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spectral boundary integral method may offer a viable 
alternative to other approaches where the bulk is dis-
cretized, providing a better understanding of the near-
field dynamics of the bulk in response to finite fault 
ruptures.

Keywords Earthquakes · Induced seismicity · 
Poroelastodynamics · Boundary integral method · 
Waveform simulations

Article highlights

• We present a spectral boundary integral approach 
to friction and fracture problems in a poroelasto-
dynamic solid.

• Convolution kernels are constructed with a paral-
lel numerical inversion to Laplace transforms.

• Numerical simulations show that P-wave arrival 
may carry a significant pore pressure peak.

1 Introduction

The spectral boundary integral method (SBIM) in 
frictional and fracture mechanics is based on the 
idea of deriving analytical or semi-analytical solu-
tions for an arbitrary Fourier mode in the fracture 
or interface conditions, for example, the slip. The 
arbitrary boundary conditions are then obtained by 
superposition, in other words, representing the slip or 

Abstract The spectral boundary integral method 
is popular for simulating fault, fracture, and fric-
tional processes at a planar interface. However, the 
method is less commonly used to simulate off-fault 
dynamic fields. Here we develop a spectral bound-
ary integral method for poroelastodynamic solid. The 
method has two steps: first, a numerical approxima-
tion of a convolution kernel and second, an efficient 
temporal convolution of slip speed and the appropri-
ate kernel. The first step is computationally expensive 
but easily parallelizable and scalable such that the 
computational time is mostly restricted by compu-
tational resources. The kernel is independent of the 
slip history such that the same kernel can be used 
to explore a wide range of slip scenarios. We apply 
the method by exploring the short-time dynamic and 
static responses: first, with a simple source at inter-
mediate and far-field distances and second, with 
a complex near-field source. We check if similar 
results can be attained with dynamic elasticity and 
undrained pore-pressure response and conclude that 
such an approach works well in the near-field but not 
necessarily at an intermediate and far-field distance. 
We analyze the dynamic pore-pressure response and 
find that the P-wave arrival carries a significant pore 
pressure peak that may be observed in high sampling 
rate pore-pressure measurements. We conclude that a 
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other imposed interface conditions as a Fourier series 
in space at any given time. The main benefit of the 
approach is that one can utilize the efficiency and 
desirable scaling properties of the Fast Fourier Trans-
form (FFT) algorithms to compute the Fourier coeffi-
cients. Thus, practically speaking, the method avoids 
explicitly carrying out a computationally expensive 
spatial convolution that may be needed when imple-
menting fundamental or dislocation solutions for sim-
ilar purposes. However, there are some notable limi-
tations of the spectral method: first, the approach is 
mostly limited planar faults or interfaces (with some 
exceptions: Romanet and Ozawa 2021). Second, the 
method imposes periodic boundary conditions on the 
spatial domain (see some discussion in Sect.  4.1 on 
how this assumption can be removed).

The SBIM has been applied widely to analyze inter-
face frictional and fracture problems both for fully 
elastodynamic solid and quasi-static elasticity. Some 
approaches use the FFT algorithm to carry out an effi-
cient spatial convolution of an analytical elastic integral 
kernel and slip or slip speed (e.g. Quin and Das 1989; 
Rice 1993). But generally, the SBIM refers to when the 
analytical solutions are derived directly in the time and 
wavenumber domains; thus, the convolution kernels in 
the spatial domain are not needed. This approach has 
been shown to be particularly efficient for elastody-
namic problems (e.g. Perrin and Rice 1994; Geubelle 
and Rice 1995), where relationships between slip or slip 
speed and stress on the fracture or fault interface are 
obtained as convolution kernels in time, but no convolu-
tion is needed in space since the convolution kernels are 
represented in the wavenumber domain. By virtue of 
the Fourier decomposition and linearity, the operations 
on each Fourier coefficient are independent of opera-
tions of other Fourier coefficients at the same time-step. 
This modal independence lends itself to a straightfor-
ward parallelization of simulations. This property has 
been particularly useful in fully dynamic simulations 
on rate-and-state faults, which are particularly compu-
tationally expensive due to very large differences in rel-
evant time scales that need to be resolved (Lapusta et al. 
2000; Lapusta and Liu 2009). The SBIM implementa-
tion for elastodynamics or quasi-static elasticity has 
generally derived slip to stress relationship on the fault 
and thus are unable to directly compute off fault fields. 
A recent exception is the work of Barbot (2021) where 
the spectral boundary integral approach was extended 
to multiple parallel faults.

