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The notion that all scientific software should be open-source and free has been actively promoted in
recent years, mostly from the top down via mandates from funding agencies [1] but occasionally from the
bottom up, as exemplified by a recent Viewpoint in this journal. [2] A commonly articulated rationale is that
the results of scientific research funded by government grants should be free for society and that the scientific
community benefits from free access. The purpose of this Viewpoint is to examine the consequences of these
opinions.

What is scientific software? Modern computational chemistry software is an extremely complex
product based on advanced scientific ideas (models and theories) and sophisticated algorithms that transform
these ideas from equations into useful tools. The development of practical software that can be used by
non-experts to solve contemporary research problems requires considerable technical effort to produce and
maintain robust, efficient, and validated code. Unlike the development of, e.g., a smart-phone app, where the
code base is small [3] and a relatively large community can easily write extensions and add-ons, production
of scientific software involves the curation of millions of lines of source code. The complexity of this code
demands long-term user and developer support to maintain its integrity and performance while keeping
up with new computer architectures, fixing bugs, and adding features. Recognizing the importance of these
ideas, various funding agencies in the U.S. have made “sustainable software” a key priority in the distribution
of research support. [1] Sustainability is a critical goal, but one that can be realized in various ways.

Good software is important to science. Computational chemistry software is an essential scientific
instrument that facilitates discovery and innovation far beyond the laboratories in which it is created, an
achievement that was recognized by the 1998 and 2013 Nobel Prizes in Chemistry. [4] Focusing on quantum
chemistry software in this Viewpoint, we note that today any chemist can (with very little training) use nu-
merous quantum chemistry programs as teaching and research tools that aid in the design and interpretation
of experiments.
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A software package should be more than just a tool for end users, however; it should also be a platform
to develop and test new models and algorithms. Maintaining a code base requires extensive validation, and
given the complexity of modern computational methods, even testing of “pilot code” or a “proof-of-principle”
implementation requires access to basic software infrastructure, e.g., an integrals library, a self-consistent
field procedure, efficient I/O and memory management, tools for manipulating tensors, etc. Modularity
is a laudable goal, but in reality “interoperability” often comes at the expense of performance. In high-
performance codes, the aforementioned components are tightly interwoven, to the extent that expert help is
often required to modify key components or to develop non-standard interfaces to them. As such, the ability
to innovate along either applied or theoretical lines depends crucially on the quality of the software and the
availability of documentation and expert support.

As examples, consider two widely-used electronic structure programs, Q-Chem [5] and Molpro. [6] These
codes consist of ∼ 5.5 and ∼ 2.5 million lines of source code, respectively, written in multiple languages and
each in continuous development over several decades. Q-Chem incorporates scientific advances reported in
more than 300 peer-reviewed scientific publications, while methods implemented for the first time inMolpro

have led to 20 high-impact papers that have each been cited over 300 times. Neither code is static: more
than 70 scientists are actively contributing to Molpro, and the Q-Chem developer base numbers more than
100. Such agile innovation comes at a price, however. Significant effort is required to keep the code robust,
efficient, and sound, and to provide the documentation that ensures the usability of new methods and the
extensibility of older ones.

Software from academia is often developed with an emphasis on ideas rather than implementation, fed by
the need for timely peer-reviewed journal publications that provide ongoing grant support and future jobs
for graduate students. To bring new ideas to the production level, with software that is accessible to (and
useful for) the broader scientific community, contributions from expert programmers are required. These
technical tasks usually cannot—and generally should not—be conducted by graduate students or postdocs,
who should instead be focused on science and innovation. To this end, Q-Chem employs four scientific
programmers. Other quantum chemistry codes (e.g., Molpro, [6] Turbomole, [7] Jaguar, [8] Molcas, [9]

PQS, [10] and ONETEP [11]) face the same challenges and adopt similar models to ensure sustainability.
It is important to distinguish these academically-led software ventures from purely commercial endeavors.

The large majority of the code in a package like Q-Chem is funded by the government, either through grants
to academic groups or, in some cases, through technology grants to the company itself. The role of the
company programmers is to enable sustainability through bug fixes, user support, release management, and
the addition of features that academic developers either cannot or will not add themselves. Programmers
employed by the company place emphasis on functionality, robustness, and performance, more so than
scientific innovation. They are directly addressing the “reproducibility problem”. [2] Sales revenue cannot
support the entire development cost of an academic code, but it contributes critically to its sustainability.
The cost that the customer pays for a code like Q-Chem reflects this funding model: it is vastly lower than
the development cost, particularly for academic customers but also for industry. It primarily reflects the
sustainability cost.

