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Abstract 

Magnetic Fields and Density Functional Theory 

by 

Freddie Salsbury, Jr. 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor Alexander Pines 

and Professor Robert A. Harris 

1 

A major focus of this dissertation is the development of functionals for the magnetic 

susceptibility and the chemical shielding within the context of magnetic field density 

functional theory (BDFT). These functionals depend on the electron density in the 

absence of the field, which is unlike any other treatment of these responses. 

There have been several advances made within this theory. The first of which 

is the development of local density functionals for chemical shieldings and magnetic 

susceptibilities. These are the first such functionals ever proposed. These parameters 

have been studied by constructing functionals for the current density and then using 

the Biot-Savart equations to obtain the responses. In order to examine the advantages 
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and disadvantages of the local functionals, they were tested numerically on some small 

molecules. 

In order to mitigate some of the difficulties encountered with local functionals, 

nonlocal functionals of the electron density were also developed. The consideration 

of nonlocal functionals led to the examination of the exchange energy in the presence 

of a constant magnetic field. In order to avoid divergences, every other treatment 

of the exchange has required the screening of the exchange_ by correlation. The first 

exchange functional in which this divergence was avoided because of the bound state 

nature of the electronic system was constructed. Additionally, a conjecture was made 

for the form of the full exchange-correlation energy functional. In both instances, 

the functionals depend on the ground state electron density in the absence of any 

magnetic field. 

The J, or indirect spin-spin coupling, was also examined. Estimates were made 

of some intermolecular xenon J couplings, which are motivating some experimental 

work. This estimate was done using BDFT, but the approach was different from 

that used for the chemical shielding and the susceptibility as it was a direct energy 

treatment, that is, the Biot-Savart integrals were not used. 

An investigation was also made into the recently discovered magnetic field-dependent 

quadrupole splitting. The physical origin and magnitudes of both the linear and 



quadratic dependencies on the magnetic field were explained. 
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Introduction 

Magnetic Fields and Density Functional Theory 

This thesis presents theoretical developments in the study of N udear Magnetic 

Resonance parameters including the magnetic susceptibility. The first three chap

ters contain introductory material on magnetic interactions, electronic structure and 

density functional theory. The next part of the thesis present developments in mag

netic field density functional theory, which builds upon the introductory chapters. 

The purpose of this work has been to develop a framework for the computation of 

NMR parameters from ground state electron densities. This work has, hopefully, 

constructed a foundation upon which others can now build so as to perform compu

tational investigations of NMR parameters within the context of this theory. This 

theory should provide a new paradigm for the interpretation of magnetic responses to 

. weak, i.e., NMR strength, magnetic fields. This theory should be especially applicable 

to large systems, such as biomolecules, as it is not only a density functional theory, 

but also one in which excited state corrections are not needed for the computation of 

NMR parameters. 

The last part of this thesis focuses on the estimation of parameters that were 

previously thought to be unobservable: intermolecular J couplings and field-induced 

quadrupole shifts. The former still have yet to be investigated experimentally, how

ever, this work shows that they are in principle observable due to the increase in 

sensitivity obtained by using optically pumped xenon. One could imagine exploiting' 
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these couplings in the NMR of biomolecules with which xenon forms van der Waals 

complexes. The field-induced quadrupole shifts were measured experimentally first, 

and then their existence was explained as detailed in this work. This effect is inter

e-Sting as it shows that in some, albeit rare, instances the perturbation of the electron 

density due to the magnetic field, cannot be neglected. 
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Chapter 1 

Introduction to Magnetic Fields 

In order to understand how magnetic fields and density functional theory are 

linked in Nuclear Magnetic Resonance (NMR), a review of how magnetic fields enter 

into quantum mechanics is needed. As quantum phenomena are typically obtained 

from classical phenomena through the correspondence principle, a review of some 

elements of classical mechanics is warranted. [1] 

1.1 The Basics 

A charged particle of mass m and charge e in a magnetic field, B(r, t) has the 

following Hamiltonian. [2] [3] 

1 e - 2 H = -[P- -A(r, t)] 
2m c 

(1.1) 
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In the Hamiltonian, pis the particle momentum and A(r) is the vector potential given 

by 

B(r, t) = vr x A(r, t). (1.2) 

Thus, the introduction of a magnetic field changes the effective momentum felt by 

the charged particle as a free particle in the absence of a field would have a different 

Hamiltonian. 

H = _1 [P)2 
2m 

(1.3) 

The search for a Hamiltonian starts with an observed force law. To obtain the 

Hamiltonian from Equation 1.1, the starting point is the Lorentz force law. 

- . 1 -
ma, = e[E(r, t) + -v X B(r, t)]. 

c 
(1.4) 

This is the experimentally observed force law for a particle in an electromagnetic field 

specified by E(r, t) and B(r, t). The magnetic field acts in a direction perpendicular to 

the particle's velocity causing particles to move in a helix. This distinguishes the effect 

of a magnetic field from the effect of an electric field. To obtain the Hamiltonian from 

the force law, a consistent Lagrangian must be found and the Hamiltonian obtained 

from the Lagrangian. [4) 
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To obtain a Lagrangian, one assumes that the state of a mechanical system at 

a particular time can be specified· by some function of its position and its velocity. 

It is assumed that higher derivatives of position are not needed. This function that 

specifies the state of a mechanical system in classical mechanics is the Lagrangian. 

For simplicity, consider a single particle. Now to obtain the equations of motion for 

the particle between r(t") and r(t'), one invok{'$ the principle of least action that is 

sometimes called Hamilton's principle. The action, S, is defined as the time integr~l 

of the Lagrangian: 

t" 

s = 1 L(r, v, t)dt. 
t' 

(1.5) 

The principle of least action requires that the system follow the trajectory that min-

imizes the action. So a variation of the action is performed: 

t" 

8S = 81 L(r,v,t)dt = o. 
t' 

(1.6) 

This minimizes the aetion because if there exists a function r(t) which minimizes S, 

then changing r(t) slightly to r(t) + 8r(t), produces a change ins given by 

t 11 t" 

8S = { L(r + 8r, v + 8v, t)dt -1 L(r, v, t)dt; 
lt' t' 

(1.7) 

expanding this out in a power series gives leading terms that are linear and the 
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condition that there is a minimum implies that the linear terms vanish. Thus, the 

variation suffices to .minimize the action. Upon performing the variation, the following 

is obtained: 

i t" d aL aL 
bS = --(-) + -brdt = o 

t' dt av a-r 
(1.8) 

which with the variation vanishing at the endpoints yields, 

(1.9) 

This results in Lagrange's equation. With multiple degrees of freedom the variations 

must be performed independently for each degree of freedom. 

The following Lagrangian gives the correct force law for a particle ·in an electro-

magnetic field, 

L(r, fi, t) = ~mv2 - e<I>(r, t) + ~v • A(r, t). 
2 c 

(1.10) 

<I>(r, t) and A(r, t) are the parameters which determine the electromagnetic field as 

given by 

B(r, t) = \7 x A(r, t). (1.11) 
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- 1 a -
E(r, t) = -\7ct>(r, t)- --a A(r, t). 

c t 

5 

(1.12) 

A(r, t) is the vector potential and ct>(r, t) is the scalar potential. For time independent 

fields, they produce the magnetic and electric fields, respectively. To show that 

this Lagrangian gives the correct force law, Lagrange's equation is used to establish 

consistency. In particular, allowing 

(1.13) 

(1.14) 

then with some algebra, and using Equations 1.10 and 1.11, the correct force law is 

obtained. 

Quantum mechanic, however, is formulated with a Hamiltonian. [1] Hence, there 

be must a change from Lagrangian to Hamiltonian mechanics. The Hamiltonian is 

just a Legendre transform of the Lagrangian: 

H=fi•v-L. (1.15) 

The momentum p, is the canonical momentum that is given in Equation 1.13. This· 

is the canonical momentum, because if A and <I> are independent of some degree of 
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freedom, y, then 'J/; = 0. Hence, y is a conserved quantity. Upon substitution of the 
'0 

correct Lagrangian into the Hamiltonian, the following is obtained, 

mv2 1 e-
H = -

2
- + e<I>(i, t) = -

2 
[p- -A(i, tW + e<I>(i, t) 

m c 
(1.16) 

The latter is the usual Hamiltonian that is used in quantum mechanics with appro-

priate operator substitutions. Thus, the quantum Hamiltonian for a particle in a 

magnetic field with no electric field is simply 

1 e - 2 H = -[i\7- -A(i)] 
2m c 

(1.17) 

with n, = 1. 

As the vector potential is in the Hamiltonian, it should be examined more carefully. 

The physical observable is the magnetic field, which is the curl of the vector potential. 

Hence, the vector potential is defined uniquely only up to the gradient of a scalar, 

\7 S(i), i.e., 

B(r) = \7 x A(i) = \7 x (A(i) + V'S(i)). (1.18) 

Such a transformation is referred to as a gauge transformation, .or a change in gauge. 

This transformation does not change the field in any manner. The field is the physi-

cal quantity and so a gauge transformation cannot affect any observable result. This 
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invariance under a change of gauge is referred to as gauge invariance and any ex-

act theory is gauge invariant. Gauge dependencies should be avoided as they lead to 

unphysical dependencie,s on the vector potential. The nonuniqueness of the vector po-

tential does lead to an extra phase factor in the wavefunction. In particular, given the 

Hamiltonian of Equation 1.17, and a wavefunction \{1, then the gauge transformation 

from Equation 1.18 leads to a phase change, \{1 ~ \{1 e< ie~(fl). 

Although gauge invariant theories should be developed, in practice a gauge must 

be chosen and then error checked for by verifying gauge invariance, or its lack. A ' 

common gauge to use is the Coulomb gauge. 

V'. A(r) = o. (1.19) 

This is convenient as now the momentum and the vector potential commute. [5] The 

two fields of interest in this work will be the uniform field and the dipole field with 

the dipole at the origin. Hence, the gauges used will be respectively, [6] 

- 1 -
A(f) = 2B X f (1.20) 

A(r) = fi ~ r. 
r 

(1.21) 

The use of the vector potential in quantum mechanics does have physical conse-
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quences. The most famous such effect is the Aharonov-Bohm effect; a purely quantum 

mechanical effect due to the vector potential. [7] Two variants of this problem exist: 

a bound state version and an interference problem. The latter is more famous, but 

the former is simpler. Hence, the former shall be sketched out here. 

Suppose there is a hollow cylindrical shell with a trapped particle inside the shell, 

and a uniform magnetic field enclosed by the shell. This field does not penetrate into 

the shell. Hence, the particle never feels the field. The particle is truly trapped by 

the shell. Hence, its wavefunction vanishes at the inner and outer walls and at the 

top and bottom of the cylinder. Classically, there is no force on the particle as there 

is no field inside the cylindrical shell. However, quantum mechanics predicts a shift 

in the particle's energy. The shift arises because the field vanishes inside the shell, 

but the vector potential does not vanish. Application of Stokes theorem indicates 

that to obtain a field B in the z direction inside the volume enclosed by the shell, the 

following vector potential may be lised 

(1.22) 

Solving the SchrOdinger equation with this vector potential causes an observable 

change in the particle's energy despite the field only being present in a region with 

the particle cannot access. The Aharonov-Bohm effect is a dramatic example of the 

nonlocal nature of magnetic interactions in quantum mechanics. 
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1.2 Spin Hamiltonian 

The Hamiltonian derived above for a charged particle in a magnetic field looks 

quite different from the Hamiltonians usually seen in NMR. This is because the Hamil-

tonians of NMR are written as nuclear spin Hamiltonians ar,td the electron interactions 

are subsumed into the NMR parameters. 

The nuclear spin Hamiltonian for a pair of nuclear spins is, [8] 

--H:tn = - ji,l • B - iJ,2 • B + il1 • gl • B + f.L2 • g2 • B + il1 • J12 • P2 + ji,l • D12 • j"L2 

(1.23) 

Notice that the magnetic susceptibility is not present, as it does not involve the 

nuclear spin. Instead the magnetic susceptibility is of the form B • x • B. As such the 

magnetic susceptibility a purely electronic property, and is independent of the nuclear 

spin. This nuclear spin Hamiltonian is an effective Hamiltonian as it contains only 

the two nuclei explicitly. This Hamiltonian has been written in its simplest form. It 

can be written in slightly different forms as well, which you may find in other works. 

[9] 

The first two terms are the Zeeman interactions. These correspond to the classical 

interactions between a nuclear dipole p,i and an applied field. The subscripts indicate 

the two different nuclei. Hence, these are single spin operators that depend upon just 

the interaction of external field and a single spin. The electrons are not involved. 

Hence,. this interaction shall not be considered in detail. The third and the fourth 
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terms are the chemical shielding terms. The chemical shielding tensors are denoted 

by g.i· These terms contain in them the coupling between the electrons and each 

nuclear spin separately with the applied field. These operators are still single spin 

· operators. The difference between these and the Zeeman terms is the electronic 

coupling, hence these operators probe the electrons. The next to last term is the J 

coupling, also known as the indirect spin-spin coupling. This is the coupling between 

the two nuclei, which is manifest through the electrons. Unlike the first four operators, 

this is a two spin operator. The last term is the dipolar coupling, or the direct spin

spin coupling. The dipolar coupling does not involve electronic interactions. It is the 

direct nuclei-nuclei interaction. As such it is mentioned here only for completeness .. 

These terms will be examined in more detail later. First, the connections between 

the spin Hamiltonian and the full Hamiltonian should be made clear. 

Perturbation theory is the method of choice as the interaction of the magnetic 

fields with the electrons is much weaker than the electron-electron interaction. [6] A 

molecular system may be considered as consisting of 2 weakly coupled subsystems. 

The wavefunction for the full molecular system is W. The first system consists of the 

· electrons that feel a fixed scalar nuclear potential, the second contains the nuclei that 

feel a uniform external applied field and the dipolar coupling. For simplicity, it is 

easiest to consider only the chemical shielding at first as the remaining interactions 
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are analogous. The effective spin Hamiltonian is, 

(1.24) 

The expectation value is taken over the electronic coordinates as indicated by the 

subscript e. H,..e is the coupling between the nucleus and the electrons. Hence, the 

effective Hamiltonian depends explicitly only upon the nuclear spin coordinates, so 

it is referred to as the spin Hamiltonian. To illustrate what the second, perturbative 

interaction is, start with the full Hamiltonian for the two coupled systems, 

_ - ~ 1(_ A(rk))2 (-) 
H = - J.L. B + L..t - Pk + -- + v T 

k 2 c 
(1.25) 

where atomic units have been used, the sum runs over the k electrons, and the r in 

V(r) refers to all the k electronic coordinate vectors. As this Hamiltonian will cause 

the chemical shielding, the total vector potential is the superposition of two vector 

potentials: the potentials due to the nuclear dipole and the uniform external field. 

Hence, 

(1.26) 

Of course, the first term is not uniquely defined as a uniform external field has an 

arbitrary origin. So any physical property should be invariant under the transform 
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rk ---+ (rk - S). The second term has a natural origin at the nucleus that creates it. 

With this in mind, the Hamiltonian can be rewritten as follows: 

H - B- ""'1(_ A.r)2 V(-) -p, • + ~ - Pk + - + r 
k 2 c 
-B ""'1 Ak -+ ~ -(Pk + -) • A~ + ... 

k c c 
(1.27) 

Advantage has been taken of the divergencelessness of the gauge choice, and hence, the 

commutation properties. This has been done for simplicity only. The term quadratic 

in the vector potential due to the nuclear spin has been dropped as not contributing 

to the shielding. The term quadratic in the vector potential due to the external field 

also does not contribute to the shielding, and will be dropped later. If the nuclear 

vector potential is explicitly placed into the equations then the last term becomes, 

(1.28) 

which is reminiscent of the classical Biot-Savart law that will be discussed later in 

more detail. 

Taking the expectation value of the full Hamiltonian with respect to the electronic 

coordinates will generate the spin Hamiltonian. This is 

(1.29) 
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in which Ee is the electronic energy and is constant, independent of the spins and 

hence, can be dropped. After doing so, the spin Hamiltonian of Equation 1.24 is 

generated. The last term is the portion of the spin Hamiltonian due to the electrons 

coupling with the nucleus. This is the coupling that leads to the chemical shielding. 

Explicitly, the latter term can be writte~ as, 

(1.30) 

Notice that between the bra and the ket are operators with two different depen-

dencies on the applied field. The momentum has no explicit dependence on the field, 

whereas the vector dependence is first order. If the exact electronic wavefunctions 

determined in the presence of field were used, these different dependencies would not 

matter. However, typically the zeroth order electronic wavefunction, i.e. the wave-

function without the field, is used as the starting point. To treat the two portions of 

the Hamiltonian on equal footing, perturbation theory must be performed, at least 

in this treatment, 

(1.31) 

This allows one to write the portion of the coupled Hamiltonian in a perhaps more 
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familiar fashion as, 

(1.32) 

a is the chemical shielding tensor and contains all the electronic information in the 

problem as neither the J coupling nor the magnetic susceptibility have been consid-

ered. 

The integral over electronic coordinates can be divided into two parts 

(1.33) 

(1.34) 

The first part is the diamagnetic shielding and the second the paramagnetic shielding. 

The latter is the more difficult term to understand as it requires knowledge of the 

excited states to calculate the perturbed wavefunction to first order. Iri particular, 

excited states which must be known are those that are connected to the ground state 

by magnetic dipole transitions. This separation into diamagnetic and paramagnetic 

is a standard separation. However, such a separation is not gauge invariant. The 

sum is a physical quantity and hence, is invariant under gauge transforms; it is the 

individual quantities that are not invariant. One should be careful not to ascribe 

undue physical significance to these quantities, with one exception. In the present 

gauge, the Coulomb gauge, closed shell atomic systems are purely diamagnetic, and so 
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in this gauge paramagnetic components result from the breaking of atomic symmetry. 

This statement is not necessarily true in other gauges, though the overall numeric 

result is independent of gauge. Additionally, one must realize that while the precise 

separation into paramagnetic and diamagnetic depends upon the gauge, one cannot 

always find a gauge in which the shielding is purely diamagnetic. The only instances 

where one can do so are for systems that are spherically symmetric, or which have only 

one or two electrons. In all other instances, the shielding, and the other responses, 

will have both paramagnetic and diamagnetic portions. 

The shielding interactions may be more familiarly represented as a change in the 

magnetic field felt by the nucleus due to electron currents. The connection between 

this representation and the above explanation can be made through the classic Biot-

Savart law. 

In classical electricity and magnetism, the Biot-Savart law reproduces the observed 

induced B field generated by a current. [2] An infinitesimal wire of length dl which 

carries current I produces an infinitesimal field element at a position x which is, 

(1.35) 

Now for a general current density J(f'), the expression can be generalized to 

- - r- r J (- _,) 
B(r) = J(r') x (r _ r')3 dr'. (1.36) 
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Of course, this begs the que.stion as to what the current density is especially in 

a molecular system. Classically, the current is the rate of particle flow through a 

surface, and so quantum mechanically this would be expressed as 

(1.37) 

=-J V•]dV (1.38) 

J is the current density and Gauss's theorem has been used to convert the surface 

integral into a volume integral. This comes from the equation of continuity which 

follows from charge conservation, i.e. [3], 

dld'l/112 + \7. 3 = 0. 
t 

(1.39) 

Now carrying the derivative through one obtains the. following, after using the time-

dependent Schrodinger equation i~ = H'l/1, 

(1.40) 

If we start with the system in the absence of a magnetic field, then the Hamiltonian 
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is just 2~
2 + V and so we have that 

i J(wH*w*- w*Hw)dv 

=- J v • (~(w'Vw*- w*'Vw))dv 

=-J 'V X ]dV. 
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(1.41) 

(1.42) 

Thus the current density, J, is defined with the momentum and vanishe-S for purely 

real wavefunctions, e.g., closed shell systems in their ground states without a field. 

The more interesting case is when there· is a magnetic field present. The simplest 

way to see how the current density varies in this instance is to note that the current 

density can be written as 

(1.43) 

Then make the usual substitution, p ~ p+ A as discussed before Qquation 1.15. The 
c 

following expression for the current density is obtained, 

(1.44) 

The first portion is the paramagnetic current density and the second is the diamag-

netic current density. As usual, the division between paramagnetic and diamagnetic 

is not gauge invariant, but the current density as a whole is gauge invariant. This is 
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because the current density is a physical observable. A more rigorous approach would 

be consider the change of the Hamiltonian due to the change of the vector potential 

that interested readers can find elsewhere [5]. Notice that with this definition of the 

current density, the expression for the chemical shielding can be rewritten as, 

- - jlrxJ jl. • er • B = p. • ---3 -Dr. 
c r 

(1.45) 

In this treatment, the applied field and the nuclear moment have been treated dif-

ferently. In particular, the current density has been considered as being induced by 

the applied field. So the current density can be considered as the response by the 

electrons to the perturbing uniform field. This unequal treatment is merely conve-

nient. One could equally well reverse the present treatment and consider the current 

density induced by the nuclear magnetic moment and take the dot product with the 

applied field. This is referred to as the inverse Biot-Savart law and in an exact theory 

is equivalent to the Biot-Savart law. 

This use of the Biot-Savart law for the calculation of magnetic responses is referred 

to as a susceptibility treatment of magnetic responses. The alternative treatment is 

an energy approach in which the magnetic responses are treated as energy derivatives. 

For example, from examining Equations 1.33-1.45 one has that , 

:: fJ2E 
(j = ---. 

f)BfJP, 
(1.46) 
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E is the electronic energy, and derivatives are taken in the limit of both fields ,be-

coming zero. In an exact theory, both approaches are equivalent. It is only with 

approximation that they may become different. Writing the shielding as an ~nergy 

derivative has the advantage of making it clear that the shielding is a tensorial prop-

erty, as the fields are each a vector. Additionally, this form demonstrates that one 

cannot make statements about the symmetry of the shielding without considering the 

symmetry of the electron distribution. 

All the magnetic responses, or more properly, the lowest order magnetic responses, 

not just the chemical shielding, are second order with respect to the fields. This is 

because a magnetic field is odd under time reversal, unlike an electric field, which is 

even. The energy. is even under time reversal as the Schrodinger equation for closed 

shell systems is even under time reversal. This requires magnetic fields to couple in 

even orders to closed shell systems. [7] Time reversal along with the extraordinary 

weak effect of magnetic fields upon most systems explains why one need only consider 

3 magnetic fields for NMR parameters: the fields from two dipoles and one applied 

uniform field. In particular, the electronic energy of a closed shell molecular system 

with i number of nuclei in a NMR magnet can be written as: 

2 2 . 2 
0 - aE - "'- aE _ "'- aE _ 

E = E + B • - - • B + L B • - _ • /Li + L /Li • a- a- • fl'J· 
aBaB . a BalLi .>. JLi Jl') 

l l J 

(1.47) 

The different terms are respectively: the zero field electronic energy, the energy due 
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to the magnetic susceptibility, x, the energy due to the chemical shieldings of the 

nuclei, O"i, and the energy due to the indirect spin-spin couplings between the pairs 

of nuclei, Jii· In principle, the expansion could be carried out to higher orders. One 

could expand the magnetic interactions to fourth order, and obtain terms coupling 

up to four nuclear spins. Presently, such effects are far too small to be observed in 

NMR. One could also include mixed electric-magnetic properties such as a magnetic

field induced quadrupole moment. This has only been observed recently and will be 

discussed later in Chapter 9. Notice that at this level, there is no separation into 

diamagnetism and paramagnetism. It is only when the energy is divided into these 

two· terms that the shielding, and the other responses, become separated. This is 

not a surprise as paramagnetism and diamagnetism are not in themselves uniquely 

defined. Notice as well, that in the Biot-Savart law there is no such separation unless 

one makes one in the current density. Hence, if expressions are obtained for the energy 

or the current density respectively which avoid this separ:ation, then one avoids the 

whole issue of gauge invariance at this level in the responses. 

1.3 Nuclear Magnetic Resonance Parameters 

Now that the connection between the spin Hamiltonian and the full Hamilto

nian has been made for the chemical shielding, a more thorough discussion of the 

parameters of NMR is justified. [8] [9]. 

The chemical shielding is the best known of the different parameters and is the 
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one, which is most important to this work. In general, the chemical shielding is a 

second rank tensor with 9 independent components. This is obvious as the shielding 

is defined as 

:: fJ2E 
CJ= ---· 

fJBfJp, 
(1.48) 

Each field has three components - x, y and z in Cartesian coordinates - so the 

whole tensor has 9 components and no specific symmetry in general. Any second 

rank tensor can be broken up into three pieces with definite symmetries: a scalar 

with one independent component, a symmetric traceless tensor with 5 independent 

components, and an antisymmetric tensor with 3 independent components, i.e., 

1 0 0 au a12 a13 0 b12 b13 

(J 

(1.49) CJ=-o 1 0 + a12 a22 a23 + -b12 0 b23 3 

I 0 0 1 a13 a23 a33 -b13 -b23 0 

The antisymmetric component, however, is not directly observable in NMR exper-

iments - though it may be observed in relaxation measurements [8]. Hence, there 

are 6 independent elements. A simple argument with spin 1/2 particles can explain 

this effect. The splitting of the energy levels of a spin 1/2 particle in a magnetic 

field is given by the magnitude of the field. Hence, the Larmor frequency becomes 
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proportional to only the symmetric components as, 

w ex: Bo[tt(l- at)(l- a)t] 112 

ex: Bo[tt(l- at- a+ ata)tjll2 , 

(1.50) 

(1.51) 

where t is the unit vector along the external field, and the t indicates the transpose. 

