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A Pattern-Based Definition of Urban Context Using Remote 
Sensing and GIS

Magdalena Benzaa, John R. Weeksa, Douglas A. Stowa, David López-Carrb, and Keith C. 
Clarkeb

aDepartment of Geography, San Diego State University, 5500 Campanile Dr., San Diego, CA 
92182-4493, United States

bDepartment of Geography, 1832 Ellison Hall, University of California Santa Barbara, Santa 
Barbara, CA 93106-4060, United States

Abstract

In Sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban 

environments, the nature of which are not adequately captured by a simple urban-rural dichotomy. 

This paper proposes an alternative classification scheme for urban mapping based on a gradient 

approach for the southern portion of the West African country of Ghana. Landsat Enhanced 

Thematic Mapper Plus (ETM+) and European Remote Sensing Satellite-2 (ERS-2) synthetic 

aperture radar (SAR) imagery are used to generate a pattern based definition of the urban context. 

Spectral mixture analysis (SMA) is used to classify a Landsat scene into Built, Vegetation and 

Other land covers. Landscape metrics are estimated for Built and Vegetation land covers for a 450 

meter uniform grid covering the study area. A measure of texture is extracted from the SAR 

imagery and classified as Built/Non-built. SMA based measures of Built and Vegetation 

fragmentation are combined with SAR texture based Built/Non-built maps through a decision tree 

classifier to generate a nine class urban context map capturing the transition from unsettled land at 

one end of the gradient to the compact urban core at the other end. Training and testing of the 

decision tree classifier was done using very high spatial resolution reference imagery from Google 

Earth. An overall classification agreement of 77% was determined for the nine-class urban context 

map, with user’s accuracy (commission errors) being lower than producer’s accuracy (omission 

errors). Nine urban contexts were classified and then compared with data from the 2000 Census of 

Ghana. Results suggest that the urban classes appropriately differentiate areas along the urban 

gradient.
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1. Introduction

In the coming decades most of the world’s land cover and land use change (LCLUC) is 

predicted to take place in the tropics, where population is growing the fastest (DeFries, 

Asner and Foley 2006). United Nations’ projections estimate that virtually all of the world’s 

population between now and the middle of this century will emerge in the cities of the 

developing world, (United Nations Population Division 2012) driven by natural increase in 

both urban and rural areas, and by continued migration from rural to urban areas as people 

search for economic opportunities (Lee 2007). Urbanization is shaping landscapes in and 

around cities through densification and sprawl, while at the same time increased interaction 

among cities is creating new hybrid landscapes where rural and urban livelihoods overlap 

(Lambin et al. 2001, Seto et al. 2012). The rapid pace of recent urbanization is reshaping the 

morphology and function of cities around the world (Longley 2002), and while research has 

found that urban growth and the demand for land conversion has been driving habitat 

fragmentation (Wickham, O’Neill and Jones 2000), little is known about how the urban 

landscape itself is changing as cities grow (Liu and Herold 2007, Seto and Shepherd 2009). 

Urban environments are becoming increasingly diverse and a simple urban-rural dichotomy 

fails to capture that diversity (Champion and Hugo 2004).

Urban mapping increasingly relies on the use of satellite imagery through the development 

of objective, automated and replicable methodologies for the identification of human-

induced land covers (Pumain 2004). The physical characteristics of urban places generate 

spatial and spectral signatures that are readily captured in remotely sensed data (Elvidge et 

al. 2004). As a result, detection and monitoring of the urban environment at global, regional 

and local scales depends more and more on the use of such data (Potere et al. 2009, Small 

2005, Lu and Weng 2006). In developing countries, where urbanization is taking place at the 

fastest rates (United Nations Population Division 2014), the geographic comprehensiveness 

of satellite imagery has made it a useful tool for quantifying and monitoring the distribution 

and growth of human settlements (Harris and Longley 2002, Weeks 2004). The Landsat 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land 

Imager (OLI) satellite systems provide an extensive and accessible archive of moderate 

spatial resolution (~30 m) imagery that has been successfully used to monitor urban areas 

and settlements in a wide range of environments (Small 2005, Seto and Fragkias 2005, Lu 

and Weng 2008). In equatorial and tropical regions where cloud cover is a common problem 

for optical remote sensing, radar imagery is an alternative data source (Rogan et al. 2003) 

that has successfully been used for human settlement detection (Stasolla and Gamba 2008) 

and for urban mapping (Haack and Bechdol 2000). While measures of texture extracted 

from the Synthetic Aperture Radar (SAR) imagery have been found to improve land cover 

and land use mapping (Herold, Haack and Solomon 2004), detect building density 

(Dell’Acqua and Gamba 2003) and differentiate informal from formal settlements 

(Dell’Acqua, Stasolla and Gamba 2006), applications that combine radar and optical 

imagery have shown to successfully detect human settlements (Haack et al. 2002, Tatem, 

Noor and Hay 2004).

Definitions of settlements as urban are generally based on an arbitrary threshold set as the 

split between rural and urban places without accounting for differences in land use intensity, 
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function or heterogeneity (Seto et al. 2012). However, in urban environments different types 

and densities of buildings and built surface materials, as well as vegetation, can vary within 

short distances (Cadenasso, Pickett and Schwarz 2007). Rising suburbanization trends are 

forming edge cities that are increasingly facilitating urban spread into rural areas (Zipperer 

et al. 2000) and blurring the distinctions between rural and urban places (Hugo, Champion 

and Lattes 2003). The diffuse transition between urban centers and the countryside is 

described by Antrop (2004) as a complex combination of land uses with diverse and 

fragmented morphology. This heterogeneous transition zone that extends between urban and 

rural places requires further identification and classification.

