesis that E. coli switched to the 
Pta-AckA glycolysis pathway because of its higher specific activity 
of ATP production in relation to respiration. We estimate that 
the proteome allocation dedicated to ATP-producing enzymes 
must undergo an approximate twofold decrease to account for 
the earlier onset of acetate production observed until nitrogen 
limitation (SI Appendix, Fig. S12). While the average proteome 
allocation to ATP-producing enzymes is 12%, we observed a 
range from as low as 6% to as high as 20% in our estimates of 
�ATP
total

  for E. coli. Therefore, twofold decrease in �ATP
total

  is within 
the observed range of the proteome allocation to ATP-producing 
enzymes. Furthermore, in cases in which the rate of change in 
the ATP-producing proteome space is known, our model is also 

E. coli S. cerevisiae MammalianA B C

Fig. 3.   The model with no adjustable parameters that maximizes ATP production rate accurately predicts glycolysis and respiration rates and onset of the 
Warburg Effect in E. coli, S. cerevisiae, and mammalian cells. (A–C) Comparison of model predictions (lines) and experimental observations (points) for glycolysis 
(red) and respiration (blue) rates of E. coli, S. cerevisiae, and mammalian cells, respectively. Note that each unique point shape represents data from a distinct 
publication. The glucose uptake rate for each point is calculated from the sum of oxygen consumption and glycolytic by-product production.
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able to predict resulting rates of glycolysis and respiration (see 
SI  Appendix for details, SI  Appendix, Fig.  S13). These results 
suggest that under nitrogen- and phosphorus-limited conditions 
in E. coli and S. cerevisiae, glycolysis is utilized as a major ATP 
production strategy as compared to the glucose-limited culture 
with the same growth rate due to the excess availability of glucose 
(Fig. 4 C and D).

Discussion

 Our study tests a hypothesis that the Warburg Effect arises from the 
optimization of energy metabolism that allows cells to maximize the 
ATP production rate depending on glucose availability. We find that 
although cellular respiration generates more ATP per glucose mole-
cule, the rate at which ATP is produced per the amount of enzyme 
protein involved is higher for the Pta-AckA pathway in E. coli , as well 
as for fermentative glycolysis in S. cerevisiae , and mammalian cells. 
Simply put, glycolysis is more compact than respiration, which allows 
glycolysis to produce ATP faster than respiration. Therefore, glycolysis 
is utilized when excess glucose is available and the ATP-producing 
space is limited. Our estimates show that in E. coli , only the Pta-AckA 
pathway and not redox-neutral fermentation is faster than respiration. 
Our observation explains a long-standing observation that E. coli , 

unlike mammalian cells or S. cerevisiae , do not use fermentation in 
the presence of oxygen ( 35 ).

 We tested our hypothesis using a course-grained model of 
energy metabolism. Our model quantitatively predicts the onset 
of the Warburg Effect and glycolysis and respiration rates under 
diverse conditions in each of the three organisms using only the 
five biochemical parameters estimated with independent data, 
which provides strong support for our hypothesis. The ability of 
our model to make quantitative predictions provides a path for 
further validation of our hypothesis with additional experiments 
to improve estimates of the five model parameters and to generate 
more data connecting glucose uptake rate to glycolysis and respi-
ration rates under different experimental conditions. Our model 
builds on the work of multiple groups that have utilized resource 
allocation models to explain the occurrence of the Warburg Effect 
in microbes ( 20       – 24 ). Our two contributions in terms of modeling 
are the use of measured biochemical parameters from independent 
experiments to quantitatively predict the occurrence of the 
Warburg Effect in each of the three organisms and the use of a 
resource allocation model to explain the occurrence of the Warburg 
Effect in mammalian cells.

 To test our model, we have measured the specific activities of 
ATP production for both glycolysis and respiration. Our 

