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Abstract 

Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radi-
otracer in vivo. The spatiotemporal information can be used to estimate parametric images of 
radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of 
parametric images from raw projection data allows accurate noise modeling and has been shown 
to offer better image quality than conventional indirect methods, which reconstruct a sequence of 
PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of 
parametric images has gained increasing interests with the advances in computing hardware. Many 
direct reconstruction algorithms have been developed for different kinetic models. In this paper 
we review the recent progress in the development of direct reconstruction algorithms for par-
ametric image estimation. Algorithms for linear and nonlinear kinetic models are described and 
their properties are discussed. 

Key words: Dynamic positron emission tomography, Direct estimation 

1 Introduction 

1.1  Parametric Imaging with Dynamic PET 
Dynamic positron emission tomography (PET) 

provides the additional temporal information of trac-
er kinetics compared to static PET. It has been shown 
that tracer kinetics can be useful in tumor diagnosis 
such as differentiation between malignant and benign 
lesions [1, 2], and in therapy monitoring where the 
kinetic values from dynamic PET can be more predic-
tive for assessment of response than the standard up-
take value at a single time point [3, 4]. 

There are basically two approaches for deriving 
tracer kinetics from dynamic PET data: re-
gion-of-interest (ROI) kinetic modeling and paramet-
ric imaging [5-7]. The ROI based approach fits a ki-
netic model to the average time activity curve (TAC) 
of a selected ROI, so it is easy to implement and has 
low computation cost. In contrast, parametric imaging 
estimates kinetic parameters for every pixel and pro-

vides the spatial distribution of kinetic parameters. It 
is thus more suitable to study heterogeneous tracer 
uptake in tissue. Parametric images have been found 
useful in many biological research and clinical diag-
nosis [8-10]. However, parametric imaging is more 
demanding computationally and more sensitive to 
noise in dynamic PET data than the ROI-based kinetic 
modeling. Obtaining parametric images of high qual-
ity therefore raises new challenges that were not faced 
by conventional ROI-based methods [11]. 

1.2  Direct Reconstruction of Parametric Im-
ages 

The typical procedure of parametric imaging is 
to reconstruct a sequence of emission images from the 
measured PET projection data first, and then to fit the 
TAC at each pixel to a linear or nonlinear kinetic 
model. To obtain an efficient estimate, the noise dis-
tribution of the reconstructed activity images should 
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be modeled in the kinetic analysis. However, exact 
modeling of the noise distribution in PET images can 
be difficult because noise is spatially variant and ob-
ject-dependent. Usually the spatial variation and cor-
relations between pixels are simply ignored in the 
kinetic fitting step, which can lead to very noisy re-
sults.  

Direct reconstruction has been developed to re-
duce noise amplification in parametric imaging. Di-
rect reconstruction methods combine tracer kinetic 
modeling and emission image reconstruction into a 
single formula to estimate parametric images directly 
from the raw projection data [12, 13]. Because PET 
projection data are well-modeled as independent 
Poisson random variables, direct reconstruction al-
lows accurate compensation of noise propagation 
from sinogram measurements to the kinetic fitting 
process. It has been shown that images reconstructed 
by direct reconstruction methods have better bi-
as-variance characteristics than those obtained by 
indirect methods for both linear models [33, 34] and 
nonlinear kinetic models [25, 29].  

One drawback of direct reconstruction of para-
metric images is that the optimization algorithms are 
more complex than indirect methods [12, 13], due to 
the intertwinement of the temporal and spatial corre-
lations. In addition, when compartment models are 
used, the relationship between the kinetic parameters 
and PET data also becomes nonlinear. Therefore, the 
development of efficient optimization algorithms for 
direct reconstruction is of high significance. 

1.3  A Brief History of Direct Reconstruction 
The theory of direct reconstruction of parametric 

images was developed right after the publication of 
the maximum likelihood (ML) expecta-
tion-maximization (EM) algorithm for static PET re-
construction [62]. In 1984, Snyder [14] presented an 
ML EM algorithm to estimate compartmental param-
eters from time-of-flight list-mode data. Carson and 
Lange [15] in 1985 presented an EM algorithm for 
maximum likelihood reconstruction of kinetic pa-
rameters from PET projection data. However, neither 
of these algorithms was validated using a realistic 
simulation or real data at the time, possibly due to the 
limitation of computing hardware.  

In 1995, Limber et al [16] combined a least 
squares reconstruction with the Leven-
berg-Marquardt (LM) algorithm [17] to estimate the 
parameters of a single exponential decay model from 
SPECT projection data. Separable nonlinear least 
squares were used by Huesman et al [18] in 1998 to 
estimate kinetic parameters of a one-tissue compart-
ment model from 3D SPECT projection data. To re-
duce computation cost, several researchers also de-

veloped methods for direct estimation of kinetic pa-
rameters for ROIs instead of reconstruction of the 
whole parametric images, e.g. [18-22]. These algo-
rithms are only efficient for a small-scale problem 
with a limited number of ROIs. When the number of 
unknown parameters goes beyond a few hundreds, 
both the LM algorithm used by Limber et al [16] and 
the separable nonlinear least squares used by Hues-
man et al [18] become inefficient. 

The development of algorithms that are suitable 
for large-scale direct estimation began to attract more 
and more attention with the recent advances in com-
puting technology. In 2005, a parametric iterative co-
ordinate descent (PICD) algorithm was proposed by 
Kamasak et al [25] for penalized likelihood estimation 
of parametric images of a two-tissue compartment 
model. To our knowledge, this was the first demon-
stration of direct parametric reconstruction on a dense 
set of voxels. Yan et al [30] proposed a new EM algo-
rithm for direct ML reconstruction of kinetic parame-
ters of a one-tissue compartment model. Both Kama-
sak’s PICD and Yan’s EM algorithms are specific to 
their respective compartment models. To simplify 
practical implementation, Wang and Qi in 2008 pro-
posed generalized optimization transfer algorithms 
for direct penalized likelihood reconstruction of 
parametric images that are applicable to a wide vari-
ety of kinetic models [28, 29]. The algorithms resemble 
the empirical iterative implementation of the indirect 
method that alternates between an image reconstruc-
tion update and kinetic fitting step (e.g., [26, 27]), but 
have the advantage of guaranteed monotonic con-
vergence to the direct estimate. Later Wang and Qi 
[31, 32] also proposed an EM-based optimization 
transfer algorithm for direct penalized likelihood re-
construction that has faster convergence rate, espe-
cially at situations with low background events (ran-
doms and scatters).  

Direct reconstruction of parametric images for 
linear kinetic models has also been developed due to 
its computational efficiency. In 1997, Matthews et al 
[23] used the ML EM algorithm to estimate the para-
metric images of a set of linear temporal basis func-
tions. Meikle et al [24] in 1998 presented a direct re-
construction for the spectral analysis model using the 
non-negative least squares method. Mathematically, 
direct reconstruction of linear parametric images is 
essentially the same as dynamic image reconstruction 
with overlapping temporal basis functions, such as 
B-splines [50]. To avoid pre-defined basis functions, 
Reader et al also proposed a method to estimate the 
linear coefficients and temporal basis functions sim-
ultaneously [53]. To obtain physiologically relevant 
kinetic parameters directly, Patlak model has been 
incorporated into direct reconstruction by defining 
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two temporal basis functions as the blood input func-
tion and its integral [23]. In 2007, Wang et al [33] pre-
sented a maximum a posteriori (MAP) reconstruction 
of the Patlak parameters using a preconditioned con-
jugate gradient (PCG) algorithm. Tsoumpas et al [34] 
presented an ML EM algorithm for direct Patlak re-
construction. Li and Leahy [35], and Zhu et al [36] 
developed direct reconstruction of the Patlak param-
eters from list-mode data. Tang et al [37] used ana-
tomical prior information to improve the Patlak re-
construction. Rahmim et al used the AB-EM algorithm 
[70] to allow negative values in the direct estimation 
for a Patlak-like graphical analysis model [71]. It has 
been observed that the strong correlation between the 
two temporal basis functions in the Patlak model 
slows down the convergence speed of the direct re-
construction. A nested EM algorithm was developed 
by Wang and Qi [38] to improve the convergence rate 
of direct linear parametric reconstruction.  