Although most research on urban spaces continues to use a simple urban-rural dichotomy, 

there have been attempts to characterize urban environments through gradient approaches 

based on measures of landscape fragmentation. Research on urban ecosystems has focused 

on examining the interaction between habitat fragmentation and ecological function 

(Breuste, Niemelä and Snep 2008, Kühn and Klotz 2006). Measures of landscape 

fragmentation have also been used in studies of spatial patterns of urban form (Yang et al. 

2011, Van de Voorde, Jacquet and Canters 2011) and growth (Luck and Wu 2002, Weng 

2007). Research in the fields of landscape ecology and population have proposed the use of 

continuous measures of degree of urbanization that combine proportions of land cover with 

population characteristics (McDonnell and Hahs 2008, Weeks, Larson and Rashed 2003), 

and measures of landscape pattern with socio-economic indicators (Toit and Cilliers 2011, 

Weeks, Larson and Fugate 2005). These studies that integrate data collected in censuses or 

surveys with imagery derived data have two disadvantages: (a) an urban gradient cannot be 

calculated in the absence of those socioeconomic data; and (b) since its definition depends 

upon such data, an urban gradient cannot –without becoming tautological-be used directly to 

predict a population’s socioeconomic characteristics. The objective of this study is to 

develop and test a pattern-based classification scheme for the urban context, using an 

gradient approach based solely on remotely sensed imagery that exploits quantitative 

measures of spatial patterns of built and vegetation land cover for the purpose of advancing 

population and health studies. This pattern-based definition of the urban context allows 

differentiating a range of urban environments deepening the understanding of spaces defined 

as place of residence in demographic and public health studies. Data and the applications 

context are drawn from a study area in southern Ghana.

2. Study area and methodology

2.1. Study area and period

Urbanization in Ghana is spreading at a faster pace than among most of its West African 

neighbors. The 2010 Census of Population and Housing revealed that more than half of the 

country’s population resided in urban areas, a figure that the UN projects to reach three 

quarters by 2050. Ghana Statistical Service (GSS) estimates that population in the Greater 

Accra Metropolitan Area increased from under 1.5 million in 1984 to almost 3 million in 

2000, and then to the 4 million mark in 2010. However, urbanization is taking place not only 

in the capital (Accra) and other major cities (especially Kumasi), but also in smaller 

settlements both close to and far away from cities (Moller-Jensen and Knudsen 2008).
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Studies of land cover and land use change in Ghana have found that migration is linked to 

decreasing woodlands in northern Ghana (Pabi 2007, Braimoh 2004), that in the Western 

region the most predominant changes are linked to mining, farming, lumbering, fuel wood 

collection and urbanization (Kusimi 2008), and that in the Accra region urbanization is the 

major driver of landscape transformation (Yorke and Margai 2007). In the capital city of 

Accra, urban expansion was mapped between 1985 and 2002 with Landsat imagery, 

showing a fast and unplanned spread of the city into its hinterland (Møller-Jensen and 

Yankson 1994, Møller-Jensen, Kofie and Yankson 2005). Yeboah (2003) describes the 

emergence of higher-quality residential sprawl in the peri-urban and rural localities adjacent 

to Accra’s metropolitan area.

The study area from which data are drawn for this analysis is located in southern Ghana, 

consisting of 18 districts, including all of the Greater Accra Region (which comprised 5 

districts in 2000) and 13 adjacent districts in the Central, Eastern and Volta regions shown in 

figure 1.The coastal regions of Ghana have seen a steady increase in population growth as 

the capital city Accra attracts a steady flow of migrants in search for opportunities. Accra’s 

metropolitan area alone saw its population double between the mid 1980’s and the beginning 

of 2000, when the last census took place. The study period for this research is the early part 

of the decade starting in 2000. The study area includes Accra and Tema, and their 

metropolitan fringes, periphery and hinterland. The districts selected for this study stretch 

over portions of Accra’s neighboring regions defined here as areas that will likely be 

influenced by urban sprawl and other effects from changes in Accra in the near future. It is 

composed of a diverse landscape ranging from purely rural to central city (i.e., core) urban.

The year 2000 was selected as the study period to coincide with the Ghanaian population 

and housing census which permitted drawing comparisons between the landscape pattern 

based definition of the urban context and a range of demographic variables. All the analyzed 

and classified imagery was selected to match as closely as possible to 2000 time frame as 

was all the very high spatial resolution imagery used as reference data.

2.2. Methods

Urban context is characterized here using a uniform grid covering the study area through the 

use of satellite imagery and geographic information system (GIS) techniques. Landsat ETM 

+ imagery was analyzed through spectral mixture analysis (SMA) and classified into Built 

and Vegetation land covers. Synthetic aperture radar imagery from the ERS-2 satellite was 

used to estimate a measure of radar backscatter texture and classified into a Built/Non Built 

land cover map. Landscape metrics are estimated for the SMA based Built and Vegetation 

land covers and combined with the radar texture based Built/Non Built map through a 

decision tree classifier in order to generate a classification of degree of urbanization (Figure 

2)

2.2.1 Landsat imagery and processing—A cloud-free 30 m spatial resolution Landsat 

ETM+ terrain corrected image captured for path 193 and row 56 on 26 December 2002 was 

selected–he only cloud-free ETM+ image captured within the period 1999–2003. Pre-

processing of the image consisted of masking waterbodies, sand flats and fire scars to 
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minimize the confusion of land cover classes. Spectral mixture analysis (SMA) was applied 

to the masked ETM+ image to estimate sub-pixel fractions of endmembers and the derived 

fraction images were used to generate a map of Built and land cover based on a hard 

(majority) classification.