E. coli S. cerevisiaeA B

C D

Fig. 4.   The Warburg Effect is driven by glucose availability and not growth rate. (A) Relationship between the growth rate (h−1) and the observed acetate production 
rate (μmol per mg cellular protein per min) for carbon- and nitrogen-limited cultures (gray and yellow, respectively) in E. coli or (B) the observed ethanol production 
rate (μmol per mg cellular protein per min) for carbon (glucose, maltose, galactose)-, nitrogen-, phosphorus-limited cultures (gray, burgundy, navy, yellow, green, 
respectively) in S. cerevisiae. (C) Relationship between the carbon uptake rate (μmol per mg cellular protein per min) and the observed acetate production rate 
(μmol per mg cellular protein per min) for carbon- and nitrogen-limited cultures (gray and yellow, respectively) in E. coli or (D) the observed ethanol production 
rate (μmol per mg cellular protein per min) for carbon (glucose, maltose, galactose)-, nitrogen-, phosphorus-limited cultures (gray, burgundy, navy, yellow, green, 
respectively) in S. cerevisiae. The carbon uptake rate for each point is calculated from the sum of oxygen consumption and glycolytic by-product production.
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measurements for E. coli  and S. cerevisiae  complement previous 
estimates of these parameters ( 22 ,  23 ,  38 ). We note that the 
specific activity of the pathway has been referred to as “proteome 
efficiency” in several publications. Improved estimates of the spe-
cific activity of ATP production and measurement of specific 
activities of other pathways should allow the community to 
develop resource allocation models that predict cellular behavior 
beyond ATP production from independently measured biochem-
ical parameters. Interestingly, we observed that the specific activ-
ities of ATP production for both glycolysis and respiration 
increase from mammalian cells through S. cerevisiae  to E. coli , 
suggesting an evolutionary adaptation that may reflect selective 
pressure favoring more compact ATP synthetic pathways in 
microbes. An example of a molecular mechanism of such an adap-
tation is Complex I of the ETC. Mammalian proton-pumping 
Complex I has 45 subunits and weighs 1 MDa, while E. coli  
proton-pumping Complex I has only 13 subunits and weighs 0.5 
MDa despite being homologous to the mammalian enzyme ( 42 ). 
In addition, both E. coli  and S. cerevisiae  have non-proton-
pumping versions of Complex I (S. cerevisiae  does not have a 
proton pumping Complex I at all) called NDH-II ( 43 ) and Ndi1 
( 44 ), respectively, that are not homologous to proton-pumping 
Complex I and have only one ~50 kDa subunit. Thus, the same 
or similar reactions are catalyzed by much smaller enzyme com-
plexes in microbes than in mammalian cells, leading to higher 
specific activity of respiration in microbes. High specific activities 
may be selected for in microbial environments, such as soils, in 
which carbon substrates are typically scarce, but competition for 
them with other organisms is high. The lower rate of specific 
activities in mammalian cells may reflect the adaptation to mul-
ticellular cooperation, which represents investment in traits that 
are beneficial to the organism as a whole, but may come at the 
cost of vigor in an individual cell in the form of cellular function 
or metabolic activity ( 45 ,  46 ). Further investigation is necessary 
to determine the additional molecular  mechanisms that drive the 
differences in the specific activity of ATP-producing pathways 
between species.

 Our model could explain phenomena beyond the Warburg 
Effect or preference for the Pta-AckA pathway in rapidly grow-
ing cells. We show that the Warburg Effect depends on glucose 
availability rather than growth rate. Therefore, our model can 
be used to investigate the preference for glycolysis vs. respiration 
in differentiated cells. For example, fast-twitch muscle fibers are 
well known to prefer to use fermentation to produce energy 
used for short bursts of intensive physical activity ( 47 ). Fast-
twitch muscle uses glycogen instead of glucose, which raises the 
yield of glycolysis from 2 to 3 ATP per glucose equivalent. Our 
estimates from  Fig. 2C  , in combination with the yield of 3 vs. 
2 ATP per glucose, suggest that fast twitch muscle cells can 
produce ATP up to five times as fast if they dedicate the same 
fraction of their proteome to glycolysis than respiration–a large 
advantage in energy production rate that likely drove the evo-
lution of fast-twitch muscle to rely on glycolytic fermentation. 
Moreover, our approach may clarify why microbes choose 
between expression of proton-pumping and non-proton-
pumping versions of the same ETC complexes as mentioned 
above. Specifically, our model suggests that microbes could 
modulate the specific activity of their ATP-producing pathways 
by switching between high-yield (proton-pumping) and fast-
rate (non-proton-pumping) respiratory chain components. This 
idea is supported by proteomics data showing that in E. coli , 
the expression of the faster, but lower-yielding non-proton-
pumping NADH dehydrogenase II increases with growth rate, 

while expression of the high-yielding proton-pumping NADH 
dehydrogenase I decreases ( 48 ).

 While our model provides a unified explanation for the Warburg 
Effect by focusing on ATP production rates, several limitations 
should be considered. First, our model only accounts for the 
occurrence of the Warburg Effect in three organisms, where our 
parameter estimates demonstrate that  𝛾glyc < 𝛾 resp    and 
﻿V glyc
max ∙ 𝛾glyc > V

resp
max ∙ 𝛾 resp . To robustly test our hypothesis, it would 

be especially valuable to measure our model parameters in organ-
isms that do not exhibit the Warburg Effect, such as Crabtree-
negative yeast. Specifically, we would aim to assess whether 
﻿𝛾glyc < 𝛾 resp    and  V glyc

