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Abstract

Background

Myriad infectious and noninfectious causes of encephalomyelitis (EM) have similar clinical

manifestations, presenting serious challenges to diagnosis and treatment. Metabolomics of

cerebrospinal fluid (CSF) was explored as a method of differentiating among neurological

diseases causing EM using a single CSF sample.

Methodology/Principal findings
1H NMR metabolomics was applied to CSF samples from 27 patients with a laboratory-con-

firmed disease, including Lyme disease or West Nile Virus meningoencephalitis, multiple

sclerosis, rabies, or Histoplasma meningitis, and 25 controls. Cluster analyses distinguished

samples by infection status and moderately by pathogen, with shared and differentiating

metabolite patterns observed among diseases. CART analysis predicted infection status

with 100% sensitivity and 93% specificity.

Conclusions/Significance

These preliminary results suggest the potential utility of CSF metabolomics as a rapid

screening test to enhance diagnostic accuracies and improve patient outcomes.
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Author summary

Inflammation of the brain and spinal cord, known as encephalomyelitis, is a dangerous

condition that can be caused by a wide range of pathogens, such as viruses and bacteria,

and other medical conditions including autoimmunity or drug intoxications. Given the

many possible causes, it is often difficult for clinicians treating patients with encephalomy-

elitis to identify the underlying cause, which in turn determines the appropriate treatment.

Infections and other diseases causing neurological inflammation work by distinct biologi-

cal mechanisms and, consequently, can cause unique biochemical changes that can be

observed in cerebrospinal fluid of affected individuals. The researchers used a metabolo-

mics technique to measure a range of small molecules in cerebrospinal fluid and examine

biochemical differences in patients with encephalomyelitis caused by Lyme disease, West

Nile Virus, multiple sclerosis, rabies, or fungal infection. The researchers found distinct

differences in the biochemical profiles of patients whose encephalomyelitis was caused by

infections versus patients with no infection, and also identified different patterns among

the individual diseases. This study showed that metabolomics may be useful in improving

diagnosis and treatment of diseases affecting the central nervous system by enhancing

understanding of their unique effects on metabolism.

Introduction

Encephalomyelitis (EM) is a condition characterized by inflammation of the brain (encephali-

tis) and spinal cord (myelitis) that frequently causes permanent disability. There are myriad

causes of EM syndromes, which are in aggregate relatively common [1–4] and include viral,

bacterial, fungal, protozoal and prion infections, autoimmune encephalitis, intoxications, and

metabolic encephalopathies, while other EM cases have unknown causes [5]. Clinicians face

significant challenges to the rapid and accurate diagnosis and treatment of EM. Due to the rar-

ity of a definitive diagnosis, many arbovirus and other viral causes of EM, including rabies,

have limited evidence-based therapies; this may change with newer broad-spectrum antivirals

currently in clinical trials [6]. Treatment of autoimmune EM relies on corticosteroids, immu-

noglobulin, plasmapheresis, cytotoxic agents and biologicals [7, 8], which are typically contra-

indicated until infections can be excluded. Physicians are often forced to treat empirically for

infections and delay appropriate therapy for autoimmune EM, thereby worsening patient out-

comes. Moreover, for many causes of EM, no rapid diagnostic testing exists, and long delays

pending laboratory test results commonly occur before definitive treatment may be initiated;

however, superior outcomes depend on early intervention. Because there are numerous causes

of EM, including multiple infectious agents that overlap or coincide in geographic distribution,

diagnosis reliant on single-target testing is unsatisfactory as it requires quantities of tests that

are not only prohibitive in cost but also involve collecting unsafe volumes of blood or cerebro-

spinal fluid (CSF) from patients. Improved diagnostics and proxy markers of therapeutic effi-

cacy are sorely needed, especially as new treatment regimens develop.

In recent years, the development and expansion of omics technologies have presented

opportunities for discovering disease mechanisms and biomarkers of clinical significance [9–

11]. Metabolomics, the comprehensive study of small-molecule metabolites in a biofluid or tis-

sue, offers a set of clues to the biochemical workings of a body system, organ, or compartment

in a given physiological state, and has diverse applications in improving clinical diagnosis and

treatment of central nervous system (CNS) diseases and intoxications [9, 12–17].

Metabolomics of CNS diseases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007045 December 17, 2018 2 / 17

had no role in the study design, data collection or

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist

https://doi.org/10.1371/journal.pntd.0007045


Metabolomics panels may also provide information about a broad spectrum of metabolic pro-

cesses involved in a disease presentation compared to traditional single-molecule assays.

Metabolites present in CSF may originate from brain metabolic processes, including interme-

diate and end products of energy metabolism, neurotransmission, inflammation and oxidative

stress responses; thus, their analysis provides insights into metabolic disturbances occurring in

CNS diseases. Among the methodological approaches taken in metabolomics studies of CSF,
1H-NMR spectroscopy carries advantages for exploratory studies both in the scope of metabo-

lite detection and its quantitative ability [18]. An additional advantage of this method is the

lack of sample consumption, given practical limitations on the volume of CSF usually available.