An SBIM for poroelastodynamics has not been 
presented to date in the same manner as for elastody-
namics or quasi-static elasticity. However, fundamen-
tal solutions have been derived, Cheng et al. (1991); 
Dominguez (1992) presented a boundary integral 
solution in the frequency domain, that is for time-har-
monic changes. Time-domain fundamental solutions 
for points sources were later derived (Chen 1994; 
Gatmiri and Kamalian 2002). However, in application 
to earthquake dynamics such fundamental solution 
may not honour possible non-trivial boundary condi-
tions on the interface pore pressure (Heimisson et al. 
2019, 2021). It is, therefore, important to be able to 
readily alter such boundary conditions.

Here we present a spectral boundary integral 
approach for fracture, frictional, and faulting prob-
lems in a poroelastodynamic solid. In this study, we 
limit the scope to simply imposing the slip history and 
analyzing the off fault fields. However, the method, 
broadly speaking, could be applied to on-fault fields 
similar to what was done by Lapusta et  al. (2000) 
where the slip history is simulated from a physics-
based friction law. We use a numerical inversion of 
the Laplace transform to obtain convolution kernels 
in the time and wavenumber domain. The mathemat-
ics is carried out directly from the governing differen-
tial equations with a symbolic manipulator, and thus 
imposing changes in boundary conditions and deriv-
ing new kernels is typically simple.

With the large number of in-situ experiments 
currently being performed at various underground 
laboratories (e.g. Guglielmi et  al. 2020, 2021; Ma 
et al. 2020; Schoenball et al. 2020), it is important to 
understand which processes may be relevant in the 
near field of a stimulated fault/fracture. The develop-
ment of new high-frequency sensors will allow for 
more detailed measurements of dynamic processes. 
We suggest that the methods may be used to effi-
ciently analyze such signals in this new era of field 
experiments in geomechanics and seismology.

This paper first discusses the problem setup 
(Sect.  1.1), then generally presents the theory 
(Sect.  2), which includes a discussion of governing 
equations, boundary conditions, spectral solution 
strategy, and numerical implementation. In Sect.  3 
we present the results, with a focus on the dynamic 
poroelastic response and we make a comparison to 
a comparable elastodynamic solution. Finally, some 
more detailed discussion is offered in Sect. 4.
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1.1  Problem setup

In this study, we investigate the problem of slip 
occurring at the interface of two fully dynamic poroe-
lastic half-space, generally referred to as poroelas-
todynamic. Figure  1 shows the general setup of the 
problem.

Here we describe the off-fault response, for both 
static and dynamic fields, due to fault slip in the 
poroelastodynamic medium. The slip direction is in-
plane, but otherwise, the slip is effectively arbitrary 
in both space and time; for example, we are not only 
solving for dislocation or a crack-like source. We 
apply an expansion in a spectral basis, which imposes 
periodic boundary conditions on the fault at the lim-
its of the domain in x (i.e. the direction of slip on the 
fault). However, we solve the problem analytically 
for an infinite domain in y (i.e. normal to the slip-
ping fault). We highlight that the poroelastic bulk 

is isotropic in terms of material properties, and the 
governing equations are linear. Thus implicitly, we 
assume infinitesimal strains everywhere except the 
interface.

2  Theory

2.1  Governing equations

The theory of quasi-static Biot poroelasticity (Biot 
1941) in time and three-dimensional space can be 
compactly written as a set of four coupled partial dif-
ferential equations and in terms of four field variables 
ui and p, where ui represents displacements in the i-
th direction and p is the pore-pressure perturbation 
around an equilibrium (see Cheng 2016; Detournay 
and Cheng 1995, for general theory of the topic). The 
theory of poroelastodynamics (Biot 1956a, b, 1962) 

y

x

Dynamic poroelastic half-space

Fault plane along x-axis

Observation plane

periodic 
boundary

periodic 
boundary

Dynamic poroelastic half-space x

Sl
ip

 s
pe

ed slip speed at time t > 0
time

Po
re

-p
re

ss
ur

e

dynamic pore-pressure at a point
negative change due to geometry

Fig. 1  Schematic setup of the problem and simulations. Two 
identical and isotropic dynamic poroelastic half-spaces (poroe-
lastodynamic) share an interface at y = 0 . The fault, where slip 
occurs, lies on the x axis, while all fields are invariant along 
the z-axis (plane strain, not shown). In the study, we observe 
the response at a plane y = yo , due to imposed slip at y = 0 . 

The imposed slip can have arbitrary spatial and temporal 
behaviour as long as it is well resolved by the discretization. 
At the observation plane, we can construct any relevant field, 
for example, the dynamic pore-pressure response due to the 
imposed slip
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can be presented in a comparable manner, however, 
this representation results in six partial differential 
equation in terms of six field variables ui and wi , 
where the latter represents the specific relative fluid 
to solid displacement (Cheng 2016). This adds con-
siderable complexity to any numerical or analytical 
investigation compared to the quasi-static theory. The 
complexity is further amplified by the fact that impos-
ing intuitive boundary conditions on the wi fields is 
challenging.