1.4  Aim of This Paper 
In this paper we will provide an overview of the 

recent progress in the development of direct recon-
struction algorithms. We will describe technical de-
tails of different algorithms and analyze their proper-
ties. Methods for direct reconstruction of linear and 
nonlinear parametric images as well as for joint esti-
mation of parametric images and input function will 
be included. We expect the information in this review 
will provide useful guidance to readers for choosing a 
proper direct reconstruction method. 

2  General Formulation of Direct Recon-
struction 
2.1  PET Data Model 

A dynamic PET scan is often divided into multi-
ple consecutive time frames, with each frame con-
taining coincidence events recorded from the start of 
the frame till the end of the frame. The image intensity 
at pixel 𝑗 in time frame m, 𝑥𝑚(𝜽𝑗), is then given by  

 𝑥𝑚�𝜽𝑗� =  � 𝐶T(𝜏; 𝜽𝑗)𝑒
−𝜆𝑡𝑑𝜏

𝑡𝑚,𝑒

𝑡𝑚,𝑠
           …(1) 

where 𝑡𝑚,𝑠 and 𝑡𝑚,𝑒 denote the start and end times of 
frame 𝑚, respectively, and 𝜆 is the decay constant of 
the radiotracer. 𝐶T�𝑡;𝜽𝑗� is the tracer concentration in 
pixel 𝑗 at time 𝑡 and is determined by a linear or non-
linear kinetic model with the parameter vector 
𝜽𝑗 ∈ ℝ𝑛𝑘×1. 𝑛𝑘 is the total number of kinetic parame-
ters for each pixel.  

Dynamic PET measurements {𝑌𝑖𝑚, 𝑖 = 1 ∙∙∙
,𝑛𝑖 ,𝑚 = 1 ∙∙∙,𝑛𝑚} can be well modeled as a collection 
of independent Poisson random variables [39-42],  

 𝑌𝑖𝑚 ∼ Poisson�𝑦�𝑖𝑚(𝜽)�       …(2) 

where 𝑖 and 𝑚 are the indices of detector pairs and 
time frames, respectively, and 𝑛𝑖 and 𝑛𝑚 are the total 
numbers of the detector pairs and of the time frames, 
respectively. The expected projection {𝑦�𝑖𝑚(𝜽)} is re-
lated to the dynamic image {𝑥̅𝑖𝑚(𝜽)}, through an affine 
transform,  

 𝑦�𝑖𝑚(𝜽) =  𝑙𝑖𝑚(𝜽) +  𝑟𝑖𝑚               …(3) 

 
 𝑙𝑖𝑚(𝜽) =  ∑ 𝑝𝑖𝑗𝑥𝑚(𝜽𝑗)

𝑛𝑗
𝑗=1                       …(4) 

where 𝑝𝑖𝑗 , the (𝑖. 𝑗)th element of the system matrix 
𝑷 ∈ ℝ𝑛𝑖×𝑛𝑗 , is the probability of detecting an event 
originated in pixel 𝑗 by detector pair 𝑖, and 𝑟𝑖𝑚 is the 
expectation of scattered and random events at detec-
tor pair 𝑖 in the 𝑚th frame. 𝑛𝑗 is the total number of 
image pixels. 

Let 𝒚�𝑚(𝜽) ≡ {𝑦�𝑖𝑚(𝜽)}𝑖=1
𝑛𝑖  and 𝒓𝑚 ≡ {𝑟𝑖𝑚}𝑖=1

𝑛𝑖  be the 
projection vectors and 𝒙𝑚(𝜽) ≡ {𝑥𝑚(𝜽𝑗)}𝑗=1

𝑛𝑗  the image 
vector in frame 𝑚. The forward model for time frame 
𝑚 can be rewritten in a matrix-vector product form:  

𝒚�𝑚(𝜽) =  𝑷𝒙𝑚(𝜽) + 𝒓𝑚            …(5) 

Let us define a matrix of kinetic parameters, 
𝚯 ≡ [𝜽1,∙∙∙,𝜽𝑛𝒋]

𝑇, in which each column represents an 
image of a kinetic parameter. We use 𝚯 to denote its 
ordered vector. Similarly we also define the following 
matrices:  

𝑿(𝚯) = �𝒙1(𝜽),∙∙∙,𝒙𝑛𝑚(𝜽)�  

𝒀�(𝚯) = �𝒚�1(𝜽),∙∙∙, 𝒚�𝑛𝑚(𝜽)� 

𝑹 = �𝒓1,∙∙∙, 𝒓𝑛𝑚� 

and their ordered vectors are denoted by 
𝒙(𝜽),𝒚�(𝜽) and 𝒓 respectively. Then the expectation of 
the whole dynamic PET data can be expressed either 
by  

𝒀�(𝚯) = 𝑷𝑿(𝚯) + 𝑹                   …(6) 

or  

 𝒚�(𝜽) = �𝑰𝑛𝑚 ⨂𝑷�𝒙(𝜽) + 𝒓           …(7) 

where 𝑰𝑁 is a 𝑁 × 𝑁 identity matrix and ⨂ denotes the 
Kronecker product. Equation (6) is the form for prac-
tical implementation and equation (7) is more suitable 
for algorithm analysis. 

2.2  Maximum Likelihood Reconstruction 
The goal of direct reconstruction is to estimate 𝜽 

from dynamic PET measurements. Let 𝑦𝑖𝑚  denote a 
set of dynamic PET measurements. 𝒀 and 𝒚 are the 
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matrix and the vector that are formed by {𝑦𝑖𝑚} in the 
same fashion as 𝒀� and 𝒚�, respectively. The log Poisson 
likelihood function of the dynamic PET data is  

𝐿(𝒚|𝜽) = ∑ ∑ 𝑦𝑖𝑚 log𝑦�𝑖𝑚(𝜽) −𝑦�𝑖𝑚(𝜽)𝑛𝑖
𝑖=1

𝑛𝑚
𝑚=1  …(8) 

 = ∑ ∑ ℎ𝑖𝑚�𝑙𝑖𝑚(𝜽)�𝑛𝑖
𝑖=1

𝑛𝑚
𝑚=1                …(9) 

where a constant term is neglected and ℎ𝑖𝑚(𝑙) is de-
fined by  

 ℎ𝑖𝑚(𝑙) = 𝑦𝑖𝑚 log(𝑙 + 𝑟𝑖𝑚) − (𝑙 + 𝑟𝑖𝑚)               …(10) 

Maximum likelihood (ML) reconstruction finds 
the solution by maximizing the log likelihood func-
tion,  

𝜽� =  argmax𝜽∈𝒮 𝐿(𝒚 |𝜽)                …(11) 

where 𝒮 denotes the feasible set of the kinetic param-
eters 𝜽  (e.g. satisfying nonnegativity or box con-
straints). The resulting images from ML reconstruc-
tion at convergence are often very noisy because the 
tomography problem is ill-conditioned. In practice, 
the true ML solution is seldom being sought. Rather 
images are regularized either by early termination 
before convergence or using a penalty function or 
image prior to encourage spatial smoothness. 

2.3  Penalized Likelihood Reconstruction 
Penalized likelihood (PL) reconstruction (or 

equivalently maximum a posteriori, MAP) regularizes 
the solution by incorporating a roughness penalty in 
the objective function to encourage spatially smooth 
images. PL reconstruction finds the parametric image 
that maximizes the penalized likelihood function as  

𝜽� =  argmax𝜽∈𝒮 Φ(𝜽),  Φ(𝜽) = 𝐿(𝒚|𝜽) − 𝛽𝑉(𝜽)           
…(12) 

where 𝑉(𝜽) is a smoothness penalty and 𝛽 is the reg-
ularization parameter that controls the tradeoff be-
tween the resolution and noise. If 𝛽 is too small, the 
reconstructed image approaches the ML estimate and 
becomes very noisy; if 𝛽 is too large, the reconstructed 
image becomes very smooth and useful information 
can be lost. 