Further, many CNS diseases and intoxications are prevalent in countries where advanced

imaging facilities, reference laboratories and therapeutics are in short supply. Recent studies

have applied 1H NMR-based metabolomics of CSF to identify single-molecule biomarkers and

panels of metabolites associated with a range of neurological diseases such as infectious menin-

gitis [14], multiple sclerosis (MS) [13, 19, 20], Alzheimer’s [21, 22] Parkinson’s [23] and Hun-

tington’s diseases [24]. Further, this method has detected metabolic changes characterizing

different stages of disease progression in rabies and MS [12, 25]. Proxy markers of disease pro-

gression or response to therapy may also accelerate therapeutic trials while lowering their cost.

Despite significant advances in the application of NMR metabolomics in the investigation

of certain CNS diseases, such as multiple sclerosis, its potential to describe metabolic changes

occurring in many infectious neurological diseases has been less studied. Lyme disease and

West Nile Virus (WNV) are vastly under-studied in this sense, despite being the most com-

mon causes of vector-borne bacterial and viral disease, respectively, in the United States [26,

27]. Rabies is an important global zoonosis but may be underdiagnosed in some contexts due

to challenges in distinguishing it clinically from other CNS infections, such as cerebral malaria,

in areas where these are endemic [28]. Infectious diseases that invade the CNS have distinct

molecular mechanisms driving their respective pathologies [29, 30]. Further, pathogen strate-

gies to replicate while evading host immune responses can involve the disruption of a range of

endogenous metabolic processes [31], many of which have yet to be illuminated for specific

diseases; thus, explorative studies of the CSF metabolome in different disease states can pro-

vide an important window for examining potential pathogen effects on metabolism within the

CNS to lay the groundwork for future targeted diagnostics or therapeutic interventions. In the

present study CSF samples from patients representing diverse infectious and non-infectious

diseases of the CNS were analyzed by 1H NMR-spectroscopy to determine if metabolomics

profiling could distinguish diseases. We find preliminary evidence of the existence of discrimi-

nating metabolic features.

Methods

Subjects

Twenty-seven patients were diagnosed with CNS Lyme disease (n = 5, all ages, at the New

York State Department of Health), WNV meningoencephalitis (n = 5, all ages, New York State

Department of Health), Clinically Isolated Syndrome (CIS) of multiple sclerosis (MS, n = 4,

adults, Intermountain Healthcare), rabies (n = 10, all ages, at Canadian Food Inspection

Agency, Centers for Disease Control and Prevention, Kimron Veterinary Institute, National

Institutes of Health-Colombia, and New York State Department of Health), or Histoplasma
meningitis (n = 3, anonymous, at Indiana University School of Medicine). Due to ethical con-

cerns surrounding the collection of CSF from healthy individuals, healthy controls were not

available for this study. Specimens obtained as discard material from 25 anonymous children

aged 5–20 years at the Children’s Hospital of Wisconsin with no concurrent microbiological
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testing and no known encephalopathy or encephalitis served as a control group. This popula-

tion includes mostly children with cancer in remission or children being treated for pseudotu-

mor cerebri, a common non-inflammatory condition. Given patient samples were anonymous

discard material, the study was ruled to not be human research requiring informed consent by

the Children’s Hospital of Wisconsin IRB (protocol CHW 10/24). For rabies patients, for

whom multiple specimens were available, the specimen taken closest to the fourth day of hos-

pital admission was selected to minimize the influence of hypoglycemia, ketosis or renal insuf-

ficiency on presentation to the CSF metabolome. While the CSF was collected for diagnostic

purposes, precise timing is uncertain other than for rabies patients. Initially, four specimens

from patients with Histoplasma meningitis were analyzed, but one specimen had a metabolite

profile inconsistent with CSF and was excluded on the basis of containing implausible values.

Three Histoplasma specimens remained after this exclusion.

Storage and preparation of CSF samples

After collection, specimens were stored refrigerated and/or frozen until transport on dry ice to

the site of analysis, where they were stored at -80˚C until sample preparation. Once defrosted,

samples were filtered using washed Amicon Ultra-0.5 mL centrifugal filters with a cut-off of

3000 MW (Millipore, Billerica, MA) to remove lipids and proteins. When needed, filtrate vol-

ume was adjusted to 207 μL when preparing for 3mm NMR tubes or 585 μL when preparing

for 5mm NMR tubes with Type I ultrapure water from Millipore Synergy UV system (Milli-

pore, Billerica, MI). Samples were prepared for analysis by the addition of 23 μL or 65 μL of

internal standard containing approximately 5 mmol/L of DSS-d6 [3-(trimethylsilyl)-1-propa-

nesulfonic acid-d6], 0.2% NaN3, in 99.8% D2O to 207 μL or 585 μL of CSF filtrate, respectively.