The pre-processing of the Landsat ETM+ scene included applying waterbodies, sandbars 

and fire-scar masks. The waterbodies mask was extracted from a Land Use land Cover Map 

for 2000 digitized on Landsat Imagery by the Center for Remote Sensing and Geographic 

Information (CERSGIS) of the University of Ghana, Legon. The CERSGIS waterbodies 

layer included reservoirs, dams and rivers. In addition to the CERSGIS waterbodies layer an 

unsupervised classification was used to incorporate smaller lagoons and reservoirs that had 

been missed by the land use land cover map. The resulting improved waterbodies layer was 

manually edited to include salt ponds and wetlands by digitizing directly on the Landsat 

ETM+ scene and corroborating visually with Google Earth imagery. The Google Earth 

Imagery used to verify added water features include pansharpened Landsat (15m), Spot 5 

(2.5m) and DigitalGlobe QuickBird 2 (65 cm) that correspond to the most current available 

dates. Atmospheric correction was considered unnecessary given that a single date Landsat 

image was classified based on signatures derived from the same image (Song et al. 2001).

Given the spectral similarity of bright sand bars and impervious surfaces, the decision was 

made to mask out sand flats in order to reduce confusion between the two land cover classes. 

Bright sand flats were digitized on Google Earth using the most current available very high 

spatial resolution imagery which includes Pansharpened QuickBird 2, Spot 5. We assumed 

that sand flats are unlikely to have converted from built or vegetated land cover, which led us 

to decide to use the most current very high spatial resolution imagery available. A fire scar 

mask was also created to remove areas of savanna vegetation burned immediately prior to 

the image acquisition date, to avoid confusion with the dark (shade) endmember. The fire 

scar mask was created using a supervised classification of a principal components 

transformed image (Hudak and Brockett 2004).

The resulting masked image of digital number (DN) values for six (all multispectral except 

thermal infrared) wavebands was analyzed using spectral mixture analysis (SMA). SMA 

extracts sub-pixel information by assuming that the spectral reflectance of a pixel is the 

product of the linear combination of the spectra of pure components or endmembers (Lu and 

Weng 2008). Even though SMA was originally developed to classify natural environments 

(Adams, Smith and Gillespie 1993, Roberts et al. 1998), the technique was adapted to urban 

landscapes by Ridd (1995) to represent the land cover of Salt Lake City as a combination of 

vegetation, impervious surface and soil (VIS). The pixel un-mixing algorithm constrains the 

resulting fractions to sum to 1 for each pixel while each individual fraction is non-negative 

(Phinn et al. 2002), as is described in the following equation:

Eq. 1

where spectral mixture Riλ is modeled at location as the sum of the fractions fmi of M image 

end-members rmλ plus a residual εiλ at waveband λ. In addition to estimating fractions for 

Benza et al. Page 5

Remote Sens Environ. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each end-member the model generates a root-mean-square error (RMS) image that assesses 

the model fit as described in the following equation:

Eq. 2

where N is the number of bands and εiλ is a residual term calculated for all pixels at 

waveband λ.

The accuracy of the proportions generated by SMA depends on the selection of spectral end-

members used to represent pure classes in the un-mixing process. End-member spectra 

collected directly from the imagery were supported by a pixel purity index (PPI) (Phinn et 

al. 2002, Rashed et al. 2003) which ranks pixel values based on how often they are repeated 

in the extremes of the spectral distribution of the image (Boardman, Kruse and Green 1995). 

Candidate pixels were visually inspected on the pan-sharpened (15 m) scene and on very 

high spatial resolution satellite images in Google Earth (Pansharpened QuickBird 2 (0.7 m). 

Given the lack of very high spatial resolution imagery matching the date of the Landsat 

ETM+ scene (only 2% of the study area), the decision was made to expand the time frame 

for the reference imagery to cover 1998 to 2004 (27% of the study area) (Figure 3).

SMA models were run on different sets of candidate end-members and the resulting 

fractions and RMS images were evaluated for goodness of fit. Models producing fractions 

between 0 and 1 and maximum RMS error under a threshold were considered good models. 

Models that didn’t fit those parameters had their end-member refined in an iterative process 

until the optimum set of end-members was identified. The final end-member selection 

consisted of five pure signatures, one for green vegetation (pixels selected from forested 

areas), non-photosynthetic vegetation (pixels selected from savannah areas), soil (pixels 

selected from patches of bare soil or dirt), impervious surface (pixels selected from built 

patches) and shade (pixels selected from areas in the shadows of ridges) (Figure 4).

The resulting Landsat-derived SMA fractions were input to a series of discrete threshold 

classifiers to identify and map Vegetation and Built land cover classes. ETM+ pixels with 

more than fifty percent impervious surface were classified as Built land cover. The land 

cover proportions resulting from the SMA showed that within urban areas shade played an 

important role in capturing building shadows and dark pavement. In order to capture 

shadows and dark pavement cover, contextual information was used to enhance a threshold 

classifier. Large settlements were delineated through visual inspection of the pan-sharpened 

(15 meter) Landsat ETM+ image, and pixels found within those areas with proportions of 

over fifty percent shade and twenty five percent impervious surfaces were also classified as 

Built. Pixels modeled as having more than fifty percent vegetation were classified as 

Vegetation cover. Results from the SMA confirm previous research identifying that shade is 

also largely associated with vegetated areas where trees cast and contain substantial amounts 

of shade (Lu, Moran and Batistella 2003). A normalized difference vegetation index (NDVI) 

was calculated from ETM+ wavebands 3 and 4, and compared to the proportions of 
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vegetation and shade produced by the SMA, confirming the overlap of vegetation and shade 

in more heavily vegetated areas. In order to capture the portion of shade found within the 

vegetation cover, pixels with more than 50% shade and 25% vegetation cover were also 

classified as Vegetation. The resulting classification product is a 30 m raster land cover map 

of the study area containing Built, Vegetation and Other land cover classes.

2.2.3 SAR imagery and processing—While optical sensors are limited by lack of 

transmission of short to medium wavelength electromagnetic energy through clouds and 

precipitation, synthetic aperture radar (SAR) sensors are capable of transmitting and 

receiving microwave energy that is sensitive to physical characteristics of land surfaces such 

as roughness, morphology and geometry in most atmospheric conditions (Soergel 2010). 

