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Abstract

Robust Ways of Witnessing Nonclassicality in the Simplest Scenario

by

Massy Khoshbin

Motivated by treating the 2 → 1 parity-oblivious multiplexing under the influence of

experimental noise, with its success probability serving as an indicator of nonclassicality,

this thesis establishes connections between various notions of nonclassicality within the

context of what is commonly referred to as the simplest nontrivial scenario (a prepare and

measure scenario comprised of four preparations and two binary-outcome tomographi-

cally complete measurements). Specifically, we relate the established method developed

by Pusey in [20] to witness a violation of preparation noncontextuality, which is not

suitable in experiments where the operational equivalences to be tested are specified in

advance, with a novel approach based on the notion of bounded ontological distinctness

for preparations, defined by Chaturvedi and Saha in [9]. In our approach, we test bounded

ontological distinctness for two particular preparations that are relevant in certain in-

formation processing tasks in that they are associated with the even- and odd-parity

of the bits to be communicated. When there exists an ontological model where this

distance is preserved we term this parity preservation. Our main result provides a noise

threshold under which violating parity preservation (and so bounded ontological distinct-

ness) agrees with the established method for witnessing preparation contextuality in the

simplest nontrivial scenario. This is achieved by first relating the violation of parity

preservation to the quantification of contextuality in terms of inaccessible information

as developed by Marvian in [17], that we also show, given the way we quantify noise,

to be more robust in witnessing contextuality than Pusey’s noncontextuality inequality.
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As an application of our findings, we treat the case of two-bit parity-oblivious multi-

plexing in the presence of noise. Specifically, leveraging the identified noise threshold for

the existence of preparation contextuality, we establish a condition for which preparation

contextuality is present in the case where the probability of success exceeds that achieved

by any classical strategy. Overall, our results highlight that, below a certain threshold,

all the different methods to witness nonclassicality agree. Consequently, an experimenter

can choose the most suitable method based on their specific needs.
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Chapter 1

Overview

1.1 Introduction

In the realm of quantum foundations, it is important to have an appropriate definition of

what it means for a given quantum feature to resist an explanation within the classical

worldview, i.e., an appropriate notion of nonclassicality. One leading concept in this

regard is preparation contextuality [24], which refers to the impossibility of a theory to

admit of an ontological model that represents operationally equivalent preparations as

identical probability distributions on the ontic state space.

A primary challenge in experimentally witnessing this notion is that the specified a

priori target operational equivalences to test are not generally verified. To overcome

this, Mazurek et al. in [18] introduced a solution which was later adopted by Pusey

in [20]. This approach involves testing a posteriori operational equivalences that hold

for the noisy preparations obtained in the experiment, successfully applied to witness

preparation contextuality in the simplest nontrivial scenario, involving four preparations

and two binary-outcome tomographically complete measurements (Fig. 2.1).

Despite the success of Pusey’s approach, it proves unsuitable for certain information

processing tasks in the simplest nontrivial scenario, powered by preparation contextual-
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ity, such as the two-bit parity-oblivious multiplexing (POM) [26], in the presence of noise.

The reason lies in the necessity of specifying preparations and operational equivalences

in advance for these tasks, preventing reanalysis of data using different sets of prepa-

rations. In this work, we present an alternative approach to detect nonclassicality in

the simplest nontrivial scenario, offering a connection to Pusey’s approach. Specifically,

we introduce a novel approach based on a broader classicality concept named bounded

ontological distinctness for preparations (BODP ) [9], which still references the a priori

ideal preparations.

Bounded ontological distinctness for preparations generalizes the notion of prepara-

tion noncontextuality, that demands that operational equivalences are mapped to onto-

logical equivalences, insofar as it demands that also differences are preserved between the

operational theory and the ontological model of the theory. In contrast to [9], we define

differences in terms of distances: the operational distance as the maximal gap over all

measurements between the outcome probabilities of the preparations, and the ontological

distance as the total variational distance between the ontic distributions [17]. With this

notion of classicality, we can now treat the simplest nontrivial scenario in the presence

of noise and still refer to the a priori ideal preparations, by addressing the distance the

noisy ones have with respect to them.

We test BODP for the distance between the even- and odd-parity mixtures of the

preparations (i.e., P+ and P− in Fig. 2.1) in the simplest nontrivial scenario, a relevant

distance quantifying the communicated parity in POM in the presence of noise. We term

the case with zero difference between the operational and ontological parity distances as

satisfying parity preservation.

To connect our parity preservation approach with Pusey’s approach based on prepara-

tion noncontextuality, we employ a third method developed by Marvian in [17]. Marvian’s

approach quantifies preparation contextuality in terms of the “inaccessible information”

of an ontological model, defined as the largest distance between a pair of ontic distribu-
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tions associated with operationally equivalent preparations.

We note that the work presented in this thesis contains material from the following

manuscript:

M. Khoshbin, L. Catani, and M. Leifer, Alternative robust ways of witnessing non-

classicality in the simplest scenario, Phys. Rev. A, 2024, Volume 109, pp. 032212.

1.2 Structure of thesis and outline of results

In Chapter 2, we provide the basic background and terminology regarding operational

theories, their ontological models, and the property of noncontextuality. We also describe

the simplest nontrivial scenario which is the setting our work takes place in, and define

the distances we employ both at the operational and ontological level. We assume the

reader to be familiar with the basic mathematical formulation of quantum mechanics and

quantum computation ([27] and [19] are excellent references).

In Chapter 3, we describe Pusey’s approach, Marvian’s approach, bounded ontological

distinctness for preparations (BODP ), and our approach based on BODP . In Chapter 4,

we introduce our characterization of experimental noise with respect to a noise bound δ,

and present several results regarding the connection between these three approaches and

their applications:

– Focusing on the simplest nontrivial scenario, we compare the noise thresholds for

witnessing preparation contextuality in Marvian’s and Pusey’s approaches. We

find that Marvian’s is more robust (due to how to characterize noise, Marvian’s

inequality allows for better precision in bounding the relevant parameters in terms

of δ), in that it detects contextuality given δ < 0.1, while Pusey’s requires δ < 0.06

(Theorems 2 and 1). Here, the noise parameter δ represents the maximum allowed

deviation of the noisy experimental preparations from the corresponding noiseless

target preparations in terms of maximum distinguishability with a one-shot mea-
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surement. This means that, in a one-shot measurement, the noisy preparations

cannot be distinguished from the ideal preparations with probability greater than

1+δ
2
.

– We relate preparation contextuality as witnessed in Marvian’s approach with vio-

lations of parity preservation. More precisely, we provide bounds defined in terms

of the operational statistics for which a violation of Marvian’s equality implies a

violation of parity preservation and vice versa (Corollary 3).

– We rewrite the above result in terms of a noise bound by taking into account the

noise parameter δ (Corollary 4). As a consequence, we also find that under the

threshold δ = 0.007, the three approaches – Pusey’s, Marvian’s and ours – agree on

detecting nonclassicality; therefore an experimenter can choose the approach that

they prefer in order to test nonclassicality (Corollary 6).

In Chapter 5, we apply the above results to the case of POM in the presence of noise,

which is played in the simplest nontrivial scenario. It has been shown that winning the

game with a probability of success greater than 3
4
+ ε

4
(which can be achieved with a

strategy involving classical bits) implies a violation of BODP [9], and more precisely, of

parity preservation (Theorem 9). Here ε corresponds to the parity communicated as a

consequence of the noise. Given that the threshold for violating the parity preservation

is δ < 0.007, and that below this threshold preparation noncontextuality is also violated

(Theorem 6), we have a condition for which POM in the presence of noise is powered by

preparation contextuality, thus extending the result of the noiseless case [26].

We note that a violation of BODP does not, in general, imply a violation of prepa-

ration noncontextuality, and a probability of success greater than 3
4
+ ε

4
has been proven

only to imply a violation of BODP , but not of preparation noncontextuality. Moreover,

we note that in order to obtain such a result, it is insufficient to combine the no-go

theorem of the noiseless case (i.e., that a probability of success greater than 3
4
implies
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preparation contextuality) with the fact that preparation contextuality holds whenever

δ ≤ 0.1. This is because in the noisy POM one can in principle exploit the noise to

communicate some parity also in classical strategies, thus improving the probability of

success from 3
4
to 3

4
+ ε

4
.

Section 5.3 presents a new argument providing an enhanced threshold (δ ≤ 0.06) for

violating parity preservation, and subsequently for detecting nonclassicality in all three

approaches. We note that this result extends beyond that which is in [15].

We conclude with Chapter 6, where we provide a discussion and outline future re-

search.
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Chapter 2

Preliminaries

In this chapter we provide the relevant background material to discuss preparation non-

contextuality in the simplest scenario as well as the definitions of the distances that we

use. In Sections 2.1, 2.2 and 2.3, we follow the treatment in [24].

2.1 Operational theories

The operational approach to a physical theory provides a mathematical framework for

predicting the statistics of outcomes of experimental procedures. More formally, an op-

erational theory is defined by a list of possible preparation procedures P , transformation

procedures T , measurement procedures M , and experimental statistics P(k|P, T,M) in-

dicating the conditional probability of observing the outcome k when the preparation

P , transformation T , and measurement M are performed sequentially. A prepare and

measure scenario indicates an operational theory where there are no transformation pro-

cedures, or when they are considered to be part of the preparations or the measurements.

In this case, the operational statistics simplify to P(k|P,M).

For example, in an operational formulation of quantum theory, each preparation is

associated with a density operator ρ on a Hilbert space, each transformation is associated

with a completely positive and trace-preserving map Φ, each measurement is associated
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with a positive operator-valued measure {Ek}, and the probability of obtaining outcome

k is given by the generalized Born rule, P(k|ρ,Φ, Ek) = tr[EkΦ(ρ)].

The mathematics of an operational theory is formalized by having an ontological

model for it, which we examine next.