The pH of each sample was adjusted to 6.8 ± 0.1 by adding small amounts of NaOH or HCl. A

180 or 600 μL aliquot was subsequently transferred to 3 mm or 5mm Bruker NMR tubes,

respectively, and stored at 4 oC until NMR acquisition (within 24 hours of sample prepara-

tion). NMR spectra were acquired as previously described [12] on a Bruker Avance 600-MHz

NMR equipped with a SampleJet autosampler using a NOESY-presaturation pulse sequence

(noesypr) at 25˚C.

Data analysis

NMR spectra were manually phased and baseline-corrected using NMR Suite v6.1 Processor

(Chenomx Inc., Edmonton, Canada), and Chenomx NMR Suite v.8.1 Profiler (Chenomx Inc.,

Edmonton, Canada) was used for quantification of metabolites. Selected NMR spectral data

from a previous rabies study in this lab [12] were compared to additional samples acquired

from Lyme, WNV, histoplasmosis and MS patients.

After correcting metabolite concentrations for dilution, data were cluster-analyzed 2 ways

for comparison using RStudio software (RStudio Version 1.0.136, Boston, MA, USA) or Stata

software (SE 14, College Station, TX, USA). First taking a data-driven approach, concentra-

tions were log10-transformed before principal component analysis (PCA) was carried out on

the covariance matrix of the centered data as an unsupervised search for trends. Alternatively,

to provide clinical context, data were normalized to z-scores using published reference ranges

in CSF (www.hmdb.ca). In instances when published norms were discrepant, those that

encompassed the range of our control population were selected. In rare instances when normal

ranges were unavailable, means and standard deviations were constructed using our 25 con-

trols. Normalization by z-scores constructed from population norms generated more skewed

data than log10-transformation across the entire spectrum of diseases and controls. Factor

analysis better tolerates skewed data than PCA and was applied to the z-scores.

Metabolomics of CNS diseases
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Based on the separation found by PCA and factor analysis, differences in metabolite con-

centrations by infection status and by individual disease diagnoses were assessed on the

untransformed data using Mann-Whitney U tests and Kruskal-Wallis tests, respectively. P-val-

ues were adjusted for multiple comparisons using false discovery rates. Homogeneity of vari-

ance between groups was tested using the Levene test to inform interpretation of the rank sum

test results. For metabolites with significant differences by Kruskal-Wallis testing, Dunn’s mul-

tiple comparisons tests were performed between each pair of groups to determine which dis-

eases were different from each other. For these tests, p-values were Bonferroni-adjusted within

the 15 multiple comparisons carried out for each metabolite. After adjustment, p-values of less

than 0.05 were considered significant. Cliff’s Delta statistics [32] were calculated to assess the

degree of overlap in metabolite concentrations by infection status and between diseases that

were found to have significant differences by the Dunn’s test.

Untransformed data were also analyzed by predictive analysis [33, 34]. Classification and

regression trees (CART) and Random Forests were performed using Salford Predictive Mod-

eler software suite CART and suite Random Forests (Salford Systems, San Diego, CA, USA).

For CART, parent node and terminal node were 10 and 5, respectively. 10% leave-out samples

were used for cross-validation. Random Forests are collections of decision trees, and each tree

was grown on a random (~2/3) subsample of the data. The remaining data were used to deter-

mine the performance of the trees. The number of trees to build was 1000. The number of pre-

dictors considered for each node was the square root of the number of potential predictors,

and the parent node minimum cases was 2. The variable importance was assessed using the

GINI method. Target variable and predictors were the same as for CART.

Results

CSF samples obtained from 25 controls and 27 patients with different neurological diseases

were analyzed by 1H-NMR spectroscopy. Table 1 summarizes clinical characteristics of

patients included in this study. A total of 57 compounds were identified and quantified in CSF

samples; rabies spectra from a prior study [12] were repeat-profiled. Quantification for 13

metabolites present at very low concentrations in a majority of samples was considered not to

be exact (S1 and S2 Tables) but still useful in detecting differences between groups. To further

minimize the reversible behavioral effects of starvation and dehydration in the analysis nor-

malizing by z-scores, we excluded 3 ketone bodies (3-hydroxybutyrate, acetoacetate, and ace-

tone) and creatinine from the dataset.

Metabolite profiles by infection status

A major clinical challenge is determining whether infection exists as a contraindication to

immunosuppression. Unsupervised PCA was performed on metabolite data from patients

Table 1. Patient characteristics.