The smoothness penalty can be applied either on 
the kinetic parameters 𝜽  or on the dynamic image 
{𝒙𝑚(𝜽)}𝑚=1

𝑛𝑚 , depending on the application. A penalty 
applied on the dynamic images can be expressed by  

𝑉(𝜽) = ∑ 𝑈(𝒙𝑚(𝜽))𝑛𝑚
𝑚=1               …(13) 

where 𝑈(𝝁) is a smoothness penalty given by  

𝑈(𝝁) = 1
4
∑ ∑ 𝛾𝑗𝑘𝜓(𝜇𝑗 − 𝜇𝑘)𝑘∈𝒩𝑗

𝑛𝑗
𝑗=1                …(14) 

and 𝜓(𝑡)  is the potential function. 𝒩𝑗 denotes the 
neighborhood of pixel 𝑗 ; 𝛾𝑗𝑘  is the weighting factor 
equal to the inverse distance between pixels 𝑗 and 𝑘. 

A typical neighborhood includes the eight nearest 
pixels in 2D and 26 nearest voxels in 3D.  

The basic requirement of 𝜓(𝑡) is that it is even 
and non-decreasing of |𝑡|. A common choice in PET 
image reconstruction is the quadratic function 
𝜓(𝑡) = 1

2
𝑡2  [42]. The disadvantage of the quadratic 

regularization is that it can over-smooth edges and 
small objects when a large 𝛽  is used. To preserve 
edges, non-quadratic penalty functions can be used. 
Examples includes the absolute value function 
𝜓(𝑡) = |𝑡| , the Lange function 𝜓(𝑡) = |𝑡| −
𝛿 log(1 + |𝑡|

𝛿
) [47], and other variations [45, 46]. Non-

convex penalty functions can also be used to even 
enhance edges, but they are much less popular be-
cause the resulting objective function may have mul-
tiple local optima. 

3  Reconstruction of Parametric Images 
for Linear Kinetic Models 
3.1  Linear Kinetic Models 

One way to represent time activity curves is to 
use a set of linear temporal basis functions. The tracer 
concentration 𝐶T(𝑡;𝝓) at time t can be described by,  

𝐶T(𝑡;𝝓) = ∑ 𝜙𝑘𝐵𝑘(𝑡)𝑛𝑘
𝑘=1              …(15) 

where 𝑛𝑘 is the total number of basis functions, 𝐵𝑘(𝑡) 
is the 𝑘th temporal basis function and 𝜙𝑘 is the coeffi-
cient to be estimated.  

The temporal basis functions can be divided into 
two categories. The first category primarily focuses on 
efficient representation of time activity curves. Ex-
amples include B-splines [48-50] and wavelets [51], as 
well as those obtained from principal component 
analysis [52] or adaptively estimated from PET data 
[53]. One advantage of these basis functions is that 
they can represent a wide variety of time activity 
curves. A disadvantage is that the associated coeffi-
cients are not directly related to the kinetic parameters 
of physiological interest. Kinetic modeling is often 
required to estimate kinetic parameters from the 
TACs after reconstruction. In comparison, the second 
category to be described below provides linear coeffi-
cients that are directly related to the kinetic parame-
ters of interest.  

3.1.1  Spectral Analysis 
In spectral analysis the basis functions are a set 

of pre-determined exponential functions convolved 
with the blood input function 𝐶p(𝑡) [54, 55],  

𝐵𝑘(𝑡) = 𝜈𝑘𝑒
−𝜈𝑘𝑡 ∗ 𝐶p(𝑡)             …(16) 

where 𝜈𝑘  denotes the rate constant of the 𝑘th spec-
trum and ‘∗’ represents the convolution operator. The 
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exponential spectral bases are consistent with the 
compartmental models and the distribution volume 
(DV) of a reversible tracer can be directly computed 
from the spectral coefficients {𝜙𝑘} by  

𝐷𝑉 = ∑ 𝜙𝑘
𝑛𝑘
𝑘=1                       …(17) 

If the blood input function 𝐶p(𝑡) in (16) is re-
placed by a reference region TAC 𝐶r(𝑡), the calculated 
quantity from the spectral coefficients then becomes 
the distribution volume ratio (DVR), which is related 
to binding potential (BP), a major parameter of inter-
est in neuroreceptor studies, by  

𝐵𝑃 = 𝐷𝑉𝑅 − 1 = ∑ 𝜙𝑘 − 1𝑛𝑘
𝑘=1                        …(18) 

3.1.2  Patlak Model 
The Patlak graphical method [56] is a linear 

technique which has been widely used in dynamic 
PET data analysis. For a tracer with an irreversible 
compartment, the time activity curve satisfies the fol-
lowing linear relationship at the steady state:  

𝐶T(𝑡)

𝐶p(𝑡)
= 𝐾𝑖

∫ 𝐶p(𝜏)𝑑𝜏𝑡
0

𝐶p(𝑡)
+ 𝑏, 𝑡 > 𝑡∗                …(19) 

where 𝑡∗ is the time for the tracer to reach steady state. 
The Patlak slope 𝐾𝑖 represents the overall influx rate 
of the tracer into the irreversible compartment and 
has found applications in many disease studies. For 
example, 𝐾𝑖 is proportional to the glucose metabolic 
rate in FDG scans. In some applications, the plasma 
input function 𝐶p(𝑡) can also be replaced by a refer-
ence region input function 𝐶r(𝑡). 

Equation (19) can be rewritten into the following 
linear model:  

𝐶T(𝑡;𝝓) = 𝐾𝑖𝐵1(𝑡) + 𝑏𝐵2(𝑡), 𝑡 > 𝑡∗              …(20) 

where 𝝓 ≡ [𝐾𝑖 ,𝑏]𝑇 and the two basis functions are  

𝐵1(𝑡) = ∫ 𝐶p(𝜏)𝑑𝜏𝑡

0
                         …(21) 

𝐵2(𝑡) = 𝐶p(𝑡)                          …(22) 

3.1.3  Logan Plot and Relative Equilibrium Plot 
For reversible tracers, the Logan plot can be used 

to estimate distribution volume or binding potential 
[72]. The standard Logan plot equation is  

∫ 𝐶T(𝜏)𝑑𝜏𝑡
0

𝐶T(𝑡)
= 𝐷𝑉

∫ 𝐶p(𝜏)𝑑𝜏𝑡
0

𝐶T(𝑡)
+ 𝑏′, 𝑡 > 𝑡∗                …(23) 

However, the tissue activity curve 𝐶T(𝑡)  is in-
volved nonlinearly in the Logan plot (and also in the 
multilinear model by Ichise et al [73]), which makes 
direct reconstruction more difficult. Considering the 
fact that the ratio between the tissue time activity 
𝐶T(𝑡)  and plasma concentration 𝐶p(𝑡)  remains con-
stant at relative equilibrium, Zhou et al [74] proposed 

replacing 𝐶T(𝑡)  in the denominators by 𝐶p(𝑡) . The 
model is referred to as the relative equilibrium (RE) 
model. After a slight rearrangement, we can write the 
RE model in the following form:  

∫ 𝐶T(𝜏)𝑑𝜏 = 𝐷𝑉∫ 𝐶p(𝜏)𝑑𝜏 + 𝑏�′𝐶p(𝑡), 𝑡 > 𝑡∗
𝑡

0

𝑡

0
          

…(24) 

where the cumulative time activity ∫ 𝐶T(𝜏)𝑑𝜏𝑡
0  is ex-

pressed as a linear combination of the same two basis 
functions as those in the Patlak plot. 

To use the RE model, all the time frames should 
start from 𝑡 = 0  so that the reconstructed dynamic 
images represent the cumulative time activity 
∫ 𝐶T(𝜏)𝑑𝜏𝑡

0 . One consequence is that the projection 
data in different frames are no longer independent, so 
the likelihood function in (9) needs some modification 
to obtain a true ML estimate. In addition, the intercept 
𝑏�′  in Eq. (24) is usually negative, which makes the 
classic EM algorithm not applicable to the resulting 
direct reconstruction.  