2.2 Ontological models

An ontological model of an operational theory is meant to provide a realist explanation

of the operational predictions of the theory [13]. It is defined by a measurable space Λ

of possible physical states, known as the ontic state space, with an associated σ-algebra

Σ, and a set of measures or measurable functions over Λ that represent preparations,

transformations and measurements. The points λ ∈ Λ represents ontic states which

encode all the physical properties of the system, and which are probabilistically assigned

values. Ontic state spaces may or may not be finite or discrete.

For each preparation procedure P in the operational theory, there is an associated

probability density over the state space in the ontological model, µP : Λ → [0, 1]. The

µP are called epistemic states as they represent states of knowledge about the underlying

ontic states. The probability that the physical state λ was prepared via the procedure P

is given by µP (λ). Since a system is always in some physical state, the epistemic states

satisfy
∫
Λ
µP (λ)dλ = 1.

Similarly, the ontological model associates each transformation procedure T in the

operational theory with a map ΓT : Λ × Λ → [0, 1]. The conditional probability that

some λ is sent to another λ′ by T is given by ΓT (λ
′
, λ). Since every physical state is

mapped to some physical state by a transformation, we have
∫
Λ
ΓT (λ

′, λ)dλ′ = 1 for all

λ ∈ Λ.

Next, each measurement procedure M is associated with a set of conditional proba-

bility functions {ξMk : Λ → [0, 1]}k, where ξMk (λ) represents the probability of obtaining

7



outcome k given that measurement M is implemented on a system in the ontic state

λ. Since some measurement outcome always occurs, the sum over all possible outcomes

satisfies
∑

k ξ
M
k (λ) = 1 for all λ ∈ Λ.

To correctly reproduce the experimental statistics of the operational theory, the dis-

tributions must satisfy the classical law of total probability,

P(k|P, T,M) =

∫
Λ

ξMk (λ′)ΓT (λ
′, λ)µP (λ)dλdλ

′
.

We note that ontological models are assumed to be convex-linear, that is, a proba-

bilistic implementation of a set of operations is represented by the probabilistic mixture

of the corresponding probability densities.

2.3 Noncontextuality

The principle of noncontextuality states that operationally equivalent laboratory proce-

dures must be represented as identical stochastic processes in one’s ontological model.

Given the rules for determining probabilities of outcomes, one can define a notion of

equivalence among experimental procedures; two procedures are deemed operationally

equivalent if they produce the same outcome statistics in every setting.

Specifically, two preparation procedures are equivalent if their conditional probabili-

ties are equal for every possible transformation and measurement procedure:

P ≃ P ′ if P(k|P, T,M) = P(k|P ′, T,M) for all T,M.

The analogous condition holds for transformation and measurement procedures:

T ≃ T ′ if P(k|P, T,M) = P(k|P, T ′,M) for all P,M,

M ≃ M ′ if P(k|P, T,M) = P(k|P, T,M ′) for all P, T.

With this notion of operational equivalence established, we can now give a definition

8



of noncontextuality at the ontological level. An ontological model is preparation noncon-

textual if any two such operationally equivalent preparations are represented by identical

epistemic states: P ≃ P ′ =⇒ µP = µP ′ (we note the converse trivially holds). If

this fails to hold for all operationally equivalent pairs of procedures, we say the model is

preparation contextual. Similarly, an ontological model is transformation noncontextual if

operationally equivalent transformations are always represented by identical ontological

maps: T ≃ T ′ =⇒ ΓT = ΓT ′ , and a failure results in transformation contextuality.

Lastly, an ontological model is measurement noncontextual if operationally equivalent

measurement procedures are always represented by identical functions on the ontolog-

ical side, M ≃ M ′ =⇒ ξMk = ξM
′

k for all k, and a failure constitutes measurement

contextuality.

With this in mind, an operational theory is termed preparation noncontextual if there

exists a preparation noncontextual ontological model for the theory. If no preparation

noncontextual model exists for the theory, we say the operational theory is preparation

contextual. The analogous notion applies for transformation and measurement noncon-

textuality at the operational level.

In this thesis, we work with operational theories of a specific type - those that can be

associated with what is known as the simplest scenario - which we define in the following

section. Accordingly, we only consider ontological models representing theories associated

with the simplest scenario.

2.4 The simplest scenario

The simplest scenario is a prepare and measure scenario defined by four chosen prepa-

rations {Pij} = {P00, P01, P10, P11} (we note, given that all procedures in operational

theories are naturally closed under probabilistic mixtures, this is to say that prepara-

tions in the theory belong to the convex hull of the four preparations {Pij}), and two

9



binary-outcome tomographically complete measurements {X, Y }. Tomographically com-

plete measurements are able to uniquely identify the operational statistics of a prepara-

tion. In the quantum setting, this is the stipulation that operators must form an operator

basis on the Hilbert space of the system, providing all the information about the state.

Theories associated with experiments consisting of four preparations and two binary-

outcome tomographically complete measurements are termed the simplest scenario be-

cause they constitute the simplest nontrivial example of operational theories that can

witness a violation of preparation contextuality. It is shown in Appendix B of [20] that

any other scenario with fewer preparations or measurements always admits the existence

of a preparation noncontextual model.

A geometrical representation of the scenario is depicted in Fig. 2.1, where the prepa-

rations are represented as vectors in the Cartesian plane with the x-axis specifying the

difference between the probabilities of obtaining outcomes 0 and 1 for that preparation

given the measurement X, and the y-axis specifying the same expression but given the

measurement Y , i.e., for i, j ∈ {0, 1},

xij = P(0|Pij, X)− P(1|Pij, X), (2.1)

yij = P(0|Pij, Y )− P(1|Pij, Y ), (2.2)

P⃗ij = (xij, yij). (2.3)

Notice that these coordinates take values in [−1, 1], and so the preparations can at

maximum span the square P⃗00 = (1, 1), P⃗01 = (−1, 1), P⃗10 = (1,−1), P⃗11 = (−1,−1).

This square corresponds to the gbit state space [3, 23], describing a non-physical theory

beyond qubit quantum theory.

The simplest scenario is an extension of the Bloch disk (corresponding to the inscribed

unit disk in the figure) representation of qubit quantum theory (this disc equates to X-Y

planar cross section of Bloch sphere) to the full solid square, which entails states whose

operational statistics encompass all possible theories.

10



x

y

P⃗ id
00

P⃗ id
01

P⃗ id
10

P⃗ id
11

1-1

1

-1

P(0|Pij, Y )− P(1|Pij, Y )

P(0|Pij, X)− P(1|Pij, X)0⃗

(a)

x

y

1-1

1

-1

P(0|Pij, Y )− P(1|Pij, Y )

P(0|Pij, X)− P(1|Pij, X)

P⃗−

P⃗+

c⃗

P⃗00

P⃗01

P⃗10

P⃗11

(b)

Figure 2.1: The simplest nontrivial scenario. Four preparations (vertices of the
blue square) and two tomographically complete measurements (corresponding to the
x and y axes) are represented within the Bloch circle and the gbit square (in black).
Fig. (a) represents the noiseless case. The a priori operational equivalence of Eq. (2.4) is
represented by the vector 0⃗ (in red). Fig. (b) represents the noisy case. The a posteriori
operational equivalence of Eq. (2.5) is represented by the vector c⃗ (in red); the midpoints

P⃗+, P⃗− (in green) represent even- and odd-parity mixtures, respectively.
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We note that X and Y are general measurements and do not represent the Pauli X

and Y measurements unless we are explicitly in the case of qubit quantum theory. We

adopt this notation for compatibility with the operational statistics being expressed via

Cartesian coordinates. Nevertheless, the X and Y measurements do indeed coincide with

the Pauli X and Y in the case where preparations belong to qubit quantum theory.

With the case of quantum theory, the four preparations giving the maximum violation

of noncontextuality inequalities [20, 26, 7, 5] are (modulo the application of a unitary

transformation on both preparations and measurements) denoted by {P id
00, P

id
01, P

id
10, P

id
11},

and correspond to the vectors

P⃗ id
00 ≡

(
1√
2
,

1√
2

)
, P⃗ id

01 ≡
(

1√
2
,− 1√

2

)
, P⃗ id

10 ≡
(
− 1√

2
,

1√
2

)
, P⃗ id

11 ≡
(
− 1√

2
,− 1√

2

)
.

These are associated to the pure quantum states in the equator of the Bloch sphere located

at angles π
4
, 3π

4
, 5π

4
, 7π

4
with respect to the +1 eigenstate of the Pauli X measurement. The

superscript id stands for “ideal”, stressing that these are the preparations one aims to

prepare in a test of preparation contextuality in the simplest scenario.

Notably, this choice of preparations and measurements also provides the optimal

quantum strategy in protocols like the two-bit parity-oblivious multiplexing [26], two-bit

quantum random access codes [1], the CHSH∗ game [14] and several others [6]. Given

that contextuality plays the role of resource for performing better than classical strategies

in those protocols, we consider this choice in order to test the preparation contextuality

of quantum theory for one qubit, and characterize experimental noise based on deviation

from these points.

The coordinates (operational statistics) of the vector uniquely determine the prepara-

tion it represents. It follows that two preparations Pa and Pb are operationally equivalent

– denoted by Pa ≃ Pb – if and only if their coordinate vectors are equal, Pa ≃ Pb ⇐⇒

P⃗a = P⃗b. Notice how the four ideal points P⃗ id
00, P⃗

id
01, P⃗

id
10, and P⃗ id

11 form two operationally

equivalent decompositions of the preparation represented by the vector 0⃗ = (0, 0) at the
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intersection of the x and y axes (the completely mixed state I
2
), i.e.,

1

2
P⃗ id
00 +

1

2
P⃗ id
11 = 0⃗ =

1

2
P⃗ id
01 +

1

2
P⃗ id
10. (2.4)

This operational equivalence is termed, the a priori operational equivalence, as it is the

target operational equivalence one aims to obtain in an ideal experimental test of prepa-

ration contextuality in the simplest scenario prior to performing the actual realistic ex-

periment.