However, governing equations of poroelastody-
namics are considerably simplified in the frequency 
domain (Cheng et  al. 1991) where they can be pre-
sented in the more intuitive form of four equations 
and in terms of four field variables ui and p, simi-
lar to the quasi-static Biot poroelasticity. Further, 
such representation is also attained in the more gen-
eral Laplace domain (Chen 1994), which is more 
appropriate for investigating initial value problems. 
Chen (1994) represented the governing equations as 
follows:

where repeated indices represent a sum over the spa-
tial dimensions. In 3D, i = 1, 2, or 3, but for plane 
strain i = 1 or 2. Subscripted commas (e.g. p̃,i ) rep-
resent a derivative with respect to the i-th spatial 
dimension. There is an implicit assumption in Eqs. 1 
and 2 that all fields are at equilibrium, or in other 
words zero, at time t = 0.

(1)
(𝜆 + 𝜇)ũj,ij + 𝜇ũi,jj − 𝛼1p̃,i

− 𝜌1s
2ũi + f̃i = 0,

(2)𝜁 p̃,ii −
s

Q
p̃ − 𝛼1sũi,i + �̃� = 0,

The material parameters � and � are the drained 
Lamé constant, with � being the shear modulus, 
which is invariant of drained and undrained condi-
tions. fi and � represent body forces and the rate of 
fluid injection respectively, but both are set to zero in 
this study. Here �1 = � − �f s� , where � = 1 − KD∕KS 
is the Biot’s coefficient with KD and KS representing 
the drained bulk modulus and the solid constituent 
bulk modulus. �f  is the fluid density and 
� = ((1∕�) + ms)−1 , where � is the fluid mobility 
(permeability over dynamic viscosity), m = �f∕n 
(Zienkiewicz et al. 1980) with n representing poros-
ity. Further, �1 = � − �2

f
s� , where � = (1 − n)�s + n�f  

is the density of the combined fluid-solid phases with 
�s as being the density of the solid constituent. Finally 
(1∕Q) =

(

n∕Kf

)

+
(

(� − n)∕KS

)

 where Kf  is the bulk 
modulus of the fluid constituent.

The ~ sign represents a Laplace transformed vari-
able, for example, in the case of the pore-pressure

where s is Laplace frequency parameter that generally 
has both non-zero imaginary and real parts.

Furthermore, we note Hooke’s law

which has the same form as in quasi-static poroelas-
ticity and provides a way to represent solutions of 
the governing equations in terms of stresses. We note 
that Hooke’s law has no explicit time-derivatives and 
is linear, so the Laplace transform is obtained trivi-
ally by adding ~ to the field variables. Table  1 lists 
the parameter values used in this study, which are 
kept constant unless otherwise stated. The choice of 
parameters represents a generic rock and water phase; 

(3)p̃(s, xi) = ∫
∞

0

p(t, xi)e
−stdt,

(4)�ij = �uk,k�ij + �
(

ui,j + uj,i
)

− �p�ij,

Table 1  List of parameters 
kept constant unless 
otherwise specified

Parameter Definition Value

� Lamé’s first parameter (drained) 30.0 GPa
� Lamé’s second parameter (Shear modulus) 30.0 GPa
� Biot coefficient 0.5
n Porosity 0.05
�f Fluid density 1000 kg/m3

� Fluid and solid phases mixture density 3000 kg/m3

� Mobility (permeability over dynamic viscosity) 3.333 ⋅ 10−14 m 2/(Pa s)
Kf Bulk modulus of the fluid 2.1 GPa
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however, we stress that considerable variability for 
most poroelastic parameters is observed for different 
types of rocks (Cheng 2016). Other parameters, not 
listed in the table, can be computed based on the val-
ues in the table.

2.2  Spectral boundary integral solutions

Here we describe the procedure to obtain the spectral 
boundary integral solutions. This section shows that 
all off-fault fields can be represented as a convolution 
of the slip speed and a kernel function.

First we shall reduce to governing Eqs. (1 and 
2) to the plane strain case. This is done trivially by 
only having the indexes span i = 1, 2 . For more trans-
parency, in the equations to follow we shall refer to 
the i = 1 index as the x dimension and i = 2 as the y 
dimension as in Fig. 1.

The first step is Fourier transforming in x, thus 
now we have applied a joint Fourier-Laplace trans-
form, for example to the pore-pressure:

In this dual transform domain, one can show that the 
governing Eqs. 1 and 2 reduces to

At this stage, the solution strategy is straightforward 
but tedious. First, the second derivatives with respect 
to y must be eliminated using the standard method of 
treating the first-order derivative as a separate func-
tion, thus introducing three more equations into the 
problem. The system of governing equations can thus 
be represented as

where � = [ ̂̃ux, ̂̃ux,y, ̂̃uy, ̂̃uy,y, ̂̃p, ̂̃p,y]
T is the vector of rel-

evant field variables and their derivatives, which are a 
byproduct of reducing the system of equations to the 

(5)̂̃p(s, k, y) = ∫
∞

0
∫

∞

−∞

p(t, x, y)e−ikx−stdxdt.