max ∙ 𝛾glyc < V
resp
max ∙ 𝛾 resp    as would be predicted 

by our model. Second, the mathematical formulation of our model 
is intentionally simple, which inherently limits its ability to fully 
account for the complex and dynamic regulatory mechanisms that 
control respiratory and glycolytic rates. This limitation is evident 
by our observation that model parameters, such as fraction of the 
proteome occupied by ATP-producing enzymes, can vary under 
specific conditions like nitrogen limitation in E. coli . Our current 
model lacks the complexity to account for such dynamic changes. 
Additionally, our hypothetical model estimates for the regulation 
of glycolytic rates in response to oxygen limitation, have not exper-
imentally tested where both may contribute to the high glycolytic 
rates observed in tumors with limited vasculature ( 49 ). Finally, 
we highlight that while our study provides an explanation for why 
it is beneficial for diverse organisms to switch between fast glyc-
olysis and high-yielding respiration, more work needs to be done 
to investigate the molecular mechanisms of how cells optimize 
their energy metabolism, given the fundamental trade-offs of yield 
and rate.  

Materials and Methods

Analysis Code and Figure Generation. All data and code used in the fig-
ure generation are available as a GitHub repository via https://github.com/
DenisTitovLab/WarburgEffectModel.

Estimation of Proteome Occupancy by Metabolic Pathways ( �glyc  , �resp , 

and �
ATP
total). We utilized a total protein approach and previously published meas-

urements of the absolute quantification of proteins using mass spectrometry (MS) 
to estimate the fraction of the proteome occupied by glycolysis ()�glyc , respiration 
()�resp , or all ATP-producing pathways ()�ATP

total
 (Datasets S1–S3). We only included 

studies that used 8 M urea or sodium dodecyl sulfate in the lysis buffer to improve 
the estimation of membrane proteins, which are not extracted using milder lysis 
buffers. The total protein approach assumes that a protein’s abundance within 
a cell’s proteome is proportional to that protein’s MS signal over the total MS 
signal (Eq. 7).

This approach was previously validated (50) by showing that it can accurately 
quantify proteins within their expected physiological range spanning five orders 
of magnitude.

ETC complexes are imbedded in the mitochondrial membrane and, therefore, 
are often extracted with less efficiency. The level of ETC complex subunits with 
greater than 20 percent missing values was imputed using the average levels of 
subunits of the same complex that where not missing on a per-sample basis. Both 
subunit mass and stoichiometry were accounted for in the correction.

The specific enzymes included in the calculation of �glyc  and �resp  for E. coli, 
S. cerevisiae, and mammalian cells are included in Datasets S1–S3. To match the 
respective physiological measurements for E. coli and S. cerevisiae, �glyc  was only 

[7]
Protein mass

Total protein mass
∝

Protein MS Signal

Total MS Signal
.
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calculated for fermentable carbon substrates (i.e., sugars) and �resp  is only calculated 
for nonfermentable carbon substrates (i.e., acetate, pyruvate, succinate, glycerol, 
fumarate) both in batch culture. For the respiro-fermentative Pta-AckA pathway in 
E. coli, ETC components were included to account for redox balance and additional 
ATP production. For the translational proteome space, the enzymes included in the 
Gene Ontology for translation (GO:0006412) were used for each organism.

All the estimates of respiration proteome occupancy reported in the main 
text included only core respiration and TCA cycle enzyme. To determine the 
effect of additional mitochondrial proteins on our predictions, we included two 
further predictions for S. cerevisiae and mammalian cells. First, in addition to 
core respiratory enzymes, we included mitochondrial proteins that positively 
correlated with the expression of the sum of the core respiration proteins  
(ρ > 0) and were statistically significant after Benjamini–Hochberg correction 
(P < 0.05). The statistical significance represents a two-tailed p-value, which 
is the probability of a correlation coefficient at least as big to be observed if the 
null hypothesis is true. All proteins included in the �resp for S. cerevisiae and 
mammalian cells are listed in Datasets S2 and S3. Second, all MitoCarta mito-
chondrial proteins were included in the estimate �resp . The model estimations 
using these two additional estimates are reported in SI Appendix, Fig. S10.

For mammalian cells, 11 cell lines from distinct origins were utilized 
including A549, GAMG, HeLa, HepG2, Jurkat, K562, LnCap, MCF7, RKO, U2OS, 
and HEK293.