Diagnosis (n) Age, median (range) Sex, female count (%) Location

Rabies (10) 8 (4–63) 2 (20) Global1

West Nile Virus (5) 65 (53–83) 2 (40) USA

Lyme Disease (5) 19 (7–55) 1 (20) USA

Fungal (3) unknown unknown USA

Multiple Sclerosis (4) 31 (22–49) 3 (75) USA

1Samples came from USA, Colombia, Dominican Republic, and Equatorial Guinea

https://doi.org/10.1371/journal.pntd.0007045.t001
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diagnosed with a neurological disease and controls. Six compounds (acetaminophen, ethanol,

ethylene glycol, glycerol, propylene glycol, and valproate) of likely exogenous origin were

excluded from cluster analysis models. The first two principal components (PC) in this model

accounted for 37.8 percent of the variation in metabolite concentrations. Prominent overlap

was apparent between controls and MS, which separated distinctly from infectious diseases

along PC 1 (Fig 1). In a scores plot of the first two components, PC 2 identified an apparent

outlier in the WNV group, which upon closer examination was observed to have extremely

low levels of citrate, lactate, and amino acids coupled with markedly high glutamate, pyruvate,

acetate and 2-oxoglutarate compared to the rest of the samples. Since the general patterns gen-

erated by PCA did not change when this individual was removed from the dataset, the results

shown in Fig 1 reflect this exclusion in order to better visualize clusters in the data.

Fig 1. Principal component analysis of 1H-NMR CSF metabolomic data comparing infectious or autoimmune disease or

controls. Axes represent principal component (PC) scores. The percent of the variation explained by each component is given in

parentheses. Green circles represent control patient samples, red circles represent multiple sclerosis patient samples, and blue circles

represent infectious disease patient samples. Normal data ellipses are shown for each group. Vectors represent loadings of select

metabolites with PC1 and PC2, as drawn in the Gabriel’s biplot. Groups of vectors that point in similar directions tend to change

together. One extreme observation was excluded to better visualize the data.

https://doi.org/10.1371/journal.pntd.0007045.g001
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When overlaid with loadings vectors, the scores plot of the first two PCs revealed two pat-

terns of metabolites among infectious diseases, one characterized by higher levels of ketone

bodies and the other by higher levels of pyruvate, glutamate, 2-oxoglutarate, carnitine, and gly-

cine (Fig 1). Pearson correlation coefficients reflect moderate to high correlation among the

metabolites in each pattern, with correlation coefficients ranging from 0.77 to 0.93 among

ketone bodies and from 0.23 to 0.58 among metabolites in the second pattern. In contrast,

metabolites including acetate, isobutyrate, myo-inositol, threonine, and glutamine appeared to

characterize controls and MS using loadings vectors.

The contribution of ketone bodies to the PCA analysis prompted a second, clinically appli-

cable analysis using z-scores of normal human values for each metabolite while excluding the

potentially non-specific markers of dehydration and starvation, which yielded similar results.

Unsupervised factor analysis discriminated CNS disease from controls, with 2 factors account-

ing for 35.6 percent of the variation. The WNV sample that appeared as an outlier by PCA was

not influential in this analysis. Factor analysis excluding ketones and creatinine did not dis-

criminate infections from normal as well as did the PCA analysis.

Given the graphical separation by infection status shown by PCA and factor analysis,

Mann-Whitney U tests were performed to test for differences in metabolite concentrations

between patients with an infectious CNS disease and those with no CNS infection (MS and

controls). All metabolites were included. These results are summarized in Table 2. After cor-

recting for multiple comparisons, significant univariate differences were detected in the con-

centrations of 29 compounds; these included several metabolites that appeared to drive

separation in the PCA (ketones, pyruvate, carnitine, and glycine). Median concentrations of

glutamate and 2-oxoglutarate were significantly higher in infectious diseases than patients

with no infectious disease, and there was a trend towards higher citrate concentrations in the

infectious disease group (p = 0.07). Also, in agreement with the PCA results, median concen-

trations of isobutyrate, fructose, N-acetylneuraminate, and serine were higher in the noninfec-

tious disease group, and acetate exhibited different distributions between the groups. In a

similar univariate analysis on z-scores for 43 variables, nine metabolites were identified

(Table 2, among bolded metabolites), all of which were also identified using the previous

method.

Metabolite profiles by CNS disease

While CNS infections overlap as a syndrome, they are caused by viruses, bacteria, fungi, proto-

zoa and prions that require different therapies. We therefore evaluated PCA discrimination

within CNS diseases without the influence of controls. In the resulting model, PC1 and PC2

cumulatively accounted for 38.9 percent of the variation, and when loadings vectors were over-

laid with PC scores, the resulting Gabriel’s biplot revealed the most important metabolites to

be ketone bodies, glutamine, glutamate, and threonine. In a scores plot of the first two PCs,

moderate separation by disease diagnosis pointed to differential as well as overlapping meta-

bolic patterns among diseases (Fig 2), which were further dissected in additional analyses and

are summarized in Tables 3 and 4. After removing ketones and creatinine, factor analysis of z-

scores did not separate cleanly between disease groups.