(6)
𝜇 ̂̃ux,yy =

(

(𝜆 + 2𝜇)k2 + 𝜌1s
2
)

̂̃ux − (𝜆 + 𝜇)ik𝜇 ̂̃uy,y + 𝛼1𝜇 ̂̃p

(7)
(𝜆 + 2𝜇) ̂̃uy,yy = −(𝜆 + 𝜇)ik ̂̃ux,y + (𝜇k2 + 𝜌1s

2) ̂̃uy + 𝛼1 ̂̃p,y

(8)𝜁 ̂̃p,yy = 𝛼1sik ̂̃ux + 𝛼1 ̂̃uy,y + (𝜁k2 + s∕Q) ̂̃p,y

(9)
d

dy
� = ��

first order. � is a 6x6 matrix and its elements can be 
determined from Eqs. 6, 7, and 8.

In other words, we have obtained an equivalent 
system of six first-order linear ordinary differential 
equations, which can be solved in a standard man-
ner by computing eigenvalues and eigenvectors of � . 
We do not show this step in this paper since it is car-
ried out with Matlab’s symbolic manipulator toolbox 
(The MathWorks 2019).

Each one of the six eigenvectors introduces an 
unknown coefficient which must be determined by 
imposing boundary conditions. We impose boundary 
conditions at y = 0 and need a separate solution for 
the upper half-space and the lower half-space, thus 
resulting in a total of 12 unknowns. The boundary 
conditions are as follows.

where we indicated a field in the upper half-space 
(y > 0) with a superscript + and the lower half-space 
(y < 0) with superscript − (See Fig. 1 for reference). 
The first three statements listed (corresponding to six 
equations) guarantee that all fields decay at infinity. 
These conditions are first applied by setting coef-
ficients that scale terms that diverge at y → ±∞ to 
zero, thus assuming that all fields go to zero at infinite 
distance away from the fault and reducing the result-
ing unknowns to six. At this stage the solution, with-
out having imposed the last 6 boundary conditions, 
can be written as

where � = � ⋅ � = [c1e
E1y, c2e

E2y, c3e
E3y, c4e

E4y, c5e
E5y, c6e

E6y]T , cn 
being the n− th coefficient that needs to be determined 
by the interface condition in Eq. 10 and En is the n-th 
eigenvalue of � for upper and lower half-spaces once 

(10)

lim
y→±∞

̂̃u±
x
= 0,

lim
y→±∞

̂̃u±
y
= 0,

lim
y→±∞

̂̃p± = 0,

lim
y→0±

̂̃u+
x
− ̂̃u−

x
= ̂̃𝛿

lim
y→0±

̂̃u+
y
− ̂̃u−

y
= 0

lim
y→0±

̂̃p± = 0,

lim
y→0±

̂̃𝜎+
xy
− ̂̃𝜎−

xy
= 0,

lim
y→0±

̂̃𝜎+
yy
− ̂̃𝜎−

yy
= 0,

(11)� = ��
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removing the eigenvalues that cause fields to diverge 
at infinity (by setting the corresponding coefficient 
to zero). The relevant fields are expressed in vector 
� = [ ̂̃u+

x
, ̂̃u−

x
, ̂̃u+

y
, ̂̃u−

y
, ̂̃p+, ̂̃p−]T . The matrix � contains 

the eigenvectors corresponding to each eigenvalue in 
each column, which are computed from �.

The latter 5 boundary condition statements (six 
equations) are interface conditions of the half-space 
boarders at y = 0 . First, we assume an arbitrary dis-
placement discontinuity � , also known as slip, can 
occur at the interface. Second, we state that the inter-
face cannot open or close in on itself. Third, that the 
pore pressure at the interface is zero, we highlight 
that in many cases, this may not be an appropriate 
boundary condition for slip problems in poroelastic 
solids if the symmetry of the problem is broken or 
the fault interface has a finite width (see Heimisson 
et al. 2021, for discussion). In our mathematical prob-
lem, the compressional lobe on one side of the fault is 
equal but of opposite sign to the dilational lobe on the 
other and thus the pore pressure is of equal and oppo-
site sign, furthermore, the fault width is infinitesimal 
such that discontinuity in pore pressure can be instan-
taneously resolved by diffusion. Thus by virtue of this 
anti-symmetry, the pore pressure change will be zero. 
Natural faults are much more complex and we do no 
expect such strict conditions to hold. However, in this 
study, we are simulating the off-fault fields at some 
observation plane y = yo due to imposed slip his-
tory, and thus we do not expect this condition to be 
as important as, for example when understanding the 
frictional stability of the fault. The last two boundary 
condition statements impose continuity of traction 
across the interface.