In realistic experimental scenarios, one cannot exactly prepare the ideal preparations,

but necessarily obtains some noisy version of them, which we denote by {P⃗00, P⃗01, P⃗10, P⃗11}. 1

These obey an operational equivalence different from that of Eq. (2.4), and which we

denote by the vector c⃗,

pP⃗00 + (1− p)P⃗11︸ ︷︷ ︸
P⃗p

= c⃗ = qP⃗01 + (1− q)P⃗10︸ ︷︷ ︸
P⃗q

, (2.5)

for two probability weights p, q ∈ [0, 1], where we denote the two operationally equivalent

preparations as Pp and Pq. This latter operational equivalence is termed the a posteriori

operational equivalence.

If the preparations Pij lie within quantum theory, we can view them as the image of

P id
ij under some completely positive trace-preserving map. In general theories, we can

view the noise geometrically as having displaced the coordinates (operational statistics)

of the preparation, and consider the degree of noise as treated by the radius (with respect

to an operational distance) around the ideal points.

2.5 Distances

In this section we review the ontological and operational distances employed in our work.

Specifically, we define the distance between preparation procedures as well as the distance

1We emphasize that in this work we assume only the preparations, and not the measurements, are
subject to noise.
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between their associated epistemic states. We start with the latter. In order to quantify

the distance between two probability distributions µa and µb in the ontological model,

we use the total variational distance, which is the standard choice (see also [17]):

d(µa, µb) ≡
1

2

∫
Λ

|µa(λ)− µb(λ)|.

On the other hand, we define the distances between two preparations Pa and Pb in the

operational theory by the largest difference in the probabilities of measurement outcomes

between two preparations across all available measurements and respective outcomes in

the theory:

d(Pa, Pb) ≡ max
k,M

{|P(k|Pa,M)− P(k|Pb,M)|}.

For binary-outcome measurements, this quantity is the same for both the 0 and 1

outcome:

d(Pa, Pb) = max
M

{|P(0|Pa,M)− P(0|Pb,M)|}

= max
M

{|P(1|Pa,M)− P(1|Pb,M)|}.

Given that there are only two measurements, X and Y , the operational distance can

be equivalently expressed in the simplest scenario as follows,

d(Pa, Pb) ≡
1

2
max{|xa − xb|, |ya − yb|}. (2.6)

The motivations for employing this specific operational distance are that it provides

clear geometrical intuitions and that it makes the calculations tractable, as we will discuss

in Chapter 6.

We recall that the definition of preparation noncontextuality stipulates

∀Pa, Pb : Pa ≃ Pb =⇒ µa(λ) = µb(λ).

Thus, given the notions of distances just defined, we may recast the above definition
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with the following equivalent condition in terms of distances,

∀Pa, Pb : d(Pa, Pb) = 0 =⇒ d(µa, µb) = 0.
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Chapter 3

Approaches to Nonclassicality in the

Simplest Scenario

In this chapter we describe the three approaches considered in this work: the first is due

to Pusey [20] and provides robust noncontextuality inequalities for the simplest scenario;

the second is due to Marvian [17] and witnesses preparation contextuality as the degree of

what he defines as inaccessible information; the last is our novel approach which rephrases

bounded ontological distinctness [9] in terms of the difference between the operational

and ontological distances, and which specifically considers the preparations associated

with the even- and odd-parity mixtures (P+ and P− in Fig. 2.1), thereby introducing the

notion of parity preservation [15].

3.1 Pusey’s approach

This approach allows one to test preparation contextuality in the simplest scenario con-

sidering the a posteriori operational equivalence of Eq.(2.5) and provides eight noncontex-

tuality inequalities obtained by exploiting a connection to Bell inequalities in the famous

Clauser-Horne-Shimony-Holt (CHSH) scenario [10]. The requirement of preparation non-

contextuality for this a posteriori operational equivalence implies the existence of an on-
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tological model for which the epistemic states µp, µq associated with the operationally

equivalent preparations Pp and Pq are such that µp = µq, where µp = pµ00 + (1 − p)µ11

and muq = qµ01 + (1 − q)µ10. It is shown in [20] that this would be sufficient to make

the ontological model preparation noncontextual, i.e, that any other operational equiv-

alence within the convex hull of {Pij} corresponds to an ontological equivalence in the

model. This lucrative property is not true in general, as one typically one cannot con-

clude preparation noncontextuality from a single pair of equivalent procedures, however

in the particular case of our simplest scenario it holds.

Pusey’s inequalities are denoted by S(xij, yij) ≤ 0. They correspond to the analogue

of the eight CHSH inequalities in the prepare and measure scenario we are considering. In

terms of the coordinates (xij, yij) of the noisy preparations, one can write a representative

of them as follows, where S(xij, yij) denotes the expression on the left:

p(x00 + y00 + x11 + y11) + q(x01 − y01 + x10 − y10) + (y10 − x10 − x11 − y11)− 2 ≤ 0. (3.1)

This inequality is maximally violated, in quantum theory, by the choice of states and

measurements described in the Section 2.4 (see Fig. 2.1a), and the expression takes the

value S(xid
ij , y

id
ij ) = 4

(
1√
2

)
− 2 ≈ 0.82. When the (xij, yij) form a square centered at the

origin with radius a, one can rewrite the expression S(xij, yij) as 4(a) − 2. Therefore

the algebraic maximum value of S(xij, yij) is 2, which is obtained when considering the

vertices of the gbit (generalized bit) square [3], which represents the quantification of

contextuality by the gbit theory with this notion of nonclassicality.

We emphasize again that Pusey’s approach, which considers the a posteriori oper-

ational equivalence, is not suitable when considering cases that require the operational

equivalence to be specified in advance. An example is the case of the parity-oblivious

multiplexing protocol, where the a posteriori operational equivalence does not embody

the requirement of parity-obliviousness, unlike the a priori operational equivalence.
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3.2 Marvian’s approach

Marvian’s approach quantifies preparation contextuality through the notion of inacces-

sible information, which is defined to be the largest distance between pairs of epistemic

states associated to equivalent preparation procedures, minimized over all possible onto-

logical models

Cmin
prep ≡ inf

Models
sup

Pa≃Pb

d(µa, µb). (3.2)

We note that the inaccessible information Cmin
prep of an operational theory is zero if and

only if the theory admits of a preparation noncontextual model. That is,

Cmin
prep = 0 ⇐⇒ preparation noncontextuality.

This equality is referred to as Marvian’s preparation noncontextuality equality.

In [17], Marvian provides a lower bound on Cmin
prep in terms of operational quantities

to witness preparation contextuality. In the simplest scenario, these quantities reduce

to a function of the preparations – here denoted with γ(xij, yij) – the details of which

are provided in Section 4.2: Cmin
prep ≥ γ(xij, yij). In contrast to the notion of bounded

ontological distinctness and parity preservation that are defined in the next sections, the

approaches of Marvian and Pusey both refer to the same notion: preparation noncon-

textuality. Therefore, they always agree in detecting contextuality in the noiseless case.

However, in the noisy case and given the way we quantify noise, they provide different

thresholds below which they are guaranteed to be violated, as we will see at the end of

Section 4.2. In short, we say that they provide a different robustification. This is why

they are treated separately and it is important for our purposes to consider both.
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3.3 Bounded ontological distinctness for preparations

(BODP)

The generalized notion of noncontextuality reflects the natural principle that operational

equivalences should be mapped to ontological identities. The approach of bounded on-

tological distinctness for preparations (BODP ) extends this idea from operational and

ontological equivalences to operational distinguishability and ontological distinctness.

BODP was introduced in [9] and it is a criterion of classicality that requires the

equivalence of the operational distinguishability between any two preparations in the

operational theory and the ontological distinctness between their ontic representations,

generalizing the notion of preparation noncontextuality and being based on the same cre-

dentials (a methodological principle inspired by Leibniz [25], or, equivalently, a principle

of no operational fine tuning [4]). The operational distinguishability sPa,Pb

O of a pair of

preparations Pa and Pb is defined as

sPa,Pb

O ≡ 1

2
max
M

{P(0|Pa,M) + P(1|Pb,M)} , (3.3)

where the maximum is over all measurements in the operational theory.

The ontological distinctness sµa,µb

Λ for the corresponding pair of epistemic states µa

and µb is defined as

sµa,µb

Λ ≡ 1

2

∫
Λ

max{µa(λ), µb(λ)}. (3.4)

We say that an operational theory admits of a model satisfying BODP if the value of

operational distinguishability for any pair of preparations in the theory equals the value

of ontological distinctness for the pair of epistemic states. That is, bounded ontologi-

cal distinctness for preparations demands the following equality to hold for all pairs of

preparations and corresponding epistemic states:

BODP ⇐⇒ sPa,Pb

O = sµa,µb

Λ ∀a, b. (3.5)
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To see that a model satisfying BODP is preparation noncontextual, we consider any

operationally equivalent pair Pa and Pb and observe that the expression in Eq. (3.3)

reduces to 1
2
when Pa ≃ Pb. Given that sPa,Pb

O represents the maximum probability

of distinguishing the two preparations, the value 1
2
asserts the fact that operationally

equivalent procedures are completely indistinguishable. The BODP criterion in Eq. (3.5)

would then imply that the summation in Eq. (3.4) equals one, which entails that µa(λ) =

µb(λ) ∀λ ∈ Λ. We therefore have BODP =⇒ preparation noncontextuality. While this

implication is always true, we emphasize that the converse does not necessarily hold.

In general, an operational theory may not admit of an ontological model satisfying

BODP , thus implying that there exists a pair of preparations for which sµa,µb

Λ −sPa,Pb

O > 0.

The difference sµa,µb

Λ − sPa,Pb

O is not explicitly treated by the authors of [9], however it

is of crucial relevance in the present work given that we want to quantify this notion of

nonclassicality and consider how it robustifies in the case of realistic noisy scenarios, like

the simplest scenario. We quantify the violation of BODP as the difference of operational

and ontological distances. Such quantification can be simply related to the original

definition of BODP in terms of distinguishability and distinctness, as we now show.

Recalling equations (2.1), (2.2), (2.6), and considering the available measurements in the

simplest scenario, the relationship between operational distinguishability and distance is

given by

sPa,Pb

O =
1

2
max
M

{P(0|Pa,M) + P(1|Pb,M)}

= max

{
1 + 1

2
|xa − xb|
2

,
1 + 1

2
|ya − yb|
2

}
=

1 + d(Pa, Pb)

2
.