Taking the derivative on both sides of (24), Zhou 
et al [75] presented an alternative form of the RE 
model,  

𝐶T(𝑡) = 𝐷𝑉𝐶p(𝑡) + 𝑏�′𝐶̇p(𝑡), 𝑡 > 𝑡∗             …(25) 

where 𝐶̇p(𝑡) is the first-order derivative of 𝐶p(𝑡). One 
advantage of the modified RE model in (25) is that it 
does not involve the cumulative time activity. In ad-
dition, since both 𝑏�′  and 𝐶̇p(𝑡) are negative, we can 
rewrite (25) in positive terms  

𝐶T(𝑡;𝝓) = 𝐷𝑉𝐵1(𝑡) + �−𝑏�′�𝐵2(𝑡), 𝑡 > 𝑡∗           …(26) 

with 𝝓 = �𝐷𝑉,−𝑏�′�𝑇 and the two basis functions  

 𝐵1(𝑡) = 𝐶p(𝑡)                …(27) 

 𝐵2(𝑡) = −𝐶̇p(𝑡)              … (28) 

The model equation (26) is now suitable for di-
rect reconstruction using the classic EM algorithm 
because the coefficient −𝑏�′  and the basis function 
𝐵2(𝑡)  are both nonnegative when 𝑡 > 𝑡∗ . Note that 
𝐶p(𝑡) can also be replaced by a reference region TAC 
𝐶r(𝑡) to calculate DVR. 

3.2  Forward Projection 
With a linear kinetic model in (15), the dynamic 

PET images can be expressed in a matrix-vector 
product  

𝑿𝑇 = 𝑩𝚯𝑇                           …(29) 

or equivalently,  

𝒙 = �𝑩⨂𝑰𝑛𝑗�𝜽                              …(30) 
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where the (𝑚, 𝑘)th element of the temporal basis ma-
trix 𝑩 ∈ ℝ𝑛𝑚×𝑛𝑘  is given by  

𝐵𝑚,𝑘 = ∫ 𝐵𝑘(𝜏)𝑒−𝜆𝜏𝑑𝜏
𝑡𝑚,𝑒

𝑡𝑚,𝑠
                    …(31) 

Substituting the above equations into Eq. (6), we 
get the following forward model for the linear kinetic 
model:  

𝒀�(𝚯) = 𝑷𝚯𝑩𝑇 + 𝑹                          …(32) 

or equivalently,  

𝒚�(𝜽) = (𝑩⨂𝑷)𝜽 + 𝒓                       …(33) 

3.3  Direct Reconstruction Using a Single 
System Matrix 

By treating 𝑩⨂𝑷  as a single system matrix 
𝑨 ≡ 𝑩⨂𝑷, any existing algorithms for static PET re-
construction can be used for the direct estimation of 
nonnegative linear parametric images. For example, 
applying the ML EM algorithm [61-63], we get the 
following update equation for direct linear parametric 
image reconstruction [23]:  

𝜃𝑗𝑘
𝑛+1 =

𝜃𝑗𝑘
𝑛

𝑝𝑗𝑏𝑘
∑ ∑ 𝑝𝑖𝑗𝐵𝑚𝑘

𝑦𝑖𝑚
𝑦�𝑖𝑚(𝜽𝑛)𝑖𝑚                      …(34) 

where the superscript 𝑛 denotes the 𝑛th iteration and  

𝑝𝑗 = ∑ 𝑝𝑖𝑗𝑖                                  …(35) 

𝑏𝑘 = ∑ 𝐵𝑚𝑘𝑚                               …(36) 

Similar to static PET reconstruction, the conver-
gence of the parametric EM algorithm can be very 
slow. Preconditioned conjugate gradient (PCG) algo-
rithm and other accelerated algorithms [57, 58] can be 
used to achieve a faster convergence. One example of 
direct application of PCG to Patlak reconstruction can 
be found in [33]. When negative values are present in 
the parametric images, such as those in the original 
relative equilibrium model (24), the AB-EM algorithm 
can be used [71].  

One disadvantage of direct reconstruction using 
a single system matrix is that the convergence can be 
extremely slow when the temporal basis functions are 
highly correlated as in the spectral analysis and Patlak 
model [12]. This is because the combination of the 
temporal correlation and high spatial dimension re-
sults in an ill-posed problem that is much worse than 
the static PET reconstruction. One way to solve this 
problem is to decouple the spatial image update and 
temporal parameter estimation at each iteration using 
the nested EM algorithm described below.  

3.4  Nested EM Algorithm 
The nested EM algorithm [38] at iteration (𝑛 + 1) 

first calculates an intermediate dynamic image {𝑥�𝑗𝑚
em,𝑛} 

by  

𝑥�𝑗𝑚
em,𝑛 =

𝑥𝑚(𝜽𝑗
𝑛)

𝑝𝑗
∑ 𝑝𝑖𝑗𝑖

𝑦𝑖𝑚
𝑦�𝑖𝑚(𝜽𝑛)

                         …(37) 

and then updates the kinetic parameter estimate by 
another EM-like equation  

𝜃𝑗𝑘
𝑛,𝑙+1 =

𝜃𝑗𝑘
𝑛,𝑙

𝑏𝑘
∑ 𝐵𝑚𝑘𝑚

𝑥�𝑗𝑚
em,𝑛

𝑦�𝑖𝑚(𝜽𝑛)
 , 𝑙 = 1, … ,𝑛𝑙                …(38) 

where 𝜃𝑗𝑘
𝑛,1 = 𝜃𝑗𝑘

𝑛 , 𝜃𝑗𝑘𝑛+1 = 𝜃𝑗𝑘
𝑛,𝑛𝑙+1 , and 𝑙  is the 

sub-iteration number in iteration (𝑛 + 1) . Each full 
iteration of the nested EM algorithm consists of one 
iteration of EM-like emission image update (37) and 
multiple iterations of kinetic parameter estimation 
(38). 

The nested EM algorithm was derived by using 
the optimization transfer principle [60]. A surrogate 
function 𝑄em(𝜽;𝜽𝑛) is constructed at each iteration,  

  𝑄em(𝜽;𝜽𝑛) = ∑ 𝑝𝑗𝑗 𝑞em(𝜽𝑗;𝒙�𝑗
em,𝑛)                …(39) 

𝑞em�𝜽𝑗; 𝒙�𝑗
em,𝑛� = ∑ 𝒙�𝑗𝑚

em,𝑛
𝑚 log 𝑥𝑚�𝜽𝑗� − 𝑥𝑚�𝜽𝑗�        

…(40) 

where 𝑥�𝑗𝑚
em,𝑛 is given by (37). This surrogate function 

satisfies  

𝑄em(𝜽;𝜽𝑛) − 𝑄em(𝜽𝑛;𝜽𝑛) ≤ 𝐿(𝒚|𝜽) − 𝐿(𝒚|𝜽𝑛)  …(41) 

Then the maximization of the original likelihood 
function 𝐿(𝒚|𝜽) is transferred into the maximization 
of the surrogate function 𝑄em(𝜽;𝜽𝑛)  that can be 
solved pixel-by-pixel,  

𝜽𝑗
𝑛+1 = argmax𝜽𝑗≥𝟎 𝑞em(𝜽𝑗; 𝒙�𝑗

em,𝑛)                …(42) 

Applying the EM algorithm to (42) results in the 
update equation in (38). The property of the surrogate 
function guarantees  

𝐿(𝒚|𝜽𝑛+1) ≥ 𝐿(𝒚|𝜽𝑛)                   …(43) 

and 𝜽𝑛 converges to the global solution. 
It is easy to verify that the traditional EM algo-

rithm in (34) is a special case of the nested EM algo-
rithm with 𝑛𝑙 = 1 [38]. By running multiple iterations 
of (38) with 𝑛𝑙 > 1, the nested EM algorithm can sub-
stantially accelerate the convergence rate of the direct 
reconstruction of linear parametric images without 
affecting the overall computational time as the size of 
matrix 𝑩 is much smaller than that of the system ma-
trix 𝑷. This is clearly demonstrated by a toy example 
shown in Fig. 1 [38]. Starting from the same initial 
image, the nested EM takes 6 iterations to converge to 
the true solution, while the traditional EM requires 
more than 60 iterations. The nested EM algorithm can 
be further accelerated by considering the nested EM 
algorithm as an implicit preconditioner and using 
conjugate directions [38].   
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Figure 1: Isocontours of the likelihood function of a toy problem and the 
trajectories of the iterates of the traditional EM (𝑛𝑙 = 1) and the nested 
EM (𝑛𝑙 = 30). The nested EM takes 6 iterations to converge to the final 
solution, while the traditional EM requires more than 60 iterations. Re-
printed from [38] with permission. 