Applications of SAR imagery for urban and built area mapping have proven to be very 

effective, given the high return characteristic of man-made features (Haack and Bechdol 

2000).

ERS-2 radar imagery collected in the C band (5.6 cm) with 12.5 m spatial resolution was 

acquired for the study area from the European Space Agency for three orbits: 18370 

collected on October 25 1998; 19601 collected on January 19 1999; and 41373 collected on 

March 20 2003. Pre-processing and processing of the radar imagery was conducted for each 

orbital pass separately. Pre-processing involved applying a terrain correction algorithm and a 

speckle reduction filter while the processing included the estimation of a measure of texture 

that is then classified as Built or Non-Built land cover.

Ground range images were pre-processed using the NEST toolbox developed by the 

European Space Agency (Engdahl et al. 2012). A range Doppler terrain correction algorithm 

was implemented for terrain correction and radiometric normalization, using a 30 m spatial 

resolution Global Digital Elevation Model (GDEM V2) derived from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite sensor and 

precise orbit files from the Delft Institute for Earth-Oriented Space Research. In addition, a 

SAR simulation for orthorectification was used to generate a layover mask. Adaptive filters 

are commonly used for speckle reduction in radar imagery because they have the capacity to 

reduce multiplicative noise (Lee et al. 1994). A refined Lee filter was used to reduce speckle 

noise generated by the interference of individual scatterers by examining variance in a 7 × 7 

window and establishing a threshold that detects edges, (Lee et al. 2009). The terrain-

corrected SAR image and layover mask were closely inspected against very high spatial 

resolution imagery on Google Earth and the DEM in order to verify that areas susceptible to 

terrain distortion were masked from subsequent processing. Research in settlement mapping 

has shown that radar imagery is particularly useful in areas with little terrain where 

background classes can be defined as flat undeveloped surfaces with low radar returns 

against which artificial structures with high returns easily stand up (Haack and Slonecker 

1994). Through visual inspection, areas located at higher elevations were identified as 

irregular bare rock formations generating mixed returns and foreshortening distortions which 

appeared to be missed by the terrain correction and layover mask. After close examination of 

the radar backscatter against optical imagery, the decision was made to expand the layover 

mask in areas located above 200 m elevation using a 200 m buffer to remove any remaining 

foreshortening distortions. The expanded mask helps to ensure that the radar backscatter 
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captured by the sensor is only minimally influenced by the radar beam interacting with the 

terrain, and is largely a product of its interaction with man-made structures. Finally, the 

same waterbodies mask used for the Landsat scene was used to mask all water features, salt 

ponds and wetlands.

Researchers exploit the ability of radar imagery to detect structures and forms through the 

use of measures of texture. The use of texture extracted from radar imagery allows for the 

delineation of features and has been found to improve image classification of land cover and 

land use (Herold et al. 2004, Dell’Acqua and Gamba 2003, Dell’Acqua et al. 2006). Several 

measures of texture were tested on the filtered radar imagery and a 9 × 9 window was 

selected to estimate the standard deviation of the radar backscatter values within the moving 

window. The selection of the 9 × 9 pixels moving window was based on the assumption that 

an area of 112.5 m by 112.5 m roughly correspond to the size of a city block that would 

identify a significant cluster of buildings. The standard deviation texture image was then 

smoothed using a 3 × 3 pixel moving window in order to remove outliers. The resulting 

variance of radar backscatter was used as an indicator of spatial composition of the built 

environment, where heterogeneous returns are associated with complex artificial landscapes 

such as the man-made features characteristic of settlements. A GIS layer depicting 

settlement locations from Ghana Statistical Service was used in combination with very high 

spatial resolution imagery from Google Earth as reference to establish a threshold in the 

radar texture that maximizes the detection of populated areas. The three orbits processed 

independently were classified as Built/Non-built land covers based on the defined threshold 

of radar texture and then mosaicked into a single raster file covering the entire study area.

2.2.4 Landscape metrics of Built and Vegetation patches—Researchers studying 

urban form have found that landscape metrics of multi-class land cover land use maps 

derived from classified remotely sensed imagery efficiently portray the complexity of cities 

(Herold, Scepan and Clarke 2002, Luck and Wu 2002, Pesaresi and Bianchin 2003, Herold, 

Goldstein and Clarke 2003) and of smaller rural settlements (Wang and Caldas 2014). 

Studies focusing on capturing the morphological transition between urban and rural places 

have shown that patch density, mean patch size and patch size variability describe best how 

fragmented, dispersed and heterogeneous the built environment is (Luck and Wu 2002, 

Herold et al. 2003, Seto and Fragkias 2005).

To study urban structure with landscape metrics requires partitioning the city into 

homogenous units of analysis (Herold, Couclelis and Clarke 2005). This study uses a 

uniform grid cell approach to estimate landscape fragmentation throughout the study area. 

Six different cell sizes were tested, ranging from 450 m by 450 m to 14400 m by 14400 m. 

Our analysis of the resulting landscape metrics indicated that the smaller cells maximized 

the detection of heterogeneous landscape patterns. We concluded that cell sizes larger than 

450 m by 450 m denigrated our ability to derive meaningful distinctions among the resulting 

classes, especially given the spatial resolution of the imagery available to us.

Class and landscape metrics were estimated for the SMA-based Built and Vegetation land 

cover classes for the 450 m grid that corresponds to a 15 by 15 pixel cell which is defined as 

the landscape unit of analysis. The degree of landscape fragmentation, dispersal and 
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complexity was studied by examining spatial patterns of Built and Vegetation patches within 

the 450 m cell along the urban transition.

The metrics were calculated using FRAGSTATS software (McGarigal and Marks 1995). 