(3.6)

A similar relationship holds between the ontological distinctness and distance:
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sµa,µb

Λ =
1

2

∫
Λ

max {µa(λ), µb(λ)}

=
1

2

(
1 +

1

2

∫
Λ

|µa(λ)− µb(λ)|
)

=
1 + d(µa, µb)

2
.

(3.7)

We denote with DPa,Pb
the difference between the ontological and operational dis-

tances for the pair of preparations Pa and Pb and their associated epistemic states. The

expression Dmin
Pa,Pb

denotes the difference DPa,Pb
minimized over all possible ontological

models. That is,

DPa,Pb
≡ d(µa, µb)− d(Pa, Pb),

Dmin
Pa,Pb

≡ inf
Models

DPa,Pb
.

(3.8)

Combining equations (3.6), (3.7) and (3.8), we view the difference of operational

distinguishability and ontological distinctness as half the difference in operational and

ontological distances:

sµa,µb

Λ − sPa,Pb

O =
1

2
DPa,Pb

.

Therefore sµa,µb

Λ − sPa,Pb

O = 0 if and only if DPa,Pb
= 0 and bounded ontological dis-

tinctness for preparations (BODP ) can be equivalent expressed as the difference between

operational and ontological distances being zero for all pairs:

BODP ⇐⇒ Dmin
Pa,Pb

= 0 ∀Pa, Pb. (3.9)

3.4 Parity preservation

In this thesis we test BODP for the difference between the operational and ontological

distance, DP+,P− , of the even- and odd-parity mixtures (see Fig. 2.1),

P+ =
P00 + P11

2
, P− =

P01 + P10

2
.
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The operational distance d(P+, P−) indeed codifies the information about the parity be-

tween the bits i and j labeling the four preparations {Pij} if one measures the preparation

with the measurements X and Y . For example, if d(P+, P−) = 0, then by measuring X

and Y on P+ and P− one would always get the same outcome, thus obtaining a prob-

ability 1
2
for distinguishing between them and no information about the parity between

the bits i and j.

If d(P+, P−) ̸= 0 then some information about the parity between the bits i and j can

be obtained by measuring X and Y . If d(P+, P−) is preserved in the ontological model,

meaningDP+,P− = 0, we say that there is parity preservation. Clearly, a violation of parity

preservation implies a violation of BODP , but not vice versa. If an operational theory

does not admit of a parity preserving ontological model, then Dmin
P+,P−

> 0. The focus

on parity preservation is relevant in the context of parity-oblivious multiplexing and will

allow us to connect a violation of BODP with a violation of preparation noncontextuality

given certain bounds (Corollaries 3 and 4).

22



Chapter 4

Results

In this chapter we state the main results of our work (see Table 4.1 for a concise summary).

We begin with Theorem 1, which reformulates Pusey’s preparation noncontextuality in-

equality with the specification of a noise parameter δ (see Fig. 4.1). This enables us to

determine, in Corollary 1, a noise threshold below which the noncontextuality inequality

is violated. The same is done for Marvian’s preparation noncontextuality equality (The-

orem 2) and a noise threshold is found below which it is still violated (Corollary 2). We

continue by establishing a connection between Marvian’s noncontextuality equality and

parity preservation in Theorem 3. As a consequence of this theorem, in Corollary 3, we

provide conditions for which a violation of one notion implies a violation of the other.

That is, we show that with enough preparation contextuality, one is certain to violate

parity preservation, and vice versa. The parameters for the conditions in Corollary 3 are

defined from the experimental data and can be rewritten, with the aid of Theorem 4, in

terms of the noise parameter δ. In this way, Corollary 3 can be rephrased into Corol-

lary 4. The latter is used to quantify the amount of noise needed to guarantee a violation

of parity preservation – Corollary 5. Finally, having obtained the noise thresholds for

violating each notion of nonclassicality considered in this work, we provide what is ar-

guably the most relevant result – Corollary 6 – that establishes a noise threshold below
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which all three approaches agree in witnessing nonclassicality.

x

y

2δ

1-1

1

-1

1√
2

Figure 4.1: Noise bound of δ. Ideal points are indicated at the center of the blue
squares. These squares of radius 2δ represent regions where noisy points reside, and, in
accordance with Eq. (2.6), contain all preparations with an operational distance of at

most δ from the ideal points, i.e., d(P⃗ij, P⃗
id
ij ) ≤ δ. In other words, noisy points in the

blue squares cannot be distinguished from their ideal counterparts with a probability
greater than δ in any one-shot measurement.

4.1 Threshold for violating Pusey’s inequality

Theorem 1. Suppose the preparations {Pij} of the simplest scenario satisfy a noise

bound d(P⃗ij, P⃗
id
ij ) ≤ δ, where δ is the noise parameter and {P id

ij } are the ideal a priori

preparations. Pusey’s expression S(xij, yij) of Eq. (3.1) satisfies the following lower bound

in terms of the noise parameter δ:

S(xij, yij) ≥ 2
√
2 − 2− 16δ + 32

√
2 δ2, (4.1)
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where {xij, yij} are the coordinates of the preparations {Pij}.

Proof. Let us consider Pusey’s noncontextuality inequality of Eq. (3.1) for the case where

we insert the coordinates of the preparations Pij satisfying the operational equivalence

(2.5). Suppose d(P⃗ij, P⃗
id
ij ) ≤ δ. Given the coordinates of the ideal preparations P⃗ id

ij , it

follows that lδ ≤ |xij|, |yij| ≤ uδ, where lδ =
1√
2
− 2δ and uδ =

1√
2
+2δ. This can be seen

in Fig. 4.1, where any noisy point P⃗ij within an operational distance of δ from the ideal

points P⃗ id
ij has coordinates whose absolute values lie within the range

[
1√
2
− 2δ, 1√

2
+ 2δ

]
.

Further, p, q ≥ 1−4
√
2 δ

2
(see Fig. 4.2).

x

y

P⃗00

P⃗01

P⃗10

P⃗11

1-1

1

-1

c⃗

p

2δ

Figure 4.2: Finding a minimum weight p. An example where the weight p in Eq. (2.5)

takes the minimum possible value, corresponding to p = 1−4
√
2 δ

2
. This can be seen by

noting that p is the weight associated to the distance between P⃗11 and c⃗ and observing
that the Euclidean distance between P⃗11 and c⃗ equals 1 − 4

√
2 δ, while the Euclidean

distance between P⃗11 and P⃗00 equals 2.

Applying these bounds to Eq. (3.1), we obtain
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S(xij, yij)

= p(x00 + y00 + x11 + y11) + q(x01 − y01 + x10 − y10) + (y10 − x10 − x11 − y11)− 2

≥ 1− 4
√
2 δ

2
(lδ + lδ − uδ − uδ) +

1− 4
√
2 δ

2
(lδ + lδ − uδ − uδ) + (lδ + lδ + lδ + lδ)− 2

= 2(1− 4
√
2 δ)(lδ − uδ) + 4lδ − 2

= 2(1− 4
√
2 δ)

(
1√
2

− 2δ − 1√
2

− 2δ

)
+ 4

(
1√
2

− 2δ

)
− 2

= 2
√
2 − 2− 16δ + 32

√
2 δ2.

Given that the corresponding preparation noncontextuality inequality is S(xij, yij) ≤

0, solving for the right hand side in Eq. (3.1) results in a violation threshold of δ ≈ 0.06,

which leads to the following corollary.

Corollary 1. If d(P⃗ij, P⃗
id
ij ) ≤ 0.06, then S(xij, yij) > 0 and Pusey’s preparation noncon-

textuality inequality is violated.

4.2 Threshold for violating Marvian’s equality

Theorem 2. Suppose the preparations {Pij} of the simplest scenario satisfy a noise

bound d(P⃗ij, P⃗
id
ij ) ≤ δ, where δ is the noise parameter and {P id

ij } are the ideal a priori

preparations. Marvian’s inaccessible information of Eq. (3.2) of the scenario satisfies the

following lower bound in terms of the noise parameter δ:

Cmin
prep ≥

√
2 − 4δ − 1

4(
√
2 − 4δ)

. (4.2)

Proof. We begin by using an inequality proven in [17], that provides a lower bound for

the inaccessible information of an operational theory:

Cmin
prep ≥

Pguess − (1− d−1
d
β−1
min)

(d− 1)dn−1
. (4.3)
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The values n and d represent the number of measurements in the theory and number

of outcomes for each measurement, respectively. In the simplest scenario, we have d =

n = 2. The expression Pguess can be interpreted as a probability of success for a particular

type of information processing task game, and is defined in the general setting in [17].

In the simplest scenario, Pguess simplifies to

1

4
[P (0|X,R00) + P (1|X,R01) + P (0|Y,R10) + P (1|Y,R11)], (4.4)

for a choice of preparations R00, R01, R10, R11 from the operational theory. The value

of Pguess therefore varies based upon the choice, and one aims to maximize this value; to

find the maximum of Pguess in our scenario, we choose the following preparations:

R⃗00 = (1, 0), R⃗01 = (−1, 0), R⃗10 = (0, 1), R⃗11 = (0,−1). (4.5)

Applying (4.5) to (4.4) gives Pguess = 1. Although these four points are not in our a

priori simplest scenario, we can augment the convex hull of {P⃗ij} with the set of these

additional four points, U = {(±1, 0), (0,±1)}, as they do not affect or contribute to the

contextuality of the scenario. They indeed correspond to the stabilizer states in qubit

theory, that are known not to violate preparation noncontextuality inequalities [7]. This

latter fact can be also seen through Pusey’s preparation noncontextuality expression,

whereby a) the calculated value of S(xij, yij) for U is zero, and b) the maximal value

of contextuality via S(xij, yij) is always attained with the initial four noisy preparations

Pij. We augment the set of preparations in our simplest scenario with U for the purposes

of utilizing Marvian’s guessing probability; the inclusion of U allows us to employ the

inequality in Eq. (4.3) in a manner that detects nonclassicality appropriately. That

is, with Pguess = 1, the right-hand side of Eq. (4.3) is positive precisely when there is

preparation contextuality.