After correcting for multiple comparisons, Kruskal-Wallis tests on untransformed data

detected significant differences among diseases and controls in the concentrations of 31

metabolites. Metabolites and diseases for which concentrations were significantly different

from control samples according to Dunn’s multiple comparisons tests are shown in Table 4. In

particular, the CSF of WNV patients had markedly higher concentrations of pyruvate

(p = 0.0008) and formate (p = 0.0005), and Lyme disease and WNV patients shared higher

Metabolomics of CNS diseases
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levels of formate and glycine compared to controls. Rabies patients had significantly different

concentrations of energy-related metabolites including ketone bodies, lactate and 2-hydroxy-

butyrate, some of which were also elevated in WNV but not in histoplasmosis or Lyme disease.

Predictive analyses by infection status and CNS disease

CART analysis differentiated infection status with 100% sensitivity and 93% specificity

(Table 5). High pyroglutamate alone discriminated WNV, Lyme and histoplasmosis from con-

trols. MS or rabies could be identified from controls with 100% sensitivity and 76% specificity

by high 2-hydroxybutyrate or low 2-hydroxybutyrate and high carnitine. Random Forest anal-

yses confirmed the importance of the majority of metabolites identified by CART.

Table 2. Differences in cerebrospinal fluid metabolite concentrations between patients with an infectious disease (Hisotoplasma, Lyme, rabies, West Nile virus) and

non-infectious conditions (multiple sclerosis, controls)a.

Metabolite Potential Pathway(s) Involved Effect Sizeb P-valuec

Betaine 1-carbon metabolism/ cell volume/choline oxidation 0.58 0.0022

Formated 1-carbon metabolism/acetate synthesis 0.68 <0.0001

Glycinee 1-carbon metabolism/glutathione synthesis/excitotoxicity 0.62 0.0011

Cholinee 1-carbon metabolism/lipid turnover 0.45 0.0166

Serine 1-carbon metabolism/protein catabolism -0.52 0.0059

Pyroglutamatee Amino acid/glutathione metabolism 0.80 <0.0001

N-Acetylneuraminate Amino sugar metabolism/innate immunity -0.48 0.0117

Fructose Carbohydrate -0.52 0.0059

Acetatee Carbohydrate and fatty acid metabolism -0.44 0.0182

2-Oxoglutarate Cell volume/TCA cycle/amino acid metabolism 0.39 0.0387

N-Acetylaspartate Cell volume/TCA cycle/myelin synthesis 0.37 0.0499

Glutamate Cell volume/TCA cycle/neurotransmitter 0.82 <0.0001

Methanolf Drug metabolite; microbial metabolism -0.46 0.0140

Pyruvated Energy metabolism 0.55 0.0007

Lactatee Energy metabolism 0.21 0.0059

Carnitined Fatty acid catabolism 0.54 0.0009

2-Hydroxybutyratee Glutathione synthesis/energy metabolism 0.65 0.0007

Acetonee Ketone bodies 0.70 0.0002

3-Hydroxybutyratee Ketone bodies 0.59 0.0022

Acetoacetatee Ketone bodies 0.51 0.0070

Isobutyrate Microbial metabolism -0.41 0.0292

Isopropanol Microbial/ketone metabolism 0.76 0.0001

2-Oxoisocaproated Organic acid 0.39 0.0170

Urea Protein catabolism 0.38 0.0444

Phenylalanine Protein catabolism 0.37 0.0494

Quinolinated Tryptophan metabolism/excitotoxicity 0.51 0.0016

Ornithined Urea cycle 0.36 0.0258

3-Hydroxyisobutyrated Valine metabolism 0.40 0.0150

aMetabolites identified by factor analysis using z-score normalization are shown in bold. bCliff’s Delta d statistic. Positive values indicate increased concentrations in

patients with an infection compared to no infectious disease.
cResult of Mann-Whitney U test.
dDifference in median concentrations confirmed after log transformation of the data improved homoscedasticity. P-value reported corresponds to test performed on

log-transformed data.
eAssumption of equal variances not met. P-value reported corresponds to test performed on log-transformed data.
fTentatively assigned.

https://doi.org/10.1371/journal.pntd.0007045.t002
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Fig 2. Principal component analysis of 1H-NMR CSF metabolomic data comparing neurological diseases. Samples

were collected from patients with multiple sclerosis (MS, represented in green), fungal infection (red), Lyme disease

(blue), West Nile virus (WNV, orange), and rabies (purple). Normal data ellipses are shown for each group. Axes

represent principal component (PC) scores. The percent of the variation explained by each component is given in

parentheses. Vectors represent loadings of select metabolites with PC1 and PC2, as drawn in the Gabriel’s biplot. Groups

of vectors that point in similar directions tend to change together. One extreme observation was excluded.

https://doi.org/10.1371/journal.pntd.0007045.g002
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Discussion

NMR metabolomics distinguished infectious and inflammatory disorders using laboratory-

confirmed samples of 5 disorders using 2 approaches to normalization of the data, and 2 unsu-

pervised cluster analytical approaches. CART decision analysis easily differentiated bacterial

(Lyme), fungal (Histoplasma) and viral (WNV) causes of encephalomyelitis from controls.