 

4  Reconstruction of Parametric Images 
for Compartment Models 
4.1  Compartment Modeling 

While linear models are advantageous for com-
putational efficiency, nonlinear kinetic models based 
on compartment modeling are more related to the 
well-developed biochemical kinetics [5]. Under a 
compartment model, the total tracer concentration in 
tissue is  

𝐶T(𝑡;𝝓) = (1 − 𝑓v)∑ 𝑐𝑛(𝑡) + 𝑓v𝐶wb(𝑡)𝑁
𝑛=1       …(44) 

where 𝑓v  is the fractional volume of blood, 𝐶wb(𝑡)is 
the whole blood concentration, and 𝑐𝑛(𝑡) represents 
the concentration of the 𝑛th tissue compartment. The 
compartment concentrations are related with each 
other by a set of ordinary differential equations [5, 7],  

𝑑

𝑑𝑡
𝒄(𝑡) = 𝑲𝒄(𝑡) + 𝑳𝒖(𝑡)                …(45) 

where 𝒄(𝑡) = [𝑐1(𝑡),∙∙∙, 𝑐𝑁(𝑡)]𝑇, 𝑲 and 𝑳 are the kinetic 
parameter matrices that are formed by the rate con-
stants in 𝝓, and 𝒖(𝑡) denotes the system input.  

Taking the Laplace transform of (45), we get  

𝑠𝒄�(𝑠) = 𝑲𝒄�(𝑠) + 𝑳𝒖�(𝑠)                   …(46) 

where 𝒄�(𝑠) = ℒ[𝒄(𝑡)] and 𝒖�(𝑠) = ℒ[𝒖(𝑡)]  denote the 
Laplace transforms of 𝒄(𝑡)  and 𝒖(𝑡) , respectively. 
Then solution of the differential equation (45) can be 
obtained by  

𝒄(𝑡) = ℒ−1[(𝑠𝑰𝑁 − 𝑲)−1𝑳𝒖�(𝑠)]                 …(47) 

where ℒ−1 denotes the inverse Laplace transform. 
For the commonly used two-tissue compartment 

model, we have  

𝑲 = �−(𝑘2 + 𝑘3) 𝑘4
𝑘3 −𝑘4

� , 𝒄(𝑡) = �𝐶f(𝑡)
𝐶b(𝑡)�          …(48) 

and  

𝑳 = �𝐾10 �, 𝒖(𝑡) = 𝐶p(𝑡)                 …(49) 

with 𝝓 = [𝑓v,𝐾1,𝑘2,𝑘3, 𝑘4]𝑇 , where 𝐾1,  𝑘2,  𝑘3,  𝑘4  are 
the tracer rate constants, 𝐶f(𝑡) and 𝐶b(𝑡) are the con-
centrations in the free and bound compartments, and 
𝐶p(𝑡) is the tracer concentration in plasma. The ana-
lytical solution of 𝒄(𝑡) is given by  

𝒄(𝑡) = 𝐾1
∆𝛼
�𝑘4 − 𝛼1 𝛼2 − 𝑘4

𝑘3 −𝑘3
� �
𝑒−𝛼1𝑡 ∗ 𝐶p(𝑡)
𝑒−𝛼2𝑡 ∗ 𝐶p(𝑡)�      …(50) 

where ∆𝛼 = 𝛼2 − 𝛼1  with 𝛼1,2 = 1

2
(𝑘2 + 𝑘3 + 𝑘4) ∓

1

2
[(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4]1/2 , and “*” denotes the 

convolution operator. 

4.2  Model-dependent Algorithms 

4.2.1  PICD Algorithm 
The parametric iterative coordinate descent 

(PICD) algorithm [25] was the first direct reconstruc-
tion algorithm implemented for a large-scale para-
metric reconstruction with a compartment model. It 
first transforms the rate constants in the compartment 
model into a set of auxiliary parameters and then es-
timates the auxiliary parameters directly from the 
sinogram data. For example, the TAC in a 
two-tissue-compartment model is rewritten as  

𝐶T(𝑡;𝝓) = �1 − 𝑓v�∑ 𝜈𝑛𝑒
−𝛼𝑘𝑡2

𝑛=1 ∗ 𝐶p(𝑡) + 𝑓v𝐶wb(𝑡)     
…(51) 

where the auxiliary parameters are 
𝝓 = [𝑓v, 𝜈1, 𝜈2,𝛼1,𝛼2]𝑇. Once the auxiliary parameters 
are estimated, the kinetic rate constants can be calcu-
lated by  

𝑘1 = 𝜈1 + 𝜈2                        …(52) 

𝑘2 =  
𝜈1𝛼1+𝜈2𝛼2

𝜈1+𝜈2
                               …(53) 

𝑘3 =
𝜈1𝜈2(𝛼1−𝛼2)2

(𝜈1𝛼1+𝜈2𝛼2)(𝜈1+𝜈2)
             …(54) 

𝑘4 =
𝛼1𝛼2(𝜈1+𝜈2)

𝜈1𝛼1+𝜈2𝛼2
                 …(55) 

To estimate the auxiliary parameters, a coordi-
nate descent (CD) algorithm is used. The original 
log-likelihood function is approximated by its se-
cond-order Taylor expansion. At each iteration, the 
auxiliary parameters are updated by  

𝜽𝑗
𝑛+1 = argmin𝜽𝑗∈𝒮 ∑ (𝑔�𝑗𝑚

𝑛 ∆𝑥𝑚�𝜽𝑗� +𝑛𝑚
𝑚=1

                           
𝐻�𝑗𝑚
𝑛

2
∆𝑥𝑚

2 (𝜽𝑗)) + 𝛽𝑉�(𝜽𝑗)                 …(56) 
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where ∆𝑥𝑚�𝜽𝑗� = 𝑥𝑚�𝜽𝑗� − 𝑥𝑚�𝜽𝑗𝑛� , 𝑔�𝑗𝑚
𝑛  and 𝐻�𝑗𝑚

𝑛  de-
note the gradient and Hessian of the negative 
log-likelihood function 𝐿(𝒚|𝜽) with respect to 𝑥𝑚�𝜽𝑗� 
at 𝜽�𝑛,𝑗 ≡ {𝜽1

𝑛+1, … ,𝜽𝑗−1
𝑛+1,𝜽𝑗𝑛, … ,𝜽𝑛𝑗

𝑛 } and are given by  

 𝑔�𝑗𝑚
𝑛 = −∑ 𝑝𝑖𝑗𝑖 ℎ̇𝑖𝑚(𝑙𝑖𝑚�𝜽�

𝑛,𝑗�)                     …(57) 

𝐻�𝑗𝑚
𝑛

= −∑ 𝑝𝑖𝑗
2

𝑖 ℎ̈𝑖𝑚(𝑙𝑖𝑚�𝜽�
𝑛,𝑗�)                        …(58) 

The first-order derivative ℎ̇𝑖𝑚(𝑙)  and se-
cond-order derivative ℎ̈𝑖𝑚(𝑙) are respectively given by  

 ℎ̇𝑖𝑚(𝑙) =
𝑦𝑖𝑚
𝑙+𝑟𝑖𝑚

− 1                          …(59) 

 ℎ̈𝑖𝑚(𝑙) = −
𝑦𝑖𝑚

(𝑙+𝑟𝑖𝑚)2                          …(60) 

The regularization term 𝑉�(𝜽𝑗)  equals to 𝑉(𝜽) 
with 𝜽 fixed at 𝜽�𝑛,𝑗 for all pixels other than pixel 𝑗. 