Class metrics for the Built and Vegetation land cover classes included percent land cover, 

patch density, coefficient of variation of patch area and area weighted mean fractal 

dimension of patches. The heterogeneity of the patterns of Built and Vegetation land cover 

within each 450 m cell was quantified using percentage of land cover and density of patches 

for each land cover class according to the following equation:

Eq. 3

where ni is the number of patches of class i and A is the total area in m2 which is then 

converted into density per 100 hectares.

The variability in patch sizes for the Built and Vegetation land covers was estimated for each 

450 m cell with a coefficient of variation of patch area with the following equation:

Eq. 4

where aji is the area of patch ij of class i and ni is the number of patches.

The complexity of the shapes of urban patches was assessed through estimates of area-

weighted mean patch fractal dimension, which have shown to help differentiate between 

compact dense urban areas and the patchy urban fringe (Batty and Longley 1988, Mesev et 

al. 1995). Area weighted mean fractal dimension was estimated for Built and Vegetation 

patches within each 450 meter cell according to the following equation:

Eq. 5

where aji is the area of patch ij (class i),pij is the perimeter of m number of classes (patch 

types) and TA is the total area.

In addition, an index of contagion was used to evaluate adjacency and compactness in the 

landscape, describing the spatial arrangement of different land covers within the landscape 

unit (Yeh and Huang 2009, Herold et al. 2003, Dietzel et al. 2005).
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Eq. 6

where pi is the proportion of the landscape that is occupied by patch type (class)i, gik is the 

number of adjacencies (joins) between pixels of patch types i and k based on the double 

count method and m is the number of patch types present in the landscape.

2.2.5 Defining the urban context—The fusion of optical and radar based land cover 

products provides an opportunity to improve the accuracy of the land cover classification 

obtained from individual sensors. The radar imagery was particularly useful to detect small 

settlements that were missed by the SMA-based approach on the optical imagery. A scheme 

is proposed to describe landscape patterns of the built and vegetation land covers that 

combines measures of landscape fragmentation extracted from the classification of optical 

imagery with a measure variability of the built class extracted from radar imagery. A nine-

class scheme was created to describe in a rank-order categorical manner the continuous 

transition of the urban context. The scheme represents an urban gradient defined as: 

Compact urban core, Fragmented large urban patches, Dense and dispersed small urban 

patches, Fragmented sub-urban, Scattered settlements, Sparsely populated, Fragmented 

transition, Fragmented unsettled and Unsettled land (Figure 5).

The conceptualization of the nine class scheme is the product of the combination of 

measures of land cover fragmentation (SMA-based classification) with a measure of 

variability of the radar-based Built class through a series of rules. The rules were defined a 
priori by analyzing the frequency distributions of six measures of land cover fragmentation 

and the standard deviation of the radar-based Built variable, splitting each variable in two 

(high and low values) using a natural breaks classification scheme that minimizes within-

class variance and maximizes between-class variance. The natural break split for each 

variable was used to define a series of consecutive rules where the resulting classes (Figure 

6) were named and validated by examining a set of representative cells for each class against 

very high spatial resolution imagery on Google Earth.

Decision tree classifiers are non-parametric models that deal efficiently with numerical and 

categorical data, making them a suitable approach to classify urban context based on 

imagery extracted variables such as land cover and measures of texture and morphology 

from different data sources. A decision tree classifier was used to classify the 450 m cells or 

landscape units into one of nine urban context classes, using the measures of landscape 

fragmentation estimated on the SMA-based classification of Built and Vegetation land 

covers and the aggregated radar texture based Built cover. This classification technique takes 

advantage of the spectral characteristics of the optical imagery, the pattern characteristics of 

the landscape metrics, and the structural characteristics of the radar imagery to generate a 

range of urban context classes that describe the varying physical characteristics of the 
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landscape. Nine cell level measures of landscape fragmentation and the cell level classified 

radar texture were used as inputs for the decision tree classifier to generate the pattern based 

classification of the urban context.

The VIS based Built land cover class was used to stratify the study area into high percent 

Built, medium percent Built and low percent Built, clipped to the section of the study area 

covered by very high spatial resolution imagery on Google Earth between 1998 and 2004 

and then overlaid to the 450 m uniform grid to draw a stratified random sample of 690 cells 

for training and validating the decision tree. Given that built land represents a very small 

portion of the study area, the more urban strata were oversampled in order to select a 

minimum of 60 cells per class. The reference cells were visually inspected on very high 

spatial resolution Google Earth imagery and assigned to one of the nine classes based on a 

series of rules describing the predominant land cover type within the cell and level of 

fragmentation of the land covers found within the cell (Table 1).

The 690 cells were visually inspected and assigned to one of the nine classes, and then were 

partitioned into training and testing samples for a C5.0 boosted tree (10 trials) to model 

urban context based on landscape and texture metrics. The boosted tree is an iterative 

process to improve on the previous tree and reduce the number of errors. A random sample 

of 349 of the reference cells were used to train the tree and the remaining 344 were used to 

validate the tree. The breaks produced by the boosted tree (Figure 7) are based on the input 

variables for the reference data.

2.2.6 Accuracy assessment—Accuracy of the Built and Vegetation land covers 

classified from Landsat-derived SMA fractions was assessed by comparing the land cover 

classification to very high spatial resolution imagery from Google Earth for the 2000–2004 

timeframe for a random sample of 1000 points. The sample size was increased until a 

minimum of 50 points was reached for each of the classes (Congalton 1991). Accuracy of 

the Built/Non-Built classification based on radar texture was assessed by comparing it to 

very high spatial resolution imagery from Google Earth for the same time frame for an 

independent random sample of 900 points. The sample size was increased until a minimum 

of 50 points was reached for the Built class. Confusion matrices and overall agreement 

statistics were estimated for each of the classifications.