Software is not data. In his Viewpoint, [2] Gezelter argues that both software and data should be
open, yet it is important not to conflate the two. Software is not data, and simply because it is feasible to
put software on the internet does not imply that it should be posted. Software is a product that contains an
intellectual component (models and algorithms) but owes its existence to additional technical efforts. Such
efforts include implementation of minor but useful (or requested) features that are not publishable in the
peer-reviewed literature. This is not to say that details should be withheld as proprietary information. Just
as models and algorithms should be described in full detail in scientific publications, so too should imple-
mentation details be specified, along with performance metrics (timings and scaling data) and benchmarks
(energies and other computed properties). Nevertheless, the software itself is a product, not a scientific find-
ing, more akin to, say, an NMR spectrometer—a sophisticated instrument—than to the spectra produced
by that instrument.

Consider an analogy from the field of photovoltaics. Scientific findings concerning the mechanistic details
of charge generation and exciton propagation in a given material are results that merit discussion in the
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peer-reviewed literature. However, creating a new solar panel based on this research requires significant
additional engineering effort, which is most commonly conducted in an industrial setting. This is a common
mechanism for technology transfer, by means of which society benefits from academic research. Likewise,
new telecommunication technologies, information storage media, computer chips, etc., are products that
build upon—but are not equivalent to—scientific findings. Going from a journal article to a product in one’s
home or office requires a significant investment of resources that is often impossible to achieve in the absence
of a commercial platform. Software is not different.

There is no free software. The creation of scientific software is a labor-intensive process, and its
support and curation even more so. The question is, how do we pay for these labor costs? The answer is
clear in the case of commercial software, where license fees are used to defray the costs of development and
support. In this model, users buy the software that fits their research needs and affords them the highest
productivity. The decision mechanism and price-versus-deliverables choices are similar to those faced when
purchasing a computer or other lab equipment. Just like a new laser system may enable the pursuit of new
science, software that offers a competitive advantage is a sensible investment of research funds.

Interestingly, Gezelter [2] specifically mentions the Quantum Chemistry Program Exchange (QCPE), an
early repository for open-source software, as having contributed greatly to the growth of the field. It is
therefore telling to note that QCPE was supported initially by the Air Force Office of Scientific Research
and then by the National Science Foundation, before subsequently becoming a fee-for-software service with
paid employees to do the time-consuming work of testing, documenting, and distributing the contributed
programs. [12] Gezelter acknowledges the cost of maintaining scientific software and suggests alternative
models to defray these costs including selling support, consulting, or an interface, all the while making
the source code available for free. [2] These suggestions strike us as näıve, something akin to giving away
automobiles but charging for the mechanic who services them. Such a model creates a financial incentive to
release a less-than-stellar product into the public domain, then charge to make it useful and usable. It is
better to release a top-of-the-line product, for a nominal fee.

Is “free” software genuinely free of charge to individual researchers? Consider software developed in the
U.S. national labs. These ventures are supported by full-time scientific programmers employed specifically
for the task, and the cost to support and develop these products is subtracted from the pool of research
funding available to the rest of the community. The individual researcher pays for these codes, in a sense,
with his rejected grant proposals in times of lean funding. In contrast to using one’s own performance metrics
to guide software purchases, within this system one has no choice in what one pays for. In other words, “free
software” is not free for you; the only sense in which it is “free” is that you are freed from making a choice
about how to spend your research money.

Computational chemistry software must balance the needs of two audiences: users, who gauge their pro-
ductivity based on the speed, functionality, and user-friendliness of a given program; and developers, who
may be more concerned with whether the structure “under the hood” provides an environment that fosters
innovation and ease of implementation. As a quantitative example, consider that the cost of supporting
a postdoctoral associate (salary plus benefits) is perhaps $4,800/month. If the use of well-supported com-
mercial software can save two weeks of a postdoc’s time, then this would justify an expense of & $2,000 to
purchase a software license. This amount exceeds the cost of an academic license for many computational
chemistry programs. Given the choice between a free product and a commercial one, a scientist should make
a decision based on her own needs and her own criteria for doing innovative research.

What is “open source”? The term “open source” is ubiquitous but its meaning is ambiguous. Some
codes are “free” but are not open, [13] while others make the source code available albeit without binary
executables so that responsibility for compilation and installation is left to the user. Insofar as the use
of commercial quantum chemistry software is a mainstay of modern chemical research and teaching, there
exists a broad consensus that the commercial model offers the stability and user support that the community
desires. Strict coding guidelines can be enforced within a model where source code access is limited to
qualified developers, and this kind of stability offers one counterbalance to the “reproducibility crisis”. [2]

To the extent that such a crisis exists, it has occurred in spite of the existence of open-source electronic
structure codes such as gamess, [14] NWChem, [15] and cp2k. [16]
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Occasionally the open-source model is touted on the grounds that one can use the source code to learn
about the underlying algorithms, but this hardly seems relevant if the methods and algorithms are published
in the scientific literature. Source code itself rarely constitutes enjoyable reading, and using source code to
learn about an algorithm is a last resort forced by poorly written scientific papers. Better peer review is a
more desirable solution.