The PICD algorithm uses an iterative gradient 
descent algorithm to update the linear parameters in 
𝜽𝑗 and an iterative golden section search to estimate 
the nonlinear components. To accelerate the conver-
gence rate and reduce computational cost, the PICD 
algorithm updates the linear parameters more fre-
quently than the nonlinear parameters.  

The PICD algorithm is well suited for one- and 
two-tissue-compartment models. For kinetic models 
with more than two tissue compartments, however, 
the parameter transformation becomes too compli-
cated. 

4.2.2  PMOLAR-1T Algorithm 
The PMOLAR-1T algorithm [30] is an EM algo-

rithm for direct reconstruction of parametric images 
for the one-tissue compartment model. It is derived by 
introducing a new set of complete data that simulta-
neously decouples the pixel correlation as well as the 
temporal convolution. Here we introduce it using the 
optimization transfer framework.  

First we note that the surrogate function in (40) is 
applicable to any kinetic models. For the 
one-tissue-compartment model, the tissue time activ-
ity curve can be described by  

𝐶T(𝑡) = 𝜉(𝑡;𝝓) ∗ 𝐶p(𝑡), 𝜉(𝑡;𝝓) = 𝐾1𝑒
−𝑘2𝑡       …(61) 

and we have  

𝑥𝑚�𝜽𝑗� = ∫ 𝐶T(𝜏)𝑒−𝜆𝑡
𝑡𝑚,𝑒

𝑡𝑚,𝑠
≈ ∑ 𝜉𝑛𝑐

𝑚′=1 �𝑡𝑚′ ; 𝜽𝑗�𝑢𝑚,𝑚′              

…(62) 

where 𝑢𝑚,𝑚′ ≜ ∆𝑡 ∫ 𝐶p�𝜏 − 𝑡𝑚′�𝑒−𝜆𝜏𝑑𝜏𝑡𝑚,𝑒
𝑡𝑚,𝑠

. Here we ap-
proximate the convolution integral using the summa-
tion over 𝑛𝑐 uniformly sampled time points with ∆𝑡 
being the time interval. 

Applying the EM surrogate function to (40) one 

more time to decouple the temporal correlation, we 
can find the maximum of (40) iteratively by  

𝜃𝑗
𝑛,𝑙+1 =

argmax𝜽𝑗 ∑ 𝑢𝑚′�𝜉̂𝑗,𝑚′
𝑛,𝑙

log 𝜉(𝑡𝑚′ ; 𝜽𝑗� −
𝑛𝑐
𝑚′=1 𝜉(𝑡𝑚′ ; 𝜽𝑗))          

…(63) 

𝑙 = 1,∙∙∙,𝑛𝑙 

where 𝑢𝑚′ ≜ ∑ 𝑢𝑚,𝑚′
𝑛𝑚
𝑚=1  and 𝜉�𝑗,𝑚′

𝑛,𝑙  is given by  

𝜉̂𝑗,𝑚′
𝑛,𝑙

=
𝜉(𝑡𝑚′ ;𝜽𝑗

𝑛,𝑙)

𝑢𝑚′
∑ 𝑢𝑚,𝑚′

𝒙�𝑗𝑚
em,𝑛

𝑥𝑚(𝜽𝑗
𝑛,𝑙)

𝑛𝑚
𝑚=1          …(64) 

For the one-tissue compartment model with 
𝜽𝑗 = �𝐾1,𝑗, 𝑘2,𝑗�

𝑇
, the optimization in (63) has the fol-

lowing analytical solution:  

 𝑘2,𝑗
𝑛,𝑙+1 = 𝐻−1 �

∑ 𝑡𝑚′𝑢𝑚′
𝑛𝑐
𝑚′=1

𝜉̂
𝑗,𝑚′
𝑛,𝑙

∑ 𝑢𝑚′
𝑛𝑐
𝑚′=1

𝜉̂𝑗,𝑚′
𝑛,𝑙 �                   …(65) 

 𝐾1,𝑗
𝑛,𝑙+1 =

∑ 𝑢𝑚′
𝑛𝑐
𝑚′=1

𝜉̂
𝑗,𝑚′
𝑛,𝑙

∑ 𝑢𝑚′
𝑛𝑐
𝑚′=1

exp(−𝑘2,𝑗
𝑛,𝑙+1𝑡𝑚′)

                     …(66) 

where 𝐻−1(∙) is the inverse function of the function 
𝐻(𝑘2) [30]  

𝐻(𝑘2) =
∑ 𝑡𝑚′𝑢𝑚′exp(−𝑘2𝑡𝑚′)𝑛𝑐
𝑚′=1
∑ 𝑢𝑚′exp(−𝑘2𝑡𝑚′)𝑛𝑐
𝑚′=1

                      …(67) 

and can be calculated by a look-up table. 
The original PMOLAR-1T algorithm [30] only 

uses one subiteration with 𝑛𝑙 = 1. Based on our expe-
rience with the nest EM algorithm for linear models, 
we expect that the convergence rate of the 
PMOLAR-1T algorithm can be accelerated by using 
more than one subiterations (𝑛𝑙 > 1).  

4.3  Model-independent Algorithms 

4.3.1  Iterative NLS Algorithms 
Reader et al [26] proposed an iterative nonlinear 

least squares (NLS) algorithm for direct parametric 
image reconstruction. It iteratively applies the NLS 
kinetic fitting following an EM image update:  

𝜽𝑗
𝑛+1 = argmin𝜽𝑗∈𝒮

1

2
∑ 𝑤𝑗𝑚

𝑛𝑛𝑚
𝑚=1 (𝑥�𝑗𝑚

em,𝑛 − 𝑥𝑚 (𝜽𝑗))2         
…(68) 

where {𝑥�𝑗𝑚
em,𝑛} is the dynamic image given in (37). The 

weighting factor 𝑤𝑗𝑚
𝑛  has to be chosen empirically. In 

[26] a uniform weight 𝑤𝑗𝑚
𝑛 = 1 was used. Based on the 

fact that (40) resembles a Poisson log-likelihood func-
tion, Matthews et al [27] proposed the following 
nonuniform weighting factor  

𝑤𝑗𝑚
𝑛 =

1

𝑥𝑚(𝜽𝑗
𝑛)

                        …(69) 
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which substantially improved performance over the 
uniform weight. 

However, neither the uniform nor the nonuni-
form weights provides any theoretical guarantee of 
convergence because the quadratic function in (68) is 
not a proper surrogate function. It has been observed 
that the uniform weight can result in non-monotonic 
changes in the likelihood function, although the re-
sults with the nonuniform weighting are reasonably 
good.  

4.3.2  OT-SP Algorithm 
To obtain a guaranteed convergence while 

maintaining the simplicity of the iterative NLS algo-
rithm, Wang and Qi [29] proposed a quadratic surro-
gate function for the penalized likelihood function 
using optimization transfer (OT). The surrogate func-
tion of the log-likelihood is derived based on the fact 
that the second-order derivative of ℎ𝑖𝑚(𝑙)  is a 
non-decreasing function of 𝑙  and is bounded when 
𝑟𝑖𝑚 > 0. The potential function 𝜓(𝑡) in (14) also has a 
bounded, non-increasing second-order derivative of 
|𝑡|. Omitting the constants that are independent of 𝜽, 
the surrogate function of the penalized likelihood is 
given by  

𝑄(𝜽; 𝒛𝑛+1) = −∑ 𝜂𝑖𝑚
𝑛

2
�𝑧𝑖𝑚𝑛+1 − 𝑙𝑖𝑚(𝜽)�

2
−𝑚,𝑖

                        𝛽∑ 𝑈�(𝒙𝑚
𝑛𝑚
𝑚=1 (𝜽);𝒙𝑚(𝜽𝑛))                  …(70) 

where the optimum curvature {𝜂𝑖𝑚𝑛 } is set to [43, 44]  