We did not correct proteome allocations for biosynthesis because the 
magnitude of the required correction is small (<30%, see discussion below) 
and accurate correction would require extensive metabolomics flux meas-
urements that will complicate the model and discussion considerably. The 
magnitude of the correction is <30% for the following reasons. First, for 
respiration, the correction for biosynthesis flux will be small because a large 
fraction of the proteome allocated to respiration is occupied by respiratory 
chain which only carries energy production flux and not biosynthesis flux 
(e.g., see SI Appendix, Fig. S3). Furthermore, E. coli and S. cerevisiae grown 
on respiratory substrates divert a max of only ~45 to 55% of glucose to 
biosynthesis based on the biomass yield of ~0.45 to 0.55 g dry weight per 
g glucose. Second, the correction for glycolysis is small because cells grown 
in glucose in batch culture divert most of their glucose flux to glycolytic ATP 
production. For example, E. coli grown on glucose divert ~70% of glucose 
mass for acetate secretion (51) and the Pta-AckA pathway used under these 
conditions uses respiration so the correction is even smaller due to latter 
point. For S. cerevisiae grown on glucose ~80% of glucose mass is secreted 
as ethanol (52), and mammalian cells often use >90% of glucose mass for 
glycolytic fermentation as they are grown in rich media with amino acids 
and do not have to use as much glucose for biosynthesis. The correction of 
glycolysis for biosynthesis would have increased the specific activity of glyc-
olysis making it even faster compared to respiration. We have now included 
the above description in the methods section.

Estimation of Maximal Cellular Activity of Glycolysis and Respiration. 
Absolute specific activities of glycolysis and respiration per weight of cellular 
proteins were estimated from experiments in which the maximal activity of 
each pathway was measured. These values are then combined with proteomic 
fractions of respective pathways to estimate specific activity per weight of 
pathway as describe in another section below. For E. coli, S. cerevisiae, and 
mammalian cells, the maximal acetate, ethanol, and lactate production rates 
(LPR), respectively, were used for glycolysis (Datasets S1–S3). For E. coli and 
S. cerevisiae, these values were taken from measurements grown in batch 
culture on a fermentable substrate. For mammalian cells, lactate production 
values were taken from measurements where cells were treated with oligo-
mycin to maximize lactate production. For respiration, the maximal oxygen 
consumption rates (OCR) were utilized for E. coli, S. cerevisiae, and human 
cells (Datasets S1–S3). For E. coli and S. cerevisiae, these values were taken 
from measurements grown in batch culture or accelerostat on a nonfermenta-
ble substrate. For human cells, all oxygen consumption data are from Agilent 
Seahorse Bioanalyzer assays, and maximal respiration rate is estimated as 
the difference between oxygen consumption in the presence of uncoupler 
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and respiration inhibitor 
Antimycin A (or Rotenone) to account for nonmitochondrial respiration. FCCP 
uncouples mitochondrial ETC activity from ATP production by dissipating the 

proton gradient, forcing the ETC to operate at a maximum rate, which allows 
the measurement of maximal OCR that is not limited by the ATP demand (53, 
54). Each value was converted to units of μmol per mg cellular protein per min 
from oxygen consumption or glycolytic by-product formation to account only 
for glucose consumption toward ATP production and not biomass.

For studies that reported values in units consisting of gram cell dry weight 
(gCDW), it was calculated that 55% and 44% of dry cell mass consisted of pro-
tein in E. coli and S. cerevisiae, respectively (Datasets S1 and S2). The estimates 
of gCDW per g protein are based on the studies for E. coli and S. cerevisiae 
compiled in Datasets S1 and S2. For mammalian cells studies that reported 
values in units of cell number, representing 9 of 14 studies, it was assumed that 
each cell contained 300 pg of protein (50, 55, 56). The following mammalian 
cell lines were utilized for these estimates: C2C12, H1299, HeLa, 4T1, K562, 
CD4+ T cell, primary isolated cardiomyocytes, Ehrlich ascites tumor cells, and 
primary rat cerebellar neurons.

Estimation of the Molecular Weight of Glycolysis and Respiration Pathways. 
Molecular weights of the pathways were calculated by summing the molecular 
weights of all proteins in each of the pathways corrected for pathway stoichiometry 
(Datasets S1–S3). For each enzyme that has isoforms, the average molecular weight 
of isoforms was used. For each enzyme that is a multisubunit protein complex, the 
sum of the subunits was used with subunit stoichiometry accounted.

Estimation of ATP Yield Per Glucose of Glycolysis and Respiration. The ATP 
yield for (γresp and γglyc) was estimated for E. coli, S. cerevisiae, and mammalian 
cells. Fermentative glycolysis yield of two ATP per glucose is well defined for all 
three organisms (SI Appendix, Fig. S4 A–C and Datasets S1–S3).

To define the ATP yield of respiration for each organism, experimentally 
derived measurements (57–59), in combination with the following calculations, 
were used to account for ATP produced from glycolysis, the TCA cycle, and the ETC 
(Datasets S1–S3). In fermentative glycolysis, glucose is converted to a glycolytic 
by-product, producing a net gain of two ATP per glucose for each organism.

Fermentative glycolysis for E. coli, S. cerevisiae, and mammalian cells, 
respectively:

In respiration, glucose is converted to a pyruvate, generating ATP and NADH. 
Pyruvate is further oxidized through the TCA cycle, generating additional NADH, 
CoQH2, and ATP per glucose in all three organisms.