As the shielding tensor is small the last term may be disregarded which results in, 

w ex: B 0 [tt(l- (at+ a))t]lf:2 

ex: Bo[ct(l _ asymmetric)tjl/2. 

(1.52) 

(1.53) 

The symmetry of the particular system may reduce the number of independent el

ements even further, if the system has a highly symmetric electron distribution, in 

which the symmetry of the electron distribution follows the nuclear symmetry. For 

example, a linear molecule has only 3 independent axes. These consist of an axis on 

the line through the bond and two axes perpendicular to the bond. The two perpen

dicular axes are equivalent due to symmetry. Hence, the shielding tensor has only 

three components and the two perpendicular components are identical. So there are 

only two independent components. Additionally, symmetry constraints on the para

magnetic contribution can cause it to vanish for particular symmetries, i.e. spherical 

symmetry or in the direction parallel to the bond axis in a linear molecule. When 

the electronic distrib-ution has the highest possible symmetry , i.e. spherical, the 
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shielding tensor is at its most symmetric. As a result, only the isotropic compo-

nent survives. Motion that is faster than the NMR timescale can also average out 

the shielding tensor. For example, in liquids or gases one typically only observes the 

isotropic component as the rest are averaged away by rapid tumbling. This is because 

the rapid motion cause reoriention of the molecules with respect to the field, and so 

any anisotropy is cancelled away. 

Typically, one takes the asymmetric tensor resulting from a calculation, sym-

metrizes it and then diagonalizes it. The eigenvalues are referred to as the principal 

values au, a 22 , a 33 and the eigenvectors as the principal axes, hence, the term Prin-

cipal Axis System (PAS) for the axis system spanned by the set of eigenvectors. By 

convention, the principal values are ordered such that 

(1.54) 

However, experimentally these are not the chemical shielding tensor elements as the 

chemical shielding is not the actual observed quantity in NMR. Rather, the' chemical 

shift is measured and defined in ppm, 

8 = 106 (vs - Vref) 

Vref 
(1.55) 

s is the system of interest, ref is a reference, and vi is the frequency observed which 
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is given as 

!Bo(l- a) 
1/ = 27r . (1.56) 

Now in most instances, a is much less than unity and so to a good approximation 

the a which is contained in the definition of Vref in the denominator of Equation 1.55 

can be neglected. However, it may be important to consider this for. systems with 

large shieldings. One should always keep in mind the relative nature of shifts. 

One typically characterizes spectra by linear combinations of the principal values. 

ThE>-Se combinations are more reliably obtained from experimental spectra on samples 

with a range of orientations, i.e., powders that give powder patterns. In particular, 

these parameters are the anisotropy 

s: _ (a22 +an) 
ua- a33- 2 , 

the asymmetry, 17, and the isotropic shift , a, 

aiso = 

(a22- au) 
1]= 

(a33- aiso) 

an + a22 + a33 

3 

(1.57) 

(1.58) 

(1.59) 

These particular linear combinations are useful because in an axially symmetric sys-
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tern the asymmetry vanishes and the anisotropy become_s 

Da =all- Uj_. (1.60) 

Axially or nearly axially symmetric systems are commonly encountered in experimen

tal situations. 

Another important physical effect to consider when comparing theoretical and 

experimental shieldings is the effect of rovibrational averaging. [9] Te majority of 

experiments are carried out at room temperature. However, theoretical shifts are 

usually calculated at a fixed geometry. So to compare exactly a theoretical shift 

and an experimental shift one should average the theoretical results over a chemical 

shielding surface. A chemical shielding surface is a surface showing the shielding 

for different nuclear geometries much like a potential energy surface, but with the 

shieldings instead of the energies plotted. In principle, one must do this for both the 

zero-point and thermal vibrations. Now this can rarely be done at present due to the 

computational cost of most theoretical treatments, which provides further motivation 

for the development of new theoretical techniques. 

The magnetic susceptibility is not really a NMR parameter as it is independent of 

the nuclei and depends only on the electrons. However, as the Biot-Savart integrals 

demonstrate it is related to the chemical shielding and hence should be examined. 
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Unlike the chemical shielding, the susceptibility truly is a symmetric tensor, 

- o2E 
x = afJaif (1.61) 

As such it has 6 independent components and can be decomposed into isotropic and 

symmetric components. The symmetry arguments, which lead to various components 

vanishing, are identical to the ones used for the chemical shielding as experimentally 

one observes symmetric tensors for both. 

The J coupling is the third magnetic response to be considered here. It is the 

most difficult to understand theoretically, and is the source of much confusion. It is 

becoming of increased importance experimentally, especially in the study of biological 

molecules. 

The J coupling can also be written as an energy derivative just as the shielding 

and the susceptibility. This makes it apparent that it is in general a second rank 

tensor with no particular symmetry. The J coupling needs to be examined more 

carefully as the J coupling does not arise from a single interaction: rather, there 

are 3 different interactions that give rise to the J coupling. These interactions have 

different properties and so need to be examined individually. 

The J coupling arises from the same interactions between the nucleus and the 

i ' 

electron that cause the hyperfine and fine structure. (6] (9] In particular, there are 

the dipolar, orbital and Fermi contact interactions. The orbital interaction is between 
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the orbital motion of the electrons and the magnetic moment of. the nucleus. The 

dipolar interaction is between the magnetic moment of the electrons and the magnetic 

moment of the nucleus. The Fermi contact interaction re.sults from the electrons 

penetrating into the nucleus. The,se three interactions provide different mechanisms 

for couplings between a nucleus and the electrons. As the electrons are coupled in 

a molecular system between different nuclei, these interactions provide an indirect 

coupling between the nuclei. 

Consider the orbital interaction between a nucleus and an electron, 

0 
lji,nxf _ 

H = -2 3 •p. c r 
(1.62) 

In which the electron's momentum couples to the field produced by the nucleus. This 

direct coupling between a nucleus and an electron causes an indirect coupling between 

pairs of nuclei which using perturbation theory gives a paramagnetic component that 

is, 

(1.63) 

The letters j and k index the electrons and 1 and 2 refer to the nuclei. This is the 

paramagnetic contribution. There is also a diamagnetic component. These campo-

nents arise in precisely the same manner in perturbation theory as they do in the 

chemical shielding. 
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This contribution has no particular symmetry and is a full second rank tensor 

as the two dipolar fields may be different and are vectors. For most compounds 

containing light atoms this component is rather small, but for heavier nuclei this 

component can be considerable. [9] 

The dipolar component arises from a Hamiltonian of the form, again for a single 

nucleus and a single electron, 

H D = ~ (ji,n X r) • (jie X r) . 
c r3 

(1.64) 

ii·n is the nuclear moment and P.e is the electron moment. This leads to an indirect 

nuclear coupling of the form, 

x < nl(l= 3r2j
3 (Si • r21)r21- r2j

3S1)IO >. 
j 

(1.65) 

sk is the spin of the electron and P-e = frac-'-Sk2C in atomic units. This contribution 

also has no particular symmetry and is a full second rank tensor as the two-dipolar 

fields may be different and are vectors. For most compounds containing light atoms 

this component is rather small, but for heavier nuclei this component can be consid-

erable. The dipolar component is usually even smaller than the orbital portion and 

so is often ignored. [9] 

The third interaction that creates the J coupling is the Fermi contact interaction. 

' '• 
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This is the largest interaction for light atoms and often is the only one considered .by 

experimentalists. 

The Fermi contact interaction arises classically from an electron penetrating into · 

the inside of a spherical magnetic dipole. Quantum mechanically, this is approximated 

as 

(1.66) 

The use of a delta function is an approximation, however, for chemical purposes the 

approximation typically sufficE>-S as deviations from the delta function appear on length 

scales on the order of hundredths of angstroms. [10] The contact interaction has a 

very different character than the other interactions that contribute to the J coupling. 

The delta function renders the interaction isotropic as loosely speaking it depends 

only on the amount of electron density that connect the two nuclei by penetrating to 
·, 

the nuclei in question. 

The coupling which arises from the contact interaction, 

(1.67) 

This interaction is the dominant interactionfor light atoms. 

Hence, the anisotropic component of the J coupling is often neglected, and the J 

coupling is often considered as a purely scalar interaction, even when the anisotropy is 
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not averaged away. There have recently been some int~resting experiments, especially 

with InP, which exploit the large anisotropic components that can arise in atoms of 

heavier elements. [11] 

J couplings are often referred to as through-bond interactions. This is because 

the coupling depends upon the electron distribution, and for the Fermi contact term 

in particular on the correlation between electrons penetrating to each nucleus, and so 

they will be large in those circumstances when the nuclei "share" electrons, i.e., when 

a chemical bond exists. Later in this work, a particular example of small J couplings 

between atoms that are not directly bonded is explicated. 

There are only 2 important NMR parameters remaining: the dipolar coupling and 

the quadrupolar coupling. The former is a purely nuclear interaction, and so despite 

being extremely important in solid-state NMR, will not be discussed further. 

The quadrupolar coupling is not a magnetic property. Rather it is an electri-

cal interaction. Nuclei with spins greater than 1/2, have an asymmetric nuclear 

charge distribution. Thus besides having a magnetic dipole, they can have an electric 

quadrupole. This quadrupole will interact with electric field gradients at the nucleus 

created by the electron density. So to have an observable quadrupole moment, two 

conditions must be fulfilled: the nucleus must have a spin greater than 1/2, and there 

must exist an electric field gradient. The latter condition, for example, means that 

no atom or molecule in a site with cubic or higher symmetry would have a nonzero 
( 

quadrupole coupling, regardless of spin. 
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The vanishing of the quadrupole for any free atom in a magnetic field assumes 

that the magnetic field doE's not distort the electron distribution. While this is almost 

true, i.e., is valid to a very large degree of accuracy, observation of field-dependent 

quadrupole splittings of atoms in the gas phase allows one to measure the weak 

distortion of the electron distribution by the applied magnetic field. This has been 

observed recently in experiments and a more detailed theoretical description will 

be given later in this work in Chapter 9. However, this does serve to illustrate a 

point. When a property vanishes at a given order in perturbation theory, a higher 

order property may be observable despite being significantly weaker. For example, 

the field-dependent quadrupole splittings of Xe atoms are about hertz as opposed to 

megahertz. [12] 
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Chapter 2 

Electronic Structure Theory: An 

Introduction 

To understand the parameters of NMR, an understanding of the electron distri

bution and its interaction with nuclei is needed. Two questions arise immediately: 

how is the electronic distribution, or the electronic structure, determined, and what 

approximations are used to calculate the NMR parameters? This thesis does not 

concern itself explicitly with the former, but some understanding of that topic is re

quired. The latter question is at the heart of this work, and so some discussion of 

other modern methods is needed. This chapter is meant to be a brief overview and 

an interested reader is encouraged to look elsewhere for more details. (1] 

The goal of electronic structure theory is to determine molecular structure and 

molecular properties from first principles. This would require solving at least the 
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Schrodinger equation, if not some relativistic analogue such as the Dirac equation or 

even the Breit equation. The first simplification is to consider the Schrodinger equa

tion and to consider relativistic effects to be unimportant that suffices for most, but 

not all chemistry. Schrodinger's equation cannot be solved exactly for many-electron 

systems. As a result, a plethora of methods has been developed geared towards solv

ing different aspects of the whole problem. Two immediate simplifications are made. 

First, the Schrodinger equation of interest will be the time-independent equation 

as the stationary state electronic structure is the relevant piece. Second, the Born-

Oppenheimer separation will be made, whereby electronic and nuclear coordinates are 

separated. The latter has already been assumed in the previous derivations. Unless 

otherwise indicated, the systems are assumed to be closed shell systems in which the 

electrons are spin paired. This thesis will mostly consider density functional theory 

(DFT) which, however, will be introduced later. 

The simplest starting point is Hartee-Fock theory. This conceptually can be con

sidered as molecular orbital theory with a Hamiltonian. The essential elements are 

the same: the atoms are assigned one-electron orbitals that mix together to form 

molecular one-electron orbitals. The Hamiltonian determines the mixing of orbitals; 

this is an addition Hartee-Fock makes on molecular orbital theory. [2] 

The first simplification made in Hartee-Fock is the decomposition of the full many

electron Hamiltonian into a set of one-electron Hamiltonians. This decomposition is 

common to all one-electron theories. For simplicity, start with the hydrogen molecule, 

) 
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i.e., two electrons and two nuclei, as the generalization for arbitrary number of nuclei 

and electrons just requires indexing, 

\72 \72 1 1 1 1 1 
Helec = --1

--
2
--------+-. 

2 2 r1a r2a r1b r2b r12 
(2.1) 

The numbers index electrons and the letters the hydrogen nuclei with nuclear charge, 

Z =1. Atomic units have been used, and the Born-Oppenheimer separation has been 

made, hence, the absence of the nuclear kinetic energy. The nuclei-nuclei repulsion is 

also absent as it is a constant. This replusions, however, must be added to the energy 

after solving the electronic problem to obtain the total energy. The Hamiltonian can 

also be written in a more transparent form, 

1 
H = h(1) + h(2) + -. 

r12 
(2.2) 

Where the electronic Hamiltonian, whose label has been dropped, is written as the 

sum of one-electron terms plus an interaction term. The later term is the one to be 

approximated. In Hartree theory, one considers an electron moving in the mean field 

of all the other electrons, or the other one in this example. Hartee-Fock adds the 

incorporation of exchange, i.e. the energetic consequence of the antisymmetrization 

required by the Pauli principle, to Hartree theory. We must consider the hydrogen 

molecule in its triplet state for the exchange interaction. More precisely, the Hartee-
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Fock Hamiltonian is, 

H = Lf(i) (2.3) 

where f(i) is the Fock operator for the ith electron which has the mean field and the 

single-electron term, i.e., 

j(i) = h(i) + VHF(i). (2.4) 

Of course, this just places all the physics into vHF(i), which must now be defined in 

order for the approximation to have meaning. So let, 

(2.5) 

This defines the Hartee-Fock potential where 'I/Jb(2) indicates the bth orbital with the 

second electron and the sum runs over all occupied orbitals. The integral over 1/r12 

is just the classic Coulomb repulsion between two electrons, and the use of electron 

2 is arbitrary as its coordinates are integrated over and the electrons are identical 

particles. The integral over 1/r12 (P12 ) is the nonclassical portion. It is the exchange 

interaction as the permutation operator, ? 12 , interchanges electrons one and two. So 

the separation of the Hartree-Fock potential into two components defines the Coulomb 
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potential 

(2.6) 

and the exchange potential 

(2.7) 

There is an additional approximation that must be done to implement Hartee-

Fock theory, or most other electronic structure methods, which is the use of a finite 

basis set. A wavefunction can be expanded out exactly by using the elements of 

any complete set of functions. Complete sets of functions, however, are infinite, so 

any real calculation must use a finite set of functions. The set of functions used to 

expand out the one-electron orbitals is called the basis set. The basis set affects the 

zero field energy or electron distribution merely by making them less accurate, though 

with large basis sets or through clever manipulations, high accuracy can be reached. 

The use of a finite set of basis functions has a special consequence when used to 

calculate magnetic properties within Hartree-Fock theory . This is the introduction of 

a gauge-dependence. In particular, a finite basis set renders the magnetic interaction 

dependent upon the choice of origin for the applied field. This is unphysical and 

hence, problematic. A brute force method of minimizing this problem is to use a very 

large basis set. Another more physical method that sometimes works, is to disregard 
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gauge issues and pick the origin so that physically relevant regions, i.e. regions of 

high electron density, are well sampled by the basis functions. Gauge-independence, 

however, can be reintroduced even with a finite basis at an additional, though not 

considerable, computational cost. [3) [4) 

The solution to the origin problem, as it is called, involves explicitly incorporating 

the vector potential into the orbitals in an exponential factor. There are several 

different methods for doing so, of which the two most common are the gauge-including 

atomic orbital method (GIAO) and the individual gauge for localized orbitals (IGLO) 

method. As might be deduced from their names, the methods differ in where the 

exponential prefactor is incorporated. In GIAO, the factor is included with each 

atomic orbital whereas in IGLO the exponential multiples the molecular orbitals. 

Explicitly, an atomic basis function in the absence of a vector potential is related to 

the function used in the GIAO method as 

-1,- -

icf>n >= e.r.p(-As(Rn) • r)i~n > 
c 

(2.8) 

where l~n > is the original atomic orbital, Rn is the location of the same atomic 

orbital, and 

As(Rn) = B x (~ -G). (2.9) 
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G is an arbitrary vector which may be picked to be zero because the matrix elements 

(2.10) 

become independent of it as can be shown with some algebra. 

So once a basis set has been introduced, each ·one-electron orbital must be ex-

panded in terms of the basis, 

K 

'1/Ji = L,cJ.Li<PJ.L (2.11) 
J.L=l 

This expansion reduces the problem to solving for the set of expansion coefficients 

CJ.Li· Eliminating spin, and using the Fock operator from Equation (2.4), results in 

an equation for the one-electron molecular orbitals, 

(2.12) 

An equation for. the expansion coefficients can now be obtained from the molecular 

orbital equation. In practice, the basis functions used are usually atomic centered. 

Hence, the expansion of molecular orbitals in basis functions is equivalent to the 

expansion of molecular orbitals as linear combinations of atomic orbitals as done in 

molecular orbital theory. The difference is the use of the Fock equation to obtain the 

coefficients. Explicitly by direct substitution, multiplication by ¢~(1) on the left and 
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integration, 

L Cvi j dfl¢~(1)j(1)¢1L(1) = Ci L Cvi j dfl¢~(1)¢1'(1). 
v v 

(2.13) 

The above can be rewritten as a matrix equation, 

FC = §6~ (2.14) 

- - -
in which F is the Fock matrix, 6 is the matrix of coefficients, S the overlap matrix 

defined as 

(2.15) 

~ is the diagonal matrix of the orbital energies. The solution of the Hartree-Fock 

problem is now just a matrix equation. This matrix form still has three complications. 

The first is that the equation is nonlinear. This is an essential feature that is in the 

Hartree-Fock equation from the beginning and cannot be removed. Hence, iterations 

are required to solve the Hartree-Fock equations, regardless of their form. A guess 

for the initial expansion must be made, and the equations iterated until the final 

coefficients match the initial coefficients within some error margin. Second, the matrix 
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equation is not in the usual form of an eigenvalue problem, i.e., 

(2.16) 

Though a matrix equation of this form may be obtained merely by orthogonalization 

of the S matrix, i.e., finding X such that 

(2.17) 

Let, 

- - -c' = .x-~c (2.18) 

(2.19) 

so that, 

(2.20) 

(2.21) 
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and now 

(2.22) 

(2.23) 

So one issue now remains to be dealt with, the explicit form of the Fock matrix 

elements. First, define the electron density, p(r), and the density matrix, PI-Lv' 

N/2 

p(r) = 2 L I1/Ja(r)l 2 

a 

N/2 

= L(2 L CI-Lac:al1>1-L(r)¢>~(r) 
/-LV a . 

(2.24) 

N/2 

PI-Lv = 2 L CI-Lac;a. (2.25) 
a 

The definition of the density matrix is useful as the Fock equation can now be rewrit-

ten as, 

f(rl) = h(ri) + ~ L Pa/3[1 df2¢~(f2)(2- P12r!2
1 )4>a(f2)] 

a/3 
(2.26) 

this form is interesting because it shows that the Fock operator can be separated into 

two pieces. The first piece does not depend upon the density matrix and when matrix 

elements are taken, only one integration is required. The second part depends upon 
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the density matrix, and requires integration over two sets of electron coordinates. 

Hence, the integrals are referred to as two electron integrals. The latter integrals are 

the only ones that change during interation, as can be seen from the explicit form of 

h(i\). 

In order to describe the solution of the Hartree-:Fock equations, all that remains 

to be done is to put the pieces together. In particular, the following steps need to be 

done. First, a basis set must be chosen and a nuclear geometry specified. Second, 

a guess must be made at the density matrix, from which both one and two electron 

portions of the overlap and Fock integrals are obtained. Then the overlap matrix is 

diagonalized and the transformation matrix found. Using the guess density matrix, 

the Fock matrix is obtained and then transformed using the transformation matrix .. 

This Fock matrix must be diagonalized to obtain the eigenvalues and the expansion 

coefficients. These expansion coefficients must then be transformed using C = XC' 

and a new density matrix calculated from the expansion coefficients. If the new 

density matrix agrees with the initial density matriX to within some error margin, 

then the process is done. More likely the process must be started over using more 

the new density matrix rather than the original guess at the density matrix. 

Note that because of the two electron integrals, the energy in Hartree-Fock is not 
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the sum of the energy eigenvalues, rather the energy is, 

EHF LEa- I.=(~ j di\dr2(<P:(ri)<Pj(r2)r]}</Ji(i\)<Pi(r2) 
a tJ 

<P: ( rt)</Jj ( f2)r!2
1 <Pi (r1 )</Ji(f2)) ). 

A simpler notation is often used, 

j drldr2(<P:(ri)</Jj(r2)r12
1</Jz(ri)<fJk(r2)- <P:(ri)<Pj(r2)r-;;}<Pk(ri)<Pz(r2)) =< ijlllk > 

(2.28) 

and in this notation, 

1 
EHF =LEa-L 2 < ijllij >. (2.29) 

a ij 

To obtain properties rather than the ground state field independent energy, as 

described above, one needs to modify the Hamiltonian and to take derivatives. Ex-

plicitly, at the Hartree-Fock level the chemical shielding for nucleus i is, 

(2.30) 

D{f,! is the Hartree-Fock density matrix,. h/Lv the one electron H;amiltonian matrix 

elements in the atomic orbital representation i.n which the atomic orbitals are labeled 

by fl., v. Notice, that because basis functions that depend upon the applied field are 
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often used, 

(2.31) 

This expH'-Ssion is really more general than indicated. If one obtains, a density matrix 

from another theory, i.e., Moller-Plesset theory, then one obtains the properties from. 

that density matrix. 

While properties derived from Hartree-Fock theory are often reasonable, they can 

be improved upon, by using other theories. This improvement comes about because 

Hartee-Fock theory is not exact. The details of electron correlation are ignored. This 

cause-S a difference in energy between the exact energy and the Hartree-Fock energy, 

this energy difference is defined as the correlation energy, 

Ecorr = Eexact _ EH F. (2.32) 

Most research in electronic structure theory is centered on going beyond Hartree-Fock 

by removing some of the approximations made in a computationally useful manner. 

The wavefunction-based methods of improving upon Hartree-Fock are not the 

focus of this work, and as such they will only be dealt with qualitatively in a broad 

overview. Incorporation of correlation could be done using perturbation theory for 

many systems, in the form of Moller-Plesset perturbation theory (MP theory). Or, 
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it could be done exactly, at least in principle, without perturbation theory, using the 

method of configuration interaction (CI). As the idea of an exact theory is promising, 

it should be examined closely. 

Configuration Interaction methods are based on improving Hartree-Fock theory 

by considering the exact wavefunction as a linear combination of N-electron wave-

functions. Given a set of m one-electron orbitals, the wavefunction is given as a 

linear combination of all wavefunction made by placing electrons in N orbitals. So 

even with small basis sets, the number of terms in the expansion is very large. One 

of the wavefunctions in the expansion is the Hartree-Fock ground state. All the other 

wavefunctions can be considered as excitations from the ground state. Explicitly, 

ij ijkl ijklmn 

(2.33) 

where the lowered indices label the orbitals in the Hartee-Fock ground state from 

which electrons have been removed, and the raised indices label the orbitals to which 

the electrons have been excited. The series extend up to all N electron excitations. 

The a's indicate the degree of mixing and so for most systems a0 will be the largest 

a. It can be show that this expansion is exact within a basis set, i.e., at the infinite 

basis set limit the answer is the exact solution of the original Hamiltonian. 

The problem when using the full series, which is full configuration interaction 

(FCI), is the number of terms. Consider benzene in a minimal basis. A minimal basis 
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is one where a single function is used for each occupied atomic ,orbital along with one 

function for each unoccupied orbital of the same n and 1 as the occupied orbitals. 

So benzene would have one function per hydrogen, plus 5 for carbon for a total of 

36 spatial functions that generate 72 spin functions as each orbital function can be 

72 
associated with a spin up or spin down electron. So there would be 
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different expansions terms! This is far too many terms for any feasible calculation. 

So full CI must remain a dream. Rather partial CI methods can be done, where only 

some excitations are included. For example, there is CISD, configuration interaction 

singles and doubles, where only terms that involve removing one or two electrons from 

the Hartee-Pock ground state are considered. So for the example of a minimal basis 

benzene, there are 42 orbitals from which to remove an electron and 30 originally 

unoccupied orbitals to place one into so there are 1260 single excitations, and there 

are 374535 double excitations, for a total of 375795 excitations, almost 15 order of 

magnitudes fewer than with FCI! Though in both cases the number of terms can be 

reduced as wavefunctions with different spin symmetries, e.g. singlets and triplets, 

will not mix, but the number of excitations is still considerable. The result is that this 

method is very expensive computationally and has a very unfavorable scaling with . 
molecular size, so it is not practical for large molecules, at least in its present form. A 

more practical, though with a higher scaling that Hartree-Fock, method of mixing in 

contributions from Hartree-Fock excitations is to use perturbation theory, i.e. Moller-

Plesset (MP) theory. This theory consists of using ordinary perturbation theory, i.e. 



Raleigh-Schrooinger theory, with a particular partitioning of the Hamiltonian, 

H=HHF+V 

lL 1 L HF. v =- -- lJ (t). 
2 r·· t) . 