Decision analysis also differentiated rabies and the prodromal form of MS from controls,

while separation by cluster analyses was incomplete between MS and controls. Notably, the

greatest source of variation in metabolomics data found by PCA was the presence or absence

of an infectious pathogen. If replicated, this finding is of paramount clinical impact because

treatments for infections require almost polar opposite therapeutics than those for autoim-

mune diseases. There was also substantial agreement in the identification of influential metab-

olites between different approaches to data normalization and reduction and predictive

approaches, including CART and random forest analysis. Metabolites driving separation in

PCA (pyruvate, glutamate, quinolinate, 2-oxoglutarate, carnitine, and glycine) potentially

Table 3. Metabolites with differences in cerebrospinal fluid concentrations between two or more disease groupsa.

Metabolite Potential Pathway(s) Involved Adjusted P-value

Formateb 1-carbon metabolism/acetate synthesis 0.0003

Glycinec 1-carbon metabolism/glutathione synthesis/excitotoxicity 0.005

Choline 1-carbon metabolism/lipid turnover 0.043

Serine 1-carbon metabolism/protein catabolism 0.038

Glutaminec Amino acid metabolism 0.023

Pyroglutamateb Amino acid/glutathione metabolism 0.0003

N-Acetylneuraminate Amino sugar metabolism/innate immunity 0.013

Betaine Cell volume/1-carbon metabolism/choline oxidation 0.008

NAAG Cell volume/neurotransmitter 0.021

2-Oxoglutarate Cell volume/TCA cycle/amino acid metabolism 0.030

Glutamate Cell volume/TCA cycle/neurotransmitter 0.0003

Methanold Drug metabolite; microbial metabolism 0.043

Glucoseb Energy metabolism 0.002

Lactatec Energy metabolism 0.039

Pyruvateb Energy metabolism 0.003

Carnitine Fatty acid catabolism 0.002

2-Hydroxybutyrateb Glutathione synthesis/energy metabolism 0.002

3-Hydroxybutyrateb Ketone bodies 0.031

Acetoacetate Ketone bodies 0.009

Acetonec Ketone bodies 0.002

Dimethyl sulfone Microbial metabolism 0.011

Isopropanol Microbial/ketone metabolism 0.002

2-Hydroxyisovalerate Organic acid 0.018

Phenylalanine Protein catabolism 0.033

Quinolinate Tryptophan metabolism/excitotoxicity 0.018

3-Hydroxyisobutyrate Valine metabolism 0.010

Acetamide 0.002

Abbreviation: NAAG, N-Acetylaspartylglutamic acid. aKruskal-Wallis test for nonparametric one-way analysis of variance, adjusted for multiple tests using the false

discovery rate correction.
bDifference in median concentrations confirmed after log transformation of the data improved homoscedasticity. cAssumption of equal variances not met.
dTentatively assigned.

https://doi.org/10.1371/journal.pntd.0007045.t003
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Table 4. Differences in cerebrospinal fluid metabolite concentrations compared to controls, by disease.

Cliff’s Delta Statistica

Metabolite Potential Pathway(s) Rabies West Nile Virus Lyme Disease Fungal

3-hydroxybutyrateb Ketone bodies 0.64�

3-hydroxyisobutyrate Valine metabolism 0.62�

Acetoacetate Ketone bodies 0.75�

Lactatec Energy metabolism 0.62�

Isopropanol Microbial/ketone metabolism 0.83��d 0.89��

Glutamate Cell volume/TCA cycle/neurotransmitter 0.67d 0.96�d 0.83�

2-hydroxybutyrateb Glutathione synthesis/energy metabolism 0.89�� 0.87��

Acetonec Ketone bodies 0.61� 0.92��

N-Acetylneuraminate Amino sugar metabolism/innate immunity -0.93��

Pyruvateb Energy metabolism 1.00���

Betaine Cell volume/1-carbon metabolism/choline oxidation 1.00��

2-hydroxyisovalerate Organic acid 0.81�

Carnitine Fatty acid catabolism 0.98�� 0.95�

Pyroglutamateb Amino acid/glutathione metabolism 1.00�� 1.00�� 1.00�

Glycinec 1-carbon metabolism/glutathione synthesis/excitotoxicity 0.98�� 0.97�

Quinolinate Tryptophan metabolism/excitotoxicity 0.90� 0.97�

Formateb 1-carbon metabolism/acetate synthesis 0.98��� 0.98��

Glutaminec Amino acid metabolism -1.00�

aEstimate of effect size as degree of non-overlap in concentration distributions, where 0 indicates complete overlap and 1 or -1 indicates complete non-overlap.