𝜂𝑖𝑚
𝑛 = �

2

𝑙2
[ℎ𝑖𝑚(𝑙) − ℎ𝑖𝑚(0) − 𝑙ℎ̇𝑖𝑚(𝑙)],   𝑙 > 0

−ℎ̈𝑖𝑚(𝑙),                                            𝑙 = 0
   …(71) 

with 𝑙 = 𝑙𝑖𝑚(𝜽𝑛) and 𝒛𝑛+1 ≡ {𝑧𝑖𝑚𝑛+1} is an intermediate 
dynamic sinogram at iteration (𝑛 + 1),  

𝑧𝑖𝑚
𝑛+1 = 𝑙𝑖𝑚(𝜽𝑛) +

ℎ̇𝑖𝑚(𝑙𝑖𝑚(𝜽𝑛))

𝜂𝑖𝑚
𝑛                      …(72) 

The second term in (70) is the surrogate function 
for the penalty function and is given by  

𝑈�(𝝁; 𝝁𝑛) =
1

8
∑ ∑ 𝛾𝑗𝑘𝑤

𝜓(𝜇𝑗
𝑛

𝑘∈𝒩𝑗
− 𝜇𝑘

𝑛𝑛𝑗
𝑗=1 )�𝜇𝑗 − 𝜇𝑘�

2
   

…(73) 

where 𝑤𝜓(𝑡) is the optimum curvature of the penalty 
function 𝜓(𝑡)  

𝑤𝜓(𝑡) =
𝜓̇(𝑡)

𝑡
                              …(74) 

For example 𝑤𝜓(𝑡) = 1 for the quadratic penalty 
and 𝑤𝜓(𝑡) = 1

|𝑡|+𝛿
 for the nonquadratic Lange penalty. 

With 𝑟𝑖𝑚 > 0 , the surrogate 𝑄(𝜽; 𝒛𝑛+1)  satisfies 
the following condition:  

𝑄(𝜽; 𝒛𝑛+1) − 𝑄(𝜽𝑛; 𝒛𝑛+1) ≤ Φ(𝜽) −Φ(𝜽𝑛)         …(75) 

Hence it minorizes the original objective func-
tion Φ(𝜽).  

The optimization of the quadratic surrogate 
function can be solved pixel-by-pixel in a coordinate 
descent (CD) fashion[29]. However, the OT-CD algo-
rithm is difficult to parallelize because of the sequen-
tial update.  

For simultaneous update, Wang and Qi further 
developed an OT-SP (optimization transfer using 
separable paraboloids) algorithm [29] that uses sepa-
rable paraboloids to decouple the correlations be-
tween pixels in 𝑄(𝜽; 𝒛𝑛+1) at each iteration. The over-
all surrogate function that minorizes the original ob-
jective function 𝛷(𝜽) at iteration n is  

 𝑄𝑠𝑝(𝜽; 𝜽𝑛) = −∑ ∑ 1

2
𝑤𝑗𝑚
𝑛𝑛𝑚

𝑚=1 �𝑥�𝑗𝑚
sp,𝑛 − 𝑥𝑚�𝜽𝑗��

2𝑛𝑗
𝑗=1     

…(76) 

where the weighting factor {𝑤𝑗𝑚𝑛 }  in the separable 
least squares is  

𝑤𝑗𝑚
𝑛 = ∑ 𝑝𝑖,𝑝𝑖𝑗𝜂𝑖𝑚

𝑛
𝑖 + 𝛽∑ 𝛾𝑗𝑘𝑤

𝜓 �𝑥𝑚�𝜽𝑗𝑛� −𝑘∈𝒩𝑗

             𝑥𝑚(𝜽𝑘𝑛)�                    …(77) 

with 𝑝𝑖 = ∑ 𝑝𝑖𝑗𝑗 . The intermediate dynamic image 
{𝑥�𝑗𝑚

sp,𝑛} is given by  

 𝑥�𝑗𝑚
sp,𝑛 = 𝑥𝑚�𝜽𝑗𝑛� +

𝑔𝑗𝑚
𝑛 (𝜽𝑛)

𝑤𝑗𝑚
𝑛                        …(78) 

where 𝑔𝑗𝑚
𝑛 (𝜽𝑛) is the gradient of 𝛷(𝜽) with respect to 

𝑥𝑚�𝜽𝑗�, 

𝑔𝑗𝑚
𝑛 (𝜽𝑛) =  −  ∑ 𝑝𝑖𝑗ℎ̇𝑖𝑚�𝑙𝑖𝑚(𝜽)� −𝑖

1

2
𝛽∑ 𝛾𝑗𝑘𝜓̇�𝑥𝑚�𝜽𝑗� − 𝑥𝑚(𝜽𝑘)�𝑘∈𝒩𝑗

                  …(79) 

evaluated at 𝜽 = 𝜽𝑛.  
Because 𝑄𝑠𝑝(𝜽;𝜽𝑛) is separable for pixels, maxi-

mization of 𝑄𝑠𝑝(𝜽;𝜽𝑛) is reduced to a pixel-wise least 
squares fitting optimization:  

𝜽𝑗
𝑛+1 = argmin𝜽𝑗∈𝒮

1

2
∑ 𝑤𝑗𝑚

𝑛 �𝑥�𝑗𝑚
sp,𝑛 − 𝑥𝑚�𝜽𝑗��

2𝑛𝑚
𝑚=1     
…(80) 

which can be solved by any existing nonlinear least 
squares methods (e.g. the Levenberg-Marquardt al-
gorithm). 

In summary, each iteration of the OT-SP algo-
rithm consists of two steps: an image update in (78) 
and a NLS fitting in (80). It has the simplicity of the 
iterative NLS algorithm, but guarantees a monotonic 
convergence with Φ(𝜽𝑛+1 ≥ Φ(𝜽𝑛). Compared to the 
PICD and OT-CD algorithms, the OT-SP algorithm 
can be easily parallelized. A disadvantage of the 
OT-SP is that it requires the background {rim} to be 
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positive for the quadratic surrogate function to work, 
so the convergence rate can be slow when the level of 
background events is low. 

4.3.3  OT-EM Algorithm 
The OT-EM (optimization transfer using the EM 

surrogate) was derived for direct reconstruction un-
der low background levels [31, 32]. It combines the 
EM surrogate function in (40) for the log-likelihood 
function and a separable surrogate function for the 
penalty function. The overall surrogate function is  

𝑄(𝜽;𝜽𝑛) =  ∑ �𝑝𝑗𝑞em�𝜽𝑗;𝒙�𝑗
em,𝑛� −𝑛𝑗

𝑗=1
1
4
𝛽 ∑ ∑ 𝜓�2𝑥𝑚�𝜽𝑗� − 𝑥𝑚(𝜽𝑘𝑛) − 𝑥𝑚�𝜽𝑗𝑛��

𝑛𝑚
𝑚=1𝑘∈𝒩𝑗 �                    

…(81) 

The optimization of the penalized likelihood 
function Φ(𝜽) with respect to 𝜽 is transferred into the 
maximization of the surrogate function 𝑄(𝜽;𝜽𝑛) , 
which can be solved by the following small-scale pix-
el-wise optimization:  

𝜽𝑗
𝑛+1 =  argmax𝜽𝑗∈𝒮 𝑞em�𝜽𝑗; 𝒙�𝑗

em,𝑛� −
1

4

𝛽

𝑝𝑗
∑ ∑ 𝜓�2𝑥𝑚�𝜽𝑗� − 𝑥𝑚(𝜽𝑘𝑛) − 𝑥𝑚�𝜽𝑗𝑛��

𝑛𝑚
𝑚=1𝑘∈𝒩𝑗

     

…(82) 

A modified Levenberg-Marquardt algorithm 
was developed to solve this pixel-wise penalized 
likelihood fitting in [32]. 

The OT-EM guarantees a monotonic increase in 
the penalized likelihood Φ(𝜽𝑛+1) ≥ Φ(𝜽𝑛)  following 
the optimization transfer properties of 𝑄(𝜽;𝜽𝑛). It can 
be much faster than the OT-SP algorithm when the 
level of background events (scatters and randoms) is 
low. 