. t 
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(2.34) 

(2.35) 

So the starting point is the Hartree-Fock Hamiltonian and the perturbation is the 

different between the exact Coulomb potential and the Hartree-Fock potential. 

Elementary perturbation theory gives the zeroth, first and second order ground 

state energies as the following: 

Eo - LEa (2.36) 
a 

El - < '1/JolVI'I/Jo >=< '1/Joi(L r
1

· - L vHF(i))l'I/Jo > (2.37) 
t) i 

1 
2 L < a.bJJa.b >- L < a.JvHFla. > (2.38) 

ab a 
1 

- 2 L < abJJab > 
ab 

(2.39) 

E2 Ln 
I< OJVln >2 

(2.40) Eo -Eo ' 
' 0 n 

As usual the summation for the second order energy is over all states except the 

ground state and all are zeroth order states. The Hartree-Fock ground state energy is 

the sum of E0 + E 1 and so Hartree-Fock theory is correct to first order in correlation. 

Going to second order in correlation results in Moller-Plesset second order per-

turbation theory (MP(2)). So which states contribute to the second order energy? It 
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turns out that only states that are double excitations from the Hartree-Fock ground 

state contribute. A doubly excited wavefunction is a wavefunction obtained by re-

moving two electrons from orbitals which are filled in the Hartree-Fock ground state 

and placing them into orbitals that are empty in the Hartree-Fock ground state, i.e., 

promoting two electrons from occupied orbitals into' virtual orbitals. The Coulomb 

operator is a two electron operator, hence the appearance of only one and two elec-

tron integrals, and so it can only give nonzero matrix elements between wavefunctions 

that differ by only double excitations. The single excitations can be ruled out as well 

because the Hartree-Fock ground state is correct to first order already. That single 

excitations do not couple directly to the Hartree-Fock ground state can be proven 

rigorously as Brillouin's theorem. So the second order energy can be written as, 

(2.41) 

(2.42) 

in which a and b index the orbitals from which the electrons have been excited and 

r and s index the orbitals to which the electrons are promoted into. The E's are the 

orbital energies from the solution to the Hartree-Fock equations. 

One could, of course, continue of beyond second order. The computational scaling, 

however, becomes increasingly higher. There also are some other wavefunction-based 

theories that can improve on Hartree-Fock, again with at the expense of additional 
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computer time, thereby restricting their use to smaller systems. These methods 

are less commonly used for magnetic responses and so will not be surveyed here. 

An interested reader may find them elsewhere. The increase in computational cost 

is what makes using wavefunction based theories beyond Hartree-Fock difficult. It 

would be very useful to have a theory that has a similar computational complexity 

to Hartree-Fock, which is also capable of correcting the deficiencies of Hartee-Fock. 

Such a method is Density Functional Theory, the subject of the next chapter. 
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Chapter 3 

Introduction to Density Functional 

Theory 

The existence of a theory which at worst is as simple as Hartree-Fock theory, but 

which can in principle be exact, would be rather advantageous as it would increase 

the scope of electronic structure theory. Such a theory does exist: Density Functional 

Theory. This thesis is an explicit realization of a variant of density functional theory, 

magnetic field density functional theory. As such, an introduction to the basis of 

density functional theory is necessary for understanding this work. (1] 

AnN-particle system in 3 dimensions is represented by a wavefunction, '1/J(r}, r2, ... , rN, s), 

which is a function of 3N spatial variables plus the 3N spin variables, s. For most of 

this work, closed shell electronic systems shall be considered with Stat = 0. Hence, 

the spin label will now be dropped when considering the electrons. Of course, the 
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nuclear spin will be explictly considered. The probability distribution for a state, 

irrespective of spin, is, 

(3.1) 

This is interpreted as the probability of having particle one at position r 1 , particle two 

at position r2, up to particle N being at position rN. If this probability distribution 

is integrated over all but one set of coordinates, then the result is the probability 

of there being a particle at a particular position irrespective of the position of any 

other P3!ticle. The identity of the particle is also lost, however, for a set of identical 

particles, such as electrons in a molecule, there is no identity to lose. By integrating 

the N-electron wavefunction over all the coordinates save for the coordinates of one 

electron, the probability distribution for all the electrons is obtained. This is the 

electron density. 

(3.2) 

Unlike the N-particle wavefunction, the electron density is a physical observable. 

In particular, it is measured in x-ray diffraction experiments. These two aspects 

of the electron density: its physical existence and functional dependence on only 

three coordinates, render theories invoking it inore amenable to intuitive thought and 

simplification. Hence, it would be ,advantageous to transform electronic structure 
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theory, or some aspects of it, into a theory based upon electron densities not many-

particle wavefunctions. Formally, this is done in part by the theorems of Hohenberg 

and Kohn. [2) 

The first theorem is an existence statement. The external potential, v( r), is 

determined to within an additive constant, by the electron density, and vice versa. 

Hence, the electron density determines both the numbers of electrons in a system and 

the scalar potential felt by these electrons. Thus, the electron density determines all 

the ground state properties of a system. As the electron density is itself a function 

of the position vector, r, properties that are determined by the electron density are 

referred to as functionals of the electron density. A functional is merely a function 

of some quantity that is a function of other variables, i.e., a function of a function. 

This theorem demonstrates the existence of a· density functional theory, but does 

not present a prescription for determining anything from the density. As presented 

here, the Hohenberg-Kohn theorem is restricted to ground states in the absence of a 

magnetic field. There are generalizations that lift all of these restrictions. This work, 

however, will restrict itself to ground states. 

In DFT, there is no general prescription for the construction of functionals. This is 

a significant problem in density functional theory: the lack of a hierarchy of methods 

such as those present in wave function theory. This means more care must be devoted 

in the use of density functional theory and more creativity and work devoted to 

functional construction. Problems that are intractable in wavefunction based theories, 
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however, can be computed and understood using density functional theory. [3] 

The proof of the first Hohenberg-Kohn theorem is rather simple and relies on the 

variational principle. Generalization~ are possible [4], but this is the simplest version. 

Start by considering the electron density for the nondegenerate ground state of some 

N-electron system. Suppose there exist two different potentials, v(r), and v'(r) that 

each have the same ground state electron density, p(r). If these two potentials differ 

by more than a constant then they must have different Hamiltonians, H, and H', 

which generate the same electron density, but with different wavefunctions 'lj;, and '1/J'. 

Now to prove the theorem one simply uses the wavefunction from Hamiltonian Has 

a trial wavefunction for Hamiltonian H', and vice versa and arrive at a contradiction. 

In particular, 

Eo < < '1/J'IHI'l/J' >=< '1/J'IH'I'l/J' > + < '1/J'I(H- H')l'l/J' > (3.3) 

Eb + J drp(r)[v(r)- v'(r)J (3.4) 

E' 0 < < '1/JIH'I'l/J >=< '1/JIHI'l/J > + < '1/JI(H'- H)l'l/J > (3.5) 

Eo- J drp(r)[v(r)- v'(r)]. (3.6) 

Add these together and a contradiction is reached, 

Eo + Eb < Eo + Eb. (3.7) 
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Hence, the original supposition was wrong. Thus, there can only be one external 

potential that generates a particular electron density as its ground state. 

The second Hohenberg-Kohn theorem provides density functional theory with a 

formal variational principle. For an approximate density, p'(r), which integrates to 

the number of electrons such that, p' (f) 2: 0, then, 

Eo~ E[p'(r)] (3.8) 

Eo is the exact energy and E[p'(f)] is energy obtained from using the approximate 

density. 

In wavefunction based theories, the energy ·can be broken down into several dif

ferent components, e.g. kinetic, exchange, correlation and electron-nuclear. [5] This 

useful separation can also be done in density functional theory. 

The first separation that can be done is separating out the external potential, i.e., 

E[p(f)] = j p(r)v(r)dr + F[p(r)]. (3.9) 

F[p(r)] is everything else. This unknown functional is also composed of several pieces. 

F[p(r)] = T[p(r)] + Exc[p(r)] + J[p(r)] (3.10) 

T[p(r)] is the kinetic energy, which in density functional theory must be approximated. 
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J[p(r)] is the classical electron-electron interaction, e.g., 

(3.11) 

This is already known from classical electrostatics as a functional of the density. 

[6) Notice, this is a nonlocal functional as the value of the classical term at a particular 

point in r depends upon an integral over all space due to the dr' integral. 

oJ j -i p(r') 
8p(r) = dr lr - r'l (3.12) 

Other nonlocal functionals will appear later in this work. Most functionals in density 

functional theory are local. The locality is due to the manner in which they are 

constructed, and not necessarily due to any fundamental physics. The last piece 

E.'l:c[p(r)J is the quantum mechanical exchange and correlation which also must be 

approximated. As a further ansatz, the exchange and correlation are often considered 

individually, e.g., 

Exc[p(r)] = Ex[p(r)] + Ec[p(r)]. (3.13) 

The main problem in density functional theory is the actual construction of ap-

proximations to the functionals. The first set of approximations was actually con-

structed long before the theorems of density functional theory were proven. This 

I 
jl 
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model is the Thomas-Fermi model that was developed in the early years of the 20th 

century. [7], [8], [9] The electrons are treated statistically in a simplified model also 

referred to as the electron gas model. Despite being a rather approximate model, the 

Thomas-Fermi theory still forms the basis for most functional construction. There 

are at least three different methods of deriving the Thomas-Fermi functionals, the 

original electron gas method, plus more modern scaling and propagator methods. 

The scaling method is the simplest of the three. [1] By scaling, one simply means 

multiplication of the coordinate vectors by a parameter >.. The wavefunction, '¢, 

scales as, 

(3.14) 

>.3NI2 preserves the normalization. The kinetic energy scaling can also be derived 

remembering that the expectation values are integrals that must be scaled as well, 

\72 
T['¢] - < '1/JI-~ --fl'l/J > (3.15) 

t 

\72 
T['¢>.] - < '¢>-1 ~ --fl'l/J>. > (3.16) 

t 

- >-2 < '1/JI t- ~; 1'1/J > · (3.17) 
t 

T-!J.is is an exact scaling of the kinetic energy, and so even though it is derived from 

wavefunctions, it should be applicable to density functionals as well. The simplest 
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such functional that satisfies this scaling property is, 

T[p(r)] = j drp513(r). (3.18) 

A factor of >.5 is obtained from the p513 (r) upon scaling and a factor of >.-3 from the 

integral. Scaling does not allow one to obtain constants, and so scaling can only be 

used to obtain a form. Constants must be obtained from other methods, or by fitting 

to experimental data. 

The original electron gas method does allow one to obtain not only the scale, that 

1s, the power of the density, but also the constants. Consider a zero temperature 

electron gas. [10] Space is divided into many different cubic cells with sides of length 

a, and the particles are considered as being in a three dimensional infinite well, i.e., 

a particle in a 3D box, then the energy levels are 

(3.19) 

For large quantum numbers, the distribution of energy levels becomes nearly con-

tinuous and so the number of energy levels smaller than a given energy, a(E), can be 

approximated by one octant of a sphere. Only one octant is required as the ni's must 
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be positive. 

1 (4 * 1r * (n; + n~ + nz) 112
)

3 

8 3 
(3.20) 

(3.21) 

The density of states, g(E), is quite easily determined as, 

(3.22) 

To determine the total energy of the electrons and the numb~r of electrons per 

cell all that is left is to evaluate the appropriate integrals, 

E = 2 j Ej(E)g(c)dEN = 2 j j(E)g(c)dE (3.23) 

The 2 is from the double occupancy due to spin, and j(E) is the distribution func-

tion. For a zero temperature electron gas, the distribution function is just the zero 

temperature limit of the Fermi-Dirac distribution, which is just a Heaviside function, 

centered on the Fermi energy. Hence, the energy becomes, 

E (3.24) 

(3.25) 
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The energy is obtained as a function of the Fermi energy. One can also obtain the 

number of electrons per cube as a function of the Fermi energy. Then an inversion 

is possible to obtain the energy as a functional of the electron density. This method, 

that is, obtaining the density and the energy both as functionals of the same quantity 

and then inverting, is a common method of constructing functionals. The number of 

electrons per cell is, 

(3.26) 

(3.27) 

Now upon performing the inversion, 

(3.28) 

then substituting in the density :;_; and transforming to an integral, the following is 

obtained; 

(3.29) 

This has the same form as the result obtained by scaling arguments, as it should, 

but the constant has also been obtained. This is a kinetic energy functional as the 

electrons have been treated as particles in a three-dimensional box. Hence, the ex-
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change and correlation energies have been completely neglected thus far. 

Correlation is typically treated by numerically evaluating the correlation energy 

for a uniform electron gas and then fitting the res~lts to an analytic form. [11] 

Exchange can be added to Thomas-Fermi theory via the method of Dirac. The result 

is Thomas-Fermi-Dirac theory. [12] Dirac theory is derived in a slightly different 

manner then the one elucidated above. 

Note that the exchange energy, K[p], can be expre.ssed via the density matrix, [1], 

(3.30) 

So the density matrix for a closed shell N-particle system, 

N/2 

p(r1, r-2) = 2 I:: '1/Ji(r-I)'!/J;(r-2) (3.31) 

should be the starting point in which case the Hartree-Fock energy can be expressed 

as 

EHF[P] - j [~1 
"\lip(fi,f2)]r1=r2dfl + j p(r)v(r)dr + J[p] 

~ j ~p(r1, r2)p(r2, r1)dr1dr2. 
4 r12 

The first term is the kinetic energy, the second term is the electron-nuclear poten-

tial energy, the third the classical Coulomb interaction and the last the exchange 
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interaction. Correlation has been completely neglected. Two of these terms are auto-

matically in the form of density functionals, the other two- the kinetic and exchange 

energies - are functionals of the density matrix and they need to be expressed in terms 

of the electron density. Within the Thomas-Fermi-Dirac model, one starts with the 

electron gas model as before. The orbitals appropriate for this system when there are 

large numbers of particles and periodic boundary conditions can be employed, are 

plane waves 

\· 

'''(k k k ) 1 ik•r 'f/ ·x, ·y, ·z = Vl/2e . (3.33) 

The k's are the quantum numbers for the particle in a box, i.e., 

(3.34) 

The density matrix can now be obtained quite easily as 

(3.35) 

Of course, this begs the question as to what the occupied k's are, however, this 

question only need to be answered indirectly. First, make the sum into an integral in 
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k space, 

(3.36) 

(3.37) 

and then take the diagonal elements, which give the electron density, 

p(r) (3.38) 

(3.39) 

Again, the electron density has been obtained as a functional of one quantity, the 

Fermi momentum in this instance, and the quantity of interest, i.e., the density ma-

trix that will generate the energies, has been obtained as a: functional of the Fermi 

momentum as well. Hence, an inversion can be done at the end to transform between 

functionals of the Fermi momentum and the electron density. The integrations to 

obtain the density matrix must now be performed with a particular choice of coordi-

nates. For a uniform electron gas, the most sensible choice is, 

r1 +r2 
r 

2 
(3.40) 

s - rl- r2 (3.41) 
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thus, 

1 1kp 1~ 12~ p(fi, f2) - -
3 

k2dk ·. sin fJekrr 2 rosB df) d</> (3.42) 
4w 0 0 o 

' I 

- 3p(f)[X- .T~SX] (3.43) 
X 

X kp(r)s. (3.44) 

The scalar dependence on s has occurred because of the choice to have s lie on the kz 

axis. In order to obtain the Thomas-Fermi energy, the gradients must be transformed 

into the f and s coordinate system, and then the following result is obtained 

T[p] = T[p]rF- ~ J \i'~p(f). (3.45) 

The second term vanishes for any well behaved and bounded electron density. The 

exchange energy can be obtained every more easily by substitution and integration 

with the result, 

I ' 

(3.46) 

The entire Thomas-Fermi-Dirac functional can be used to obtain energies. It's 

very simple, but is not particularly accurate. Hence, it sees little use in its entirety.· 

The Dirac functional is often used with a more exact treatment of the kinetic energy, 

namely, Kohn-Sham Density functional theory in the local density approximation 
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(LDA). [13] Or in chemical applications, the Dirac functional is used as a starting 

point for more sophisticated functionals [3]. 

Another method of deriving the Thomas-Fermi-Dirac functionals is to use the 

single-electron propagator. [14] [15] This method has tht; advantage of being gener-

alizable. Obtaining gradient corrections to the kinetic and exchange energies is one 

way in which the Thomas-Fermi-Dirac method can be extended. Another extension, 

in the context of magnetic responses, is illustrated in Chapter 4 of this thesis. 

Both the density matrix and the propagator can be written in an orbital repre-

sentation, 

i=N/2 

p(r, r') = 2 L <Pi(r)<P:(r') 
i=l 

i=oo 

i=l 

j=oo 

< rtie-iHtlr'O >= L ie-iEjt<Pj(r)<Pj(r') 
j=l 

(3.47) 

(3.48) 

(3.49) 

Now a clever trick is to use an integral representation of the Heaviside function, 

(3.50) 



68 Chapter 3. Introduction to Density Functional Theory 

so that 

p(r, r') (3.51) 
t I 

(3.52) 

A representation of the density matrix in terms of the propagator is obtained. As 

the kinetic and exchange energies can be written in terms of the density matrix, an 

analytic approximation to the propagator generates approximations to the energy 

fnnctionals. 

Explicitly, the lowest level of approximation that can be done is to go just beyond 

the free particle propagator. [16] 

. 1 -(r-r')2 . _,-< rtle-tHtlr'Q >= (-. -)3/2e(-7. 2t -ttW(r ,r)) 
2mt 

(3.53) 

in which 

W(r', r) = 11 

V(r + (r'- r)E)dE. (3.54) 

Integration generates a density matrix 

(- _,) - ( k2 )3/2 ( I I- I)O(k2) p r, r - 2 I l2 13; 2 k r r , 21r r'- r 
(3.55) 
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where 

(3.56) 

J3; 2 is a Bessel function of order 3/2. From this density matrix, the kinetic energy 

functional can he obtained using Equation (3.32) , and the density by taking the limit 

:r'- :r, 

Inversion to remove the Fermi momentum results in the Thomas-Fermi relation 

plus corrections. The propagator method has the advantage of being the most readily 

generalizable. An improved approximation to the propagator will result in improved 

functionals. In chapter four this will he done explicitly . 
' I 

The more exact treatment of the kinetic energy that allowed density functional 

theory to find practical implementation is the Kohn-Sham density functional theory 

[13]. The usefulness of this theory relies on the realization that most of the energy 

in a hound system is kinetic and virtually all the kinetic energy can he obtained by 

considering a nonint~racting system with the same electron density. 

In particular, consider the following equations, which are true exactly for N non-
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interacting electrons, 

T[p] 
N 1 L < 'lj}ij- 2V'2 1Wi > 
i 

(3.58) 

p(r) (3.59) 
s 

where s is the spin variable, and the exact result for N interacting electrons is, 

T 
N 1 L ni < 'lj}ij- 2V'2 j'lj}i > (3.60) 
i 

N 

p(r) - L niL j'lj}i(r, s)j 2
, (3.61) 

s 

For an interacting system, this sum runs over an infinite number of orbitals with 

occupation numbers, 0 ::; ni ::; 1. 

To take advantage of these exact identities, a noninteracting reference system 

is invoked so there are no electron-electron potential terms. Instead, the electrons 

move in an effective potential, the Kohn-Sham potential Vks(r), which constraints 

the noninteracting electron density to match the true density. This potential must 

obviously include both the electron-electron and electron-nuclear potentials. 

Specifically, one solves the Kohn-Sham equations for the Kohn-Sham orbitals, (h 

(3.62) 



71 

where 

N 

p(r) = :L :L l<t>i(r:, s)l 2
, (3.63) 

I \ s 

and it can be shown that, 

' 1, _ _ 8J[p] 8Exc[P] 
Vks(r) = v(r) + c5p(f) + c5p(f) (3.64) 

(-) j p(r') d-' (-) 
v r + If_ f'l r +vxc r . (3.65) 

The density must of course be solved self-consistently just as in Hartree-Fock theory 

and there are N one-electron orbitals, (/Ji_ The form of the KS equations are very 

similar to that of Hartree-Fock theory; the difference lies in the VeJJ(f) that must be 

approximated, unlike the potential in HF theory. The Kohn-Sham potential can in 

principle be exact, which is not the case in Hartree-Fock theory. Orbital energies are 

also obtained in Kohn-Sham theory, 
_} 

(3.66) 

Kohn-Sham density functional theory simplifies the problem of finding functionals 

by handling the noninteracting kinetic energy exactly. The Kohn-Sham energy is not 
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just the sum of the Kohn-Sham orbital energie-S, 

"" 1 j p(r)p(r')drdr' j _ _ 
E = ~ Ci- 2 lr- r'l + Exc[P]- llxcP(r)dr 

1. 

(3.67) 

Flmctionals must now be discovered for the exchange-correlation and for any dif-

ference between the kinetic energy on an interacting and noninteracting system. The 

difference between the kinetic energies of interacting and noninteracting systems is 

incorporated into Exc[p(r)] through the adiabatic connection formula. [16) To obtain 

this, first expand out the Exc[p(r)], 

Exc[p(r) = (Vee[p(r)] - J[p(r)]) + (T[p(r)] - Ts[p(r)]). (3.68) 

I I 

For future simplicity, the full electron-electron interaction is denoted as Vee[p(r)], the 
I 

Kohn-Sham kinetic energy as T8 [p(r)], and the true kinetic energy as T[p(r)]. 

First, revert to wavefunction formalism and consider a system with a scaled 

electron-electron interaction, A Vee· If A = 1, then the system is the reaf fully inter-

acting system, if A = 0, then the system is completely noninteracting, and 0 < A < 1 -,. ,/ 

corresponds to systems with a reduced Coulomb interaction between the electrons. If 

the wavefunctions for each Hamiltonian along the path from A = 0 to A = 1 are con-
) I 

strained to give the same electron density, i.e., that for A= 1, then one has a smooth 

connection between the Kohn-Sham noninteracting system at A = 0 and the true 

interacting system at A .· 1. This idea forms the basis for the adiabatic connection. 
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. 
In particular, consider, 

I I 

F>-[p(r)] = < 4>>-I(T +-X Vee) I</>>-> (3.69) 

F1[p(f)] = T[p(f)] + Vee[p(r)] (3. 70) 

Fo[p(r)] = Ts[P(f)] (3.71) 

! ' Exc[p(r)] = 11 aF>-[p(r)] d.X- J[p(r)] (3.72) 
0 a.X 

So if oF).J~(i')) is known, and if approximations are made to this quantity over the whole 

range of .X, then the full energy can be obtained. 

r 
I 1. 

F>.[p(r)] + j p(r)v(r)dr E>. - (3.73) 

N 

- < 7P>-IF>- + I.:v(ri)I7P>- > (3.74) 

N 

- < 7P>-I(T +-X Vee)+ 2:.: v(ri)I7P>- > (3.75) 

Due to the Hellmann-Feynman theorem, 

(3.76) 

(3. 77) 

(3.78) 
I I 

' 
(3.79) 
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Hence, an explicit form of the difference between the noninteracting and interacting 

kinetic energies is not needed, but the price paid is the need to approximate the 

electron-electron interaction over a range of interaction strengths. 

Kohn-Sham theory can be generalized beyond the outline presented above. One 

such generalization is to incorporate spin so as allow for open shell systems. [17] 

Another generalization is Current Density Functional Theory (CDFT). [18] [19]The 

latter generalization is more relevant for this work. The Kohn-Sham theorems as 

presented above are valid whenever there is a scalar potential. Magnetic fields re-

quire the incorporation of a vector potential. Thus a generalization is required. This 

generalization was performed as a theorem by Rajagopal and Calloway. [18] They 

showed that one could obtain Hohenberg-Kohn theorems for a system in an arbitrary 

magnetic field. The energy functionals in this theory, however, are no longer function-

als of just the electron density, but rather of the electron and current densities. This 

makes functional construction more complicated as there are now two independent 

variables. As a result, it was not until several years later that the first functionals 

were constructed to take advantage of the theorems of Rajagopol and Calloway. This 

was the construction of Current Density Functional Theory by Vignale and Rasolt. 

[19] While being a very nice theory due to its generality, unfortunately, its complex-

ity has rendered it useless for molecular properties. In particular, there have been 

several valiant attempts by people from N.C. Handy's group to calculate magnetic 

susceptibilities and chemical shieldings for small molecules, but all the attempts have 

·I 

i \ 

I I 

..... 

i I 
I 

r 
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been computationally demanding, and not accurate. (20] Hence, a different theory 

is required for practical computation and f'-Specially for improved understanding of 

molecular magnetic responses. The' actual formulation of CDFT.done by Vignale and 

Rasolt involved formulating the functionals as functionals of the scalar p( r), and the 

vector ii(r) where, 

ii(r) = \1 X (Jp(~\ 
p(r) (3.80) 

}p(r) is the paramagnetic current density. Although the paramagnetic current density 

is not by itself gauge invariant, ii(r) is invariant. Thus, they were able to formulate 

their theory in terms of gauge invariant quantities. 

Start by considering a general formulation of CDFT. The energy of a system in 

an external magnetic field is thus, 

(3.81) 

where, 

Eo[p(r),}p(r)] = Ts[p(r),}p(r)] + j p(r)v(r)dr + J[p(r)] + Exc[P(r),}p(r)]. (3.82) 

Notice the dependence upon the paramagnetic current density of both the kinetic 

and exchange-correlation energies. Ts[p(r),}p(r)] can be defined in the normal Kohn-
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Sham manner except the vector potential must be included as well, i.e., 

[~( -i\l + Aett(i))2 + Ve!f(i)]¢i(r) = Eifj>i(r) (3.83) 

N 

p(i) = 2:: ¢; (3.84) 
i=l 

(3.85) 

The effective vector and scalar potentials need to be obtained by finding the ener-

gies and then taking functional derivatives with respect to the paramagnetic current 

density and the electron density respectively. 