In the ETC, NADH and FADH2 are oxidized to generate a proton gradient in the 
inner mitochondrial membrane (or plasma membrane in E. coli). In S. cerevisiae 
and mammalian cells, the NADH produced from glycolysis is shuttled into the 
mitochondria to enter the ETC at a cost of 1 H+ per NADH. The proton gra-
dient is then used to drive the production of ATP synthase. Each organism 
has a unique number of H+ translocated per NADH and FADH2 based on the 
translocated H+ per electron ratio of the utilized ETC components. For E. coli, 
the ratio of translocated H+ per electron is 2 for NADH-ubiquinone reductase 
(NDH-I) and 2 for quinol oxidase (cytochrome bo3 oxidase). For S. cerevisiae, 
the ratio of translocated H+ per electron is 0 for NADH-ubiquinone reductase 
(Ndi1), 1 for quinol-cytochrome c reductase (Complex III), and 2 for cytochrome 
c oxidase (Complex IV). For mammalian cells, the ratio of translocated H+ per 
electron is 2 NADH-ubiquinone reductase (Complex I), 1 for quinol-cytochrome 
c reductase (Complex III), and 2 for cytochrome c oxidase (Complex IV). Note 
that each NADH or FADH2 donates two electrons. Therefore, the total number 
of translocated H+ is calculated by the following equation where mammalian 
cells are used as an example:

[8]C6H12O6 + 2 ADP + 2 Pi→ Various Products + 2 ATP,

[9]C6H12O6 + 2 ADP + 2 Pi→ 2 C6H12O + 2 CO2 + 2 ATP,

[10]C6H12O6 + 2 ADP + 2 Pi→ 2 C3H6O3 + 2 ATP.

[11]
C6H12O6+6 O2+4 ADP+4 Pi+2 CoQ+10 NAD+

+14 H+
→6 CO2+6 H2O+4 ATP+2 CoQH2+10 NADH.

[12]
H+

maximum
=2 ∙H+

CI
∙NADHtotal+2 ∙H+

CIII
∙ (NADHtotal+FADH2total

)

+ 2 ∙H+

CVI
∙ (NADH+FADH2)−NADHglycolysis ∙H

+

Transport
.
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However, it is well known that proton leak occurs in the membrane. For 
mammalian cells, the proton leak was calculated from the difference in the 
oxygen consumption rate in the presence of oligomycin and antimycin A (or 
rotenone) (Dataset  S3). We determined that the proton leak was ~25%. For 
E. coli and S. cerevisiae, we also assumed ~75% of theoretical maximal yield to 
account for proton leak. Furthermore, the ratio of H+/ATP was measured to be 4, 
3, and 3 for E. coli, S. cerevisiae, and mammalian cells, respectively (57–59). Note 
that in mammalian cells and S. cerevisiae, we assume the adenine nucleotide 
translocator (ANT) is active, and therefore, the cost of transporting each ATP from 
the mitochondria is 1 H+. Therefore, the total number of ATP produced through 
respiration is calculated by

The ATP yield of respiration was determined to be 20, 16, and 24 ATP per molecule 
of glucose for E. coli, S. cerevisiae, and mammalian cells, respectively:

The Pta-AckA pathway in E. coli utilizes the ETC for oxidation of the 4 NADH 
produced per molecule of glucose in the E. coli Pta-AckA pathway that converts 
glucose to acetate, yielding 10 ATP per molecule of glucose. The Pta-AckA pathway 
in E. coli utilizes the ETC for oxidation of the 4 NADH produced per molecule of 
glucose in the E. coli Pta-AckA pathway that converts glucose to acetate.

Estimation of the Specific Activity of ATP Production of Glycolysis and 
Respiration. We used experimental data to estimate the specific activities of ATP 
production of glycolysis and respiration (SI Appendix, Fig. S4 G–I and Datasets 
S1–S3). The specific activity of glucose consumption was calculated by taking the 
maximal cellular glucose consumption rate by a given pathway (µmol glucose 
per mg of cellular protein per min) and dividing it by the fraction of the proteome 
occupied by the pathway ( �glyc or �resp).

As described above in Estimation of Maximal Cellular Activity of Glycolysis 
and Respiration, we determined the maximal glycolysis and respiration rates for 
E. coli, S. cerevisiae, and mammalian cells by compiling an extensive dataset from 
38 independent publications containing 57 measurements of production rate of 
glycolysis products (i.e., acetate, ethanol, lactate) and OCR, which were converted 
to glucose consumption rate using known stoichiometry of the pathways (Datasets 
S1–S3). For each organism, we calculated �glyc, and �resp from proteomics data 
as described above in Estimation of Proteome Occupancy by Metabolic Pathways 
(�glyc, �resp, and �ATP

total
).