Accuracy of the urban context classification was assessed by comparing the manually 

classified 450 by 450 m cells from the validation portion of the reference data against classes 

predicted by the decision tree for the same sample, a confusion matrix and overall agreement 

statistics were calculated. The use of a confusion matrix identifies how much 

misclassification is taking place for each one of the classes but does not allow measuring the 

magnitude of the errors. Errors that could be considered minor arise when a continuous scale 

is converted into discrete categories and areas that are relatively similar are assigned to two 

different but contiguous classes (Foody 2002). Given the gradient nature of the urban 

context classification scheme, confusion of adjacent classes was expected to be substantial 

but not-problematic. A fuzzy measure of accuracy was used to differentiate minor and major 

misclassification errors in the urban context classification. An independent stratified random 

sample of 375 cells was selected, oversampling the most urban classes until a minimum of 
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30 cells was reached for each class. Following a linguistic scale developed by Woodcock and 

Gopal (2000), the predicted class for the sample of cells are evaluated in detail against very 

high spatial resolution Google Earth imagery and scored on a scale of 1 to 5, with 1 meaning 

absolutely wrong and 5 meaning absolutely right (Table 2). Cells that are scored as 1 or 2 are 

considered major errors while cells scored as 3 or 4 are considered minor errors and cells 

scored 5 are considered accurately classified.

3. Results

3.1 SMA based vegetation and built land cover map

The land cover map produced using SMA is depicted in Figure 8 a) and shows that there is 

very little separation between Accra and Tema, the two large and sprawling metropolitan 

areas that dominate the urban system in the region. A network of smaller settlements, such 

as the town of Agona Swedru (Figure 8 b and c), can be observed spreading east-west 

following the coastline and scattered mid-size towns extend inland following major roads.

An examination of the confusion matrix (Table 3) for the SMA-derived land cover map 

indicates a high overall agreement of 91%, with producer’s and user’s accuracies for both 

the Built and Vegetation land cover classes > 80%. The producer’s accuracy indicates the 

probability that the reference pixels are accurately classified and represent a measure of 

omission errors while the user’s accuracy indicates the probability that the classified pixels 

represent the right category on the ground and are a measure of commission error. The VIS-

based Built class has a 15% omission error which indicates that the classification is 

successfully detecting most of the built environment while a 19% commission error points to 

a persistent level of confusion between the Built and Other land cover class.

Results from the final SMA model suggest that distinguishing soil and built land cover 

classes is challenging given the spectral similarity of both classes, and also because of the 

high prevalence of mixing that occurs in cities of the developing world where many of the 

streets remain unpaved (Ridd 1995, Powell and Roberts 2008), or where soil is deposited on 

paved street surfaces, especially as runoff after rainy periods.

3.2 SAR texture-based Built class

The resulting confusion matrix (Table 4) demonstrates that while the map of the Built class 

derived from SAR texture has a user’s accuracy of 67 %, it has a much higher producer’s 

accuracy of 94%. The low levels of omission error indicate that the radar texture-based 

measure of the built environment is successful at detecting the majority of manmade features 

in the study area, while the high commission error indicates that there is a fair amount of 

confusion between Built and Non-built classes.

Close visual inspection of the SMA-and radar texture-based maps of the Built land cover in 

conjunction with Google Earth imagery indicated that the radar texture-derived map captures 

Built features for a wider range of settlement sizes in the study area (Figure 9). The small 

towns of Kwame Adewe and Nsutapon on figure 9 b–d and e–g illustrate how the radar-

based map is able to detect small towns that are missed by the SMA-based classification of 

the Built class. While the Built map extracted from SMA seems to have a fair amount of 
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omission, the radar texture-extracted Built class, given its finer spatial resolution and 

imaging mode, is capable of identifying much smaller towns.

3.3 Classification of the urban context

Landscape and class metrics estimated for the 450 m cells (58,000 cells covering the study 

area) described in the Methods section and a cell level standard deviation of the radar 

texture-based Built class were used as input for the decision tree classifier. The resulting 

classification combined the ten intermediate variables extracted from optical and radar 

imagery into a nine class urban context classification that describes the spatial composition 

of land cover throughout the urban transition.

The urban context classification map (Figure 10) identifies almost 870 (1.5%) out of the 

58,000 cells as Compact urban areas. These cells are located mainly in Greater Accra and 

Tema, in the centers of cities such as Koforidua and Winneba, and within major coastal and 

inland settlements (Figure 10). Cells classified as Fragmented large urban patches compose 

1.3% of the study area and are mostly located within the central areas of major cities and 

settlements. A similar number of cells is identified as Dense and dispersed small urban 

patches and are found closer to the outskirts of larger cities such as the area located between 

Accra and Tema. The Fragmented sub-urban class is restricted to the outskirts of large cities 

found almost entirely in coastal areas, where urbanization is spreading at a fast pace. 

Scattered settlements covering 0.8% of the study area, on the other hand, are spread around 

the periphery of intermediate towns, most of them inland. Cells classified as sparsely 

populated areas cover 1295 cells (2.2%) and are scattered throughout the study area 

extending beyond the peripheries of consolidated towns. Finally, cells identified as 

transitional classes spread into unsettled land following a band pattern that expands beyond 

the periphery of settled areas.

The confusion matrix (Table 5) indicates an overall agreement of 77%; it is evident that 

user’s accuracy is lower than producer’s accuracy. The highest omission errors were found 

both on the least urban and most urban classes in the Fragmented transition and Fragmented 

large urban patches classes. High commission errors are found on the most and least urban 

classes, as indicated by figure 10. The most urban of the context classes (e.g., Compact 

urban and Fragmented large urban patches classes), exhibit a fair amount of confusion while 

the more rural Fragmented unsettled land and Fragmented transition classes show some 

confusion. The matrix and figure 11 indicate that while there is some confusion between 

similar classes (i.e., adjacent classes in a rank-order sense), the automated classification of 

urban context classes shows close agreement with the reference data derived from the visual 

interpretation of very high spatial resolution imagery.