A more practical use of openly available source code is to reuse parts of it in other programs, provided
that the terms of the software license allow this. Often they do not. Some ostensibly “open” chemistry
codes forbid reuse, or even redistribution. [13,17] Others, such as cp2k, [16] use the restrictive General Public
License [18] that requires any derivative built on the original code to be open-source itself. Variation in design
structure from one program to the next also severely hampers transferability, even if the license terms are
amenable.

Access to source code allows developers to introduce their own innovations, but this is distinct from
reuse. To facilitate innovation by developers, source code needs only to be available to people who intend
to build upon it. This is commonly accomplished in the framework of “closed-source” software projects by
granting academic groups access to the source code for development purposes. Given the large number of
developers for many quantum chemistry codes, this developer community should not be envisaged as some
small, secluded cabal but rather as a rich, diverse community of academic scientists.

Let us analyze accessibility usingQ-Chem as a specific example. This is commercial software whose source
code is not in the public domain, because that would eliminate the product that Q-Chem, Inc., is selling.
Consider, however, how many developers benefit from Q-Chem as a platform for their own innovation: this
community exceeds 100 scientists from at least twelve countries, [19] for whom the code is open. We call this
model open teamware. [5] Moreover, any licensed user can obtain access to the source code upon signing a
non-disclosure agreement. Given the size of the user base, this is likely a significantly larger group than
the number of people who care to look at many existing open-source packages. Does an “open-source” code
that serves just a few people offer more benefit to the scientific community than a “closed-source” code
that fosters a community of 100+ active developers and thousands of users? What would be the impact
on computational chemistry of destroying other teamware projects such as Molpro, [6] Turbomole, [7]

Jaguar, [8] Molcas, [9] pqs, [10] or onetep, [11] in the interest of satisfying some “open-source” mandate?
Practical consequences of an open-source mandate. One of the pillars of science funding in the

U.S. and elsewhere is a merit-based funding model that distributes resources based on intellectual merit,
productivity, and impact. In the long run, more-competitive ideas are selected over less-competitive ones,
and investigators are rewarded for a track record of productivity. Research that is judged to have higher
impact is ranked as more meritorious and more deserving of support. This model has proven successful in
fostering innovation and discovery, so it is worth considering what consequences a blanket requirement that
software be free and open-source might engender.

Such a requirement would, in our view, detract from the merit-based review process. When evaluating
grant proposals that involve software development, the questions to be asked should be:

1. What will be the quality of the software in terms of the new science that it enables, either on the
applications side or on the development side?

2. How will the software foster productivity? For example, how computationally efficient is it for a given
task? How usable will the software be, and how quickly will other scientists be able to learn to use it
for their own research?

A rigid, mindless focus on an open-source mantra is a distraction from these more important criteria. It
can even be an excuse to ignore them, and creates an uneven playing field in which developers who prefer
to work with a commercial platform are put at a disadvantage and potentially forced to adopt less efficient
practices.

Whereas Gezelter [2] suggests that online code repositories would help young researchers to showcase
their work, an open-source requirement actually puts young researchers at a particular disadvantage. The
demands of tenure and promotion place special burdens to bring ideas before the community rapidly, yet also
to secure funding quickly. Open-source requirements potentially force a scientist to choose between pursuing
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a funding opportunity versus implementing an idea in the quickest, most efficient, and highest-impact way.
A strictly open-source environment may furthermore disincentivize young researchers to make new code
available right away, lest their ability to publish papers be short-circuited by a more senior researcher with
an army of postdocs poised to take advantage of any new code. This would contribute directly to the scenario
that Gezelter wishes to avoid, namely, one where students leave behind “orphaned” code that will never be
incorporated into mainstream, production-level software. Viewed in these terms, an open-source mandate
degrades, rather than enhances, cyberinfrastructure.

How should the impact of software be measured? Scientific publications are a more sound metric than
either the price of a product or whether its source code is available in the public domain. Software is
meant to serve scientific research, in the same way that any other scientific instrument is intended. As such,
the question should not be whether software is free or open source, but rather, what new science can be
accomplished with it? Let us not allow political rhetoric to dictate how we are to do science. Let different
ideas and different models (including open source!) compete freely and flourish, and let the community focus
instead on the most important metric of all: what is good for scientific discovery.
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