With these values applied to Eq. (4.3), we have the following reduction:
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Cmin
prep ≥ 1

4
β−1
min. (4.6)

The remaining term, βmin, is obtained from the operational statistics and so the right

hand side in Eq. (4.6) is solely a function of the preparations - it is what we referred to

as γ(xij, yij) in Eq. (4.3). We now define and bound βmin. Following [17], we have

βmin ≡ inf
P

max
i,j

2dmax(P,Qij), (4.7)

where the infimum is taken over all preparations P in the theory, Qij ≡ 1
2
R0i +

1
2
R1j for

i, j ∈ {0, 1}, and the distance dmax is the operational max relative entropy for prepara-

tions:

dmax(Pa, Pb) ≡ − log2 sup{u : u ≤ 1, ∃Pa′ : Pb ≃ uPa + (1− u)Pa′}.

Considering our choices in Eq. (4.5), we have Q⃗00 = (1
2
, 1
2
), Q⃗01 = (1

2
,−1

2
), Q⃗10 =

(−1
2
, 1
2
), and Q⃗11 = (−1

2
,−1

2
). We can now bound βmin from above:

βmin = inf
P

max
i,j

2dmax(P,Qij)

= inf
P

max
i,j

2− log2 sup{u:u≤1,∃Pa:Qij≃uP+(1−u)Pa}

= inf
P

max
i,j

(sup{u : u ≤ 1,∃Pa : Qij ≃ uP + (1− u)Pa})−1

= max
i,j

(sup{u : u ≤ 1,∃Pa : Qij ≃ u
I

2
+ (1− u)Pa})−1

≤ max
i,j

({u : Qij ≃ u
I

2
+ (1− u)Sij})−1

= ({u : Q00 ≃ u
I

2
+ (1− u)S00)

−1

= ({u :
1√
2

= u · 0 + (1− u)(1− 2
√
2 δ)})−1

=

(√
2 − 4δ − 1√
2 − 4δ

)−1

=

√
2 − 4δ√

2 − 4δ − 1
.

In the fourth line we use the fact that, as also showed in [17], the infimum is achieved

for the completely mixed state I
2
. The upper bound in the fifth line arises from finding the
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smallest value that sup{u} can be guaranteed to achieve from mixing I
2
with a preparation

Pa in our theory to output a fixed Qij. Any P⃗a that lies within the convex hull of the

noisy points is a candidate to mix with I
2
, and the optimal value is achieved with the

preparations indicated by S⃗ij (see Fig. 4.3). Due to symmetry, the value of u is the same

for any pair of Q⃗ij and S⃗ij. In line 6 we choose, without loss of generality, ij = 00 to

calculate the u value. We conclude with solving 1√
2
= (1−u)(1−2

√
2 δ) for u. Therefore

β−1
min ≥

√
2−4δ−1√
2−4δ

. This inequality applied to Eq. (4.6) establishes the result.

x

y

S⃗00

S⃗01

S⃗10

S⃗11

Q⃗00

Q⃗01

Q⃗10

Q⃗11

R⃗00

(1, 0)

R⃗01

R⃗10

R⃗11

1− 2
√
2 δ1√

2

Figure 4.3: Bounding the quantity βmin. The points R⃗ij corresponding to the states

Rij used to evaluate Pguess are shown in black. Their equal mixtures, denoted Q⃗ij, which

are used in calculating βmin, are indicated in green. The red S⃗ij denote the points that

are radially furthest from the Q⃗ij which are guaranteed to lie within the convex hull

of the noisy preparations. That the S⃗ij are radially furthest away from the origin (the
completely mixed state) is what ensures dmax to be the largest distance. Note that with

less noise (smaller δ), the value of sup{u} increases, since the stationary Q⃗ij would then

be (relatively) closer to 0⃗ than the S⃗ij; this in turn decreases 1
u
, which bounds βmin from

above.
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Given that preparation noncontextuality coincides with Cmin
prep = 0, and we obtain a

threshold of violation δ ≈ 0.1 when solving for the right hand side in Eq. (4.2), we have

the following corollary (see Fig. 4.4).

Corollary 2. If d(P⃗ij, P⃗
id
ij ) ≤ 0.1, then Cmin

prep > 0 and Marvian’s preparation noncontex-

tuality equality is violated.

y = 2
√
2 − 2− 16δ + 32

√
2 δ2

y =
√
2−4δ−1

4(
√
2−4δ)

0 0.02 0.04 0.06 0.08 0.1

0.2

0.4

0.6

0.8

δ

y

Figure 4.4: Preparation contextuality witnessed by Pusey’s and Marvian’s ap-
proaches. The blue and red curves plot the functions on the right hand sides of equations
(3.1) and (4.2), respectively. They provide upper bounds to Pusey’s and Marvian’s ex-
pressions, respectively, in terms of the noise parameter δ. What is relevant in the figure is
the range of δ in which each function takes a positive value, thus detecting contextuality.
The specific values of the two functions are not to be compared as they are meaningful
only within the scope of each approach.

4.3 Relating Marvian’s equality to parity preserva-

tion

We begin by establishing the following inequality, proven below, connecting Dmin
P+,P−

to

Cmin
prep, thus relating our approach to Marvian’s.
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Theorem 3. Given the simplest scenario with even- and odd-parity preparations P+, P−

and inaccessible information Cmin
prep, there exist functions α1, α2, and α3 of the preparations

{Pij} satisfying

Dmin
P+,P− ≥ α1C

min
prep − α2,

Dmin
P+,P− ≤ α1C

min
prep + α3.

Proof. We first recall that

pP⃗00 + (1− p)P⃗11︸ ︷︷ ︸
P⃗p

= c⃗ = qP⃗01 + (1− q)P⃗10︸ ︷︷ ︸
P⃗q

,

and that P⃗+ = 1
2
P⃗00 +

1
2
P⃗11, P⃗− = 1

2
P⃗01 +

1
2
P⃗10.

We will proceed to define a weight r and preparations P+′ and P−′ that pair with P+

and P− such that the following two criteria hold:

• P+′ and P−′ are also convex combinations of {P00, P11} and {P01, P10}, respectively.

• P⃗p and P⃗q can be recast using one common weight r as

(1− r)P⃗+ + rP⃗+′︸ ︷︷ ︸
P⃗p

= c⃗ = (1− r)P⃗− + rP⃗−′︸ ︷︷ ︸
P⃗q

. (4.8)

With Eq. (4.8), we are able to write µp = (1− r)µ++ rµ+′ and µq = (1− r)µ−+ rµ−′ .

We can constructively define the weight r as follows. To start, observe that c⃗ is either a

convex combination of {P⃗+, P⃗00} or {P⃗+, P⃗11}, and that the weight p determines which

combination of the two pairs gives c⃗. The same is true for c⃗ being expressed as either a

convex combination of {P⃗−, P⃗01} or {P⃗−, P⃗10}, with the weight q which pair. With this in

mind, we define the even- and odd-parity weights, r+ and r−, to be (here all magnitudes

|| · || indicate Euclidean length),
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r+ ≡


||P⃗+−c⃗||

||P⃗+−P⃗00||
p ≥ 1

2

||P⃗+−c⃗||
||P⃗+−P⃗11||

p ≤ 1
2

, r− ≡


||P⃗−−c⃗||

||P⃗−−P⃗01||
q ≥ 1

2

||P⃗−−c⃗||
||P⃗−−P⃗10||

q ≤ 1
2

. (4.9)

We now take r to be the maximum of these two values, as this ensures that our first

criterion outlined earlier is satisfied, namely that the preparations P+′ and P−′ can be

expressed as convex combinations of {P00, P11} and {P01, P10}, respectively. In practice,

one of either P+′ or P−′ will equate to the original noisy Pij, with the other corresponding

to a strict convex combination (see Fig. 4.5). The specifics will depend on the weights in

Eq. (2.5).

Next, we show the quantities just defined allow us lower and upper bound the distance

d(µp, µq), and subsequently Cmin
prep, in terms of d(µ+, µ−)− d(P+, P−), thus obtaining the

wanted result. We have

d(µp, µq) = d((1− r)µ+ + rµ+′ , (1− r)µ− + rµ−′)

≤ (1− r)d(µ+, µ−) + rd(µ+′ , µ−′)

≤ (1− r)d(µ+, µ−) + r,

where the first inequality follows from the triangle inequality and the second inequality

follows from d(µ+′ , µ−′) ≤ 1. It therefore follows that

1

1− r
d(µp, µq) ≤ d(µ+, µ−) +

r

1− r
1

1− r︸ ︷︷ ︸
α1

d(µp, µq)−
[

r

(1− r)
+ d(P+, P−)

]
︸ ︷︷ ︸

α2

≤ d(µ+, µ−)− d(P+, P−).
(4.10)

Similarly, we have

d(µp, µq) = d((1− r)µ+ + rµ+′ , (1− r)µ− + rµ−′)

≥ (1− r)d(µ+, µ−)− rd(µ+′ , µ−′)

≥ (1− r)d(µ+, µ−)− r,

which gives us
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Figure 4.5: An optimal common ratio r. (a) In this example p < 1
2
and q > 1

2
,

implying that c⃗ is a combination of {P⃗+, P⃗11} and {P⃗−, P⃗01}, respectively, as shown on
the left side. Note that r+ > r−, as shown on the right side, so that r+ will be used as
the ratio r. (b) The intersection c⃗ has been recast (left side) in terms of two new convex

combinations {P⃗−, P⃗−′} and {P⃗+, P⃗+′} that use the same weight r (right side). Since
these combinations are themselves mixtures of the a priori preparations in Eq. (2.5),

they can be used to express P⃗p and P⃗q. In this example, P⃗+′ = P⃗11, while P⃗−′ is now

a strictly convex combination of P⃗− and P⃗01. (Choosing r to have been the minimum

rather than maximum would have retained P⃗−′ = P⃗01; however, P⃗+′ would have then
been outside of the convex hull of preparations and thus outside the operational theory.)