N 1 J -L- 4>j(i)( '-i\l + A(i))2¢j(i)di + J[p(i)] 
. 2 
t 

+ j p(i)v(i) + Exc[P(i), ]p(i)] 

N 

L ~ j ¢j(i)(-i\l + Aett(i))2¢j(i)di 
t 

+ ~ j ((A(r)f- (Aett(i)) 2p(r)dr 

+ j ]p(r) • (A(r)- Aett(i))dr + J[p(r)] 

+ j p(i)v(i)di + Exc[P(i), ]p(i)] (3.86) 

I 
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After taking functional derivative.s , 

v. = (-) + ~[(A(-))2 _(A (-))2] + 8J[p(r)] + 8Exc[P(r),]p(r)] 
elf v r 2 r eff r op(r) p(r) (3.87) 

( -) 1 [(A-(-))2 (A- (-))2] oJ[p(r)] TT (-) 
= V T + 2 T - eff T + Op(f) + Vxc T (3.88) 

Ae11(r) = A(r) + oExc[~()~ ]p[r] = A(r) + Axc(r). 
OJp[r] 

Notice how complex the situation has become. There is an effective vector poten-

tial as well as an effective scalar potential. Additionally, the effective scalar potential 

depends on both the real and effective vector potentials. 

The equation for the Kohn-Sham orbital also becomes quite complicated. 

( _ ~\72 + v(r) + 8J[p~)] + 8Exc[p(r],3p(r)] + ~(A(r))2 _ ~(A(r) • \7 + \7 • A(r)) 
2 op(r) p(r) 2 2 

'l - -
- 2(Axc(r) • \7 + \7 • Axc(r)))<Pi(r) = Ei<Pi(r) (3.90) 

Now using the gauge invariant vector iiu(r) = \7 x [3;(~/J one obtains slightly different 

expressions for the exchange-correlation vector and scalar potentials, 

V (r) = 8Exc[p(r), iiu(r)] _ ]p(r) • Axc(r) 
xc p(r) p(r) (3.91) 

A (-) = _1_r1 8Exc[p(r), v(r)] 
xc T p( f) V X OV (3.92) 

so these gauge invariant exchange-correlation potentials can be used instead. 

While using v(r) has the advantage of rendering the theory gauge invariant, it makes 
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an already complex theory even more complicated. It's no surpnse that de.spite 

tremendous effort, CDFT has not proven useful for molecular magnetic responses. 

Another theory that has proven more useful in practical calculations, is the coupled 

DFT approach of Malkin, Malkina and Salahub. [21] This method is / approximationa 

perturbation theory approach in which matrix elements are taken with respect to the 

Kohn-Sham orbitals. This is mildly suspicious as the Kohn-Sham orbitals are intended 

solely for the determination of the kinetic energy of noninteracting systems. In order 

to obtain reasonable results an empirical fix is required. The results obtained for 

many systems are surprisingly good, and better than Hartree-Fock results. 

In particular, in order to perform perturbation theory, one needs matrix elements 

for the paramagnetic portion of the chemical shielding, 

(3.93) 

where 

(3.94) 

is the perturbation. Most of the details are irrelevant for this work. All that is nee-

essary, is to notice that the Kohn-Sham orbital energies are used in the denominator. 

An interested reader can examine the details of the perturbation treatment for himself 

in reference 21. 
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Using these equations did not lead to good results until an empirical correction 

was made in the denominator 

(3.95) 

The "level shift" a:, was made because Kohn-Sham theory tends to describe unoc-

cupied orbitals badly. Other than that there is no justification for this shift and it 

should be considered as an ad hoc adjustment of the theory to match experimen-
' 

tal data. Notice there is also a complete neglect of any explicit dependence of the 

exchange-correlation functional upon the magnetic field. Though given the weakness 

of NMR fields, this neglect is likely not to be significant. 

The desire to have an alternative to both CDFT and Salahub's treatment for 

magnetic responses in weak magnetic fields lead Harris and Grayce to demonstrate 

the existence of yet another type of density functional theory, the Magnetic Field 

Density Functional Theory. [22] This theory is the main topic of this thesis. 

There are a few main features of this theory: rigorous dependence on only the 

electron density and the magnetic field, lose of universality with respect to the vector 

potential, no separation into paramagnetism and diamagnetism, and the second order 

property theorem. The latter is the most important piece of the theory. The second 

order property theorem says that in a weak magnetic field the second order responses 

are functionals of the electron density in the absence of the magnetic field. This 
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is an incredibly profound statement! According to this, NMR is really probing the 

ground state electronic structure of the systems. All the methods that require excited 

state corrections are doing something unnecessary that clouds understanding of the 

responses and make computations more demanding. 

To demonstrate the existence of this theory, first note that for a fixed gauge then 

in the absence of an accidental degeneracy, the ground state wavefunction is a unique 

functional of the magnetic field and the scalar potential. Thus, for a fixed magnetic 

field, there is a one-to-one correspondence between the electron density and the scalar 

potential. This is where universality is lost as one cannot arbitrarily vary the field 

with a fixed functional, i.e., the h~nctionaJ and field must vary together otherwise 

there is a many to one mapping from densit.y to scalar potential. The magnetic field 

may be considered as a parameter as in this work as there is only one field of interest: 

the two-dipole field and limits thereof. The field may instead be considered as the 

variable that replaces the current density. The lack of universality is an advantage 

here because for a large class. of problems, the weak field magnetic responses, there is 

now a density functional theory of one variable alone. 

Kohn-Sham equations exist in this theory as in most other variants of density 

functional theory. There are, however, two possible sets of Kohn-Sham equations. 

The first is the more typical, 

1 A(r) 2 - - - -
[2( -i\7 +-c-) + VeJJ(r, B)]<l>n(r, B) = En(B)4>n(r, B) (3.96) 
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so that the typical definitions of the noninteracting kinetic energy, the total energies 

and the effective potential can be made, for closed shell systems, 

N~ -

Ts[P, B] = 2 L j dr</J~(r, B)~( -i\7 + A~r) )2</Jn(r, B) 
t 

(3.97) 

F[p(r), B] = Ts[P, B] + Exc[p(r), B] (3.98) 

v. _ v- J d_,p(r, B) aExc[p(r), B] 
eff- r + r lr- r'l + 8p(r) (3.99) 

thus one has a set of self-consistent equations to solve which require the approximation 

of Exc[p(r)], B]. 

The second set of Kohn-Sham equations that can be constructed is atypical, but 

these equations have their own advantages, 

1 2 - - - -
[2( -i\7 ) + Vef!(r, B)]<Pn(r, B) = En(B)<Pn(r, B) (3.100) 

_ N/2 J _ 1 _ 
Ts[P, B] = 2 L dr<P~(r, B)2"( -i\7)2</Jn(f, B) 

t 

(3.101) 

F[p(r), B] = Ts[P, B] + Ekxc[p(r), B] (3.102) 

v. = V(r) + J dr'p(r, B) + aEkxc[p(r), B]_ 
eff IT- r' ap(r) (3.103) 

The principle advantage of the latter is that the orbitals can be purely real and 

there is no separation into diamagnetic and paramagnetic. The price is the need to 

approximate a kinetic-exchange-correlation functional. 

The most impo,rtant piece left of the foundations is the proof of the second order 
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property theorem, which allows one to avoid calculation of the first order corrections 

to the density in the computation of magnetic responses. 

This theorem is for weak magnetic fields as it is based upon perturbation theory. 

In particular, first expand the energy to second order with respect to its explicit 

dependence upon the field, 

(3.104) 

The quadratic term is taken in the limit as the field goes to zero, and there are only 

even powers of B due to· time reversal symmetry as discussed in Chapter 1. The 

I 

energy is even under time reversal, but an external field is odd. Hence, fields can 

couple in with only even powers. Though if there are two fields present, such as a 

uniform field and a dipole field, each field could couple in linearly. 

Although the energy has been expanded with respect to its explicit field depen-

dence there still is an implicit field dependence through the density, as the electron 

density itself depends upon the field. Now expand out the energy with respect to this 

implicit dependence, 

(3.105) 



where the following are defined 

p0(f) = p(f, 0) 

2(- B-)= B2d?p(f, B) 
p r, dB2 . 
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(3.106) 

(3.107) 

Each series is stopped at second order due to the weak field, and the normalization 

of p( f) requires that 

(3.108) 

As a result the energy to second order is 

E[p(f),B] - Eo[ o(-)] +B2a2F[po(f),B] +jd- 2(- B)[aF[po,o] 
p r 8B2 rp r, 8p(f) 

V( -) jd-' POCf) l 
+ r + r If - f' I + ... 

The first term in the expansion is the zero field energy. The zero field density mini-

mizes this. Applying this variational condition causes the last term to vanish for the 

true ground state electron density. Thus, 

(3.110) 

which completes the proof as only the ground state density is needed. Now if the 
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full functional is used, rather than the Kohn-Sham equations, then the explicit B 

dependent term, which corr~..sponds to the second term, can be found by examination. 

As the Kohn-Sham equations are used in any practical application, the problem seems 

to be more complicated as 

(3.111) 

where E? = Ekxc orE?= Exc depending upon the Kohn-Sham equations used. Now 

the latter term can be obtained trivially by examination given some approximation 

to the functional. The explicitly field dependent portion of the noninteracting kinetic 

energy, however, cannot be found by examination because the orbitals are not known 

as functionals of p(r, B). 

The explicit field dependence of the kinetic energy, however, can be obtained. 

Consider T 5 as an expectation value of a one-electron kinetic energy operator, as in 

coupled Hartee-Fock theory, 

N/2 

Ts = L < iltli > (3.112) 

then the explicitly field dependent portion becomes 

(3.113) 
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Now if the first set of Kohn-Sham equations is used then all the terms above are 

prE>.sent, and one need calculate linear field corrections to the Kohn-Sham orbitals. 

The second order property theorem is still valid as these corrections can be calculated 

with the zero field electron density. Now if the second set of Kohn-Sham equations 

is used, then the one-electron kinetic energy operator is just 

1 2 
t = --\1 

2 

and hence, the energy to second order in the field is given by, 

which means there is another advantage to the second formulation. 

(3.114) 

(3.115) 

The basic and essential elements of density functional theory both with and with-

out magnetic fields have been reviewed. The background has been laid for further 

development of Magnetic Field Density Functional Theory (BDFT) as discussed in 

the next few chapters. 
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Chapter 4 

Local ·current Density Functionals 

In this chapter, I present my work on local current density functionals. These 

functionals are used with the Biot..:Savart integrals to obtain the magnetic responses 

as functionals of the zero field electron density. A gradient expansion of the electronic 

current density in the electron density is used to obtain these expressions for the 

magnetic susceptibility and chemical shielding. The first term in the expansion is 

the Thomas Fermi expression. All succeeding terms diverge for both properties. A 

renormalized functional is used which removes the divergences and gives asymptotic 

diamagnetism. This renormalized functional uses a single parameter that depends 

linearly on the number of electrons gives heavy rare gas susceptibilities to within 1% 

of exact calculations using electron densities calculated at the same level of theory. 

Similar results are found for the chemical shielding. Susceptibility and shielding 

calculations for the helium dimer and the hydrogen molecule in singlet and triplet 
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states are presented. The results are compared with other calculations over a full 

range of internuclear distances. 

4.1 Introduction 

The earliest use of density functional theory as a means of calculating magnetic 

responses may be found in the work of Cina and Harris. [1] They used an electron gas, 

or Thomas-Fermi-Dirac, type theory to calculate the magnetic susceptibility tensor 

of the triplet state of H2 . Grayce and Harris then used a similar description of the 

electrons to calculate the shielding tensor of the same state of H2 . [2] 

The above usage of density functional theory might be called a "'pure density 

functional theory". That is, responses are obtained from an energy functional by 

invoking the Hellman-Feynman theorem and taking the appropriate derivatives. This 

method is in contrast to more recent calculations that solve the Kohn-Sham equations 

in a vector potential. [3] 

In 1995, an entirely different theory of magnetic responses was advanced. [10] 

[11] This theory demonstrated that the magnetic responses are all related to a single 

tensor response functional. This functional is a universal functional of the electron 

density in the absence of the magnetic field. The functional is, of course, unknown. 

If one could find reasonable approximations to the functional, all field dependent 

methods of calculating magnetic responses could be dispensed with. This may well 

lead to a simpler way of obtaining and understanding the responses. 
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Locally uniform approximations to the functional have been developed. These 

were developed by Cina and Harris [1) and Grayce and Harris, [2), in what may 

be considered precursors to the general theory. In reality their work was a hybrid 

of ideas. As the functional was meant for application to interacting closed shell 

systems, additive densities were used. These additive densities were used as their work 

was based upon Gordon-Kim theory. [11] In Gordon-Kim theory, additive densities 

are used to obtain incremental responses. The full responses are obtained with the 

additive densities and then the atomic responses are subtracted away. The hope 

is that the incremental responses are modeled well. Gordon-Kim theory has been 

applied with some success to electrical responses. [12) In the work of Harris and Cina 

and Grayce and Harris, each atomic density was in the presence of the appropriate 

magnetic fields. Thus, terms in the functional, which would make no contribution 

if the exact nonadditive density were used, are manifestly present. This seeming 

contradiction to the tenets of the general theory is not a surprise. A similar result 

occurs in all linear responses via density functional theories of interacting closed shell 

systems: additivity in the presence of external fields is approximately equivalent to 
' 

nonadditivity in the absence of the fields. [11) 

In this chapter, an attempt is made to obtain the magnetic susceptibility and the 

chemical shielding directly from the total current density. [18),[19),[20) The result-

ing integral expressions, (sometimes called the "Biot-Savart integrals") [20), for the 

shielding and susceptibility are consequences of linear response theory. As such, the 
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induced current density may be looked upon as a response. Hence, according to the 

general theorems of BDFT, the current density is a linear function of the external 

magnetic field and a functional of the unperturbed electron density. 

The attempt to construct responses via the· induced current density has a long 

history. [15], [16], [17] Such attempts usually involve bypassing perturbation theory 

or using a Dalgarno-Lewis version of perturbation theory. [16](17] Indeed there even 

has been attempts to construct currents from a form of quantum hydrodynamics. 

(16] None of these theories related the current density to the unperturbed electron 

density, although some came close. [15] 

4.2 The Current Density 

The current density, ](r), is not arbitrary. [12] For a bound stationary state it 

must be transverse, 

v • ](r) = o ( 4.1) 

and so one must have, 

](r) = v x M(r). ( 4.2) 
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As the chemical shielding and the magnetic susceptibility are the quantities of interest, 

the linear response regime may be considered. In this regime, the external magnetic 

field is constant and uniform. Hence, the most general form of M ( r)), to within a 

gradient of a scalar, is 

(4.3) 

- ::. (2) 
M<0>(r), M(l)(f) and M (r) are, respectively, irreducible zero, first and second rank 

tensors. The shielding and susceptibility tensors may be written in terms of the M 

tensors through use of the Biot-Savart integrals (12],(14) 

and 

1 j 3 · _ o](r) 
X-rf3 = -2 d r(r x 8Bf3 )-y (4.4) 

(4.5) 

Substitution of Eqn. ( 4.4) into Eqn. ( 4.5) gives a contribution from !Vf(l) to x that 

is a rank one tensor, so that the full x tensor would be asymmetric. The X tensor, 

however, is symmetric, hence M(l) must equal zero. M(o) contributes to the scalar 

- ::. (2) 
component of both J and X , as well as the symmetric component of (j . M 

contributes to all ranks of both responses. 
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Now the M tensor will be determined as a functional of the unperturbed electron 

density. In order to orient oneself, begin with the only systems, besides the nonin-

teracting uniform electron gas, where the current density and hence, M,- are known 

exactly, given that the magnetic field is either constant or that due to a nuclear spin. 

[12] These systems are closed shell atoms, or more generally, any rotationally invari-

ant bound system in a state of zero angular momentum. Here the current density is 

entirely diamagnetic. (12] That is, in the gauge where 

(4.6) 

and, e.g., 

- 1 -
A(r)) = 2B x r, (4.7) 

the current density is, in units where all constants are set equal to one, 

](f)= -A(r)p(r). ( 4.8) 

Thus, 

(4.9) 
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From Equations (4.8) and (4.9) the scalar, M(o) may be determined, namely, 

r' 
M(o) = ~ Jo dr' p(r'). (4.10) 

Now the scalar susceptibility and shielding are given, respectively by, 

X=- J drM(o)p(r) (4.11) 

and 

(4.12) 

The _Af(O)(O) indicates evaluation at the nucleus whose shielding is to be calculated. 

In terms of the density, the well-known results are, [10] 

(4.13) 

and 

a= 100 

drrp(r) (4.14) 

As mentioned above, the starting point will be the locally uniform electron gas 

model. Here, as shall be seen , both the current density and M(o) (0). are local func-
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tions of the density. Hence, by comparing Eqn. (4.12) in the local electron gas 

limit with Eqn. ( 4.15), a failure of the local theory is immediately seen. The exact 

di.amagnetic M<0>(o) is nonlocal. Hence the shielding is an integral over all space. 

The shielding in the local electron gas theory depends on the density at the nucleus 

(r=O). Thus, it should come as no surprise that a purely local theory may fail to 

predict shieldings well, but may generate reasonable susceptibilities. Nor should one 

be surprised if a "corrected" local theory requires different functionals for shieldings 

and susceptibilities. 

4.3 The Gradient Expansion of The Current Den

sity 

The problem is how to obtain the current density as a functional of the density. 

It shall be assumed that the current density is that which arises from the solutions 

of the Kohn-Sham equations, e.g., Equations 3.36-3.69, in the presence of a vector 

potential. [7),[19] Thus, the current density constructed is not exact. If the Hellmann

Feynman theorem is used to derive the current density from the energy functional, 

there are additional terms. [9] The present approximation is the same approximation 

used in the work of Harris and Cina [18] and the path integral theory of Harris and 

Pratt. [19] The situation is not unlike the so-called "adiabatic approximation" in 

time-dependent density functional theory. [20] 
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Given the above approximation, the many-electron current density for a closed 

shell system may be expressed in terms of the propagator of a single electron in a 

scalar potential, V(r), and a vector potential, A(r). [1] Namely, 

- -2;oo-i-y dt (\7'- \7) -
j(r) = -

2 
. -lim [ . +A( f)] < rtir'O >, 

1ft -oo-i-y t r'-+r 2t 
( 4.15) 

in which 

< rtir'O >=< rtie-itHIT'O > ( 4.16) 

is the single electron propagator and H is the single electron Hamiltonian in the 

presence of a scalar potential, V(r), and vector potential, A(r). The Fermi energy 

has been absorbed as a constant in the Hamiltonian. The density, p(r), is also given 

' 
by an integral over the propagator: [21] [22] 

2 ;oo-i-y dt 
p(r) = -

2 
. - < rtirO > . 

1fl -oo-i'y t 
( 4.17) 

Obtaining reasonable approximations for the propagator may be carried out via a 

generalization of the method of Makri-Miller. [23] Begin with the anzatz 

(4.18) 
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This ansatz starts with the free particle propagator in three dimensions and ex-

tends it using W(r, t). The dependence of Won r' is implicit. In the weak field limit, 

write Was 

- _, _) - rxr 0 _ 1 _ 
W(r, t = B • -

2
- + W (r, t) + W (r, t) (4.19) 

iJ • r-~r-' + W 0 (r, t) represents the propagator when, to lowest order, there is no 

coupling between the magnetic field and the scalar potential. [24] W 1(r, t) represents 

the coupling to first order in the field. W 0 (r, t) has been calculated by Makri and 

Miller. (23] 

An equation for W 1(r, t) shall be obtained by substituting Eqn. (4.19) and Eqn. 

( 4.20) into the time-dependent Schrodinger equation and linearizing with respect to 

the magnetic field. The resulting equation for W 1(r, t) is 

( 4.20) 

W 0 (r, t) is symmetric in r and f', and W 1(f, t) is antisymmetric in these same vari-

abies. Upon using these symmetries in the equation for the current density, the 

following result is arrived at, 

-:(_) 2 ~oo-i-y dt iWo(f f' t) 
1
. (\7'- \7)W1 (f, r', t) 

J r = -. -e ' ' 1m . . 
21rz -oo-i-y t r'-+r 2z 

(4.21) 
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Both position variables, r and r', have been explicitly indicated. The diamagnetic 

contribution to the current density is exactly canceled by the B•;xr' termin W(r, t) 

as W((r, t) is exponentiated in the propagator and derivatives are then taken. 

A gradient expansion for ](f) is sought for in terms of the electron density. This 

may be accomplished by expanding both W 0 (r, t) and W 1(r, t) as power series in 

time, and then expanding both the current density and the electron density in terms 

of the potential and inverting to obtain ](r) as a functional of the electron density, 

][p(r)]. Thus, 

(4.22) 

and 

( 4.23) 

The first nonvanishing contributions to the W's appear at t2. This can be demon-

strated by allowing for lower order terms and then substituting into the Schrodinger 

equation. All lower order terms are contained already in the free particle propagator, 

~ 
( 2;it)

312e' r-;; . After substituting the W 0(r, t) power series into Eqn. (4.21) one 
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obtains, 

n 

(n -l)W~ + (r- r'). \i'W~- i\72WL1 + L \i'W~. V'WLm 
m=2 

(4.24) 

where n = 3 ... oo . The lowe_st order contribution to the current density is Wi, which 

yields the current density 

-: - B X \i'W~ 
J(r) = l27r2 (2W~)1/2 . ( 4.25) 

Since W~ = -V(r) after taking the limit, one can change the current density from a 

functional of the potential into a current density that is a functional of the electron 

density. This is done via the Thomas-Fermi relation, [20] 

(4.26) 

The resulting current density is identical to the Thomas-Fermi current density derived 

by Harris and Cina, as it should be. [18] 

-: _ iJ x \7 p(r) 
J(r) = 12(37r2)2/3 

Their treatment is equivalent to the present one in lowest order. 

(4.27) 
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Now the treatment is extended to fourth order in time. This gives the first gradient 

corrections to the Thomas-Fermi current density. The relevant part of the propagator 

is, 

(4.28) 

to third order in gradients the current density is, 

B X \i'W~ B X \7\72W~ (B X \7W~)\72W~ 
](r) - 127r2 (2W~)1/2 - 487r2 (2W~)3/2 + 167r2 (2W~)5/2 

B X \7W~(\7W~)2 B X \7\i'W~. \i'W~ 
+ 1927r2 (2W~)?/2 967r2(2W~)5/2 (4.29) 

Inversion to obtain the current density as a functional of the electron density requires 

the use of the Thomas-Fermi relation for the last two terms. The first term requires 

gradient corrections to the electron density .(25] 

Instead of writing the current density explicitly, it is written in terms of M. Only 

A1° appears to second order in the gradients of the density. 

0 pl/3 2/3[ 1 4 2 V'•i)] 
M = 4(37r2) 1 + 3(311"2)2/3 ( gx + 2pl/3 ' ( 4.30) 

where i = ~f3 . As the gradient expansion at this order contains only M 0 , only the 
p 

scalar component of the magnetic susceptibility can be calculated and the scalar and 

symmetric component of the chemical shielding. Tensor terms do not appear even 
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to sixth order in time in the gradient expansions. It may very well be that no finite 

gradient expansion can ever give tensor terms. 

An additional deficiency of the gradient expansion is the divergence of the terms. 

If the full gradient expansion is used to calculate the magnetic susceptibility, the result 

diverges. The reason is that atomic and molecular electron densities are exponential 

at long range. Since (''\lp) 2 j(pf13 
---t p-113 as does V 2pf(p)413 , the resulting integrals 

over all space diverge. p113 is still finite in this instance; although the decay is not 

fast enough to recover diamagnetism. This divergence is the same type as that which 

appears in gradient expansions of the kinetic energy at sixth order in the dimensionless 

variable x, and at fourth order for the exchange energy. [26) In· the case of the 

current density, the divergence occurs at a lower order because the scale, p113 , is at a 

lower power of the density. Similarly, the expression for the shielding in the gradient 

expansion, Eqn. (4.13), is incorrect because the infinite surface integral has been 

neglected. This point shall be returned to in a little while. 

4.4 Atomic Susceptibilities and Shieldings 

Suppose that the current density is truncated at the Thomas-Fermi current den

sity. What accuracy can be expected? Cina and Harris performed calculations for 

the susceptibility of the hydrogen atom and the triplet state of hydrogen molecule 

within the additive density approximation. They called their term "the direct term". 

Similar calculations were performed using the exact density of the hydrogen atom, 
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Table 4.1: Atomic. Shieldings and Susceptibilities (atomic units) 
Atom Exact Exact TF TF TF +grad 

Shielding Susceptibility Shielding Susceptibility Shielding 
H 0.333 -0.500 0.282 -0.958 0.294 
He 1.127 -0.394 1.005 -0.841 1.058 
Ne 10.7 -1.388 5.787 -1.064 6.017 
Ar 22.9 -4.34 10.28 -2.576 11.96 
Xe 106.2 -9.00 31.57 -4.308 32.8 

e~
2

r, and Hartree-Fock densities [27] for helium, neon, argon, and xenon. The shield-

ing has also been calculated using the same approximations for the electron densities. 