We made two additional predictions for S. cerevisiae, and mammalian cells 
that were only used for data reported in SI Appendix, Figs. S6 and S7. In the first, 
corrections to �resp to account for mitochondrial proteins that are required for 
mitochondrial biogenesis and function but are not core respiration components 
by including into �resp mitochondrial proteins whose expression was significantly 
(P < 0.05) and positively correlated (ρ > 0) with the sum of the TCA and ETC 
proteins. In the second, we included all mitochondrial proteins.

Mathematical Model. To describe the Warburg Effect, we use a constrained 
optimization model. The objective function of the model is to maximize the ATP 
production rate given the constraints as described in Eqs. 19–21 reproduced here 
for convenience:

We can use the Vglyc  and Vresp  values to calculate the absolute rates of glyco-
lytic by-product (i.e., acetate, ethanol, or lactate) or oxygen consumption from 
the predicted rates of glycolysis and respiration (Eqs. 22 and 23, respectively):

We used the method of Lagrange multipliers with Karush-Kuhn-Tucker con-
ditions to solve this optimization problem with inequality constraints. We report 
an analytical solution here. We note that the global optimum can also be found 
using the linear programming software PuLP (60). The full derivation is presented 
in SI Appendix, Supplemental Discussion 1. Here, we present the full set of cases, 
unlike in the main text where we have just provided those which have biological 
relevance. With Vglyc

max , 𝛾glyc, V
resp
max , 𝛾 resp,𝜙

ATP
total

, Vglucose > 0, the solution is explicitly 
written by cases:

To predict the absolute rates of three pathways in E. coli, fermentation, Pta-
AckA, and respiration, we extended the model to include the Pta-AckA pathway 
as follows:

[13]� resp =
(H+

maximum
− H+

Leak
)

(H+
∕ATP + H+

∕ATPtransport)
.

[14]C6H12O6 + 6 O2 + 20 ADP + 20 Pi→ 6 CO2 + 6 H2O + 20 ATP,

[15]C6H12O6 + 6 O2 + 16 ADP + 16 Pi→ 6 CO2 + 6 H2O + 16 ATP,

[16]C6H12O6 + 6 O2 + 24 ADP + 24 Pi→ 6 CO2 + 6 H2O + 24 ATP.

[17]C6H12O6+2 O2+4 ADP+4 Pi+4 NAD+

+ 4 H+
→2 C2H4O2+2 CO2+2 H2+2 H2O +4 ATP+4 NADH.

[18]V
glyc∕resp
max =

Max cellular rateglyc∕resp

�glyc∕resp

.

[19]Maximize: VATP = Vglyc ∙ �glyc + Vresp ∙ � resp.

[20]Subject to:
Vglyc

V
glyc
max

+

Vresp

V
resp
max

≤ �ATP
total

,

[21]Vglyc + Vresp ≤ Vglucose.

[22]V
byproduct

glyc
= �

byproduct

gluc
∙ Vglyc,

[23]VO2
resp

= �O2,consumed
resp

∙ Vresp.

[24]
If
𝛾glyc< 𝛾 resp

Vresp
max

∙𝜙ATP
total

> Vglucose

then Vglyc=0, Vresp= Vglucose.

[25]

If

𝛾glyc<𝛾 resp

V
glyc
max ∙𝛾glyc> V

resp
max ∙𝛾 resp

𝜙ATP
total

∙V
glyc
max > Vglucose>𝜙ATP

total
∙V

resp
max

then

Vglyc=
𝜙ATP
total

∙V
glyc
max ∙V

resp
max −Vglucose ∙V

glyc
max

V
resp
max −V

glyc
max

Vresp=
V
resp
max (𝜙

ATP
total

∙V
glyc
max ∙V

resp
max −Vglucose)

V
glyc
max−V

resp
max

.

[26]If
V
glyc
max ∙𝛾glyc> V

resp
max ∙𝛾 resp

V
glyc
max ∙𝜙

ATP
total

< Vglucose

then Vglyc= V
glyc
max ⋅𝜙

ATP
total

, Vresp=0.

[27]If
𝛾glyc>𝛾 resp

V
glyc
max ∙𝜙

ATP
total

> Vglucose

then Vglyc= Vglucose, Vresp=0.

[28]

If

𝛾glyc>𝛾 resp

V
glyc
max ∙𝛾glyc< V

resp
max ∙𝛾 resp

𝜙ATP
total

∙V
glyc
max < Vglucose<𝜙ATP

total
∙V

resp
max

then

Vglyc=
𝜙ATP
total

∙V
glyc
max ∙V

resp
max −Vglucose ∙V

glyc
max

V
resp
max −V

glyc
max

Vresp=
V
resp
max (𝜙

ATP
total

∙V
glyc
max ∙V

resp
max −Vglucose)

V
glyc
max−V

resp
max

.