33



1

1− r
d(µp, µq) ≥ d(µ+, µ−)−

r

1− r
1

1− r︸ ︷︷ ︸
α1

d(µp, µq) +

[
r

(1− r)
− d(P+, P−)

]
︸ ︷︷ ︸

α3

≥ d(µ+, µ−)− d(P+, P−).
(4.11)

In the expressions above – equations (4.10) and (4.11) – we have identified the functions

α1, α2, α3. Taking the infimum of equations (4.10) and (4.11) over all ontological models,

and noting that Cmin
prep is the infimum of d(µp, µq) across all models, the desired result is

proven.

By rearranging the terms, these relationships lead to the following corollary.

Corollary 3. Given the simplest scenario with even- and odd-parity preparations P+, P−

and inaccessible information Cmin
prep, there exist functions α1, α2, and α3 of the preparations

{Pij} such that

Cmin
prep >

α2

α1

=⇒ Dmin
P+,P− > 0, (4.12a)

Dmin
P+,P− > α3 =⇒ Cmin

prep > 0. (4.12b)

In other words, we have established that a sufficient criterion for violating parity

preservation is Cmin
prep > α2

α1
and, in turn, a sufficient criterion for violating Marvian’s

preparation noncontextuality equality is Dmin
P+,P−

> α3. The parameters α1, α2, and α3 are

evaluated solely from the experimental data and are obtained without making reference

to δ. Given any four preparations {Pij}, one can directly calculate the values of α1, α2,

and α3 and refer to Corollary 3 to see if there is a violation of one notion of classicality

given enough violation of the other. Corollary 3 can be rephrased in terms of the noise

parameter δ via the following theorem, as proven below.

Theorem 4. Given the functions α1, α2, and α3, if each noisy preparation Pij satisfies

d(P⃗ij, P⃗
id
ij ) ≤ δ, the following upper bounds hold:
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α2

α1

≤ 2(1 + 2
√
3 )δ − 4

√
2 δ2

1− 2
√
2 δ

, (4.13a)

α3 ≤
4
√
3 δ

1− 2
√
2 δ − 4

√
3 δ

. (4.13b)

Proof. From Eq. (4.10), we have α1 =
1

1−r
and α2 =

r
1−r

+ d(P+, P−), so that

α2

α1

= d(P+, P−)(1− r) + r. (4.14)

Note that P⃗+ and P⃗− are averages of points contained in δ-neighborhoods of the ideal

points. Therefore, P⃗+ and P⃗− are each contained in a δ-neighborhood of the origin, which

implies that d(P+, P−) ≤ 2δ. Next, we observe that c⃗ is the intersection point of two line

segments contained in diagonal strips of radius 2
√
2 δ centered in the origin. Thus c⃗ is

contained within a tilted square of side length 4
√
2 δ centered in the origin. It follows

that the maximal Euclidean distance between P⃗+ or P⃗− and c⃗ is 4
√
3 δ (see Fig. 4.6a).

This yields

||P⃗+ − c⃗||, ||P⃗− − c⃗|| ≤ 4
√
3 δ. (4.15)

Moreover, since ||P⃗00 − P⃗+|| = 1
2
||P⃗00 − P⃗11|| (and similarly for the case with P⃗−), the

minimum value of the denominators in Eq. (4.9) occurs when ||P⃗00 − P⃗11|| is minimized

(see Fig. 4.6b), that corresponds to the value 2− 4
√
2 δ. This leads to

||P⃗+ − P⃗00||, ||P⃗+ − P⃗11||, ||P⃗− − P⃗01||, ||P0 − P10|| ≥ 1− 2
√
2 δ. (4.16)

Combining Eqs. (4.15) and (4.16) with Eq. (4.9), it follows that

r = max{r+, r−} ≤ 4
√
3 δ

1− 2
√
2 δ

.

Referring back to Eq. (4.14), this yields

35



α2

α1

= d(P+, P−)(1− r) + r

≤ d(P+, P−) + r

≤ 2δ +
4
√
3 δ

1− 2
√
2 δ

=
2(1 + 2

√
3 )δ − 4

√
2 δ2

1− 2
√
2 δ

.

This establishes the first bound. For the second bound, we refer to Eq. (4.11):

α3 =
r

1− r
− d(P+, P−)

≤ r

1− r

≤
4
√
3 δ

1−2
√
2 δ

1− 4
√
3 δ

1−2
√
2 δ

=
4
√
3 δ

1− 2
√
2 δ − 4

√
3 δ

.

Combining the previous two results, we arrive at the following statement, which

recasts Corollary 3 in terms of the noise bound δ.

Corollary 4. Given the simplest scenario with even- and odd-parity preparations P+, P−

and inaccessible information Cmin
prep, if each Pij satisfies d(P⃗ij, P⃗

id
ij ) ≤ δ, then the following

implications hold:

Cmin
prep >

2(1 + 2
√
3 )δ − 4

√
2 δ2

1− 2
√
2 δ

=⇒ Dmin
P+,P− > 0, (4.17a)

Dmin
P+,P− >

4
√
3 δ

1− 2
√
2 δ − 4

√
3 δ

=⇒ Cmin
prep > 0. (4.17b)
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Figure 4.6: Bounding distances in terms of noise. (a) The point c⃗ lies within the

region shown in green. The points P⃗+, P⃗− lie within the inscribed blue square. The red
line illustrates the maximal distance between points lying in each region, which is of
length 4

√
3 δ. (b) An example of the minimum possible Euclidean distance between a

preparation vector P⃗ij and midpoint vector P⃗+ or P⃗−, here shown with the case of P⃗00

and P⃗+, where ||P⃗+ − P⃗00|| = 1− 2
√
2 δ.
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Approach Notion of nonclassicality ideal preparations Noise threshold of violation

Pusey’s Preparation contextuality No δ < 0.06

Marvian’s Preparation contextuality No δ < 0.1

Novel (this work) Violation of BODP Yes δ < 0.007

Table 4.1: Three robust ways of witnessing nonclassicality in the simplest sce-
nario. Violating Pusey’s inequality and Marvian’s equality are ways of witnessing prepa-
ration contextuality. Our novel approach is based on the notion of parity preservation.
A violation of parity preservation is an instance of a violation of BODP . Violating parity
preservation under the indicated threshold means also a violation of preparation noncon-
textuality.

4.4 Threshold for nonclassicality

The results in the previous subsection ensure that for any given value of Cmin
prep, one can

find a noise bound δ such that if noisy preparations Pij lie within δ distance of the ideal

preparations P id
ij , then

α2

α1
is reduced sufficiently to guarantee that indeed Cmin

prep > α2

α1
and

therefore parity preservation is violated.

Equating the right hand sides of inequalities (4.2) and (4.13a), we find the threshold

for which Marvian’s inequality gives a sufficient lower bound to violate parity preservation

as in Eq. (4.12a), which results to be δ ≈ 0.007 (see Fig. 4.7).

That is, if δ ≤ 0.007, then Eq. (4.13a) gives us α2

α1
< 0.063 whereas Eq. (4.2) gives us

Cmin
prep > 0.069, so that indeed Cmin

prep > α2

α1
and Dmin

P+,P−
takes on positive values. We have

now established the following corollary.

Corollary 5. If d(P⃗ij, P⃗
id
ij ) ≤ 0.007, then Dmin

P+,P−
> 0 and parity preservation is violated.

Given that Marvian’s and Pusey’s approaches both exhibit a violation if δ ≤ 0.06, we

can therefore conclude sufficient conditions for equivalency in witnessing nonclassicality

between all three approaches as follows.

Corollary 6. If the noise parameter δ satisfies δ ≤ 0.007, then S(xij, yij) > 0, Cmin
prep > 0,

and Dmin
P+,P−

> 0. Therefore, all three criteria of classicality are violated.
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Figure 4.7: Violation of parity preservation. The green curve indicates the function
of δ in Eq. (4.17a). For values of δ smaller than about 0.007 (see Theorem 5), the red
curve upper bounding Cmin

prep from Eq. (4.2) exceeds the green curve and implies, via
Eq. (4.17a) in Corollary 4, that parity preservation is violated, i.e., Dmin

P+,P−
> 0.

4.5 The case of quantum depolarizing noise

In this section we focus on the simplest nontrivial scenario in the case where preparations

are contained within the unit Bloch disc and the experimental noise is assumed to be

modeled by a quantum depolarizing channel. In this case, noisy preparations Pij are

mixtures of the ideal preparations P id
ij with the completely mixed state I

2
(see Fig. 4.8).

We begin with an updated bound on Pusey’s expression and subsequent threshold for

violating preparation noncontextuality based on this bound.

Theorem 5. Suppose the preparations {Pij} of the simplest scenario satisfy a noise

bound d(P⃗ij, P⃗
id
ij ) ≤ δ, where δ is the noise parameter and {P id

ij } are the ideal a priori

preparations. Pusey’s expression S(xij, yij) of Eq. (3.1) satisfies the following lower bound

in terms of the noise parameter δ:

S(xij, yij) ≥ 2
√
2 − 2− 8δ +

8
√
2 δ2 − 4δ

1−
√
2 δ

, (4.18)

39



where {xij, yij} are the coordinates of the preparations {Pij}.

The proof follows that of Theorem 1, with the following changes in values: uδ =
1√
2

and p, q ≥ 1−2
√
2 δ

2−2
√
2 δ
.

Given that the corresponding preparation noncontextuality inequality is S(xij, yij) ≤

0, solving for the right hand side in Eq. (4.18) results in a violation threshold of δ ≈ 0.07,

which leads to the following theorem.

Corollary 7. If d(P⃗ij, P⃗
id
ij ) ≤ 0.07, then S(xij, yij) > 0 and Pusey’s preparation noncon-

textuality inequality is violated.

In the case of quantum depolarizing noise, Theorem 2 and Corollary 2 are left un-

changed. This is not the case for Theorem 4, that provides a different bound than the

one in Eq. (4.13a). We provide the modified statement below.