The results are given in Table 4.1. The exact calculation of the diamagnetic sus-

ceptibilities and chemical shieldings, using the same densitie-S as those used in the 

Thomas-Fermi calculations, is presented for comparison. 

The Thomas"'Fermi results for the susceptibility are within a factor of 2.2 in all 

case-B. For hydrogen and helium Thomas-Fermi overestimates. For the remaining 

atoms, however, the results are too low. The reasons for the trend in the Thomas-

Fermi magnetic susceptibility is that the Thomas-Fermi susceptibility density, i.e. the 

integrand in the susceptibility integral (Eqns. 4.12 and 4.14), decays far too slowly at 

long distances, but also is too small at short distances. For hydrogen and helium, the 

Thomas-Fermi underestimate at short distances is over-compensated by the slower 

decay at long distance. For the heavier elements, the short distance shell behavior 

is more important, and so the underestimate at short distances is not compensated 

by the long-term distance behavior. That neon is most accurately represented by the 
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I I 

Thomas-Fermi function is simply a manifestation of these two errors approximately 

canceling. 

The behavior of the chemical shielding is harder to understand. In a local density 

functional theory, the shielding is a functional of the electron density at the origin 

alone, whereas in exact diamagnetism, the shielding still involves an integral over all 

I '> space. The inconsistency here may be an indication that a local density functional 

theory cannot represent the chemical shielding accurately, or it could mean that 

different functionals are needed to represent the shielding. 

As discussed earlier, the gradient expansion for the magnetic susceptibility di-

verges as does the gradient expansion for the shielding. For the shielding, the diver-

gence appears in the infinite surface terms that must sum to zero as the exact result is 

finite. The local contributions are finite. Thus, gradient corrections to the Thomas-

Fermi may be considered, if only the local terms are kept, disregarding the divergent 

surface terms. These surviving terms involve the electron density, the gradient of the 

electron density, etc., all evaluated at the nucleus. 

The gradient-corrected calculations have been carried out for the noble gas atoms. 

Using the first correction to Thomas-Fermi, 

( 4.31) 

As may be seen in Table 4.1, the improvement is not great. 
I I 
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I I 

To improve on the Thomas-Fermi functional and its gradient corrections, inspi-

ration was taken from the work of A. D. Becke. (28], [29],[30) The crucial idea is 

that to improve a Thomas-Fermi functional one should multiply it by a function of 

the dimensionless variable x = (~~;J), such that in the limit of the gradients going to 

zero, the Thomas-Fermi function is recovered, and such that some exact constraint, or 

constraints, of bound systems is satisfied. Becke constructed an exchange functional 

in this manner by considering the exact expression for the exchange hole. The same 

is done for the current density. 

At long distances, one should not be able to tell the difference between at atom and 

a molecule, as in both cases the electron density looks the same. Atoms are, of course, 

purely diamagnetic. Thus, the long-range behavior which one would like to recover is 

the one in which M 0 --+ p(r)r2 /2. This reproduces asymptotic diamagnetism in the 

susceptibility density. The susceptibility density is the integrand of the susceptibility 

integral. The functional arcsinh[x]/x --+ r[p(r)p13 as the electron density becomes 

exponential at large distances. There are many functionals that could reproduce this 

behavior. The only one, which was found to be reasonably successful in reproducing 

both the susceptibility and the susceptibility density, was: 

(4.32) 

Q is a linear function of the number of electrons. Figures 4.1-4.4 show how well the 
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modified functional reproduces the exact susceptibility density. 

It must be pointed out that M(O) as represented by Equation 4.32 has a serious 

flaw. It can never give net paramagnetism because it is always positive. This is 

because the constraint of asymptotic diamagnetism was imposed without sufficiently 

flexibility. This restricted physical behavior is also true of the Thomas-Fermi M(o) 

and its first gradient correction. Hence, one must be satisfied with obtaining responses 

in the region of net diamagnetism. 

These modified functionals have been used to calculate the magnetic susceptibili

ties and the chemical shielding of hydrogen, helium and the heavier noble gas atoms. 

Table 4.1 shows the atomic susceptibilities as given by the Thomas-Fermi approxi

mation as well as the exact results. As the deviation between the exact results and 

the ones obtained by using the fit functional is 1% or less, the fitted results are not 

prf>..sented. Different Q's had to be used for the susceptibility and the shielding, Qx 

and Qu respectively. The Qx for hydrogen and helium is different from that for the 

heavier atoms and is given by 3.92 for hydrogen and 3.41 for helium. The Qx of 

the heavier atoms is fit to a functional of the form,Qx = .0067 N + 4.26, where N is 

the number of electrons. Qu for the three heavier atoms may also be fit to a linear 

function of N: Qu = 0.0232N + 1.87. For hydrogen and helium, the values of Qu are 

1. 79 and 1.65, respectively. 

The modified functional corrects the shielding results from the Thomas-Fermi 

functional and the gradient corrected functional. As indicated above, the fitted shield-
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Exact Ma~tic Susceptibility Density of He 
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Figure 4.1: The exact magnetic susceptibility density of He is shown. The electron 
density is obtained from the wavefunctions in ref. 30. 
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Figure 4.2: The magnetic susceptibility density of He obtained from the Beckeized 
functional is shown. The electron density is obtained from the wavefunctions in ref. 
30. 
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Exact Magnetic Susceptibility Density of Ne 
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Figure 4.3: The exact magnetic susceptibility density of Ne is shown. The electron 
density is obtained from the wavefunctions in ref. 30. 
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Beckeized Magnetic Susceptibility Density of Ne 
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Figure 4.4: The magnetic susceptibility density of Ne obtained from the Beckeized 
functional is shown. The electron density is obtained from the wavefunctions in ref. 
30. 
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ing functional requires different values of the parameter Q than does the susceptibility 

functional. The N dependence is much stronger for the shielding than for the suscep

tibility. This is because the functional doE'-S not correctly reproduce the short-range 

dependence of the shielding density. This problem requires a functional that repro

duces diamagnetism close to the nucleus. Clearly the values of the parameter Qu 

which generate good values of the shielding for the atoms are those for which cancel

lation of error occurs. 

4.5 Susceptibilities and Shieldings for H 2 and (He )2 

Calculations of susceptibilities and shieldings have also been performed for the 

hydrogen molecule in both the singlet and triplet states, and for the helium dimer. 

These calculations were carried out at a variety of internuclear distances. These 

calculations were carried out using Thomas-Fermi, gradient-corrected Thomas Fermi 

(for the shielding), and the modified M(0l's. 

These results were calculated using Mathematica (31] with input densities from 

GAMESS. (32] The densities are constructed from finite superpositions of gaussians. 

Hence, the cusp condition at the nucleus is poorly satisfied. It is precisely the gradient 

at the origin that matters in the shielding calculations beyond Thomas-Fermi. The 

density at the origin is quite good. Instead of using the calculated radial derivative, 
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the radial cusp condition is imposed, [33], [34] 

d~~) = -2Zp(O). (4.33) 

p( r) is the radial density; that is, the coefficient of the zeroth rank spherical harmonic 

in an expansion of the density in spherical harmonics. Direct calculation shows that 

the angular gradient contributes only a few tenths of a percent in all cases that have 

been considered. 

Now consider these results in light of a few general considerations. The magnetic 

responses of the hydrogen singlet must be diamagnetic over the full range of internu

clear distances. The reason is simply that a two-electron system in its ground state 

has no nodes. [15], [35] The triplet state of hydrogen and the He dimer do have 

nodes, hence, they may exhibit net paramagnetism in principle. Thus; these results 

are expected to be particularly poor when there is a region of internuclear distance 

near where net paramagnetism is obtained. 

Consider first the He dimer. Van Wullen [36] has carried out a careful calculation 

of the chemical shielding. All three of the functionals give close agreement with 

Van Wallen's calculations near the united atom limit. At large internuclear distance, 

all of the functionals reach the separated atom limit; a limit that differs somewhat 

for each functional. The separated atom limit is so close for all three functionals 

because the Thomas-Fermi theory is J;"ather accurate, as illustrated in Table 4.1. As 
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Table 4.2: Chemical Shielding of Helium Dimer (ppm) 
Internuclear Internuclear 

distance (Angs.) T-F T-F distance ( Angs.) 
current chapter Modified with gradients V.W. Van Wullen 

0.2 87.25 65.45 68.01 74.96 0.21 
0.25 79.69 61.5 64.12 58.37 0.24 
0.3 69.61 58.5 61.19 -15.24 0.29 

0.35 66.81 56.28 59.04 -122.85 0.34 
0.4 51.83 54.76 57.54 -119.94 0.40 
0.45 63.91 53.8 -96.76 0.42 
0.5 63.35 53.27 56.1 -53.06 0.48 

--... ~ 

0.55 63.04 52.98 -20.31 
0.53 
0.6 62.65 52.83 55.68 
0.7 62.28 52.64 55.50 24.26 0.66 
0.8 61.88 52.46 55.33 42.99 0.79 
0.9 61.5 52.09 55.15 51.59 0.93 
1 60.72 52.09 54.98 55.75 1.06 

1.25 60.25 51.71 54.62 58.85 1.32 
1.5 59.92 51.49 54.41 59.64 1.59 
2 59.86 51.32 59.86 2.12 

2.5 59.86 51.30 59.86 2.65 
3 59.86 51.30 54.23 59.86 3.18 

3.5 59.86 51.30 54.23 

expected, at intermediate distances, none of the shielding functionals exhibit net 

paramagnetism. The results are presented in Table 4.2 and Figure 4.5. The authors 

are not aware of any published calculation of the magnetic susceptibility of the helium 

dimer. Van Wullen [37], however, has commented that he expects the character of 

the susceptibility of the helium dimer to follow that of the shielding. Thus, in the 

intermediate region the calculations may be qualitatively incorrect.(see Table 4~3 and 

Figure 4.6). 
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Chemical Shielding of the Helium Dimer 
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Figure 4.5: The results from the Beckized(PW) Thomas-Fermi (TF), and Gradient 
corrected Thomas-Fermi (TF + grad) functionals are presented along with the MC
SCF results of Van Wullen (ref. 36). The densities have been obtained from GAMESS 
using a 6-311 * basis set. 
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Toal and Incremental Magnetic Susceptibility of 1he Helium Dimer 
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Figure 4.6: The magnetic susceptibility has been calculated using the Beckized func
tional referred to in the text. The densities have been obtained from GAMESS using 
a 6-311 * basis set. 
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Table 4.3: Magnetic Susceptibility of Helium Dimer (atomic units) 
Internuclear 

distance ( Angs.) 
0.2 
0.4 
0.6 
1.0 
1.5 
2.0 
3.0 
6.0 

Total 
-2.643 
-2.332 
-1.824 
-1.108 
-0.920 
-0.958 
-1.106 
-0.862 

Incremental 
-1.855 
-1.544 
-1.036 
-0.320 
-0.132 
-0.170 
-0.318 
-0.074 

115 

Similar results to those of the helium dimer are found for the shielding of the 

hydrogen triplet (Table 4.4 and Figure 4.7), except that the agreement with the 

calculations of Grayce and Harris [2] is more qualitative. 

One should note that the calculation of Grayce and Harris is an electron gas 

calculation and must be considered to be rather approximate especially as hydrogen 

molecule is far from an electron gas. This same accuracy is to be found in the 

calculations of Cina and Harris of the magnetic susceptibility of the hydrogen triplet. 

In this instance the results here differ qualitatively from those of Cina and Harris, as 

may be seen in Table 4.5 and Figure 4.8. 

The calculations of the magnetic properties of the hydrogen singlet show closer 

agreement to literature values (38),[39] over the full range of interatomic distances. 

This agreement is exhibited in Tables 4.6-4.7 and Figures 4.9-4.11. 
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Table 4.4: Chemical Shielding of Hydrogen Triplet (ppm) 
Internuclear Internuclear 

distance ( Angs.) distance ( Angs.) 
Current Chapter Beckeized TF TF +grad G&H G&H 

0.2 30.9 21.31 21.7 
0.3 26.5 19.1 19.72 
0.4 23.6 17.8 18.2 32.6 0.375 
0.5 21.5 16.5 17.1 
0.6 20.2 15.7 16.36 
0.7 19.38 15.29 15.91 9.186 0.70 

0.75 19.14 15.26 15.78 
0.8 18.97 15.07 15.69 6.053 0.79 
0.9 18.79 14.98 15.60 
1.0 18.71 14.94 15.57 3.425 1.0 
1.5 18.39 14.80 15.43 6.85 1.39 
2.0 18.02 14.64 15.28 13.54 1.78 

Table 4.5: Incremental Magnetic Susceptibility of Hydrogen Triplet (atomic units) 
Internuclear Current 

distance (Angs.) Chapter Cina & Harris 
0.2 -1.09 
0.4 -0.95 0.788 
0.6 -0.80 
0.8 -0.64 0.568 
1.0 -0.46 
1.5 -0.07 
2.0 0.538 
3.2 0.468 
4.0 0.394 
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Figure 4.7: The shielding has been calculated using the Beckized, Thomas-Fermi 
(TF), and Gradient corrected Thomas-Fermi (TF + grad) functionals. The results 
of Grayce and Harris (ref. 2) are shown for comparison. The densities have been 
obtained from GAMESS using a 6-311 * basis set. 
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Incremental Magnetic Susceptibility of the Hydrogen Singlet 

0 

-1 

-2+---~----,---~----,---~----,---~----,---~----~ 

0 2 4 

lnt~r-nucl~ar- Distanc~ (Bohr) 

6 8 

~ Incremental Susceptibility 

Cina and Harris 

10 

Figure 4.8: The susceptibility has been calculated using the Beckized functional by 
subtracting twice the atomic results from the total. The results of Cina and Harris 
are shown for comparison. (ref. 1) The densities have been obtained from GAMESS 
using a 6-311 * basis set. 
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Table 4.6: Magnetic Susceptibility of Hydrogen Singlet (atomic units) 
Internuclear 

distance (Angs.) 
Current Chapter 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
1.0 

Cina & Harris 
-0.543 
-0.593 
-0.655 
-0.723 
-0.795 
-0.867 
-0.941 
-0.990 

Internuclear 
distance (Angs.) 
Cina & Harris 

-0.679 
-0.693 
-0.806 
-0.893 
-1.026 

0.53 
0.58 
0.69 
0.79 
0.95 
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Table 4.7: Incremental Magnetic Susceptibility of Hydrogen Triplet (atomic units) 
Internuclear Current 

distance (Angs.) Chapter Cina & Harris 
0.2 -1.09 
0.4 -0.95 0. 788 
0.6 -0.80 
0.8 -0.64 0.568 
1.0 -0.46 
1.5 -0.07 
2.0 0.538 
3.2 0.468 
4.0 0.394 
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Figure 4. 9: The magnetic susceptibility has been calculated using the Beckized func
tional referred to in the text. The densities have been obtained from GAMESS using 
a 6-311 * basis set. The results of Zeroka (ref.38) are shown for comparison. The 
density has been obtained from GAMESS using a 6-311 * basis set. 
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Figure 4.10: This is the susceptibility from Figure 4.7 minus twice the atomic result. 
Incremental results have been calculated using the Beckized functional by subtracting 
twice the atomic results from the total. The results of Zeroka (ref. 38) are shown for 
comparison. The densities have obtained from GAMESS using a 6-311 * basis set. 
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Figure 4.11: The shielding has been calculated using the Beckized, Thomas-Fermi 
(TF), and Gradient corrected Thomas-Fermi (TF + grad) functionals. The results 
of Zeroka (ref. 38) are shown for comparison. The densities have obtained from 
GAMESS using a 6-311 *basis set. 
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4. 6 Conclusions 

The theory constructed in this chapter, is approximate at two levels. First, the 

explicit magnetic field-dependent corrections to the Kohn-Sham equations have been 

ignored. Their presence is expected and is explored in Chapter 7. The size of this 

error has not been investigated. 

Secondly, the current density has been expanded in a gradient expansion in the 

unperturbed electron density. This expansion is transverse and gauge invariant. How

ever, as discussed earlier in this chapter, this expansion has huge flaws. To reiterate: 

a finite sum of gradients can never give pure diamagnetism, the tensor character of 

the magnetic susceptibility does not appear, and the low order terms in the expansion 

only give diamagnetism, that is, negative magnetic susceptibilities and positive shield

ings. And to top it off, for any exponentially decreasing electron density, each term in 

the magnetic susceptibility and chemical shielding diverges beyond the Thomas-Fermi 

approximation. 

Thus, an approximate density functional theory of the magnetic susceptibility 

and chemical shielding has been constructed. The theory is based on the Biot-Savar't 

integrals and a density functional expression for the ground state current density 

induced by a homogeneous magnetic field. 

An attempt has been made to ameliorate at least some of the above problems. The 

calculations have been limited to the scalar responses. Two attempts have been made 

to deal with the divergences. The first, which holds only for the chemical shift, is to 
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transform the divergences to infinite surface integrals that must sum to zero. Hence, 

the shielding is left as a power series in the density, its gradients, etc., at the nucleus 

whose shielding is being m~~ured. The second way to correct the current, as well as 

to give diamagnetism asymptotically, is to modify the current functional using ideas 

developed by A. D. Becke. Both of the above methods are still incapable of giving 

net paramagnetism. In spite of the failings of the approximations, a single parameter 

modified functional, linear in the number of electrons, is shown to be capable of giving 

magnetic susceptibilities and chemical shieldings of the rare gas atoms to within 1% 

of the best calculated values. 

The calculations on the two states of the hydrogen and the helium dimer show 

that qualitative accuracy can be obtained for hydrogen and helium chemical shifts 

when the system is not paramagnetic or near paramagnetic. The calculations of the 

magnetic susceptibility show that qualitatively accurate results can be obtained for 

at least one system that is always diamagnetic: ground state H2 . This reinforces the 

idea that this method in its present form will work best for molecules that are not 

paramagnetic or nearly so. 

Some progress has been made in mitigating the titanic shortcomings of the theory 

presented in this chapter. Recapitulating 25 years of density functional theory history 

in order to obtain magnetic responses of chemical accuracy should not be necessary. 

[42] Indeed, the next chapter shows calculation of the hydrogen shieldings of a number 

of small molecules using this new theory. [40] 
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The current is a strongly nonlocal functional of the density. (41] The shielding 

and the susceptibility measure different aspects of this functional in physical space. 

It is remarkable that such simple, highly local functionals of the density give such 

good results in the regions of a priori applicability. 
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Chapter 5 

Hydrogen Chemical Shieldings 

In this chapter, three approximations to the isotropic chemical shielding functional 

are used to calculate isotropic hydrogen chemical shieldings in small molecules. The 

approximations require, at most, the electron density and its angular derivative at 

the hydrogen nucleus. Results are compared to a variety of theoretical calculations 

and/or experiments. Deviations from these calculations are at worst off by 40%, and 

at best off by a few percent. 

5.1 Introduction and Theory 

Calculations of molecular chemical shieldings are becoming routine [1]. Methods 

used range from coupled Hartree-Fock calculations [2], through many-body theory, 

[3] [4] [5] ending up with density functional theories [6] [7] [8]. All of the calculations 

involve the determination of single particle and/or many particle wavefunctions. 
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Recently a new theory of the chemical shieldings was advanced [9]. The theory 

is based upon magnetic field density functional theory and is explicated is this thesis 

[10]. A result of this theory is that the chemical shielding is a universal functional 

of the ground state electron density. Hence, if one could find the functional, one 

could dispense with all of the above methods that involve calculations at the field

dependent level. In addition, one could, perhaps, develop methods for using the 

chemical shielding to obtain aspects of the electron density itself, as well as its familiar 

usage in determining molecular structure. 

Previously, in what is a precursor to the present work, the chemical shielding 

tensor was calculated from an energyfunctional in a generalized Thomas-Fermi-Dirac 

approximation [11]. This functional is bilinear in the external magnetic field and the 

magnetic moment of the nucleus. 

Because of the difficulty of constructing an energy functional that goes beyond 

the generalized Thomas-Fermi-Dirac approximation, the chemical shielding tensor 

was determined in Chapter 4 via the Biot-Savart integral [9]. This required obtaining 

the current density in a weak and uniform magnetic field. According to the general 

theory, from chapter 3, the current density itself is a universal functional of the ground 

state electron density, i.e., 

](r) = ][p(r)]. (5.1) 
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Accordingly, a functional can be constructed which is linear in the external magnetic 

field, and more amenable to corrections beyond the Thomas-Fermi approximation 

[12]. For a stationary state the current density, ](r), is transverse. Hence, [13] 

](r) = v x M(r) (5.2) 

where M(r) is defined in the previous chapter. 

The shielding tensor may be written in terms of theM tensors through use of the 

Biot-Savart integral. The nuclear spin is taken to be at the origin. Upon integration 

of the Biot-Savart integral by parts, an expression arrived at for the scalar component 

of the shielding tensor, 

1 - 1 
(]' = 81rM(O) + dr'V'V-;.: M(2) + (surfaceterms). (5.3) 

In Chapter 4, M was constructed at three levels [9]. These three levels are truly 

an example of ontogeny recapitulates phylogeny in density functional theory [14]. 

The current density was expanded in gradients and higher derivatives of the electron 

density. Beyond the Thomas-Fermi level, e.g., the lowest-order contribution to the 

shielding, the surface terms each diverge. They,however, must sum to zero, so they 

may be ignored. This leads to a remarkable conclusion. To at least a rather high 

order, the isotropic chemical shielding is a function of the density, the gradient of the 

density, the curvature of the density, and so on, all localized at the position of the 
' 
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nuclear spin. 

As the method of obtaining the gradient expansion is given in great detail in our 

previous chapter, only the results are repeated here. The lowest order contribution 

to the chemical shielding is the Thomas-Fermi approximation. The shielding is given 

by, 

(
TF) = 27r(p(O))l/3 

(T (311"2)2/3 (5.4) 

The Thomas-Fermi isotropic chemical shielding plus its first gradient correction 

has the form, 

where as us1ial, 

- \lp 
.T :=::: 4/3 

p 

(5.5) 

(5.6) 

is the dimensionless gradient and x(O) indicated evaluation at the nucleus. We note 

that u :> 0 when the density does not. vanish at the nucleus. Hence, the isotropic 

chemical shielding must be net diamagnetic in this instance. The third approximation 

to u will also have this character. Paramagnetic contributions appear in the gradient 

expansion at higher order. 
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The third approximation is carried out by a process that is called "Beckeization." 

In the late 1980s, A. D. Becke intuitively corrected the Dirac exchange potential 

such that a number of physical conditions in bound systems were satisfied [15]. This 

began the leap of density functional theory into quantum chemistry. Here a form of 

Beckeization is performed. 

Since a gradient expansion can never give pure diamagnetism, the current den-

sity is constrained to be asymptotically diamagnetic; a quality that is shared by 

all molecular systems. In addition, the current density is required to reduce to the 

Thomas-Fermi current density in the absence of gradients. Finally, a single parame-

ter that is a linear function of the number of the electrons of the magnetic nucleus is 

introduced. 

The Beckeized isotropic chemical shielding is written as, 

O"(B) = 27r(p(0)) 113 [1 + QJi(O)JarcsinhJi(O)J]2 

(37r2)2/3 1 + i(Q)2 
(5.7) 

Q is the single parameter defined in the previous chapter. O" depends upon two molec-

ular parameters: the electron density and the angular gradient of the electron density 

at the nucleus. The absence of the radial gradient as an independent parameter is 

due to the exact cusp condition, namely [16], 

ap(r) = -Zp(O) 
or (5.8) 
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The derivative is evaluated at the nucleus. 

In this chapter, the isotropic hydrogen chemical shieldings for an assortment of 

small molecules are calculated using the three isotropic chemical shielding functionals. 

There is no free parameter in any of the functionals, as the hydrogen atom Q= 1. 79 

is used. So the chemical shielding of the hydrogen atom is fit to its exact value. It is 

shown that one can obtain qualitative and sometimes quantitative agreement with the 

most sophisticated theories as well as with experiment, with the Beckeized shielding 

function. The theory's failures shall also be discussed. 

5.2 Methods and Results 

All three isotropic chemical shielding functionals require as input the electron 

density at the nucleus. Two of the shielding functions require the angular gradient of 

the density at the nucleus. That is all. The electron densities are calculated at the 

Hartree-Fock level using the GAMESS program [17]. As the exact cusp condition is 

rigorously enforced, the flaw in a finite gaussian representation of the density gradients 

at the origin is not an issue. 

A simpler approximation to all three functions would be to neglect the small 

angular gradients and consider the functions as depending only on the electron density 

at the nucleus. An examination of the effect of the angular gradient shows that it 

actually contributes little to the gra.dient corrected Thomas-Fermi results. Neglecting 

the angular gradients changes these results by between 0.04 and 0.62 ppm in all 
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instances [18]. The angular gradients play a more substantial role in the Beckeized 

functional. The change upon neglecting them varies from 0.4 ppm to 2.8 ppm with 

the change usually around 1 ppm [18]. 

The results of the calculations, as well as other theoretical calculations and some 

experimental shieldings are pre.sented in Table 5.1. When comparing experimental 

and theoretical results, one must keep in mind that the theoretical results are at the 

equilibrium position of the nucleus. The experimental results are averaged by nature. 

Of course, the theoretical results could easily be averaged. 

The best functional overall in comparison with experiment is the Thomas-Fermi 

with gTadient correction. The root mean square deviation is only 2.55%, this is only 

slight worse than the GIAO SCF method that has a root mean square deviation 

of 1.71%. The Thomas-Fermi method by itself has a root mean square deviation 

of 3.49%, and the Beckeized functional has a root mean square deviation of 4.83%. 