The implementation of the boundary conditions 
can be presented as a linear system of equations.

where � = [ ̂̃𝛿, 0, 0, 0, 0, 0]T . Thus � = ̂̃𝛿�−1
∶,1

 , where 
�−1

∶,1
 being the first column of the inverse of �.

Now the solutions vector � can be fully determined.

stresses and strains can be obtained from 13 using 
Hooke’s law (Eq.  4) and the appropriate deriva-
tives. Equation 13 shows that in the Laplace domain 
all fields are multiplied by the fault slip ̂̃𝛿 . Using the 

(12)� = ��,

(13)� = ̂̃𝛿�
(

�−1
∶,1

⋅ �
)

,

convolution theorem of Laplace transforms we can 
invert the transform by turning it into a convolution in 
the time domain.

If |yo| > 0 (see Fig.  1) there is no instantaneous 
response between slip and observed fields at y = yo , 
otherwise causality would be violated, so integration 
by parts renders a different expression:

where the solution is provided as a convolution in 
terms of the slip speed ( �̇� = v ). We prefer this repre-
sentation for reasons discussed in Sect. 2.4.

We may write more explicitly, for example, the 
pore-pressure in the upper half-space as

where Kp+ is inverse Laplace transform of the 5th ele-
ment in the column vector 

(

1

s
�(�−1

∶,1
⋅ �)

)

 . Another 
example:

where Kux+ is inverse Laplace transform of the first 
element in the column vector 

(

1

s
�(�−1

∶,1
⋅ �)

)

.
In summary, we have shown that all fields can be 

represented as a convolution of the slip speed and a 
convolution kernel that needs to be determined.

We end this section by making a few remarks 
about the convolution kernels. 

1. Depending on if the field in question is symmet-
ric or anti-symmetric, the upper and lower half-
space kernels are either the same or differ in sign.

2. The kernels need to be determined by numeri-
cally inverting the Laplace transform since ana-
lytical inversion has not been feasible due to 
the extreme complexity of the expressions, see 
Sect. 2.4 for discussion.

3. Each kernel is a function of time, the 
distance from the fault y = yo (since 
� = [eE1y, eE2y, eE3y, eE4y, eE5y, eE6y]T ), the wave-

(14)L
−1(�)(t) = ∫

t

0

𝛿(t�)L−1
(

�(�−1
∶,1

⋅ �)
)

(t − t�)dt�.

(15)

L
−1(�)(t) = ∫

t

0

v̂(t�)L−1
(

1

s
�(�−1

∶,1
⋅ �)

)

(t − t�)dt�,

(16)p̂+(y, t)(k, y, t) = ∫
t

0

v̂(k, t�)Kp+(k, y, t − t�)dt�,

(17)û+
x
(y, t)(k, y, t) = ∫

t

0

v̂(k, t�)Kux+(k, y, t − t�)dt�,
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number k, and the governing material parameters 
introduced in Eqs. 1 and 2.

4. Each convolution kernel is independent on the 
slip history, thus once computed it can be applied 
to any slip history provided that spatial and tem-
poral discretization resolves the rupture process.

2.3  Inversion of fourier transform

The inversion of the Fourier transform is carried out 
by expanding the slip speed in a Fourier basis or, in 
other words, a Fourier series:

where L is the domain size, and N is the number of 
discrete and evenly spaced points in the domain. Vn(t) 
is the n-th Fourier coefficient corresponding to a dis-
crete wavenumber of kn . Computation of the Fourier 
coefficients is done efficiently using the fast Fourier 
transform algorithm (FFT). Thus from Eq. 17 we can 
obtain a mapping between the n-th Fourier coefficient 
of v(x, t) defined at y = 0 and the n-th Fourier coeffi-
cient of u+

x
(x, t) evaluated at observation plane y = yo 

(Fig. 1)

then the corresponding displacements can be com-
puted for the entire observation plane:

but this step can be done efficiently with the inverse 
fast Fourier transform algoritm (iFFT).

Similarly, we may compute the pore-pressure at 
observation plane y = yo by using the following map-
ping between the Fourier coefficients of the slip speed 
and the Fourier coefficients of the pore-pressure:

and the pore-pressure is computed

(18)v(x, t) =

N∕2−1
∑

n=−N∕2

Vn(t)e
iknx, kn =

2�n

L
,

(19)Un+
x
(kn, y = yo, t) = ∫

t

0

Vn(kn, t
�)Kux+(y = yo, t − t�, kn)dt

�,

(20)

u+
x
(x, y = yo, t) =

N∕2−1
∑

n=−N∕2

Un+
i
(t)e−iknx, kn =

2�n

L
,

(21)

Pn+(kn, y = yo, t) = ∫
t

0

Vn(t
�)Kp+(y = yo, t − t�, kn)dt

�,

Any other relevant field, either stress or strain, can be 
then treated in the same way by applying the appro-
priate derivatives of the relevant kernels and superim-
pose them. We highlight that spatial derivatives of the 
kernels with respect to x are carried out trivially by 
multiplying the kernel by ik.