Results from the fuzzy accuracy assessment indicate a high degree of correspondence when 

using a score of agreement with the reference data. The right class column on table 6 

includes scores 1 to 3 corresponding to “absolutely right,” “good answer” and “reasonable 

answer,” while the exact class only captures score 1-absolutely right. The average agreement 

between classification and reference data improved from 61% to 87% when using the right 

class over the exact class. Given the continuous nature of the classification scheme, the use 

of a broader definition of agreement appears to be an appropriate way of assessing accuracy. 
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The improvements in agreement levels through the use of the fuzzy accuracy approach 

indicate that there is notable overlap between adjacent classes, an artifact of the gradient 

approach.

4. Discussion and Conclusions

Rapid urbanization is reshaping the morphology and function of cities globally. By 

portraying rural and urban areas as clearly distinct spaces, dichotomous rural/urban 

classifications ignore the importance of flows of people and products that connect these 

spaces and belie how urban processes are remaking global landscapes far beyond urban 

areas. In this paper, we have created and evaluated an urban context classification scheme 

that attempts to characterize different urban contexts that exist along a gradient between the 

arbitrary extremes of urban and rural. We demonstrate a novel characterization of the urban 

context based exclusively on the pattern characteristics of land cover distributions. A series 

of landscape metrics were computed for Built and Vegetated land cover maps with the goal 

of differentiating areas based on the degree of landscape fragmentation.

Two intermediate and independent land cover classifications were generated and then 

integrated, based on our analysis of optical and radar imagery it is evident that each of the 

approaches has advantages and limitations. The workflow for the processing of the optical 

imagery estimates sub-pixel proportions of land cover and then classifies them into discrete 

land cover classes in order to generate distinct land cover patches that are further analyzed 

through landscape metrics. Even though the classification of the Landsat-derived SMA 

fractions leads to a significant loss of sub-pixel land cover detail, the categorical product 

allows for the analysis of spatial patterns of land cover patches that would not be possible to 

achieve with more continuous spatial data. Results from the accuracy assessment for the 

SMA based classification of land cover indicate that there is a fair amount of omission, 

meaning that we are missing some built and vegetation patches, most likely because of their 

smaller proportions within the 30 m pixel. On the other hand, the radar-based classification 

had higher commission errors, meaning that there is at least some confusion between the 

Built and Non-Built classes using just that method. By combining the SMA-and radar-based 

land cover classes the attempt was made to overcome the limitations of each independent 

classification and generate a more accurate depiction of the built environment in the study 

area.

Patterns of land cover fragmentation were estimated using a 15 pixel by 15 pixel landscape 

unit to assess heterogeneity and complexity in patch sizes, and dispersion and interspersion 

of the land cover. This analysis provides an in-depth portrayal of the spatial patterns of land 

cover found within the study area. The generated urban context map with a spatial resolution 

of 450 m does not identify individual objects or land cover classes but it categorizes the 

landscape based on their spatial patterns following a gradient approach. The assumption in 

our method is that as city or settlement centers become more densely urbanized the built 

environment becomes more compact, whereas towards the outskirts of the city the land 

cover conversion brought by urban expansion means higher fragmentation and dispersion. 

The pattern-based urban context definition is based on the relative fragmentation of both the 

built environment and the vegetation land cover. A compact urban core bounds the most 
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urbanized end of the spectrum, with a predominant Built land cover class and very low 

levels of landscape fragmentation. As distance from the compact urban core increases, the 

built environment becomes increasingly fragmented giving way to dispersion and 

interspersion of Vegetation and Built land covers.

At distances from the city center reaching beyond the city limits, the landscape changes to 

scattered settlements and sparsely populated areas; fragmentation of the built environment 

peaks and is gradually replaced by areas transitioning from their natural state into cleared 

spaces suggestive of potential settlement. At the least urbanized end of the spectrum, 

unsettled lands are identified by lower levels of fragmentation in the vegetation land cover, 

while in transitioning spaces we begin to observe clearings linked to growing vegetation 

cover fragmentation. The pattern-based definition of the urban context used in this study 

captures a wider range of urban environments than do traditional rural/urban classifications. 

By differentiating the compact urban city center from highly fragmented suburban areas and 

scattered settlements, the urban context definition identifies important pattern differences 

among inhabited spaces. This study proposes defining urban context based on characteristics 

of landscape fragmentation, an approach that is easily replicable in other data poor countries. 

At the same time, it is important to recognize that the urban context classification derived in 

this study is a relative measure of degree of urbanization that is based on the fragmentation 

characteristics of this particular landscape. Its replicability in different geographic settings is 

a subject for future research.

The pattern based scheme was developed solely on the basis of imagery; the test of its utility 

lies in its ability to differentiate socioeconomic characteristics derived from independent 

sources. While a complete test of its utility remains beyond the scope of this paper, the urban 

context classification was compared to census data summarized at the enumeration area 

(EA) level (average size 13 Km2). A random sample of 2000 EAs was selected from a total 

of 5000 covering the study area and was categorized based on the predominant urban context 

class covering each sampled EA (i.e. the class that covers the majority of the EA). EA level 

measures of population density and percentage of population occupied in agriculture were 

estimated and examined against the EA’s predominant urban context class. Results indicate 

that the highest percentages of population employed in agriculture are concentrated at the 

most rural end of the spectrum for scattered settlements, sparsely populated, fragmented 

transition, fragmented unsettled and unsettled land (Figure 12). It is interesting to note that 

the compact urban core has a higher percentage of population employed in agriculture than 

the fragmented sub-urban class, a result that would seem unlikely at first sight. However it is 

also worth pointing out that even though the compact urban core class captures the dense 

city center of Accra and Tema it also captures dense and compact city centers of 

intermediate cities and major towns. In those smaller cities the proportion of population 

working in agriculture is much higher than in sub-urban areas which are only concentrated 

around Accra. On the other hand, population density is highest in the most urban end of the 

spectrum for the compact urban core, fragmented large urban patches, and dense and 