The root mean square deviation of the Beckeized functional so large because of its 

inadequate treatment of the hydrogen molecule, ethylene and benzene. If one omits 

these three molecules, the root mean square deviation of the Beckized functional 

is only 2.01%. Unlike GIAO SCF which always overestimates the isotropic chemical 

shielding, the methods presented here can either over- or underestimate the shieldings 

Thus, one cannot simply scale our results in order to obtain better correlation with 

experiment. 
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Table 5.1: Isotropic Hydrogen Chemical Shieldings of Small Molecules (ppm) 
* Indicates the hydrogen for which the shielding was calculated. a Full Configura
tion Interaction (FCI) result from Ref. 19. b Ref 20. c Ref 9. d Exact Result e 
Ref 21 interpolated to R=Re. f Ref 22. g Ref 23 h Ref 24. i Ref 25. j Ref 26. k 
Ref 27. Coupled Cluster Singles Doubles (Triples) (CCSD(T)) results from Ref. 20. 
Moller-Plesset Fourth order Perturbation Theory (MP( 4)) results from Ref. 4. Multi-.· 
Configurational Self Consistent Field (MCSCF) results fromRef. 28. Salahub's Sum 
Over States Density Functional Theory results are from Ref. 29. Gauge-Including 
Atomic Orbital (GIAO) SCF results from Ref. 30. 

H 
H2 

H20 
C2H2 
CH4 
HF 
H2S 
NH3 
C2H4 
C2H6 

CHjOH 
Benzene 

HCN 
HNC 

CCSD(T) MP( 4) MCSCF Salahub GIAO 

a26.68 
30.9 

30.62 
31.6 
29.2 

29.0 

26.67 
30.9 

31.5 
29.1 

31.6 

14.97 c15.61 

31.13 
29.26 

31.1 

31.1 
30.3 

31.01 30.54 
31.1 

b26.49 
32.11 
30.99 
31.94 
30.31 

32.67 
26.78 
31.50 
29.26 
24.81 
29.93 

TF 

26.10 
25.87 
25.87 
26.33 
25.30 
24.79 
26.30 
26.40 
26.13 
24.78 
26.49 
25.66 
25.41 

TF+grad 
c17.7 
27.69 

. 27.70 
27.41 
27.76 
28.89 
26.31 
28.02 
27.92 
27.93 
26.59 
27.95 
27.45 
27.09 

Beckeized 
d17.7 
34.36 
29.73 
31.96 
33.68 
29.06 
30.27 
31.34 
33.09 
31.96 
28.14 
33.64 
31.20 
30.09 

E 

e26 
13( 

92~ 

13( 

12~ 
h3( 

i3C 
9 2E 
92~ 

i2~ 

k2~ 

i2'i 
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5.3 Conclusions 

The failure to reproduce accurately the equilibrium shieldings of H2 and the two 

sp2 hybridized molecules appears to be a consequence of the localized nature of our 

present functionals, as well as their overemphasis on asymptotic diamagnetism. In

deed, the results of ethylene and benzene may be accurately reproduced with a single 

negative Q. 

It is remarkable that such simple functions of the electron density and its gradient 

at the origin is able to give such a variety of hydrogen isotropic chemical shielding 

to within a few ppm of the results of very sophisticated calculations. It will be. 

certainly necessary to build more sophisticated functionals, including the explicit role 

of correlation in the current density functional. 

Finally, it is noteworthy that GIAO SCF and DFT methods are the only ones 

that currently are being applied to large biomolecules. As the method presented here 

should be readily applicable to arbitrarily large molecular systems, further develop

ments in the theory are surely warranted. 
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Chapter 6 

A N onlocal Current Density 

Functional 

A nonlocal current density that is a gauge invariant functional of the electron 

density in the absence of the magnetic field is constructed. Unlike local functionals, 

which reduce to the Thomas-Fermi current density in the limit of zero gradients, 

the new functional treats diamagnetism exactly. Additionally, unlike earlier local 

functionals, the new functional has the capacity to support net paramagnetism. The 

full magnetic susceptibility and chemical shielding tensor density functionals are also 

derived. 
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6.1 Introduction 

There has been a blossoming of density functional calculations of magnetic re

sponse-S. Most of these calculations have been based on generalizations of the Kahn

Sham equations. Recent developments in exchange-correlation functionals have made 

the.se methods viable alternatives to those of conventional quantum <;hemistry. In

deed, density functional theory combines the promise of accurate results with cheaper 

computation. There is the added bonus that systems too large to be examined by 

conventional methods are now studied routinely. [1] 

As was discussed in Chapter 3, there is a theoretical difficulty in using density 

functional theory to calculate magnetic responses. The original Hohenburg-Kohn 

theorem is valid only for a scalar potential. If the system is in the presence of a 

vector potential, then one needs a generalization of the Hohenburg-Kohn theorem. 

This generalization was first performed by Rajagopal and Callaway. They showed that 

one could include vector potentials in density functional theory, if one considered 

functionals of the current and electron densities. [2]. Rajagopal and Callaway's 

generalization was in the form of an existence theorem. It was left to Vignale and 

Rasolt to put what is now known as current density functional theory (CDFT) on firm 

footing. [3] Of particular importance, Vignale and Rasolt showed that by solving the 

Kohn-Sham equations, appropriately generalized exactly, then by definition, the exact 

current and electron densities would be obtained. For molecular systems, however, 

implementation of their theory has proven to be difficult. [4] 
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In BDFT, however, the energy functionals depend on the magnetic field and on the 

electron density. As the magnetic field is fixed by the physical problem, the functionals 

for a given magnetic field depend solely on the electron density. In particular, for the 

calculation of chemical shifts, and magnetic susceptibilities, one need only consider 

the magnetic field produced by a constant applied field and a single magnetic dipole. 

A concomitant of BDFT is that the current density is a functional of the electron 

density. In the linear response regime, the current density functional depends on the 

zero field electron density. As a consequence, magnetic responses in the linear regime 

are flmctionals solely of the electron density in the absence of the magnetic field. At 

present, generalizations of Kohn-Sham density functional theory (KSDFT) are used 

to obtain magnetic responses. These methods use perturbation theory to obtain the 

responses. The magnetic responses are not obtained as functionals of the zero field 

density alone. As a result, magnetic responses should be simpler to calculate and 

interpret in BDFT than in ordinary KSDFT based methods. 

Unlike in CDFT, the current density obtained from the Kohn-Sham equations is 

not exact. This is the equivalent of saying that the total energy obtained from the 

Kohn-Sham equations is not exact. The explicit exchange-correlation contributions 

to the current must be obtained via coupling constant integration. In this chapter, 

these corrections shall be ignored, but they will be considered in Chapter 7. 

The first steps in constructing current density functionals within BDFT are dis

cussed in Chapter 4. [6] The dependence of the current density upon the electron 
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density was exploited to show that one could construct density functionals for the 

chemical shift and the magnetic susceptibility via the Biot-Savart law. 

f 
While the application of this method to the' hydrogen chemical shieldings of some 

small molecules showed that qualitative accuracy could be obtained by calculations 

that were trivial, given a ground state electron density. [7] The local functionals do 

have deficiencies that need to be remedied. As such the development of a nonlocal 

current density functional would be useful as was discussed in Chapter 4. [6], [8] In 

this chapter, the first such functional is constructed and discussed. 

I 

6.2 Review o(BDFT 

A key point from Chapter 4 is that a finite gradient expansion does not allow 

I for pure diamagnetism. The diamagnetic term has been canceled out prior to the 

expansion, and no finite sum of gradients can recover it. This gradient expansion 

obtains, after inversion, a ][p0 (r)] of the form, 

(6.1) 

I To this order, ][p(r)] may be written as, 

][p(r)] = B x \1 M 0
. (6.2) 
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This form of the current density has several consequences: 

( 1) To second order in derivatives the current density can never be net paramagnetic, 

i.e. the re.sponses are always diamagnetic. 

(2) At this level of truncation, the current density from Equation 6.1 does not allow 

for the appearance of all the tensor elements of x and a. 

In addition, for finite systems, the gradient expansion of the current density diverges 

term by term after the first, or Thomas-Fermi, term. This divergence may be removed 

by considering a resummation of the gradient expansion subject to the condition of 

asymptotic diamagnetism. (6] This resummation is similar to the one which A.D 

Becke performed on the exchange energy density (12]. 

Even when M 0 is not local, a further consequence of the form of ][p(i)] from Equa

tion 6.2 is that after integration by parts, one can rewrite the isotropic susceptibility 

and isotropic shielding as respectively, 

X=-J diM0 (6.3) 

(6.4) 

where ri is the position of nucleus i. The local form of M 0 reduces calculation of a 

to the evaluation of a local functional at• the nuclear position. (7] 

Equations 6.3 and 6.4 have the advantage of being particularly easy to use. Specif-

I 

I 

I 
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ically, they were used in calculations of hydrogen chemical shieldings for some small 

molecules. [7] Extending this work to other elements, however, has proved problem-

atic because of the necessity of including higher derivatives in the gradient expansion 

that diverge because of the nuclear radial cusp. As a result, a nonlocal current density 

functional may be useful in alleviating some of the less desirable aspects of the local 

current density functional. 

6.3 Construction 

In this section, a nonlocal current density functional is constructed. The functional 

which was used in our previous work is automatically gauge invariant, has the correct 

Thomas-Fermi limit, and is asymptotically diamagnetic. Here the starting point is 

the opposite limit. A current density that is automatically purely diamagnetic in the 

appropriate limits is constructed. Of course, the current density must be transverse, 

gauge invariant, support net paramagnetism and support tensor terms in the chemical 

shielding and the magnetic susceptibility. [13] 

In constructing the current density, the Coulomb gauge shall be used, A(r) -

! ( B x r). In this gauge, the current density of atoms is purely diamagnetic. In another 

gauge, there would be a paramagnetic contribution that would be exactly cancelled by 

an additional diamagnetic component. As the results are gauge invariant, a sensible 

approach is to pick the simplest gauge possible. [14] . . 

As in the last section, the density matrix is constructed to first order in B. The 
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first order contribution in B to the density matrix must vanish when [L, V(r)] = 0. 

The propagator is now used in a new way to realize this commutation relation. The 

assumption here is that the ground state electron density has the same symmetry as 

V(r). 

To first order in B, the Hamiltonian is, 

Hs = H -L•B (6.5) 

which implies that the unitary operator, 

U(t, 0) ~ exp(-iHt) + i exp(-iHt) 1t L(t') • Bdt' (6.6) 

where L(t') is the interaction representation of the angular momentum operator. 

When [L, H] = 0, e.g. a locally free electron, then L(t') =Land 

U(t, 0) = exp( -iHt) + i exp( -iHt)L • Bt (6.7) 

If one stopped here, there would have zero current density as the diamagnetic 

current would be canceled and nothing would remain. The important point is that 

this term does not contribute to the density matrix for bound ~ystems, assuming that 

there is a gap between the ground state and the lowest excited state. 
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This term shall be ignored by looking at the equation of motion for L(t!). Namely, 

i ~,L(t') = [L(t'), H]. (6.8) 

Integrating up, the following is obtained 

t' 

L(t') = L(O) - i 1 dt"[L(t"), H]. (6.9) 

Ignoring the first term gives 

t' 

L(t') = -i 1 dt"[L(t"), H]. (6.10) 

The latter, Equation 6.10, is the approximation that shall be used. Now 

[L(t"), H] = exp(iHt")[i, H] exp( -iHt") (6.11) 

And critically, since, 

[L,H] = [L, V] = f X [p, V] (6.12) 

then, 

t' ' 

L(i') = -i 1 exp(iHt")f x [p, V] exp( -iHt")dt". {6.13) 
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After integrating once over time, 

U(t, 0) = exp( -iHt) + iexp( -iHt) 

x 1t dt'(t- t') exp(iHt')r x (P, V] exp( -iHt') • B. 

Therefore in physical space, 

< riU(t, O)lr' >=< rtif'O > + fot (t- T) j < rt- Tir" > 

x(f" x \7V(f)) • B < f"Tif'O > df". 

The resulting density matrix is, 

p(r, r') = p(f, r')o + j dr" J(r, r', r")r" x \7V(r") • B, 

with 

' 1 J dt 1t - _, _, ' - _, _, -1 
J(r, r, r ) ex -. - dT(t- T) < rt- Tir >< r Tir 0 > . 

21r2 t 0 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

When V(f) = V(r), or some other suitable symmetry, then f x \7V = 0. Thus, when 

the system is purely diamagnetic in an exact treatment, it is in this treatment as well. 

In order to actually construct a nonlocal current density functional, approxima-

tions must be made to the propagators and then some nontrivial integrations per-
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formed. 

The Makri-Miller approximation to the zero field propagator, Equations 4.18-4.21, 

shall be used as in Chapter 4 [6], 

f(r, r',r") = i ( 2~) 
4 j ~t lt dr(t- 7 )-

112
(7 )-3/

2 exp (i;~t-_::~
2

) 
x exp ( i(r"2~ r')

2

) exp(iW0 (r, r",· (t- r))) exp(iW0(r", r', r)). (6.18) 

In lowest order the result is: 

!( - _, _,) = . (~) 4 j dt it d (t- )-1/2( )-3/2 (i(r- r"?) r, r , r z T . T T exp ( ) 
21f t 0 2 t- T 

x exp ( i(r" 2~ r')
2

) exp( iW2°(r, r") (t - r)) exp( iW2°(r", r')r ). ( 6.19) 

Where, explicitly, [11] 

(6.20) 

with 

- (- ( _, -) ) x= r+ r -rE. (6.21) 
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Taking gradients and then the limit, both before integrating over time, gives, 

.:_ lim (\7 - \7')j(f f' f") = 
2 f'-+f ' ' 

( 
1 )

4100 dt ltd ( )-1/2( )-3/2 (i(f- r"?) (i(f"- f)
2

) - - - T t - T T exp exp . 
27r _00 t 0 2(t-T) 2T 

x exp(iW~(f, r")(t- T)) exp(iW~(f", r)T) 

x ·[i(f- f") + i\7W~(t- T) + i (f"- r) - i\7W~T] . 
t-T T 

(6.22) 

Equation 6.22 yields the paramagnetic current density. 

]p(f) = - ( 2~) 
4 J df" 1: ~tit d7 (t- 7 t 1

/27 -3/2 exp ( i~t--f:~
2

) 
x exp (i(f"- f)

2
) exp(iW~(t- T))exp(iW~T)[i(f- f") 

~ t-T 

+i\7W~(t- T) + i(f"- r) - i\7W~T] x [r" x \7V(f")] dr" • B (6.23) 
T 

When the total current density is substituted into the Biot-Savart integrals, Equa-

tions 4.4 and 4.5, then the terms in the paramagnetic current, Equation (6.23), which 

involve f's do not contribute to the magnetic responses. This is because, if the nuclear 

position is the origin, the result would be (f x f). For completeness, the full current 

density functional shall be quoted in the Appendix, but for now the focus is on the 

quantity that manifests itself in the responses . 

• 
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The integral, f'(r, r, r"), the relevant portion of f(r, r, r") is, 

J'(r, r, r") = - (__!__) 41oo dt rt dr(t- r)-1/2(7)-3/2 exp (i(f- r")2) 
271" -oo t } 0 2(t- r) 

x exp ( i(r";;. r?) exp(iW~(t- r)) exp(iW~r) 

x [i\7Wf(t- r) - i\7Wfr] . (6.24) 

The integrals are quite involved and the details are sketched out in the Appendix. 

[15] Here the resulting portion of the current density is just quoted, 

-:(r) = - (2_) 3 j dr"["V"V(r) x r"] • B\7W.o [ ..j2 cos[2v'2 ~If - r" Ill 1 
P 271" 

2 JWJ!If- r"l 

(6.25) 

To make the symmetries and the dimensions abundantly clear, the relevant current 

density can be written as, 

](r)p =- ( 2~) 
3 j dr"["V"V(r") x r"]• B\7W2°G[z], (6.26) 

in which 

(6.27) 
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with 

- r;:;.w.o 1- _,I z- y vvi r- r . (6.28) 

G[z] is completely symmetric in rand r", and is dimensionless. Hence, all symmetries 

and dimensions are determined by the term which multiples G[z]. 

6.4 Discussion 

When one uses the Biot-Savart integrals, Equations (4.4) and (4.5), the paramag-

netic contributions to the magnetic susceptibility and chemical shielding are: 

x~13 = ~· ( 2~) 
3 j dr j dr"[Y'"V(r") x r"]a[Y'W~ x r] 13G[z], (6.29) 

and 

. 3 

a:p =- c~) J di J di"['V"V(i") X r"]. [ 'i7W~ X :, L G[z], (6.30) 

respectively. The physical responses are, 

Xa/3 - -~ (J dr(r28af3- rarf3)p~)) 

+ ~ ( (L) 3 J di"['V"V(i") x i'1a['i7W~ x i]pG[z]) (6.31) 
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J . 2 p(r) 
dr((r 8a~ -rar~)----3 ) 

2r 

( 2~) 
3 

j di'"[V"V(i'") x f'1.['VWf x :,]~G[z] 
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(6.32) 

The x tensor is a symmetric tensor. The a tensor has both symmetric and anti-

symmetric components. These are the correct forms. The symmetries can be seen by 

integrating Equations 6.31 and 6.32 by parts. After doing so, 

x~13 ex j j drdr'V(r)[([r' x \?']a[f x \?]~W~) G[z] 

, , 0 0 dG[z] lr- r'l ] 
+ [r x \7 W2 ]a[f x \7W2 ]~ dz 2(W~)ll2 (6.33) 

u::~ ex j j di'di''V(i')[((r' x 'J').'V (G) x 'J) P)wgc[z] 

_, , 0 ( 1 0) dG[z] lr- r'l ] 
+ (r X \7 w2 )a f X \7W2 ~ ~ 2(W~)l/2 . (6.34) 

Hence, there is a nonlocal current density that generates the full tensorial aspects 

of the magnetic responses. Also, note that the sign iri front of the paramagnetic 

component is the opposite of that in front of the diamagnetic term. Thus this nonlocal 

current may support net paramagnetism. By construction, the paramagnetic term 

also vanishes for symmetries which result in pure diamagnetism. 

The expressions for the responses are not explicitly functionals of the density. This 

can be remedied and the expressions placed into a density functional form using the 
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definition of G[z] from Equations 6.27 and 6.28, and with the Thomas-Fermi relation 

between v ( r) and p( r) as, 

(6.35) 

Hence, 

(6.36) 

This implies that 

1 j 2 . p(r) 
Xaf3 - -2( dr(r Daf3- rar(3)-

2
-

( 2~ )' J di J (di''("<J" ( 31r2 p( f")) ~ X f"j 0 

x [v [ d<(31r2p(x))i x rL G[z])) (6.37) 

O"a(3 = J dr(r
2
Da(3- TaTf3)~~} - ( 2~) 

3 J dr J (dr"[\7"(37r2p(r"))~ X f"]a 

[ '\7 [ <k(31r2p(X))i x :, L G[z]). (6.38) 
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The use of the Thomas-Fermi relation changes z into a density functional, 

(6.39) 

6.5 Conclusions 

A current density functional that gives all the properties that a current density 

should has been constructed. The price is nonlocality. The functionals not only 

have different r's which must be integrated over, but also an integrated version of 

the electron density appears in the functional. All these nonlocal aspects may make 

practical implementation of this functional difficult. However, that these functionals 

use the zero field electron density to obtain magnetic responses could make usage 

of this functional profitable and interesting. Another advantageous property of this 

functional is that the treatment of pure diamagnetism is exact; it is the treatment 

of paramagnetism that is approximate. This places the calculation of the current 

density, the shielding and the susceptibility into a situation analogous to that of the 

energy in KSDFT. In KSDFT, one calculates the kinetic energy of a noninteracting 

system exactly, which obtains most of the energy of the system. The approximations 

lie in the treatment of correlation and exchange that are small energetically, but 

· which change the most in chemical reactions. Here there is the capacity to treat 

the diamagnetic component exactly, and hence, calculate the larger component of 
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the responses exactly. The approximation lies in the treatment of the paramagnetic 

component, the part that changes the most upon bonding. 

Thus, while this functional may be difficult to implement, or to further approxi

mate, it will be valuable to do so. 
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6.6 Appendix 

In this appendix, the solution of the integrals is sketched out and the full nonlocal 

paramagentic current reported. 

From Equation 6.37, one can see that the integrals which must be solved are in 

the form of a convolution, in particular 

(Al), 

where 

F _312 (i(r- r"?) 
1 = x exp 

2 X 

.. ( .(- _,)2) 
D - 1/2 z r- r 
r2- x exp , 

2x 

F - -1/2 (i(r- r")2) 
3- x exp 

2 
, 

X 

( 
·(- _,)2) 

F 
__ 512 z r- r 

4- x exp 
2 

, 
X 

(A2) 

where :r: = t or x = t - T. 
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By the convolution theorem we have, 

(A3) 

where L denotes the Laplace transform, and L -l, the inverse Laplace transform. 

The Laplace transforms and the inverse Laplace transforms can be found in the 

Bateman Manuscript Project [15]. This leaves only one time integral to perform. 

This can be readily done analytically via integral tables or a symbolic mathematics 

program. Performing these integrations leads to the portion of the current density 

which contributes to the magnetic responses, Equation 6.25, plus the following terms, 

( 
1 ) 3 j (-" -) ( [ r;;;; J cos [4fi1lr- r"l]) J;(r) =- 271" dr"h r ~r sin 4y W~lr- r"l + v'WJilr _ r"i · 

Equation (A4), can be written in a ~impler form as: 

J;<n ~ ~ (L )' r J df" ( 1 ~ r ~;") F[r, r'1, 

with 

( [ ] 
cos [ 4v'WJilr- r"l]) 

F[r, r"] = sin 4/Wilr- r"l + ~lr _ r"l 
1 

w,o· 
2 

(A4) 

(A5) 

(A6) 
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Chapter 7 

The Exchange Energy Functional 

for a Uniform Magnetic Field 

A density functional theory for the Kohn-Sham exchange energy of a bounded, 

closed shell system in a weak and uniform magnetic field is presented. The form 

obtained vanishes when the electron density is radial. Unlike the unscreened exchange 

energy of a locally uniform electron gas, it does not diverge due to the Coulomb 

interaction. The role of the exchange-correlation functional in the context of magnetic 

response theory is also examined. 

7.1 Introduction 

Kohn-Sham density functional theory is on center stage in quantum chemistry. 

The emergence of this development after decades of hovering at the edges has been 
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due to remarkable progre_ss in obtaining approximations to the exchange-correlation 

functional. These approximations reflect the localized nature of most molecular sys-

terns. '[1] 

In order to rigorously calculate magnetic responses, e.g., the parameters of NMR, 

it is necessary to examine how the exchange-correlation functional changes in the 

presence of weak magnetic fields. In particular, the exchange energy functional in a 

weak magnetic field shall be investigated in this chapter. 

Using ordinary perturbation theory, the exchange energy never appears. This is 

because one starts with wavefunctions determined in the absence of the magnetic 

field. The perturbation then has two terms: one linear in the vector potential and 

one quadratic in the vector potential. The linear term require-S one to carry out 

perturbation theory to first order in the field. This is the paramagnetic term. The 

quadratic term just requires the electron density without the field. This is the dia-

magnetic component. The magnetic responses are then obtained from the sum of the 

two terms via the Hellman-Feynman theorem. (2]. This is discussed in more detail 

in Chapter 1. 

It is only with theories that begin with Hartree-Fock, or its correlation general-

izations, that the exchange potential appears. (3], (4], (5] The reason is that these 

theories are nonlinear. If one starts with the field in the nonlinear part of the Hamil-

tonian then the appearance of the exchange potential with an explicit dependence on 

the vector potential is a necessity for gauge invariance. 
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In this chapter, the exchange energy, and in passing the exchange-correlation en

ergy, shall be investigated in the context of Kohn-Sham theory and its corrections. 

The bound nature of the system is explicitly taken into account. It is also considered 

that such a system in general posse,sses symmetries that are not isotropic and homo

geneous. It will be shown that writing the energy as the sum of Kohn-Sham orbitals 

plus a coupling constant integration is crucial for the analysis. This analysis is based 

upon gauge invariance and the properties of bound state systems. 

The theoretical underpinning of this analysis is magnetic field density functional 

theory. [6] This theory indicates, through the variational theorem, that the energy in 

a weak magnetic field, such as those used in NMR/MRI experiments, is a functional 

of the ground state electron density obtained in the absence of the field. In this thesis, 

the Kohn-Sham approximation to the theory has been used to calculate the current 

in two limits: the locally uniform electron gas plus gradient corrections, and the fully 

bound state limit. [7],[8],[9] As will be seen, the method used in the latter case shall 

be exploited here. 

The correlation energy of a uniform electron gas diverges order by order in per

turbation theory. The sum, however, is convergent. The exchange energy does not 

diverge in the absence of an applied magnetic field. In the presence of a weak and 

uniform magnetic field, however, the long range of the coulomb interaction is man

ifested earlier: the exchange energy diverges and the divergence of the correlation 

remains when exchange and correlation are considered separately. The removal of 
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the divergence involves the screening of exchange by the correlation. [10],[11],[12] 

The divergences of the exchange energy in a locally uniform electron gas in a 

weak magnetic field was noted by Cina and Harris. [13] They were attempting to 
} 

calculate molecular magnetic susceptibilities using density functional theory. They, 

however, did not screen the exchange; they ignored it. Grayce and Harris calculated 

the exchange energy functional in the bilinear presence of a constant magnetic field 

and that due to a nuclear spin. [14] By not treating the field due to the dipole 

as locally uniform, they were .able to obtain a finite exchange energy functional for 

a bound electronic system. So it appears that obtaining a finite exchange energy 

without screening may require boundness. 