2.4  Numerical approach

While the bulk of the method presented is based on 
analytical analysis, the final steps in obtaining the 
convolution kernels and then simulating various 
field are carried out numerically. The procedure is as 
follows: 

1. Given a set of material parameters, such as � , � , 
� , etc., we compute 

(

1

s
�(�−1

∶,1
⋅ �)

)

 using Mat-
lab’s symbolic manipulator.

2. We define a fault length L and spatial discretiza-
tion Δx , here taken as 200 m and 0.5 m respec-
tively and compute the corresponding array of 
wavenumbers kn . Further, we define the simula-
tion time and time-steps, here 0.03 s and 5 ⋅10−5 
s respectively, where the time-steps are evenly 
spaced. Time-step discretization means that a 
P-wave will take two time-steps to approximately 
propagate the distance of Δx , note however that 
P-waves are dispersive and do not have a single 
wave speed (e.g. Cheng 2016).

3. We set y = yo , and in this study, we explore val-
ues of 5 m, 10 m, 20 m.

4. We numerically evaluate the inverse Laplace 
transform at each wavenumber and time-step 
pair, for example, in Eq. 20. Thus the convolution 
kernel can be represented as a discrete 2D matrix 
where each column is a time-step, and each row 
corresponds to a wavenumber.

5. Given a prescribed slip speed history v(x, t), FFT 
is used to compute the Fourier coefficients, then 
the convolution in time is carried out using the 
trapezoidal rule, and iFFT is used to construct the 
desired field at y = yo

(22)p(x, y = yo, t) =

N∕2−1
∑

n=−N∕2

Pn+(t)e−iknx, kn =
2�n

L
.
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The 4-th step above is by far the most numerically 
expensive and non-trivial, and thus it is worth dis-
cussing more. To invert the Laplace transform, we 
use the well-known Talbot contour integration (Talbot 
1979) to improve the convergence of the Bromwich 
integral. We use the contour parameters identified by 
Abate and Valko (2004) and follow their algorithm 
exactly where the contour is discretized into NLP 
intervals, and then the integral is computed with the 
trapezoidal rule as is standard due to its exponential 
convergence in contour integration (Trefethen and 
Weideman 2014). In this case, we expect convergence 
of the integral should be no worse than ∼ 1∕

√

NLP , 
but the convergence may depend on the function to be 
inverted, how well suited the selected contour func-
tion is for that function, and the selection of contour 
parameters for each particular case (e.g. Weideman 
2006; Dingfelder and Weideman 2015).

The challenging aspect of inverting the Laplace 
transform is that one may need to evaluate the con-
tour integral at a much higher precision than typical 
double precision. Indeed for the Talbot method, the 
number of significant digits needed to compute the 
contour integral is approximately 0.6NLP thus, one 
can expect an inaccurate inversion of the Laplace 
transform using double precision if higher order 
than NLP = 25 is needed. If a function contains high 
frequencies, for example, for high-frequency wave-
forms, this function will need a longer contour to be 
inverted. Intuitively, this occurs because this function 
contains non-zero values far from the real axis, which 
represent the high-frequency content. When explor-
ing the convergence of the inverse Laplace transform 
in this study with respect to NLP we observed that 
the slip-speed convolution kernels 1

s
�(�−1

∶,1
⋅ �) com-

pared to the slip convolution kernels �(�−1
∶,1

⋅ �) had 
improved convergence. This is because the scaling of 
1/s causes faster decay in the complex plane. Never-
theless, we concluded that we required NLP = 200 to 
obtain acceptably well-resolved results for the prob-
lems setup, spatial discretization and material param-
eters. We thus needed to compute the contour integral 
with 130 significant digits, but we used 0.65NLP to 
be on the safe side. This is possible with Matlab by 
treating the discretized contour integral as a symbolic 
expression and then finally evaluate the expression at 
the desired precision, which can be done with Mat-
lab’s vpa function. While this allows for computing 
the inverse Laplace transform at virtually any desired 

precision, this is a very computationally expensive. 
Computing one element in the pore-pressure kernel 
at NLP = 200 takes about 30 s, but based on numeri-
cal exploration, it appears that the computation time 
scale approximately linearly with NLP . In this study, 
the kernels have 400 ⋅ 600 = 240000 elements, but 
only half the elements are needed after utilizing sym-
metries, or anti-symmetries, with respect to the wave-
number. Thus computing a single kernel on a sin-
gle core takes about 40 days. However, all elements 
of the kernel matrix are independent, and thus, the 
computational time is primarily only limited by how 
many cores can be used for the computation. In this 
study, we used 144 cores to compute each kernel and 
gained 144 fold speedup in the computation by using 
a straightforward parfor loop parallelization in 
Matlab.