[29]
If
Vglyc ∙𝛾glyc< Vresp ∙𝛾 resp

V
resp
max ∙𝜙

ATP
total

≤ Vglucose

then Vglyc=0, Vresp= V
resp
max ∙𝜙

ATP
total

.

[30]Maximize: VATP = Vferm ∙ � ferm + Vpta ∙ �pta + Vresp ∙ � resp.

[31]Subject to:
Vferm
V ferm
max

+

Vpta

V
pta
max

+

Vresp

V
resp
max

≤ �ATP
total

,

[32]Vferm + Vpta + Vresp ≤ Vglucose.
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We used the method of Lagrange multipliers with Karush-Kuhn-Tucker 
conditions to solve this optimization problem with inequality constraints for 
the additional Pta-AckA pathway. Since adding a third pathway increases the 
number of cases for the analytical solution, we also present the three rele-
vant cases to demonstrate that given the relationship between the yield (i.e., 
𝛾 ferm < 𝛾pta < 𝛾 resp  ) and the specific activity (i.e., 𝛾 ferm < 𝛾 resp < 𝛾pta  ) of the 
three pathways (Fig. 2A and SI Appendix, Fig. S4A, respectively). We limited our 
analysis to demonstrate that fermentation would never be under the estimated 
parameter relationships (SI Appendix, Supplementary Discussion 1). The following 
three cases describe that fermentation is not an energetically favorable option 
with oxygen is available:

To estimate the CI of model prediction, we performed bootstrapping to res-
ample the five parameter estimates (i.e., fraction of the proteome occupied by 
pathway, specific activity, and ATP yield) with replacement (N = 10,000). After 
each round of sampling, the specific activity of each pathway and total proteome 
occupancy of ATP-production enzymes is calculated as described previously. The 
sampled parameter values for proteome occupied by pathway, specific activity, 
and ATP yield from each round of bootstrapping were then used for either the lin-
ear program or analytical solution described above. All 10,000 results were stored 
then the mean was plotted with the 95% CI, signifying the confidence levels. For 
S. cerevisiae and mammalian cells, two additional estimates were conducted  
1) with correlated additional mitochondrial proteins and 2) with all mitochondrial 
proteins (SI Appendix, Fig. S8 and Datasets S2 and S3).

To ensure that we accurately model only the metabolic fluxes involved in 
energy production and not biomass production, we calculated the glucose uptake 
rate by applying the stoichiometric ratios derived from oxygen consumption and 
glycolytic by-product formation. The glucose uptake rate used for energy produc-
tion was then determined by the following:

Cell Lines and Cell Culture. All cell lines were cultured in Dulbecco’s modified 
eagle’s medium [DMEM (Gibco™ 12800082), 3.7 g/L NaHCO3, 10% FBS (Gibco™ 
10437028), and 100 U/mL penicillin–streptomycin (Gibco™ 15140122)]. All 
experiments were performed in the absence of penicillin–streptomycin. The 
following cell lines were used: C2C12, Huh7, HeLa, U2OS, A549, BR3, H1703, 
PC3, and MCF7. In addition, published data from following cell lines were used to 
compare our model estimates: SiHa, Bcap37, 4T1, H1299, HepG2, SW620, HeLa, 
SKBR3, A549, SF188, primary thymocytes from Wistar rat, primary astrocytes 
from Wistar rat, H1299, human fibroblast, human retinal pigment epithelium, 

Anococcygeus muscle from Wistar rat, and primary cardiomyocytes from Sprague-
Dawley rats.

Measurement of Cell Volume. During each cell passage, the Coulter Z2 Counter 
Cell Particle Analyzer (Beckman) was used to determine the concentration and 
volume of cells. The average volume (fL) and SD of each cell line are reported 
in Dataset S3.

Cell Protein Concentration Measurement. Protein concentration was deter-
mined using the bicinchoninic acid (BCA) assay. One million cells were collected 
in a 2 mL centrifuge tube. Cells were pelleted at 600 g. Media were aspirated. 
Cells were washed with phosphate-buffered saline, spun, and aspirated twice 
to remove protein contained in the media. Cells were resuspended in 500 µL of 
lysis buffer containing 1% sodium dodecyl sulfate and incubated at 90 °C for 10 
min. Samples were prepared for analysis in triplicate as instructed in the Pierce™ 
BCA Protein Assay Reagent Kit (Thermo Fisher Scientific 23225). Samples intensity 
was measured at 562 nm using BioTek Cytation1. Protein concentrations per cell 
volume for each analyzed mammalian cell line as compared to a bovine serum 
albumin standard (Dataset S3).