In this chapter, two important conclusions are presented. First, it is proven that 

the Kohn-Sham exchange as well as the total exchange-correlation energy vanishes 

when the electron density is spherical. Although self evident for a bound system, this 

result is totally absent in the local electron gas approximation. Secondly, a general 

form for the exchange energy functional that explicitly manifests the above result, 

and has a natural cut-off is obtained. The latter renders the exchange energy finite. 

This cut-off is due to the quantum mechanics of a localized electronic system, not 

electron correlation. The simplest explicit exchange energy functional will also be 

derived and its properties discussed. 
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7.2 Theory 

First, begin with density functional theory from the point of view of magnetic field 

density functional the<?ry. [6] Recall from previous chapters, that this theory states· 

that for each magnetic field the total energy is a universal functional of the density. 

By the usual arguments, the total energy in the presence of a magnetic field, B, may 

be written as, 

(7.1) 

The term EJ:f8 [p] is from the sum of the Kohn-Sham orbital energies and EziC[p] is 

the exchange-correlation functional. This energy also contains the correlation correc

tion to the kinetic energy. An explicit correlation correction to the kinetic energy 

may be avoided by carrying out a coupling constant integration over ground state 

wavefunctions which give the exact density. [1] That is, in second quantization, and 

in terms of the coupling-constant-dependent ground state wavefunction, 1'1/ls(.\) >, 

Ejjc[p] ~ ~ [ d>. < .p8 (>.) 1 df 1 df' ~ .;;;;(r),p;,(r') If~ f'].J;.(f').P.•(f)].PB(>.) > 

(7.2) 
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The densities depend upon the magnetic field, of course. The energy EifS[p] is the 

sum of the orbital energies, Ei(B,p), of the Kohn-Shain equation, 

(7.3) 

A change in the gauge, A ---+ A+ VA, manife_.sts itself only in the kinetic energy, as 

the potential, vT fJ, depends upon B. This means that the coupling constant integral 
' 

is gauge invariant. 

Now consider weak magnetic fields and one of the central results of this paper. In 

the weak field limit, it has been shown that only the zero field electron density, Po, 

appears in the energy. [6],[15] Thus, to second order in B, the energy may be written 

as, 

E~c(Po) = ~ 11 

dA < '!f;~(p0 )1 j df j dr' L '!f;:(r)'l/J-:,(r') If~ f'l 
0 u,u' 

'1/Ju(r')'l/Ju'(r)l'l/J~(po) > -~ j df j df'po(f) If~ f'IPo(f'). (7.4) 

The above results shall now be used assuming that the magnetic field is constant. 

The ground state energy may be written as, 

Es(Po) = Eo(Po) + 2B. x[Po]• B (7.5) 

Here, X[Po] is the magnetic susceptibility tensor. It is a universal functional of the 
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magnetic field independent density. From the previous analysis, 

(7.6) 

Now to an important point in the analysis. Suppose the system is purely diamag

netic, such as a closed shell atom, or a cluster in a J=O electronic ground state. It is 

clear that the Kohn-Sham contribution to the energy contains the exact diamagnetic 

energy. This is because the Kohn-Sham density is the exact density. This result is 

gauge invariant. A change in the gauge manifested in the diamagnetic term will be 

canceled by a change in the paramagnetic contribution to the Kohn Sham energy. 

In other words, the exchange-correlation energy contributes nothing here. It is also 

clear that if the system is in a state with vanishing angular momentum along certain 

symmetry axes, the exchange-correlation contribution also vanishes. 

The situation is not unlike that which occurs for the current density. [9] Here, 

within Kohn-Sham, the current is exact when the system is diamagnetic. The param

agnetic portion is constructed to explicitly vanish when the system is purely diamag

netic. Indeed, the method of constructing the exchange functional is closely related 

to the construction of the Kohn-Sham current density. 

The .A = 0 contribution to the exchange-correlation energy is called the KS ex

change. It is constructed from the single particle density matrix made up of Kohn

Sham orbitals. It is a functional of the exact density. Here consider the density 
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matrix in a constant B field and keep terms to O(B2). The exchange energy itself is 

given by, 

Ex=- j dr j dr' !PB(r, r')l2 
B ~- -,, ' r-r 

(7.7) 

where the density matrix is given by 

(7.8) 

The orbitals, </>i(r), and the energies, £i, are solutions of the Kohn-Sham equation, 

[-~'\72 - i • B + ve(r) + j dr 11;~rJ,\ + vxcB(Po(r)) + ~(r x B)2]</>i(r) = Ei</>i(i} 

(7.9) 

i is the single electron angular momentum operator, ve(r) is the external potential 

and ZlxcB(Po(r)) is the exchange-correlation potential. 

Because the density in the absence of the magnetic field appears, the potential is 

the explicit magnetic-field-dependent exchange-correlation potential, 

(7.10) 

The derivative is evaluated at p0 (r). 

Hence, to O(B2
), the diamagnetic and explicit B dependent parts of the exchange-



7.2 Theory 171 

correlation manifest themselves in the ordinary exchange-correlation energy through 

a B2 dependent density. 

However, magnetic field density functional theory states that the only density that 

appears to lowest order in B is the ordinary, field independent, density. Hence, only 

the paramagnetic term is to be used when constructing the exchange and correlation 

energy. Note that a change of gauge does not affect the energy; it changes the density 

matrices by a phase. 

Now the Kohn-Sham exchange is formally constructed such that it explicitly van-

ishe..s, if the system possesses the proper symmetries. As stated before, the method 

is the same as that used to construct a current density with the proper diamagnetic 

limit. [9] Begin by writing the density matrix in terms of the single electron propagator. 

That is, 

PB(r, r') = 21 ·1 dtt < rie-iHtlr' >, 
7r'/, c ' 

(7.11) 

where 

1 2 - - -
H = ~2'V -l• B + v(r.,po)- EF. (7.12) 

Here v(r, p0 ) is the total potential in the absence of the B field. Henceforth, Ef is 

absorbed into the potential. The propagator is expanded to second order in the 

magnetic field. So that the density matrix retains its idempotency, the propagator is 
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constrained to be unitary. Unitarity is preserved in exact time dependent perturbation 

theory, order by order. The unitary operator, e-iHt, to second order, is 

t t t' 

e-iHt = (1- iB •1 l(t')dt'- iJ 1l(t')dt' iJ ·1 l(t")dt" + ... (7.13) 

As in the derivation of the current density in Chapter 6, [9] i(t) is replaced by a 

commutator, 

f(t) ~ -i it [f, H0](t')dt'. (7.14) 

The commutator is given by, 

[f, H0] = -ir x '\lv. (7.15) 

·Now substitute Equation (7.14) into Equation (7.15) and go into the position repre-

sentation. The resulting propagator is, 

< rtir'O > -i it dr(t- r) J < rt- rir"O > B. r" X '\lv(r")dr" 

r' dt" r' dt'[ ( t - t')
2 

- rJ( t" - t') ( t - t")
2

] j dr" dr111 

Jo Jo 2 2 

< rt- t"ir"O > Br111 x '\lv(r"') < r111t'ir'O > . (7.16) 

< rtjrO > is the single electron propagator in the absence of the magnetic field. Thus, 
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upon carrying out the time integration, the density matrix must have the form, 

Pb(r, r') = Po(r, r')- i j dr"JI(rr'r")B • r" x \7v(r")dr (7.17) 

Jd
-"d-mB- -11 "' (-")} (--1-11-m)B- -m "' (-"') - r r •r xvvr 2rrrr •r xvvr. (7.18) 

Given the above, the exchange energy functional must have the form, 

E: = E; + j drdr' iJ • r x \7v(r)F(rr')B • r' x \7v(r'). (7.19) 

Here F(rr), a universal functional of the density, may be derived from particular 

forms of the propagator, or may be constructed phenomenologically. 

From the form of the integral, some comments for the case of a neutral bounded 

electronic system may be made. The total potential, v(r), is a functional of the den-

sity. Thus, the long range behavior of v(r) is governed by the long range behavior 

of p(r) or some functional of p(r). The long range behavior of p(r) is exponential 

and radial. Thus, r x \7v(r) vanishes beyond the distance where the radial behavior 

/o 

dominates. Hence, any divergence in the r and r' integrals is naturally cut-off at the 

distance where the density becomes radial. Of course, as shall be seen, this natu-

ral cut-off does not prevent the integrand from diverging in certain approximations. 

These divergences will not be due to the long range of the coulomb interaction. Thus, 

there is a natural convergence for the exchange energy functional that need not in-

volve screening. The convergence is due to the nature of the bound states of finite 
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electronic systems. 

Now consider the locally uniform electron gas approximation, but in such a way 

that it preserves the structure given above. There is no free lunch. The density 

matrix that is constructed does not have vanishing diagonal elements to first order. 

Also, the integral diverges; not from the long range of the coulomb interaction, but 

from a variant of the divergence of the gradient expansions of the ordinary kinetic 

and exchange energy functionals. [16) 

Suppose the presence of the exponential time dependence is ignored in Equation 

(7.13) Then with, 

l(t) ~ -ir x \lvt (7.20) 

and 

(7.21) 

In physical space, to lowest order in the gradients, in center of mass and relative 

coordinates, the propagator is, 

R- i I -iHtiR- i < +-e --> 
2 2 
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Rather than explicitly write out the density matrix, one may go straight to the 

exchange energy itself. Namely, 

Now the potential, v(R) will be scaled out. The first term is the Dirac expression for 

the field-independent exchange energy. The Dirac exchange plus the field-dependent 

part of the exchange energy is, 

E: = Ef +a j dR(B • R x Vlnv(R)? (7.24) 

where a is a constant that has been omitted for the sake of clarity. Substituting the 

Thomas-Fermi relation between potential and density, the result is 

(7.25) 

. (3 is another constant again omitted for the sake of clarity. It is immediately seen 

that the natural cut-off appears as V lnp(R) ---+ R/ Rat large distances. 

There is, however, a fly in 'the ointment: the constants diverge. This divergence 

is derived in the Appendix. As is shown there, the source of the divergence is not the 

long range of the coulomb interaction, but the time integrals. These ordinarily arise 
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in propagator derivations of gradient expansions. Thus, the source of the divergence 

is from the gradients. A "conjoint" [17] expression for the B field exchange may exist 

which is of the form, 

with the usual definition of, 

.rr(R) = l\7 ~(R)I 
p(R)4/3 

(7.26) 

(7.27) 

as a "bounding" function introduced by A. D. Becke. [1],[7],[8],(17] This function 

removes the divergence and has the correct asymptotic behavior while preserving the 

fundamental character of the energy functional. 

7.3 Conclusions and a Conjecture 

The coupling constant integrated exchange-correlation energy in a uniform mag-

netic field has been shown to vanish when the ground state density is spherical. It 

also vanishes when the field is parallel to certain symmetry axes as manifested in the 

density. Next the >. = 0, or Kohn-Sham exchange eriergy functional was examined. 

It was shown that an explicit functional could be obtained which satisfied the above 

criteria. Unlike the exchange energy of a locally uniform electron gas, the divergence 
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that occurs can be cured without invoking electron correlation. it was also shown 

that the most general form of the exchange energy is, for the field-dependent part, 

e:- E{ = j drr'B•r x Vv(r)F[rr'p]B•r' x Vv(r'). (7.28) 

( . 
It is worth a conjecture that the full exchange-correlation energy has the same form. 

7.4 Appendix 

The divergence from the space integrals of Equations (7.21) and (7.22) is demon-

strated. 

The exchange energy density is the sum of three terms, 

(7.29) 

The first term is the exchange energy density in the absence of the magnetic field. 

Defining, 

( t) _ 1 ix2 j2t iVt 
g .T, , - (27rit)3/2e e ' (7.30) 
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Then the terms are explicitly 

Q J J dt dtl ) * ( I I) Ex = dx 27rit 27ritlg(x, t g x, t , 

1 J J dt dtl 2 12 ( ) *( 1 1) Ex = d.T --. -.-t t g x, t g x , t , 
27rtt 27rtt1 

2 J J dt dtl 4 ( ) ( 1 1) EX = dx --. -.-t g x, t 9* X , t . 
27rtt 27rtt1 

After performing the time integrations, one obtains the following, [18] 

o J /(2V) 3 [ rr ) ])2 Ex = dx( . ) (13/2 y (2V x , 
27r'LX 

E 1 oc ( ~ )4 J dx( ./ii.T (J-12[ /(2V)x]) 2
, 

27r (2V) 

2 1 4 J 21riX If [ If ] ) E oc ( -
2 

) dx( /( ( J3;2[ y (2V)x])(J_5; 2 y (2V)x 
1r (2V) 

J 'El±1. are spherical Bessel functions. 
2 

(7.31) 

(7.32) 

(7.33) 

(7.34) 

(7.35) 

(7.36) 

Upon scaling out the potential, V, and performing the final integration, the first 

term remains finite and proportional to V(x) 2 , which is correct for the Dirac exchange. 

The remaining integrals, however, diverge both separately and when summed. The 

source of the divergence is the behavior of the Bessel functions of negative order near 

x=O. Hence, the exchange energy still diverges, but this divergence is of the kind 

typically found in gradient expansions. [16] 

' "' 
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Chapter 8 

Estimation of Intermolecular 

Xenon J Couplings 

8.1 Introduction 

In Nuclear Magnetic Resonance (NMR), improving sensitivity is a major concern 

of res~archers. The use of optically pumped noble gases is one means of obtaining 

signal enhancement in order to observe signals that ordinarily would be too small 

to measure [1]. Optical pumping produces a very large, nonthermal, nuclear spin 

polarization. This large spin polarization is equivalent to having a very low spin 

temperature·. Optically pumped xenon, in particular, may be used as a spin probe. 

Signals can be observed signals that previously were too small to observe, either 

through direct observation of the xenon, or by transferring the nuclear polarization 
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to other spins. [2]. 

One of the more useful NMR parameters in obtaining structures is the J or indirect 

spin-spin, coupling. The J coupling is a second rank tensor. The Fermi contact 

contribution, however, usually dominates and is a scalar. Hence, only this scalar 

term shall be estimated. These J couplings are widely used to determine connectivity 

in directly bonded systems [3]. The small size of J couplings between systems that are 

not chemically bound such as Vander Waals complexes have rendered intermolecular J 

couplings unobservable until now, and hence, uninteresting. More recent experiments, 

however, using laser polarized xenon have lead us to consider indirect spin-spin, or 

J, couplings of xenon in Van der Waals clusters. These· small couplings may be 

observable in the near future using laser polarized. 

As the J coupling is linear in each nuclear spin, a large enhancement of the nuclear 

spin polarization could allow for observations of very small J couplings. These large 

enhancements could be obtained via optical pumping of the nuclear spins of xenon or 

helium. The xenon-hydrogen and xenon-xenon J couplings that are calculated in this 

chapter are on the order of mHz-p,Hz in regions of physical interest. More conventional 

techniques allow for the trivial observation of J couplings on the order of a few Hz. 

Due to the factors of 10,000 or more enhancement in the xenon spin polarization that 

may potentially be obtained with optical pumping, the small xenon J couplings which 

one would expect in Van der Waals complexes may be experimentally observable. 

This potential for the observation of small Xe-H J couplings is exciting as xenon 

.... ' 
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often binds biomolecules via Vander Waals interactions. Observing J couplings could 

provide more structural information than measuring the chemical shift as there are 

potentially multiple Xe-H J couplings present in a biomolecule. In addition, the 

possibility of observing Xe-Xe J couplings in cavities provides an impetus for their 

calculation. [4], [5] 

In this chapter, the Fermi contact contribution to the J coupling of Xe-H and 

Xe-Xe is e,stimated using a variant of density functional theory. The Xe-Xe coupling 

may be between Xe129 and Xe131 or between xenon atoms of the same isotope in 

chemically different environments. 

8.2 Previous Theoretical Frameworks 

The J coupling tensor has been studied previously in both wavefunction and den

sity functional frameworks [3]. The work presented in this paper is based upon Mag

netic Field Density Functional theory [6]. 

Grayce and Harris showed that a consequence of magnetic density functional the

ory is that the energy to second order in field strength may be written as 

(8.1) 

where the functional, F(p0 , r, r'), is a universal functional of the unperturbed electron 
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density, p0 . The magnetic field due to the nuclear spins A and B is, 

(8.2) 

in which {La is the magnetic moment of the a spin, and Ra is the position of the a I I 

spin. 

(8.3) 

Grayce and Harris also showed that one could obtain the Fermi contact contributions 

to the J coupling without knowing F[r, r', p0], by using spin density functional theory 

[8]. The resulting equation required one to obtain the electronic spin polarization, 

x(r), from a density functional generalization of the Dalgarno-Schwartz equation for 

the hyperfine coupling in one-electron atoms. 

Both the above methods are unnecessarily complex for the estimate, as the inter-

est is in weakly bound electronic systems. The method used here is referred to as an t,., 

electron gas theory, e.g., a Gordon-Kim theory as applied to responses. This theory 

uses the sum of the atomic electron densities in the presence of the external fields, 

· that is, the additive density approximation [9]. For the Fermi contact coupling con-

stant, like earlier theories of electrical responses, only the usual forms of spin density 

functionals are needed. [10] That is, there is no need to know F[p0 , R0 , R,13] explicitly. 
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8.3 Present Theoretical Framework 

Given the weakly bound nature of the complexes, it is a reasonable to consider 

only two atoms as a prototype for the entire complex. Atom A is at the origin and 

I j 
atom B is at R. Two situations shall be considered. In the first instance, the atom 

at R has only one electron, e.g., a hydrogen atom, and the atom at the origin is a 

closed shell system, e.g., xenon. In the second case, both atoms are electronically 

identical closed shell atoms, for example, a pair of xenon atoms. In zeroth order, the 

I total electron density of the closed shell atoms is twice that of its spin up component. 

Thus, only the change of the spin up component need be considered in both scenarios. 

(8.4) 

The first term is. the spin up density of atom B, the second the spin up density 

of atom M, and ~r(f) is the spin up density change induced by the Fermi contact 

perturbation to the ground state. The Fermi contact perturbation due to both nu-

clear spins. ~r(f) is included within the additive density approximation upon which 

Gordon-Kim theory is based as, 

I \ 
' 

(8.5) 

where gJi is the gyromagnetic ratio for nucleus i times the spin for nucleus i, 8] is 
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the dimensionless perturbation of the density via the Fermi contact interaction, me 

is the mass of the electron, mp the mass of the proton, and /-LB is the nuclear bohr 

magneton. Details of the calculation of 8} are deferred to the next section. A similar 

expression exists for spin down, 

(8.6) 

For the Xe-H interaction, the hydrogen atom at R is chosen to have a spin up I 
electron. The electron could have been picked to be spin down without changing the 

results. Hence, only need the deviation of the spin up electron density is needed, 

(8.7) 

According to spin density functional theory, the relevant portion of the energy 

may be written as 

! I 

where Ecorrelation,Ekinetic, and Eexchange are the correlation,· kinetic energy and ex-

change energy functionals, respectively, and the last term is the explicit Fermi con-

tact energy. As the J tensor can ,be obtained from as an energy derivative, the J 
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tensor is divided into two terms. The first term is the direct term which with our 

approximations depends only on the perturbed densities at the nucle_ar positions. 

(8.9) 

This term is obtained solely from the Fermi contact perturbation. The second term, 

the indirect term, requires derivatives of the energy functionals. In order to esti-

mate the indirect term, the simplest density functionals extant are used: namely the 

Thomas-Fermi-Dirac (TFD) functional. In the TFD approximation, the total energy, 

with neglect of correlation, is expressed as [10], 

(8.10) 

Ck and Cx are constants which for closed shell systems are 2.871 and 0.7386 respec-

tively in atomic units. The density is now placed into the energy functional. The 

"indirect" term is obtained by differentiation of the TFD energy functional. This 

term contains products of the perturbed densities of atom A and atom B due to their 

own hyperfine interactions. 

The off center perturbation is neglected as being significantly smaller than the on 

center one. Carrying out the required functional differentiation gives the indirect J 

as, 
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_ me 2 p,~ l61r 2 J _ 82 
Ekin 8

2 
Ex r - r - - ] 

]indirect- mp 2(3) dr( 8(Pr(r)) 2 + 8(Pr(r)) 2 )9a9blalb[8a(r)8b(r- R). 

(8.11) 

Thus, the present method requires only functional evaluations at two points for the 

direct term, but requires an integral over all space for the indirect term. Performing 

the latter requires a numerical integration program. Note that, the terms direct and 

indirect here refer to different portions of the Fermi contact contribution to the J . 

coupling. This usage should not be confused with the use of direct and indirect 

spin-spin coupling to refer to the dipolar spin-spin and the total spin-spin couplings, 

respectively. This chapter is only concerned with a portion of the J coupling. 

8.4 Fermi Contact Perturbation 

The problem of solving for 8J ( r) remains. In order to determine the effect of the 

Fermi contact interaction on the electron density, perturbation theory and hydroger;tic 

orbitals are used. The results are correct to first order for hydrogenic orbitals. How-

ever, the use of hydrogenic orbitals requires that the density for xenon and hydrogen 

be expressed in terms of hydrogenic orbitals with effective Z's. This will be discussed 

in more detail later in the chapter. Other work has been done on perturbation theory 

of the Fermi contact interaction such as the work of Harris and Pitzer. [11] The 
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method used here is similar, though with slight differences. Additionally, the method 

is generalized to arbitrary ·quantum number, n, and effective charge, Z. 

For the Fermi contact interaction, only the ns states need be considered as only s 

states penetrate to the nucleus. The differential equation that must be solved from 

perturbation theory is, 

The various terms in Equation 8.12 are, 

_z2 
E~=-22 .n 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 
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The following amplitude is also defined, 

Z 312exp( -Zr jn) 
'1/Jns = ( , 

where (is the normalization constant for the 'l/J~s state, such that 

(8.18) 

The assumption is also made that, 

(8.19) 

Fn[rZ] is, of course, not the same as pn[rZ]. The spirit of this approach is the same 

as in Dalgarno-Lewis perturbation theory. [12] The precise details, however, are J;J.Ot 

the same. In Dalgarno-Lewis theory, one would assume a form of '1/J~s = Gn[r Z]'l/J~s· 

In this particular instance, the form from Delgarno-Lewis perturbation theory is not 

the most facile approximation. 

The differential equation is solved in more detail in the appendix. The only 

remaining issue that must be dealt with to obtain perturbed densities is the role of 

effective Z's. As estimated of the J coupling is all that is desired, first use Slater's 

rules to obtain Z effectives for all but the 5s and 5p orbitals. [13] The Z's for the n=5 

shell are obtained by first calculating the electron density at R, the position of the 
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second nucleus, via a Hartree-Fock calculation and then fitting. Obviously a possible 

improvement would be to do a more global fit, but for this estimate it was believed 

to be unnecessary. 

8.5 Results 

After obtaining the perturbed densities, solving for the J couplings becomes, a 

matter of numerical evaluation for the direct term, and numerical integration for 

the indirect. These results are quoted in Table 8.1, and Figures 8.1-8.5. From an 

inspection of the figures one can see several trends. Figure 8.1 indicates that the Xe

Xe J coupling decays roughly as an exponential, though with some slight oscillations 

as indicated in Figure 8.2. In the region of physical interest, 8-12 bohr, the coupling 

is of the order of millihertz. The Xe-Xe coupling is dominated by the indirect term. 