Once a kernel has been computed, then carrying 
out the convolution in step 5 can be done on a sin-
gle core with a non-optimized code in a few seconds. 
We thus highlight that the vast majority of the time 
required goes into computing the kernel, but once 
that is done. A large number of simulations with arbi-
trary slip speed histories (as long as they agree with 
the discretization) can be carried out rapidly. The 
method, therefore, offers an opportunity to explore 
different slip speed distributions at perhaps unprec-
edented speed for numerical methods that can simu-
late static and dynamic fields in a poroelastodynamic 
solid. However, the method is prefaced with a compu-
tationally intensive kernel building.

2.4.1  Source models used in this study

As has been discussed, once the kernel has been com-
puted, the source model (slip rate history in time and 
space) can be selected arbitrarily, and the relevant 
fields at y = yo can be constructed with minimal com-
putational time and resources. The source model is 
assumed to have the same time discretization as the 
convolution kernels, that is a duration of 0.03 s and 
time-steps with length of 5 ⋅10−5 s. To narrow the 
focus in this study, we shall select two source models 
to highlight two different regimes: first, a simple dis-
location source with an exponential time-dependence 
with a characteristic rise time of 0.01 and a total slip 
of 0.01 m. The total source dimension is 5 m, and 
we will both observe wave-mediated and quasi-static 
fields in the intermediate distance to far-field range. 
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The second, a complex near-field source constructed 
by several self-similar propagating cracks (e.g. Bur-
ridge and Willis 1969) that are activated at different 
times and locations and the rupture speeds set to be 
around 90 % of the S-wave speed in an elastic solid 
with the same density and shear modulus. We intro-
duce a small variability of the rupture speeds within 
10% difference for the fastest and slowest. The self-
similar crack ruptures are terminated by multiplying 
a time-dependent factor, which is a half-Gaussian 
with a standard deviation of either 0.005 or 0.00025 
s. Since the self-similar crack has a singular slip rate 
at the propagating front, we regularize the model by 
capping the slip rate at 1 m/s, thus effectively intro-
ducing a cohesive zone. The complex source has a 
final dimension of about 80 m, and thus the response 
at y = yo can be interpreted as the near-field response. 
We highlight that the complex near-field source, as 
well as the simple dislocation source, are not neces-
sarily realistic examples of earthquake ruptures at 
different scales and are simply selected to illustrate 

potential regimes. Figure  2 offers a visualization of 
the sources showing both slip speed and slip.

The spatial and temporal discretization of the 
kernels is important in terms of resolving the bulk 
response from a given source model. As we men-
tioned before, the minimum spatial grid size is set to 
0.5 m and the time-step to 5 ⋅ 10−5 s. First, the spa-
tial discretization was determined approximately 
such that the minimum length scale of the source 
model was resolved. For the simple source model this 
is the 5 m length of the source. However, the com-
plex source is a superposition of self similar cracks 
that nucleate from a point with singular slip speed 
at the rupture tip. In principle, such a rupture source 
has no cohesive zone and thus infinitesimally small 
minimum length scale. However, we capped the slip 
speed at 1 m/s and thus effectively introduced a cohe-
sive zone, but since the source nucleates at a point 
this scale will not be resolved early on. The minimum 
time-step, as was mentioned earlier, was estimated 
given the spatial discretization based on resolving 

Fig. 2  Illustration of the 
source properties (located at 
y=0) used in the study both 
in terms of slip speed and 
cumulative slip. The source 
duration is 0.03 s and is 
discretized into time-steps 
of 5 ⋅10−5 s (same as the 
convolution kernels) . a 
shows the simple disloca-
tion source slip speed. b 
shows the simple disloca-
tion source slip. c shows 
the complex multiple 
crack near-field source slip 
speed. d shows the complex 
multiple near-field crack 
source slip
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the propagation of the P-wave from one grid point to 
another. We carried out tests where we computed ker-
nels with higher spatial and/or temporal resolution for 
NLP = 200 and compared to the grid size of 0.5 m and 
the time-step of 5 ⋅ 10−5 s. This error was determined 
to be negligible compared to the numerical error from 
inversion of the Laplace transform (see Sect. 3.2 for 
more discussion on convergence with NLP).

3  Results

In this results section, we apply the method presented 
in previous sections to investigate several problems 
related to earthquake physics and simulations of 
earthquakes and possible near-field or intermedi-
ate distance observations. Further, we explore some 
aspects of the numerical implementation.