Measurement of LPR. Lactate Production Rate (LPR) of cell lines were 
measured using the L-Lactate Assay Kit-I (Colorimetric) (Eton Bioscience 
120001400A). Cells were seeded at the volumetric equivalent of 0.5 million 
HeLa cells, where the average HeLa cell volume was measured to be 2,300 fL, 
per well of a 6-well plate in 3 mL of DMEM and were incubated at 37 °C in 
5% CO2 incubator. The medium was replaced 24 h later with 3 mL of the assay 
medium [DMEM (Gibco™ 12100061), 10 % dialyzed FBS (Gibco™ 26400044) 
and 3.7 g/L NaHCO3]. Two hundred µL of media were collected every hour for 
4 h and immediately frozen on dry ice. Samples were stored at −80 °C until 
analyzed. At the end of the 4-h sampling period, cells were trypsinized and 
counted using the coulter counter. To analyze the samples, 50 µL of sample was 
combined with 50 µL L-Lactate assay solution. The absorbance at 490 nm was 
measured for 45 min at 37 °C on the BioTek Cytation1. The slope of each well 
was determined. A standard curve was made by plotting the slope of OD490 
nm values for each L-Lactate standard as a function of L-Lactate concentration. 
The L-Lactate concentration of each biological sample was determined using the 
equation obtained from the linear regression of the standard curve. L-Lactate 
in each sample was converted from concentration to moles per g protein using 
obtained cell counts and protein concentrations per cell volume for each mam-
malian cell line. Linear regression was performed across the 4-h time course to 
determine the LPR for each cell line.

Measurement of Oxygen Consumption Rate. Oxygen Consumption Rate 
(OCR) of cell lines were measured with the Agilent Seahorse XFe24 Analyzer. 
Cells were seeded at the volumetric equivalent of 100,000 HeLa cells, where 
the average HeLa cell volume was measured to be 2,300 fL, per well of XFe24 
cell culture microplates in 150 µL of DMEM, and were incubated at 37 °C 
in 5% CO2 incubator. The medium was replaced 24 h later with 500 µL of 
the assay medium [DMEM (Gibco™ 12100061), 10% dialyzed FBS (Gibco™ 
10437028), and 5 mM HEPES-KOH, pH 7.4], and the plates were placed in 
the Agilent Seahorse XFe24 Analyzer for OCR measurements. Each measure-
ment was performed over 4 min after a 2 min mix and 2 min wait period. 
Basal measurements were collected three times, three measurements were 
collected after injection of oligomycin (final concentration of 1 µM), three 
measurements were collected after injection of FCCP (final concentration of 
3 µM), three measurements were collected after a subsequent addition of 
FCCP (final concentration of 6 µM), three measurements were collected after 
addition of antimycin A and rotenone (final concentration of 1 µM each). Each 
drug was injected as a concentrated 50 µL solution of the assay medium. At 
the end of the measurements, cells were trypsinized and counted using the 
Coulter Z2 Counter Cell Particle Analyzer (Beckman). OCR were converted to 
µmol per mg protein per min using obtained cell counts and protein concen-
trations per cell volume for each mammalian cell line.

Data, Materials, and Software Availability. Code used in the figure gener-
ation is available as a GitHub repository via https://github.com/DenisTitovLab/
WarburgEffectModel (61). All data are available in the main text or supporting 
information.

[33]If

𝛾 ferm< 𝛾 resp

𝛾pta< 𝛾 resp

Vresp
max

∙𝜙ATP
total

> Vglucose

then Vferm=0, Vpta=0, Vresp= Vglucose.

[34]

If

𝛾 ferm<𝛾 resp

𝛾pta<𝛾 resp

V ferm
max

∙𝛾 ferm< V
pta
max ∙𝛾pta

V
pta
max ∙𝛾pta> V

resp
max ∙𝛾 resp

𝜙ATP
total

∙V
glyc
max > Vglucose>𝜙ATP

total
∙V

resp
max

then

Vferm=0

Vpta=
𝜙ATP
total

∙V
pta
max ∙V

resp
max −Vglucose ∙V

pta
max

V
resp
max −V

pta
max

Vresp=
V
resp
max (𝜙

ATP
total

∙V
pta
max ∙V

resp
max −Vglucose)

V
pta
max−V

resp
max

.

[35]If

V ferm
max

∙𝛾 ferm< V
pta
max ∙𝛾pta

V
pta
max ∙𝛾pta>> V

resp
max ∙𝛾 resp

V
pta
max ∙𝜙

ATP
total

< Vglucose

then Vferm=0, Vpta= V
glyc
max ∙𝜙

ATP
total

, Vresp=0.

[36]Glucose Uptake Rate =
V
O2 consumption
resp

6
+

V
by−product production

glyc

2
.
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