The direct term is never more than 1% of the indirect. A plot of the Xe-Xe interaction 

potential is included to illustrate the region of significant overlap [14]. In the case 

of Xe-H, the prototype for Xe in a cage molecul~, the direct and indirect terms are 

of roughly equal magnitude as demonstrated in Figures 8.3 and 8.4. The total J 

couplings has an approximately exponential decay, as demonstrated by the plot of 

the ln[J] in Figure 8.5. The region of physical interest for xenon contained in a cage 

molecule is 6-8 bohr where the couplings are of the order of 10-100 microhertz. 
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Table 8.1: J Couplings 
Internuclear Xe-Xe Xe-H Total Xe-H Indirect 
Xe-H direct 

Distance (Bohr) J Coupling J Coupling J Coupling J Coupling 
4.5 63.0 4.80 58.2 
5.0 1.59 3.32 1.79 1.53 
5.5 8.60 0.758 0.178 0.580 
6.0 13.6 0.149 0.114 0.0350 
6.5 6.50 0.089 0.074 0.0155 
7.0 4.86 0.045 0.037 0.0083 
7.5 2.53 
8.0 1.18 
8.5 0.373 
9.0 0.0732 
9.5 0.00429 
10.0 -0.0149 
10.5 -0.00147 
11.0 0.00657 
11.5 0.00902 
12.0 0.00752 
12.5 0.00481 
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Figure 8.1: The Xe-Xe Fermi Contact J coupling is shown along with the Xe-Xe 
interatomic potential. The latter is obtained from ref. 16. 
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Figure 8.2: A blowup of the tail of Fig 8.1 to illustrate the oscillations in the coupling. 
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Figure 8.3: The direct portion of the Xe-H Fermi contact J coupling is shown. 
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Figure 8.5: The entire Xe-H Fermi contact J coupling is shown. This is the sum of 
Fig. 8.3 and Fig 8.4 
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8.6 Conclusions 

Using an electron gas theory, the J couplings between two inequivalent Xe atoms 

and between a xenon and a hydrogen atom are estimated. The latter is a prototype 

for the xenon-hydrogen coupling in a cage molecule. An approximately exponential 

dependence on internuclear distance in these parameters in the region of weak overlap 

was found. The values estimated are within the potential ability of experimentalists 

to measure with the techniques of optical pumping. Hopefully, these estimates will 

provoke experimentalists to measure these quantities. 
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8.7 Appendix 

The simplification and solution of the Fermi contact differential equation are ex

hibited in this appendix. In order to solve for F[r], an approximation needs to be 

made. When r=O, the left hand side of equation (4.12) diverges because of the delta 

function. Assume that it suffices to only consider the divergence to first order. So 

that the divergence can be approximated by ajr. One can immediatly simplify the Z 

dependence of the differential equation. Define r'=rz. Then the differential equation 
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becomes, 

(8.20) 

Thus, this equation can be for arbritary Z. For the remainder of the discussion, Z shall 

be set equal to one, and generalizations made when appropriate. The differentiation 

equation for the Fermi contact perturbation in the ls state becomes, 

(8.21) 

Hence, if one lets F[r] = ajr, then the first two terms cancel, leaving the following, 

(8.22) 

Hence, F[r] = afr is not correct, and two more terms are necessary in order to obtain 

the full F[r] from Equation 8.21. Additionally, a constant term must appear so that 

orthogonality is preserved, 

(8.23) 
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The end result is an expre.ssion which has 4 terms, 

a 
F[r] = - + b + cr + d ln[21r], 

r 
(8.24) 

where a,c, and d are obtained from the differential equation using Mathematica and b 

is obtained from the orthogonality constraint. Euler's constant, 1 introduced so that 

the coefficents are all rational. The crucial step in realizing how to solve for higher n 

states is to note that the left hand side of the differential equation ( 4.12) changes at 

higher n merely by the multiplication of an nth order polynomial, i.e., 

So the F[r]'s for higher mstates, pn[r], must have the form 

F n[ ] _ an b ~n C j ~n-ld i-ll [2 ] r - - + n + L...ij=l jnT + L.ii=O inT n /T ' 
r 

(8.25) 

(8.26) 

where the coefficents can be obtained readily using Mathematica or some other sym-

bolic mathematics program. Some explict solutions for a few s states include, s=l 

1 -2 exp( -r) 
'l/J 15 = (- - 10 + 4r + 4ln[2!r]) 

112 
, 

r ~ 
(8.27) 

I 
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s=2 

1 -4 2 exp( -r/2) 
'lj;25 = (-:;:- - 6 + 13r + 8ln[l'r] - r - 4rln[l'r]) 

32
7r112 , (8.28) 

s=3 

.t,l = ( -48 _ 454309 1610806 r _ 40844062 r 2 96ln[ r] 
'f/3s r 6561 + 19683 1778257 + 'Y + 

64 3 . 64 2 exp(-r /3) 

81 
r - 64rln[lr] + -gr ln[l'r]) 

81
(121r)1/2 . (8.29) 

There are similar but more complicated expressions for the n=4 and n=5 states which 

were used in the calculations. Subsitution of rz for r allowed the useage of effective 

Z's. 
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Chapter 9 

The Magnetic Field Dependent 

Quadrupolar Splitting 

In this chapter, it is confirmed that the recently discovered field dependent nuclear 

quadrupolar splitting of Xe131 arises from a distortion of the electron density due to 

the applied magnetic field. [1] Ordinarily, the spherical symmetry of the electron 

density would result in a vanishing quadrupolar splitting even in the spin ~ Xe131 

isotope. In a high enough magnetic field, however, the electron d_ensity can be slightly 

distorted causing a break in the spherical symmetry. The distortion depends both 

linearly and quadratically on the applied field. The existence of the former is due 

to the coupling to the field and the nuclear spin. The latter is a manifestation of 

the quadratic Zeeman effect. In addition to confirming the order of magnitude for 

the observed effect, it is shown that there should be an asymmetry introduced in the 
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spectra due to the linear coupling with the nuclear spin. This effect has not been 

seen experimentally. 

9.1 Introduction 

Recently, evidence has been found for the existence of a magnetic field dependent 

quadrupolar splitting in gaseous 131 Xe. [1] The precise nature of the effect was not 

anticipated. However, previously in unpublished work, Rex Gerald III had speculated 

that a measurable quadratic effect would exist, and that the linear effect would be 

unmeasurably small. [2] Earlier experimental work had failed to observe any such 

effect. [3] In this work, a theory is presented which confirms the sign and magnitude 

of the experimentally observed linear and quadratic effects. 

The intuitively obvious explanation of this behavior is that a magnetic field dis

torts the electron density. As expected, this distortion and hence, the quadrupole, 

is very small due to the weak interaction of the field and the electrons. There are 

two terms in this field induced nuclear quadrupolar Hamiltonian: a term linear in 

the field and a quadratic term. The sources of the two terms are respectively, the 

coupling of electrons to both the nuclear magnetic moment and the external field, and 

the ordinary diamagnetic coupling of the electrons to the external magnetic field. In 

the absence of the quadrupole, these terms generate respectively the ordinary chem

ical shielding and magnetic susceptibility. Hence, the description may be reversed 

so that the nuclear quadrupole distorts the electron density. The chemical shielding 
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and magnetic susceptibility of an isolated atom would then become dependent on the 

orientation of the nucleus relative to the applied field. For a molecule there would 

be additional paramagnetic contributions to the induced quadrupole moment. These 

terms shall not be considered here as the atomic case is the one of interest. 

The calculation of the two effects is presented here. Then the sign and magnitude 

are calculated exactly for a fake H like system. By fake hydrogren, an atom identical to 

hydrogen with nuclear spin 3/2 and 131Xe nuclear magnetic and quadrupole moments 

is meant. Finally, an estimate of the size of the effect in real 131 Xe is given and the 

results are compared to the experiments. 

9.2 General Theory 

An isolated atom does not possess a field gradient at the nucleus because the elec

tron density depends only upon the radial distance from the nucleus. When the atom 

is placed in an environment in which the electron density is perturbed and the expan

sion of the perturbation in spherical harmonics contains Y2m components amongst 

others, a field gradient is generated. In the present situation, the perturbations are 

an applied magnetic field and a nuclear magnetic moment. 

The relevant electronic Hamiltonian for an atom in the presence of both a nuclear 
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quadrupole and a magnetic field may be decomposed into four pieces, 

(9.1) 

H0 is the zero field Hamiltonian for the electrons. HQ, the ordinary quadrupolar 

Hamiltonian, is in atomic units, 

F 1 ( 3t; - I (I + 1)) 
HQ = QEAy 5Y2o(Bi) rl (3J2- I(I + 1)) (9.2) 

Ymn(Bi) denotes spherical harmonics and, Bi, ri the el~ctron coordinates. HD is the 

diamagnetic interaction, 

(9.3) 

B is in the atomic unit of 12.5 Tesla, and a is the fine structure constant which in 

atomic units is ~ ~ 1;7" Finally there is the diamagnetic coupling, Ha, of the nuclear 

spin, I, to the magnetic field that would give rise to the chemical shielding in the 

absence qf the quadrupole. [4] 

(9.4) 

The nuclear g factor may be positive or negative and ~ ~ 1ioo· 
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Instead of calculating the distorted electron density, the contribution to the ground 

state electronic energy that is linear in HQ and linear in each Hv and Hq is calculated. 

This nonvanishing energy is proportional to the field induced electric quadrupole 

coupling hamiltonian. 

As the atoms are in the gas phase, only the irreducible second rank terms in Hv 

and Hq are kept. Due to the high field, only one component remains namely Y2o(Bi)· 

Thus, 

(9.5) 

and 

(9.6) 

The H'-Sulting energy, bilinear in HQ and Hv and Hq is, 

Q4 4 7r "'' Ol~ Y2o{lh) I (3J2-J(I+l)) B2 ~~ 2y; (B )IO a 15un < i-:;y- n > (3ILI(I+l)) 3 < n JTj 20 j > 
Eno 

(9.7) 

Q4a4E...~' < OlE· Y2o~B;) In > (3Ii-I(I+l)) I ~!&.L;. < n I Y2o(Oi) IO > 
15 n z r; (3J2-J(I+l)) z 3 mp J ' ri 

Eno is the energy difference between the ground state, 10 > and the excited state 

In>. The terms linear and quadratic in the field have different dependencies on the 

nuclear spin. In particular, the quadratic term depends as (31;- I(I + 1)), whereas 
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the linear term is Iz(3II - I(I + 1)), the latter leads to a splitting of the nuclear 

spin degeneracy. Additionally, the signs of the linear and quadratic terms may be 

different. Indeed, the Hamiltonian may be written as, 

H = (1- o-)BI QA .B2(3II- I(I + 1))- QA B(3II- I(I + 1)) I 
g z + D (3/2 - I(I + 1)) g u (3!2 - I(I + 1)) Z! 

(9.8) 

in which o- is the chemical shielding. The signs of AD and Au may be proven to be 

the same in a simple Kohn-Sham approximation. The signs are conjectured to be the 

same in the exact theory. 

Now specialize to the specific case of I..:_3j2. In particular, the ·spectra of a fake 

spin 3/2 hydrogen will be examined. In the absence of the quadrupole terms all the 

energy transitions are equal. Hence, there is only one line, assuming equal populations 

of the four m levels and neglecting induced emission. With the two additional terms 

the degeneracy is broken in a field dependent manner with different dependencies for 

each line. In experimental situations it may be necessary to track the lines relative 

to the center line, so the relative energies would be, 

3 -~) 6c -2[ADB2
- gAuB] (9.9) l:l.E( -- ---+ 

2 
1 1 

(9.10) l:l.E( -- ---+ 2) ex gAuB 2 

l:l.E( ~ ---+ ~)ex 2[ADB2 + gAuB]. (9.11) 
2 

The transition energies as a function of field for two different ratios of AD to Au are 
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plotted in Figures 9.1 and 9.2. 

Notice that there is a B for which the 3 line_s collapse into 2. This Be is given by 

(9.12) 

which could experimentally provide the ratio of the two coupling effects. The coupling 

constants could be obtained experimentally by fitting results from a variety of field 

strengths. 

A bound for £(2) can now be calculated assuming that the ground state is from a 

single determinant, e.g., from Kohn-Sham theory, 

(9.13) 

E* 
(9.14) 

where p(r) is the electron density. 

An explicit calculation can be performed for this bound with fake hydrogen, given 

an estimate for E*. Simple evaluation of the first term obtains, 

(9.15) 
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Figure 9.1: The transition Energies as a function of magnetic field strength for the 
case in which the quadratic coefficient is ten times the linear coefficient. 
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Transition Energies: Quadratic Cons1ant is one-ten1h the Unear Constant 
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Figure 9.2: The transition Energies as a function of magnetic field strength when 
quadratic coefficient is one-tenth the linear coefficient. 
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which withE*= 3/8, the excitation energy to l = 2 , yields 

(9.16) 

in units of hertz with QB2 in units of (tesla-meter)2 . The bound for the second term 

linear in B is much less useful as it diverges. 

In order to quantitatively examine the magnitude of the two terms they are cal

culated exactly for "fake" hydrogen. First, the energy of fake hydrogen with charge 

Z, quadrupole moment Q, and gryromagnetic ratio g is related to the energy of fake 

hydrogen with unit charge. Simple scaling obtains the results. 

Eb(Z) = ZED(1) 

E;(z) = Z4Ea(1) 

(9.17) 

(9.18) 

Next an elementary calculation using Dalgarno-Lewis-Schwartz perturbation theory 

is performed. [5] The results of an earlier calculation of the quadrupolar induced 

dipole moment in HD may be used. [6] The second order energy is, 

(9.19) 
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1'1/Jq > is the wavefunction perturbed to first order by the quadrupole. Explicitly, 

with !Q the solution of, 

-1 cf2 1 d 3 1 (-- + (1--)- +- )!Q = --
2 dr2 r dr r 2 r 3 

A particular solution to equation (21) is, 

1 
!Q = -(- + 19) 

. 3r 

As the ground state wavefunction is simply 

with, 

(9.20) 

(9.21) 

(9.22) 

(9.23) 

(9.24) 
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where 

(9.25) 

(9.26) 

Elementary integration yields, 

E(2) = -QB2 * 5.6 * 10,...2z(3J_;- I(I + 1))aA 
D (3J2 ~ I(I + 1)) 

(9.27) 

E<2> = QB2 * 5.2 * w-5 z4 I (31; -I(I + 1))a4 
u g z (3J2- I(I + 1)) (9.28) 

in atomic units. 

9.3 Comparison with Experiment 

The experimental splittings were fit as linear plus quadratic terms in the magnetic 

field. These results, in hertz per Tesla2, and hertz per Tesla respectively, are [1] : 

and 

E(2) 
; = 0.016986 

(2} Eu B = -o.o7751L 

(9.29) 

(9.30) 
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The comparison to theory is not entirely straightforward as the peaks were assumed ' i 

to split symmetrically about the center peak. While the experimental spectra do look 

asymmetric at low field, it is difficult to determine how much of this is from exper-

imental artifacts. It is clear, however, that the experiments found a field dependent 

splitting that has both linear and quadratic dependencies. Moreover, the experiment 

found that the fitting constants for the two effects are comparable in magnitude. 

These results shall now be shown to be reasonable. 

For fake hydrogen, substitute the parameters for Xe into equations (9.9), (9.10) 

and (9.11) to obtain the following results in units of hertz and tesla, 

3 -~) = -3.08 * w-3 B 2 + 7.09 * w-6 B (9;31) b.E(-- -2 
1 ~) = -3.55 * w-6 B (9.32) b.E(-- -2 

b.E(~ - ~) = 3.08 * w-3 B 2 + 7.09 * w-6 B. (9.33) 
2 

Experimentally the only available reference is the center line, and so relative to 

that line, the transition energies become, 

3 -~) = -3.08 * w-3 B 2 + L06 * w-5 B (9.34) b.E( -- -2 

1 1 
(9.35) b.E(-- - -) = 0 

2 2 

b.E(~ - ~) = 3.08 * w-3 B 2 + 1.06 * w-5 B. (9.36) 
2 
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For fake hydrogen, the quadratic term dominates by almof?t 2 orders of magnitude. 

In fact Be= 0.0034 Tesla. Clearly, for any reasonable experimental field, such as the 

7.05 to 16.92 Te.sla fields used in the xenon experiments, one would see a symmetric 

splitting quadratic in the field. For atoms other than hydrogen, one would have two 

changes. The first is that the nuclear charge changes. So Z is no longer one and 

effective Z's may be introduced into equations (9.27) and (9.28). These Z effectives 

may even be different for the linear and quadratic term, as one would find in the 

ordinary chemical shielding and magnetic susceptibility. [7] The second change is 

that there is more than one electron present. This causes an additional change in 

the constants beyond the change in the Z's. The latter change may be estimated 

by scaling by the change in the chemical shielding and the magnetic susceptibility 

in going from hydrogen to xenon. The shielding increases by a factor of about 300, 

whereas the susceptibility increases only by a factor of 20. Applying these arguments, 

one obtains the following, 

3 1 
(9.37) !:::.E(-- ---+ - 2) = -6.16 * w-2B2Zett + 3.18 * w-3Bz:JJ 

2 
1 ~) = 0 (9.38) !:::.E(-- ---+ 
2 2 

!:::.E(~ 3 
(9.39) ---+ 2) = 6.16 * 10-2B 2Zetf + 3.18 * 10-3Bz;ff. 

2 

This estimate overestimates the quadratic term versus the linear term when com-
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pared to the experimental results. The agreement, however, is not bad for a simple 

scaling argument. One could also attempt to reproduce the experimental results by 

adjusting the effective Z's. The linear coefficient would be reproduced by an effective 

Z of 9.2 whereas the quadratic coefficient would require an effective Z of 5.5. The 

different r-dependencies of the operators would require the use of different effective 

Z's. Attempting to adjust the effective Z's to reproduce the experimental data is not 

necessarily sensible as one must consider that the experimental data was interpreted 

as being symmetric whereas the theory predicts an asymmetry. Additionally, this is 

only meant as an estimate of the effect not as a precise calculation. 

9.4 Conclusions 

The estimates presented in this chapter confirm the supposition· that a magnetic 

field dependent quadrupole splitting in 131 Xe is due to a diamagnetic distorted atomic 

electron density. This distortion is primarily quadratic in the field for light atoms, but 

may have a substantive linear component in heavier atoms. Additional motivation for 

continued experimental work in this area is also presented as the predicted asymmetry 

in the spectra requires more conclusive experiments. It would also be fruitful to 

develop an experiment in which the reference is not the central transition as one could 

then see if the central transition also moves linearly with the field. Experiments in 

which this effect is sought for in other systems, i.e. other atoms, molecules, and solids, 

are likely to occur in the near future. 
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Chapter 10 

Conclusions and Future Work 

The major focus of this thesis has been on developing functionals for the magnetic 

susceptibility and the chemical shielding within the context of magnetic field density 

functional theory (BDFT). These functionals depend on the electron density in the 

absence of the field, which is unlike any other treatment of these responses. Additional 

work has also been done on intermolecular J couplings and the magnetic field-induced 

quadrupole splitting. 

There are several developments reported in this dissertation. First, is the develop

ment of local density functionals for chemical shieldings and magnetic susceptibilities. 

These are the first such functionals ever proposed. In order to examine their advan

tages and disadvantages, they were tested numerically on some small molecules. 

In order to mitigate some of the difficulties encountered with local functionals, 

nonlocal functionals of the electron density were also developed. The examination 
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of the local current density functionals led to consideration of the field dependent 

portion of the exchange-correlation. The examination of nonlocal current density 

fnnctionals generated the method used. In order to avoid divergence every other 

treatment of the exchange has required the screening of the exchange by correlation. 

The first exchange functional in which this divergence was avoided because of the 

bound state nature of the electronic system was then constructed. Additionally, a 

conjecture was given for the full form of the exchange-correlation energy functional. 

In both instances, the functionals depend on the ground state electron density in the 

absence of any magnetic field. 

Additionally, the J, or indirect spin-spin coupling, was considered. An estimate 

was made of some intermolecular xenon J couplings, which have provided motivation 

for some experimentalists. These coupling are of interest because they could be used 

to study cage molecules or even xenon-protein complexes. This estimate was done 

using BDFT, but the approach was different from that used for the chemical shielding 

and the susceptibility. In particular, an energy approach was used within the additive 

density approximation. The use of the additive density approximation was justified 

as all that was desired was an estimate. 

The recently discovered magnetic field-dependent quadrupole splitting was also 

investigated. The physical origin and magnitudes of both the linear and quadratic 

dependencies on the magnetic field were explained. The existence of a linear depen

dence had been particularly troubling as experimentally it had the larger coefficient 
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in xenon, whereas previous researchers had claimed that it would not exist at all! 

Of course, at higher magnetic fields the quadratic effec.t does dominate despite its 

smaller coefficient. The small size of this effect makes it difficult to observe, however, 

there are some interesting effects that I have predicted, which have yet to be observed 

experimentally. In particular, the peaks should have slightly different dependencies 

on the magnetic field strength. In lighter atoms, the quadratic effect should have 

the larger coefficient. Hence, neon would be an ideal system to examine to test this 

effect. It is not surprising that these effects have yet to be observed. The experi-

ments in which the gross effect was observed are at the cutting edge of NMR in 1998. 

The varying dependence of the lines is simply too fine a detail to be observed at the 

present. Additionally, this effect has only been observed in gaseous xenon, an ideal 

system for these studies. In order to test how the linear and quadratic dependencies 

vary from system to system, more experimental work is needed on other systems that 

may be beyond the state of the art at the present. However, creation of higher and 

higher strength magnets is an ongoing and intensive field of research. As such, these 

predictions should be tested in the near future. 

Hence, quite a bit of progress has been made in Magnetic Field Density Functional 
' 

Theory. However, more must be done before it becomes a tool which experimentalists 

can routinely use. The work presented in a portion of this thesis is just a beginning, 

and there are many questions remaining to be answered within this theory. 

The first practical concern that must be addressed is that of computation. The 
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nonlocal functionals explicated in Chapter 6, or more local approximation to these 

functionals, must be implemented within an electronic structure package. Such com

putation implementation will provide for a rigorous test of these functionals. If the 

accuracy of these functionals is less than desired, than the next step will be to para

materize these functionals as was done for the local functionals. The parametrization 

of these functionals along with localization approximations will probably be the most 

important practical problem within this theory. It will be interesting to see if some 

of the nonlocality present in these functionals can be neglected, as that would reduce 

the computational aspect of the problem. In particular, there are pre.sently three 

integrals that must be performed. Hence, this step would have a high computational 

scaling. The high computational scaling is mitigated by the need to perform only a 

single pass through the functional. As the zeroth order electron density is all that 

is required, the basic electronic structure calculation can be performed and then the 

functional evaluated once. Still it would be useful to reduce the scaling and theoreti

cally interesting to see what degree of nonlocality is really required. The first obvious 

place in which nonlocality can be reduced is in the integration within W~ in which 

the integral could by replaced by the sum of the endpoints. Once such computational 

work has been performed than this theory can really be used to ask questions about 

how the magnetic responses are really sensitive to electronic structure. For example, 

one could easily imagine mapping out orbital contributions to shifts that may allow 

one to precisely examine the sensitivity of NMR to bonding. One could also imagine 
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merely using this theory as a faster method of calculating magnetic responses with

out using any of the potential advantages this theory has for interpretation. Hence, 

computation investigation is the first challenge that should be addressed. 

Another logical extension of the work would be to include the orbital portion 

of the J coupling in this theory. Formally, most of this thesis has focused on the 

functionals when there is either a uniform field or a uniform field plus the field from 

a nuclear dipole. These are the appropriate fields for the magnetic susceptibility and 

the chemical shielding, respectively. However, they are both limits of one field: that 

due to two nuclear dipoles. The latter field is what gives rise to the orbital portion 

of the J coupling. So if one determined the. functionals for the latter field, by taking 

limits one would obtain functionals for the other fields. What is needed to be done 

in order to incorporate the J coupling more fully into this theory is to reverse the 

limit. A full treatment of the orbital portion of the J coupling would require the 

exact same treatments as has been done except rather than considering the current 

density induced by a uniform field, one needs to consider the current density induced 

by a nuclear dipole. However, as one takes a dipole and moves it to infinity than one 

obtains a uniform field, i.e. considering the energy, 

(10.1) 

as the dipole is moved to infinity. This suggests that to first approximation we ignore 

"-.-
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terms which vanish in the limit, and hence, replace the f x \7 which appears in 

the nonlocal functional for the chemical shielding by lr_r.R13 where R is the nuclear 

position and generate an approximation to the orbital J coupling. This should be a 

first approximation in extending the theory to handle another response. 

There are other issues that presently are of more theoretical concern. The first is 

how to reconcile local and the nonlocal functionals. There are in some sense small 

deviations from opposite limits; the locally uniform electron gas in one instance, and 

an atomic system in the other. The exact functional would incorporate both limits, 

but it is not obvious how to connect these two limits. Such a reconciliation is a 

fundamental unanswered question in this theory. 

Another theoretical issue is the role of exchange-correlation. A form of the ex

change functional was derived for a uniform magnetic field. A form for the full 

exchange-correlation functional was postulated. There are several natural extensions 

of this work. One would be to prove that the full exchange-correlation form is cor

rect. Another would be to extend this work to fields from a nuclear dipole and a 

uniform field. This would allow one to consider the role of field dependent exchange

correlation in the chemical shielding. An issue of more practical concern would be to 

actually parametrize the functionals so that they could be used in the calculation of 

NMR parameters. This would be of interest other workers tend to ignore the effect of 

the field-dependent exchange-correlation. However, at present one cannot make any 

- rigorous claims as to the importance of this effect as other density functional theories 
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are either too inaccurate to study the effect, or have an ad hoc basis. So would be 

useful to actually test for the importance of the field-dependent exchange-correlation 

that could be done within this theory. 

An area that should be explored is the development of energy functionals. In 

most of this thesis, the functionals are current density functionals and so explicit 

calculation of the energy functionals is avoided. However, a current density and an 

energy approach are both equally valid. In work prior to the development of the 

general theory, Grayce and Harris used an electron gas approach to obtain a local 

energy functional that looks considerably different from any in this work. In would 

be interesting to bring that work into the context- of this theory and to reconcile 

the energy and current density approaches. Of particular interest is the use of a 

different dimensionless variable (fp(f) )113 in the work of Grayce and Harris. This 

incorporates f into the theory is a manifestly different manner that presently done. 

An investigation into using functionals of this form, perhaps in conjunction with the 

insight gained from the nonlocal functionals, is warranted. Also notice that is this 

work f has been brought back into density functional theory through the nonlocal 

functionals. · Perhaps similar approaches would be useful in other areas of density 

functional theory. 

Though before giving up on the local functionals further investigations are also 

warranted. Extending this theory to carbon so that carbon shifts can be done readily 

is the next logical step. Additionally, recall from Chapter 4 that the local functionals 

-·) 
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were constructed from an approximation to the single-electron propagator, hence, it 

may be profitable to investigate other propagators. As an approximation to the prop-

agator generates an approximation to the functional, and so perhaps using different 

propagator approximations would lead to other useful functionals. 

Considerable work has been accomplished on linking density functional theory and 

magnetic fields in this dissertation. This thesis has paved the way for further theo-

retical and computation development of Magnetic Field Density Functional theory. 
> 

Additionally, small effects have been addressed which require cutting-edge experi-

mental techniques, but which could be interesting and useful to examine further both 

' t 
theoretically and experimental. Thus, there are still many open questions and so this 

field should remain one full of challenges for a considerable time. 
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