Significance level is indicated by Dunn’s multiple comparisons test. bDifference confirmed after log transformation of the data improved homoscedasticity. Significance

level reflects test result on log-transformed data. cAssumption of equal variances not met. dResult when one extreme value was removed as a conservative measure,

which attenuated the effect size and p-value. �P<0.05

��P<0.01

���P<0.001

https://doi.org/10.1371/journal.pntd.0007045.t004

Table 5. Predictive analyses using classification and regression trees (CART) and random forest importance scores.

Prediction Predictor(s) Sensitivity Specificity Random Forest Relative Importance

Scorea

Encephalomyelitis vs controls Pyroglutamate >35.44 μM

or

Pyroglutamate �35.44 μM &

NAAG <1.04 μM

96.3% 96% Pyroglutamate 99.94

NAAG 46.65

Infection vs not (MS + controls) Pyroglutamate >35.44 μM

or

Pyroglutamate �35.44 μM &

Glucose > 3.92 mM

100% 93% Pyroglutamate 100

Glucose 7.96

WNV, Lyme, histoplasmosis vs controls Pyroglutamate >35.67 μM 100% 100% Pyroglutamate 100.00

Rabies, MS vs controls 2-hydroxybutyrate > 41.61 μM

or

2-hydroxybutyrate�41.61 μM & Carnitine

>2.15 μM

100% 76% 2-hydroxybutyrate 96.65

Carnitine 20.33

WNV, Lyme, histoplasmosis vs rabies,

MS

Acetamide > 1.98 μM

Betaine > 3.33 μM

84.6% 100% Acetamide 100

Betaine 34.53

Abbreviations: NAAG, N-Acetylaspartylglutamic acid; MS, Multiple Sclerosis; WNV, West Nile Virus
aGINI method was used, 100 representing the highest score

https://doi.org/10.1371/journal.pntd.0007045.t005
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suggest alterations in energy metabolism, excitotoxicity and antioxidant response. Patterns of

these metabolites were not uniform. Rather, overlapping as well as distinguishing metabolic

features were seen, highlighting the potential utility of measuring a suite of metabolites rather

than searching for individual metabolic biomarkers for diseases, which may not exist. Overlap

of profiles makes strong clinical sense given that EM syndromes overlap in signs and symp-

toms. The overlap also supports a clinical rationale for syndromic metabolic therapies across a

range of infectious or autoimmune causes of EM. Distinguishing features provide promise of

rapid, relatively specific diagnoses that enable prompt pathogen or process-directed therapies.

Significant differences by disease group were found in the CSF concentrations of several

metabolites known to be involved in the synthesis of the antioxidant glutathione (GSH) and

related pathways, including glycine, formate, pyroglutamate, and 2-hydroxybutyrate. The

transsulfuration pathway links the methylation cycle of one carbon metabolism to GSH syn-

thesis and produces 2-hydroxybutyrate as a secondary byproduct during the conversion of

cystathionine to cysteine [35, 36]. Formate, an endogenous and bacterial metabolite that along

with glycine was found at significantly higher levels in WNV and Lyme disease patients com-

pared to controls in this study, is formed as a byproduct in several pathways including the

tryptophan kynurenine pathway [37], pterin metabolism [38] and protein demethylation (fol-

lowing hypermethylation by S-adenosyl-L-methionine [39]), while it is also consumed in the

folate cycle during the conversion of tetrahydrofolate (THF) to 10-formyl-THF [40]. An end

product of purine catabolism, neopterin, has been found to be elevated in patients with rabies

[41], Lyme disease, and other neuroinfections, while remaining low in MS and other neuroin-

flammatory conditions [42]. Pyroglutamate, which converts to glutamate before being incor-

porated into GSH and also activates amino acid transport systems at the blood brain barrier

[43], was higher in histoplasmosis, Lyme disease and WNV and was an important predictor

distinguishing these conditions from control samples. Given individual metabolites can partic-

ipate in a number of biochemical pathways, further studies are required to parse out the mech-

anisms at play in the diseases studied here. A likely interpretation is that infection or

inflammation in the CNS is associated with redox imbalances including glutathione metabo-

lism and NADH/NAD+ ratios. It is of particular interest that these metabolites may profile

mechanisms leading to insulin resistance and vascular disease [36], given that low dose insulin

therapy was added to the Milwaukee protocol, version 4, with statistical improvements in sur-

vival [44].