disperse small urban patches classes and decreases significantly with the transition into the 

unsettled end of the scheme (Figure 13).
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In our follow-on research, we are examining demographic trends throughout the range of 

urban contexts, to see if they provide clues as to where we can expect urbanization to spread 

in the future. It is our expectation that any research uncovering a rural-urban differential in 

demographic behavior or trends will be better understood when the urban gradient is taken 

into account. Although our preliminary results confirm that demographic patterns vary 

throughout the urban context, the pattern-based definition of the urban context remains an 

arbitrary definition of space. There is no consensus on what constitutes an urban place and 

that means that there will continue to be many ways of characterizing urban spaces. This 

study proposes a definition of urban context based on landscape fragmentation 

characteristics, an easily replicable approach in data poor environments. At the same time, it 

is important to recognize that the urban context classification derived in this study is a 

relative measure of degree of urbanization that is based on the fragmentation characteristics 

of this particular landscape. We encourage other researchers to test its replicability in 

different geographic settings.

By examining landscape pattern characteristics, this study suggests that urban mapping can 

be advanced beyond the traditional rural/urban or land cover and land use classifications 

towards the detection and inclusion of diverse urban environments. This study attempts to 

explain differences between rural and urban environments in developing countries where the 

fast pace of urbanization is generating dynamic landscapes. Further research is necessary to 

expand the understanding of how the urban context is linked to demographic patterns and 

more specifically to elucidate how emerging developing world urban environments are 

connected to population growth.
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Highlights

• Urban context is mapped for population studies in the West African 

country of Ghana

• Landsat and ERS2-SAR imagery are used to classify Vegetation and 

Built land cover

• A pattern based definition of the urban context is created using 

landscape metrics
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Figure 1. 
Study area depicted in red within Ghana (gray) and the Gulf of Guinea in blue. Polygons 

within the study area represent census districts, while in the rest of Ghana represent regions 

(states).
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Figure 2. 
Flow chart for urban context classification based on the combination of Landsat 2000 

imagery and ERS-2 2000 imagery
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Figure 3. 
Extent of the study area delineated with a red boundary on Google Earth and extent of the 

very high spatial resolution imagery available on Google Earth in the 1998 to 2004 time 

period. 27% of the study area is covered by very high spatial resolution imagery in the 

1998–2004 time period.
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Figure 4. 
DN values for endmembers selected using the pixel purity index for band 3 (red) vs band 4 

(near infrared). Selected 5 end-members include Impervious surfaces, Non-photosynthetic 

vegetation, Shade, Soil and Vegetation.

Benza et al. Page 25

Remote Sens Environ. Author manuscript; available in PMC 2017 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Urban context classification scheme. On the most urban end compact and dense built land 

cover dominates, fragmentation increases in both built and vegetation land cover as classes 

transition towards rural environments. On the most rural end of the scheme compact and 

dense vegetation land cover dominates.
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Figure 6. 
Rules used to define the 9 class urban context classification scheme. Six measures of 

landscape fragmentation were analyzed and combined with an aggregated measure of radar 

texture to define the urban context classification scheme.
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Figure 7. 
Schematic illustrating C5.0 boosted tree (10 trials) input, classification split values and 

output. The yellow boxes indicate the classified urban context classes.
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Figure 8. 
(a) Built (>50% impervious & >25% impervious+>50% shade) and Vegetation (>50% 

vegetation & >25% vegetation+>50% shade) land cover extracted from SMA; (b) Landsat 

ETM+ false color infrared (bands 4-3-2) enlargement of the town of Agona Swedru (c) Built 

and Vegetation land cover extracted from SMA enlargement of the town of Agona Swedru.
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Figure 9. 
(a) Radar-derived Built map; (b) enlargement of radar-derived Built map near the town of 

Kwame Adewe; (c) enlargement of SMA-based land cover map of the town of Kwame 

Adwene; (d) Google Earth image from the town of Kwame Adewene 2003; (e) Radar based 

built class zoom on the town of Nsutapon; (f) SMA based land cover classification zoom on 

the town of Nsutapon; and (g) Google Earth image from the town of Nsutapon 2000.
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Figure 10. 
450 meter cell urban context map. Accra, the capital city, and the port of Tema in the central 

coast are the two largest urban centers within the study area.
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Figure 11. 
Distribution of predicted versus reference classes. Commission error is present on both ends 

of the classification scheme. The dark red portion of the Fragmented large urban patches bar 

indicates confusion with the Compact urban core class. The dark green portion of the 

Fragmented unsettled class bar indicates confusion with the Unsettled land class.
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Figure 12. 
Percent working in agriculture throughout the urban context classification. The highest 

percentage of population working in the agricultural sector is found on the most rural end of 

the scheme, Fragmented transition, fragmented unsettled and unsettled land.
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Figure 13. 
Population density throughout the urban context classification. Population density is highest 

on the most urban end the scheme and decreases as classes transition into the most rural 

unsettled land.
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Table 1

Urban context rules for classification of reference data in Google Earth

Class Urban context class name Rules

1 Compact urban core More than 50% built, dense small buildings no vegetation

2 Fragmented large urban patches More than 50% built, fragmented large buildings, little vegetation

3 Dense and dispersed urban patches More than 50% built, fragmented small buildings, fragmented vegetation

4 Fragmented suburban More than 25% built, fragmented buildings, significant vegetation

5 Scattered settlements Less than 25% built, compact built and vegetation

6 Sparsely populated Less than 25% built, fragmented built and vegetation

7 Fragmented transition Less than 10% built, fragmented built

8 Fragmented unsettled Less than 10% built, very little built

9 Unsettled land No built, mostly vegetation
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Table 2

Fuzzy accuracy linguistic score

Score Assessment of prediction

1 Absolutely wrong

2 Understandable but wrong

3 Reasonable answer

4 Good answer

5 Absolutely right
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