5  Joint Reconstruction of Parametric Im-
ages and Input Function 

In parametric image reconstruction, the blood 
input function 𝐶p(𝑡) is required to be known a priori. 
One standard method of measuring blood input is 
arterial blood sampling, which is invasive and tech-
nically challenging. An alternative to arterial sam-
pling is to derive the input function from a blood re-
gion or a reference region in a reconstructed image 
[65]. When the region used for extraction of the input 
function is of small size, the image-derived input 
function (IDIF) can be less accurate due to partial 
volume and other effects. Joint estimation of the input 
function and parametric images can potentially im-
prove the accuracy of the IDIF as well as the para-
metric images by fitting the input function and para-
metric image to the data simultaneously [64, 65]. 

5.1  General Formulation 
Given a set of kinetic parameters, the time activ-

ity curve 𝐶T(𝑡;𝝓)  is a linear function of the input 
function u(t), which can be either the blood input 
function 𝐶p(𝑡) or a reference tissue function 𝐶v(𝑡). Let 
𝒗 denote the vector of parameters that defines the 
input function 𝑢(𝑡) (e.g. the activity values at a set of 
time points). Then the joint estimation can be formu-
lated as  

𝜽� , 𝒗� = argmax𝜽∈𝒮,𝒗∈𝒰 Φ(𝜽, 𝒗)                 …(83) 

where 𝒰 denotes the feasible set of 𝒗 and the penal-
ized likelihood function Φ(𝜽) defined in (12) is re-
written here as an explicit function of 𝒗. 

The maximization in (83) can be solved by an 
alternating update algorithm (e.g. in [66, 69])  

𝜽𝑛+1 = argmax𝜽∈𝒮 Φ(𝜽, 𝒗𝑛)

𝒗𝑛+1 = argmax𝒗∈𝒰 Φ(𝜽𝑛+1, 𝒗)
              …(84) 

5.2  Joint Estimation without an Input Region 
One method for joint estimation without an in-

put region was presented by Reader et al [67]. The 
algorithm was developed for the linear spectral anal-
ysis model. It uses the EM algorithm to find the ML 
estimation of the input function and the linear coeffi-
cients from dynamic projection data. Here we intro-
duce it using the optimization transfer principle and 
describe how to extend it to nonlinear kinetic models.  

We use the EM surrogate function in (40) for the 
log-likelihood function Φ(𝜽,𝒗). Here we rewrite it as 
an explicit function of the input parameters 𝒗,  

𝑄𝑛(𝜽, 𝒗) = ∑ 𝑝𝑗𝑞em
𝑛 (𝜽𝑗, 𝒗)𝒋                      …(85)  

𝑞em
𝑛 �𝜽𝑗, 𝒗� = ∑ 𝑥�𝑗𝑚

em,𝑛 log 𝑥𝑚 �𝜽𝑗, 𝒗� − 𝑥𝑚(𝜽𝑗, 𝒗)𝑚   
…(86) 

where 𝑥�𝑗𝑚
em,𝑛 is given by (37) and 𝑥𝑚(𝜽𝑗,𝒗) is the same 

as 𝑥𝑚(𝜽𝑗)  but as an explicit function of 𝒗 . Since 
𝑄𝑛(𝜽,𝒗) is separable for pixels when v is given, the 
optimization (84) is transferred to  

𝜽𝑗
𝑛+1 = argmax𝜽𝑗∈𝒮 𝑞em

𝑛 (𝜽𝑗, 𝒗
𝑛)                 …(87) 

𝒗𝑛+1 = max𝒗∈𝒰 𝑸
𝑛(𝜽𝑛+1, 𝒗)                  …(88) 

For a linear kinetic model, both above steps can 
be solved by the EM algorithm with multiple 
sub-iterations. When only one sub-iteration is used, it 
is equivalent to the algorithm in [67]. 

For compartment models, the optimization in 
(87) can be solved by the modified Leven-
berg-Marquardt algorithm given in [32]. The update 
of 𝒗 in (88) can still be solved by the EM algorithm.  



 Theranostics 2013, Vol. 3, Issue 10 

 
http://www.thno.org 

812 

5.3  Joint Estimation with an Input Region 
One issue with the joint estimation without an input region is that there is an unknown scaling factor on 𝒗 

and the linear coefficients in {𝜽𝑗} that cannot be determined. The problem can be solved if there is a region in the 
image that contains purely the input function. Let 𝛤 denote such a region. Then the image intensity at pixel 𝑗 ∈ 𝛤 
in time frame 𝑚 is  

𝑥𝑚�𝜽𝑗, 𝒗� = ∫ 𝑢(𝜏; 𝒗)𝑒−𝜆𝜏𝑑𝜏𝑡𝑚,𝑒

𝑡𝑚,𝑠
, 𝑗 ∈ 𝛤                 …(89) 

The joint estimation then estimates the kinetic parameters at pixels outside 𝛤 and the time activity curve 
inside 𝛤 simultaneously.  

Using the same paraboloidal surrogate functions for the OT-SP algorithm, the following algorithm can be 
obtained [68]:  

𝜽𝑗
𝑛+1 = argmin𝜽∈𝒮 ∑ 𝑤𝑗𝑚

𝑛 �𝑥�𝑗𝑚
sp,𝑛 − 𝑥𝑚�𝜽𝑗, 𝒗𝑛��

2
,    𝑗 ∉ 𝛤𝑚

𝒗𝑛+1 = argmin𝒗∈𝒰�∑ 𝑤𝑗𝑚
𝑛

𝑗∈𝛤,𝑚 [𝑥�𝑗𝑚
sp,𝑛 − 𝑥𝑚(𝜽𝑗

𝑛+1, 𝒗)]2 + ∑ 𝑤𝑗𝑚
𝑛 [𝑥�𝑗𝑚

sp,𝑛 − 𝑥𝑚(𝜽𝑛+1, 𝒗)]2
𝑗∉𝛤,𝑚 �

               …(90) 

where {𝜽𝑗} and 𝒗 are updated in an alternating fashion. 𝜽𝑗𝑛+1 for 𝑗 ∉ 𝛤 is updated by the Levenberg-Marquardt 
algorithm. The estimation of 𝒗 in ( (90) is a linear least squares problem that can be solved easily (e.g. by QR 
decomposition). 

6  Examples 
Here we show some simulation results to demonstrate the advantage of direct reconstruction over indirect 

reconstruction. We simulated a 60-minute 18F-FDG brain scan using a brain phantom that consisted of gray 
matter, white matter and a small tumor inside the white matter. The time activity curve of each region was 
generated using a two-tissue compartment model and an analytical blood input function. Figure 2 shows the 𝑘3 
images reconstructed by an indirect method and the OT-EM algorithm and Figure 3 shows the corresponding 𝐾𝑖 
images. Clearly the direct reconstruction results have much less noise than the indirect reconstruction results 
while maintaining the same spatial resolution. The improvement is similar to those observed in other studies for 
both linear and compartment models [25, 29, 33]. 

 
 
 

  
Figure 2: The true and reconstructed 𝑘3 images by the indirect and direct algorithms (𝛽 = 0.0003). 
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Figure 3: True and reconstructed 𝐾𝑖 = 𝐾1𝑘3/(𝑘2 + 𝑘3) images by the indirect and direct algorithms (𝛽 = 0.0003). 

 

7  Conclusion 
We have provided an overview of direct estima-

tion algorithms for parametric image reconstruction 
from dynamic PET data. Because of the combination 
of tomographic reconstruction and kinetic modeling, 
direct reconstruction algorithms are more complicat-
ed than static image reconstruction. Different algo-
rithms have been developed to balance the tradeoff 
between simplicity in implementation and fast con-
vergence. We hope that the information in this paper 
can provide guidance to readers for choosing the 
proper direct reconstruction algorithm in real appli-
cations. In some situations, the choice is clear. For 
example, the nested EM algorithm should be pre-
ferred over the traditional EM algorithm for linear 
parametric image reconstruction because the former 
converges much faster while preserving the same 
simplicity in implementation. In other situations, the 
choice may be more dependent on the user. We note 
that as long as the algorithm guarantees global con-
vergence, a simple algorithm can still reach the final 
solution, albeit with a large number of iterations. We 
expect that direct parametric image reconstruction 
will find more and more applications in dynamic PET 
studies and more novel algorithms will be developed 
in the future.  
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