Our analytical design sought to minimize the effects of starvation/ketosis and dehydration/

uremia on the metabolic profile of rabies by prioritizing rabies samples taken four days after

admission. Nevertheless, PCA analysis identified the importance of ketone bodies in identify-

ing rabies. Factor analysis that deliberately excluded primary ketones, urea and creatinine

from analysis still identified isopropanol and methanol (Table 3), both downstream metabo-

lites of ketones, as discriminators of rabies. RF and CART analyses also identified ketones and

carnitine (fatty acid oxidation) as predictors of rabies but not other infections (Table 5).

Despite our experimental design, CNS ketosis may be a valid indicator of rabies encephalitis.

This study was originally intended to further explore the specificity of NMR metabolomics

for the diagnosis of rabies, which is often confused with Guillain-Barre syndrome, acute psy-

chosis and N-methyl-D-aspartate receptor (NMDAR) encephalitis and currently requires mul-

tiple tests for diagnosis at remote reference laboratories. Our findings suggest that the utility of

the approach may instead lie in excluding competing diagnoses, many of which are more treat-

able. NMR metabolomics performed on a par with current rabies diagnostics (100% sensitivity,

76% specificity) and is likely complementary (particularly after 5 days). When restricted to the

first week of hospitalization with rabies (when most patients die), NMR metabolomics did not

perform as well as for other infections; gene expression studies of rabies CSF and detection of

Metabolomics of CNS diseases

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007045 December 17, 2018 12 / 17

https://doi.org/10.1371/journal.pntd.0007045


rabies-specific antibodies also performed poorly in the first week. Rabies can clearly be delin-

eated from controls by NMR at later time points, and NMR of CSF also measures recovery

[12]. The promise of an NMR metabolomics profile as a proxy marker for therapeutic response

would be welcome for rabies, WNV, NMDAR encephalitis or acute disseminated encephalo-

myelitis for which efficacious treatments remain undefined.

This study is exploratory and is limited by the number of samples available for CNS diseases

of rare incidence. The possibility of confounding effects of age, sex, disease stage, or other

acute variations in metabolic processes should be considered in interpreting these results. Our

control group was aged 5–20 years, while ages in the disease group ranged from 4 to 83 years.

However, we confirmed that the distribution of metabolites of our controls overlapped with

adult norms reported by the international Human Metabolomics Database (www.hmdb.ca).

Further, clear inter-disease differences within groups of adult diseases (MS, WNV) were evi-

dent in PCA (Fig 2), suggesting disease was much more influential in driving variation than

was age. Sensitivity analyses in rabies in a larger dataset [12] did not identify meaningful age

differences, although we cannot exclude the possibility that this might occur for other inflam-

matory diseases of the CNS. Another potential source of confounding is the timing of sample

collection, which was not precisely known for samples other than rabies. All forms of encepha-

litis are treated empirically upon hospitalization, so early diagnostic samples such as those ana-

lyzed here may reflect early empirical therapies that often overlap (e.g., rehydration, provision

of glucose, use of antibacterials, sedation) but may also differ between diseases. Our choice of

rabies samples centered on the fourth day of hospitalization was intended to minimize effects

of dehydration and malnutrition, but may have biased rabies samples toward normality.

Finally, differences in some metabolites should be interpreted with caution, since low concen-

trations in some specimens precluded exact quantification (carnitine and glycine), which may

have artificially led to statistical differences. Other metabolites (glutamine and pyroglutamate)

are potentially affected by protein removal [45], although this has not been shown in CSF.

This study provides justification for further analysis of samples from these and other causes

of encephalomyelitis. Several prominent and as of yet unidentified peaks observed in the spec-

tra of some patients may indicate the presence of important metabolites involved in disease

pathogenesis that have not yet been elucidated. While further studies with larger sample sizes

will be needed to determine the clinical utility of NMR in the diagnosis of EM, NMR or other

‘omics technologies may in the future serve as a rapid initial screening test that would allow

medical practitioners to initiate treatment with antivirals or biological immune modifiers,

while patient samples can then be triaged to appropriate reference laboratories for confirma-

tion without delaying treatment. Rabies and many arbovirus reference laboratories require

specialized containment facilities, immunization of laboratory workers, and highly trained

personnel who perform subjective assays such as immunofluorescence. Reference laboratories

for rabies, arboviruses, bacteria and fungi are often dispersed geographically, leading to sub-

stantial requirements in volume, delay, and cost for diagnosis of encephalomyelitis when all

are considered. NMR and MS instruments, on the other hand, exist at most research universi-

ties, i.e. at a state or provincial rather than national level. NMR analytical procedures are easily

standardized and permit detection of multiple diseases using a single experiment, as illustrated

here. NMR spectra can be transmitted electronically for analysis, which can be automated

[46]. Decision analytical approaches such as CART and RF offer diagnostic flow charts that are

easily implemented once validated, with quantifiable diagnostic probabilities. Considering cur-

rent challenges, its relative ease of use makes NMR metabolomics of CSF a potentially impor-

tant tool for emergent diseases and distinguishing between autoimmune and infectious EM.
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