Lemma 1. Given the functions α1 and α2, if each noisy preparation Pij satisfies d(P⃗ij, P⃗
id
ij ) ≤

δ, the following upper bound holds:

α2

α1

≤ δ +

√
2 δ

1− 2
√
2 δ

. (4.19)

The proof follows that of Theorem 4 above, with the following changes in values:

• d(P+, P−) ≤ δ

• c⃗ = 0⃗

• ||P⃗+ − c⃗||, ||P⃗− − c⃗|| ≤
√
2 δ

• ||P⃗+ − P⃗00||, ||P⃗+ − P⃗11||, ||P⃗− − P⃗01||, ||P0 − P10|| ≥ 1− 2
√
2 δ

• r ≤
√
2 δ

1−2
√
2 δ

Combining Eq. (4.19) with Eq. (4.12a) leads to the following theorem.
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Theorem 6. Given the simplest scenario with even- and odd-parity preparations P+, P−

and inaccessible information Cmin
prep, if each Pij satisfies d(P⃗ij, P⃗

id
ij ) ≤ δ, then the following

implication holds.

Cmin
prep > δ +

√
2 δ

1− 2
√
2 δ

=⇒ Dmin
P+,P− > 0. (4.20)

Equating the right hand sides of inequalities (4.2) and (4.19), we find the threshold for

which Marvian’s inequality provides a sufficient lower bound to violate parity preservation

as in Eq. (4.20), which results in δ ≈ 0.02. Consequently, the following theorem holds.

Corollary 8. If d(P⃗ij, P⃗
id
ij ) ≤ 0.02, then Dmin

P+,P−
> 0 and parity preservation is violated.

Given that both Marvian’s and Pusey’s approaches exhibit a violation if δ ≤ 0.07,

we obtain the following noise threshold below which all methods agree in witnessing

nonclassicality in the simplest scenario in the case of quantum depolarizing noise.

Corollary 9. If the noise parameter δ satisfies δ ≤ 0.02, then S(xij, yij) > 0, Cmin
prep > 0,

and Dmin
P+,P−

> 0. Therefore, all three criteria of classicality are violated.
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Figure 4.8: Depolarizing noise constrained to a bound of δ. Ideal preparations are
indicated at the center of the shaded squares. Noisy preparations are assumed to lie on
the red segments. In accordance with Eq. (2.6), they have an operational distance of at
most δ from the ideal ones.
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Chapter 5

Parity-oblivious multiplexing

In this chapter we treat the m−bit parity-oblivious multiplexing protocol in both the

noiseless and noisy scenarios. In particular, we focus on the m = 2 case. Indeed, in

this instance, the protocol’s setting involving four preparations and two measurements

corresponds to the simplest scenario of Fig. 2.1.

5.1 Noiseless case

Them−bit parity-oblivious multiplexing protocol was first introduced in 2009 by Spekkens

et al [26]. Since then, it has motivated further investigation and substantial research on

relating it to other scenarios [8, 11, 2], and on developing protocols with preparation

contextuality as a resource for the computational advantage [12, 22, 21, 16, 28].

We here consider the m = 2 case. Let us imagine that Alice prepares a two-bit

string, that we denote with x. Bob wishes to learn the value of a single bit among

the two (without Alice knowing which one) with a probability at least p. Alice and

Bob can try to achieve this by agreeing on a strategy that consists of Alice sending

some information carriers and Bob performing certain measurements. However, the task

contains an additional constraint, called parity-obliviousness : Alice cannot communicate

the parity of the two-bit string x to Bob. Let us denote the bit that Bob outputs as b.
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The integer y denotes which of the two bits b should correspond to, and xy denotes the

actual bit in Alice’s string.

The probability of success of the game takes, in general, the following form in terms

of the probabilities P (b|Px,My), where Px denotes the preparations of Alice, given the

bit string x she has to communicate, and My denotes the measurements of Bob, given

the bit y to be guessed,

p(b = xy) =
1

8
[P(0|P00,M0) + P(0|P01,M0) + P(1|P10,M0) + P(1|P11,M0)

+ P(0|P00,M1) + P(0|P10,M1) + P(1|P01,M1) + P(1|P11,M1)].

The optimal classical probability of success satisfies p(b = xy) ≤ 3
4
, as the only classical

encoding that transfers some information to Bob without violating parity-obliviousness

consists of encoding only a single bit xi. Given that y is chosen at random, any bit xi

would perform the same. Therefore, Alice and Bob can agree on Alice always sending

x1 and Bob outputting b = x1. The probability of success is given by the probability

that y = 1, which is 1
2
, and the probability that Bob outputs correctly (at random, with

probability 1
2
) in the other case where y ̸= 1, that occurs with probability 1

2
. For this

optimal classical strategy we obtain p(b = xy) =
1
2
+ 1

4
= 3

4
, as stated. This value is the

same as the Bell bound of the CHSH game and two-bit quantum random access codes

[10, 1] . In [26], Spekkens et al proved the following theorem (here stated only for the

case m = 2).

Theorem 7. The optimal success probability in two-bit parity-oblivious multiplexing of

any operational theory that admits of a preparation non-contextual ontological model sat-

isfies p(b = xy) ≤ 3
4
.

This theorem indicates that preparation contextuality is a necessary resource for per-

forming the two-bit parity-oblivious multiplexing protocol with higher success probability

than the one achievable by optimal classical strategies. Moreover, it turns out that, by
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using the same optimal quantum strategy of two-bit quantum random access codes [1]

(associated with the preparations P id
ij and measurements X, Y of Fig. 2.1a), the proba-

bility of success is ωQ(POM) = cos2(π
8
) ≈ 0.85. It can be shown that this value is the

maximum achievable with quantum strategies [26]. Notice that, when Bob measures on

the X or Y basis, he cannot gain any information about the parity, as the parity 0 and

parity 1 mixtures – 1
2
P id
00 +

1
2
P id
11 and 1

2
P id
01 +

1
2
P id
10, respectively – correspond to the same

quantum state (the completely mixed state).

5.2 Noisy case

The two-bit parity-oblivious multiplexing protocol in realistic scenarios necessarily in-

volves noisy preparations, that allow some parity to possibly be communicated to Bob.

If one wants to generalize Theorem 7 of the noiseless case and show that preparation

contextuality still powers the protocol in the noisy scenario, one faces a couple of chal-

lenges. First, one must assume that the noise could potentially be used to communicate

parity, thus allowing classical strategies to achieve a probability of success greater than

the ones of the noiseless case. Then, once one finds the value of the optimal classical

probability of success in the noisy case, one must show that performing better than this

implies a proof of preparation contextuality.

We denote the two-bit parity-oblivious multiplexing protocol in the presence of noise

with ε−POM, where ε denotes the noise in terms of the maximum probability of parity

communicated, i.e., the operational distance d(P+, P−) between the even- and odd-parity

mixtures. We first notice that, in order to witness the possible nonclassicality associated

with a certain probability of success, Pusey’s approach is not ideal. It considers a pos-

teriori operational equivalences, thus not explicitly referring to the parity that can be

communicated as a consequence of the noise and which may be part of the reason for

the given probability of success. We now show how our approach based on the notion of
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parity preservation, that explicitly refers to the violation of parity-obliviousness, is more

suitable for the task.

In order to find an optimal classical strategy in ε−POM, we can mirror the optimal

strategy described in the noiseless case of the previous subsection, this time taking into

account the ε parity that can be communicated. Namely, we take into account that

Bob knows the parity of x, that is, x1 + x2 (the addition is modulo 2), with probability

ε. Without loss of generality, we can assume that Alice and Bob always agree on Alice

sending the first bit, x1. If y = 1, then Bob outputs b = x1 and wins with probability 1.

If y = 2, then with probability ε Bob knows the parity and therefore the value of x2 (i.e.,

he outputs b = x1 + (x1 + x2) = x2 and wins with probability 1), and with probability

(1−ε) he does not know the parity and can at best make a random guess about the value

of x2 and so win with probability 1
2
. In summary, this strategy results in the probability

of success p(b = xy) =
1
2
·1+ 1

2

[
ε · 1 + (1− ε) · 1

2

]
= 3

4
+ ε

4
. Notice that there is no classical

strategy that can perform better than the one just described; we indeed assumed that

Bob uses the knowledge of parity to his maximum possible advantage and that Alice

communicates one bit of information, which is the best she can do. This leads to the

following lemma.

Theorem 8. The optimal probability of success in 2-bit ε-parity-oblivious multiplexing

using a classical strategy satisfies p(b = xy) ≤ 3
4
+ ε

4
.

Here we prove the following theorem, which is an application of Proposition 2 and

the results of Section 4.2 of [9].

Theorem 9. The optimal success probability in two-bit ε-parity-oblivious multiplexing

of any operational theory that admits of a parity preserving ontological model satisfies

p(b = xy) ≤ 3
4
+ ε

4
.

Proof. Suppose {P+, P−} can be distinguished in a single-shot measurement with prob-

ability ε. That is,

46



max
M=X,Y

{|P(k|P+,M)− P(k|P−,M)|} = ε. (5.1)

This expression can be recast as max{1
2
|x+ − x−|, 12 |y+ − y−|} = ε. Therefore, by

definition we have d(P+, P−) = ε. Considering Eq. (3.6), this means that s
P+,P−
O = 1+ε

2
.

Our assumption of parity preservation entails that d(µ+, µ−) = ε. Thus, Eq. (3.7) now

reads as s
µ+,µ−
Λ = 1+ε

2
, which also means that s

P+,P−
O = s

µ+,µ−
Λ . In other words, we have

sµ00+µ11,µ01+µ10

Λ = sP00+P11,P01+P10

O =
1 + ε

2
.

It follows from the results of Proposition 2 in [9] that

1

2

(
sP00+P01,P10+P11

O

)
+

1

2

(
sP00+P10,P01+P11

O

)
≤

1 + 1+ε
2

2
=

3

4
+

ε

4
. (5.2)

The probability of success is the averaged sum of all possible ways Bob can win, given

a randomly chosen measurement X, Y and state P00, P01, P10, P11 that Alice has, and an

output 0, 1 that Bob guesses based on the outcome of his measurement. This amounts

to

p(b = xy) =
1

8
[P(0|P00, X) + P(0|P01, X) + P(1|P10, X) + P(1|P11, X)

+ P(0|P00, Y ) + P(0|P10, Y ) + P(1|P01, Y ) + P(1|P11, Y )]

=
1

2

(P(0|1
2
P00 +

1
2
P01, X)

2
+

P(1|1
2
P10 +

1
2
P11, X)

2

)
+

1

2

(P(0|1
2
P00 +

1
2
P10, Y )

2
+

P(1|1
2
P01 +

1
2
P11, Y )

2

)
=

1

2

(
sP00+P01,P10+P11

O

)
+

1

2

(
sP00+P10,P01+P11

O

)
.

(5.3)

By combining equations (5.2) and (5.3) we obtain p(b = xy) ≤ 3
4
+ ε

4
.

In other words, if one obtains a probability of success greater than the classical prob-

ability of success, then parity preservation is violated. Moreover, we have shown in

Theorem 6 that under a certain threshold, this implies that Marvian’s equality (as well

as Pusey’s inequality) is also violated. Therefore, we have shown that as long as the noise
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is below a certain threshold, preparation contextuality is still present whenever parity-

oblivious multiplexing manifests computational advantage over classical strategies.

5.3 A new threshold for nonclassicality

We can calculate what the probability of success in the game is, in the presence of noise,

when still using the same quantum protocol that is used in the noiseless case. We stress

that this strategy does not use noise to one’s advantage, and therefore does not give rise

to the optimal probability of success. The protocol used in the noiseless quantum case is

the averaged sum of all possible ways Bob can win, given a randomly chosen measurement

X, Y , a (noisy) quantum state P00, P01, P10, P11 that Alice prepares and sends Bob, and

an output 0, 1 that Bob guesses based on the outcome of his measurement [26]. This

would amount to

p(b = xy) =
1

8
[P(0|P00, X) + P(0|P01, X) + P(1|P10, X) + P(1|P11, X)

+ P(0|P00, Y ) + P(0|P10, Y ) + P(1|P01, Y ) + P(1|P11, Y )].

Now, we suppose that Alice and Bob are playing ε-parity-oblivious multiplexing.

That is, Alice’s noisy preparations satisfy a parity constraint of ε. We therefore have

d(P+, P−) ≤ ε. This is equivalent to the condition d(P⃗ij, P⃗
id
ij ) ≤ ε

2
. Given the coordinates

of P⃗ id
ij , it follows that 1√

2
− ε ≤ |xij|, |yij| ≤ 1√

2
+ ε. This can be seen Fig. 4.1 where

any noisy point P⃗ij within an operational distance of δ from the ideal points P⃗ id
ij has

coordinates whose absolute values can lie within a range spanning twice that parameter:[
1√
2
− 2δ, 1√

2
+ 2δ

]
. Applying this to the summands in Eq. (5.3), we have
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p(b = xy)

=
1

8

(
x00 + 1

2
+

x01 + 1

2
+

1− x10

2
+

1− x11

2
+

y00 + 1

2
+

y10 + 1

2
+

1− y01
2

+
1− y11

2

)
=

1

16
(x00 + x01 − x10 − x11 + y00 + y10 − y01 − y11) +

1

2

≥ 1

16

[
8 ·
(

1√
2

− ε

)]
+

1

2

=
2 +

√
2

4
− ε

2
.

We have just proven the following

Theorem 10. If d(P⃗ij, P⃗
id
ij ) ≤ ε

2
, then p(b = xy) >

2+
√
2

4
− ε

2
.

We see that if the noise is reduced to zero, then this theorem provides the standard

optimal quantum probability of success 2+
√
2

4
≈ 0.85 as has been established in the

noiseless case [26]. We recast Theorem 9 via contraposition and recall we have the

following fact:

Theorem 11. If p(b = xy) >
3
4
+ ε

4
, then an operational theory does not admit of a parity

preservation ontological model.

Giving that solving 3
4
+ ε

4
= 2+

√
2

4
− ε

2
provides a solution of ε =

√
2−1
3

≈ .138, we

have established the below result as a consequence of the previous two theorems.

Theorem 12. If d(P⃗ij, P⃗
id
ij ) ≤ 0.06, then parity preservation is violated.

Given that Marvian’s and Pusey’s approaches both exhibit a violation if δ ≤ 0.06, we

can therefore conclude sufficient conditions for equivalency in witnessing nonclassicality

between all three approaches as follows.

Corollary 10. If the noise parameter δ satisfies δ ≤ 0.06, then all three criteria of

classicality are violated.

This result is striking in that it gives a possibility of investigating whether there might

be an equivalency between these different notions of nonclassicality, and, in particular,
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between Pusey’s approach and parity preservation (given that they exhibit very similar

thresholds of violation). That is, one may seek to establish whether or not it is the case

that an operational theory will witness a violation via Pusey’s approach if and only if

it will violate parity preservation. If this is the case, one would need to use Pusey’s

expression directly (Eq. (3.1)) rather than the inequality presented in terms of noise

(Eq. (4.1)), as well as derive an optimal quantum probability of success in the noisy case

(which has yet to be found), to check whether parity preservation is violated by way of

the noisy coordinates giving rise to a success probability greater than the classical bound.
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Chapter 6

Conclusion

To establish the credibility of a notion of nonclassicality, it is imperative that it be ex-

perimental testable. With this in mind, we explored three approaches to assess nonclas-

sicality within the simplest nontrivial scenario featuring four noisy preparations and two

tomographically complete measurements. Specifically, we investigated Pusey’s and Mar-

vian’s approaches for detecting preparation contextuality, along with a novel approach

for witnessing a violation of BODP .

We showed that these three approaches align in detecting nonclassicality as long as

the level of experimental noise remains below a certain threshold, δ < 0.007 (in the case

of quantum depolarizing noise, this improves to δ < 0.02, and with the results presented

in Section 5.3 we have a significant improvement to δ < 0.06 that applies to any type of

experimental noise). Therefore, experimenters have the flexibility to choose the approach

that best suits their needs when testing for nonclassicality in their experiments, provided

the noise remains within this range. This flexibility becomes particularly relevant in

scenarios where certain approaches are not suitable, such as in the noisy parity-oblivious

multiplexing protocol. In the latter case, we argued that the appropriate notion to

test is parity preservation, which refers to the a priori ideal preparations and explicitly

allows one to quantify the violation of the parity constraint. Nevertheless, by virtue of
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our results, below the noise threshold, Marvian’s and Pusey’s approaches can also be

employed to detect nonclassicality in the experiment. Indeed, below this threshold, we

also established that preparation contextuality is still present when one performs the

protocol with a success probability greater than what can be achieved with classical

strategies.

Crucial to obtaining our results is in the way we characterized noise through the

noise parameter δ. The latter quantifies – via the operational distance – the deviation

in the measurement statistics between the experimentally realized and the ideal target

preparations. Our choice of operational distance corresponds to the maximum difference

over the x and y coordinates of the statistics between the preparations. There are two

reasons for employing it. First, it is geometrically intuitive, as witnessed by the fact that

preparations with δ noise distance from the ideal ones belong to a square of radius 2δ

around them (see Fig. 4.1). Second, it makes calculations tractable. We give a couple of

examples.

1) Distances over the coordinates are easily identified within Pusey’ expression (Eq. 3.1),

making it possible to bound it.

2) The operational distance between P+ and P− (Eq. (5.1)) coincides with the par-

ity that can be communicated in ε−POM, thus allowing for a straightforward proof of

Theorem 9.

With alternative definitions of operational distance like the maximum relative entropy

or the operational total variational distance [17] we would have not exploited the above

lucrative features. We leave for future research the question of how the results change

by using these other ways of characterizing noise.

We emphasize that determining a mathematical threshold below which both prepa-

ration noncontextuality and parity preservation are violated (Theorems 5 and 6) was

neither straightforward nor necessarily anticipated. While we expected the existence

of a noise threshold below which both parity preservation (and consequently BODP )
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and preparation noncontextuality are violated, it was not clear how and if this could

be found. In particular, it was not immediately obvious how to quantitatively relate

preparation contextuality, that deals with operational equivalences and corresponding

ontological inequivalences, with violations of BODP (and parity preservation), which

deal with operational distances and corresponding greater ontological distances. The

key to our achievement in obtaining such a threshold hinges on Theorem 3. The latter

ultimately leads to a function of the noise parameter δ in Corollary 4 (Eq. (4.17a)) which

intersects Marvian’s witness of contextuality Cmin
prep (as shown in Fig. 4.7), revealing a

region where not only preparation noncontextuality but also parity preservation is vi-

olated. Our success in finding this function lies in the way we recast the operational

equivalence in terms of even- and odd-parity mixtures. We managed not only to allow

for a connection between preparation noncontextuality and parity preservation but also

to retain the amount of parity preservation violation, as shown in the proof of Theorem

3.

Our method based on parity preservation can be seen as an application of the re-

sults contained in [9] in the context of the simplest scenario. In connection with this

previous work, we provided a reformulation using the concept of distances instead of dis-

tinguishabilities, which offered a clear alternative interpretation of both the operational

and ontological differences. In addition, we re-obtained the proof presented in [9] about

the ε−POM being powered by a violation of BODP , stressing that the violation is in

terms of parity preservation. Consequently, we noticed, by virtue of Theorem 6, that

ε−POM is also powered by preparation contextuality as long as the noise parameter δ

remains below a threshold.

The results of this work are relevant for applications in information processing tasks

that aim to witness nonclassicality and that are set in the simplest nontrivial scenario.

We recall how these tasks – examples of which are the two-bit parity-oblivious multi-

plexing treated here and other versions of the two-bit quantum random access codes
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– are of central importance because they are the primitive communication tasks where

nonclassicality can be certified in a device or semi-device independent way. The question

remains open as to whether the methods presented in this manuscript can be extended

to scenarios beyond the simplest nontrivial case. We leave this interesting avenue for

future research.
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