First, we explore and visualize several fields for a 
reference case. Second, we present a Kernel conver-
gence study to provide more insight into the robust-
ness of the numerical inversion of the Laplace trans-
form. Third, we investigate some of the expected 
characteristics if the pore pressure is observed at 
a high rate relatively close to an earthquake source. 
Finally, we ask the question, is accounting for poroe-
lastodynamic effects needed when investigating 
earthquake signals and interaction, or can we approxi-
mate these effects with a simpler elastic theory with 
an undrained one-way coupling of strain and pore-
pressure? We shall refer to the full poroelastodynamic 
simulation as “coupled” and the elastic simulation 
with one-way pore-pressure coupling as “decoupled” 
for short.

Fig. 3  Reference case for the source models in Fig.  2 at 
yo = 10 m. Top row represents results for the simple source, 
the bottom row for the complex source. Panels a, d show pore-

pressure change, panels b, e show displacements in slip par-
allel direction, and panels c, f show particle velocities in slip 
parallel direction
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3.1  Reference case results

We start by presenting a reference case with 
yo = 10 m, for the simple and complex source (see 
Fig. 3).

Figure 3 shows well that within the time-frame of 
the simulations, we observe both the wave-mediated 
response as well as the realization of the static or 
quasi-static response. For example, panel a shows 
the P-wave induced pore-pressure response, as well 
as the growth of the two lopes in the ±20 m range, 

which represent the pore-pressure response pre-
dicted by the quasi-static theory and is mostly real-
ized in the time range of 0.02-0.03 s. Panel b clearly 
shows the S wave arrival and propagation, which 
induces no pore-pressure response and is thus not 
seen in panel b. As is expected, it is more difficult 
to identify features in the complex near-field source. 
However, a comparison of the top and the bottom 
row shows some general similarities, for exam-
ple, displacements in the opposite direction of slip 
before the arrival of the S wave (b, e).
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Fig. 4  Convergence test of the dynamic pore-pressure with 
increasing NLP . a pore-pressure profiles with time at ±20m , 
with varying NLP for the simple dislocation source shown in 
Fig.  2. Visually speaking, the agreement is good, although 
some difference is observed in NLP = 60 . We note that for NLP 
values less than 60 the agreement deteriorates rapidly. Panel b 
shows change in relative error with increasing NLP , the relative 
error is defined as the L1 norm of the residuals of the NLP solu-
tion (indicated by the horizontal axis) and the NLP = 300 solu-

tion divided by the L1 norm of the latter a, or mathematically 
||p+(x = ±20, t,NLP) − p+(x = ±20, t, 300)||1∕||p

+(x = ±20, t, 300)||1  . 
We observe approximately 1∕NLP convergence. Panel c corre-
sponding plot to a but for the complex source, here we observe 
higher frequencies associated with the propagation of the crack 
tip. d  shows convergence of the complex source. We observe 
a slower convergence that is more similar to 1∕

√

NLP , we sug-
gest that this is due to high frequency content
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3.2  Kernel convergence study

Due to the many nuances of computing numerically 
the inverse Laplace transform, we shall here report a 
convergence test with respect to NLP (Fig. 4). In this 
test, we explore the convergence of the pore-pressure, 
we explore the convergence of the pore-pressure 
because our exploration seems to suggests that it 
requires higher NLP to reach an acceptable error com-
pared to other fields. The reason for this is likely that 
the pore pressure depends on the volumetric stress, 
which in turn depends on the derivatives of displace-
ments fields. Due to this dependence of various deriv-
atives, the pore pressure may contain shorter wave-
lengths and thus higher frequencies.

A visual inspection of Fig. 4 suggests that at a con-
tour discretization with NLP = 100 renders acceptable 
results. However, in the case of the complex source, 
we observe significant relative error due to the exci-
tation of higher frequencies. We have thus chosen 
NLP = 200 in the study and in the results. We stress 
that the simple and complex sources in Fig. 4 are pro-
duced with the same convolution kernels for each NLP 
value. It may thus be surprising that the two results 
have different accuracy and convergence. However, 
we observe that a low order kernel (with low NLP ) can 
give an accurate result if it is convolved with a func-
tion that doesn’t contain high frequencies since the 
higher frequencies are not correctly represented in the 
kernel will be averaged out. We postulate that there 
should be a relationship between NLP and the maxi-
mum frequency one wishes to simulate, but we leave 
this to future work.

3.3  Pore-pressure evolution with distance

Here we explore in more detail the characteristics of 
the dynamic and static pore-pressure fields. We refer 
to the dynamic pore-pressure as the wave-mediated 
changed, which are not predicted by a non-inertial 
theory. The static response is the poroelastic response 
at short distances ( |x| < 20 m), which correspond to 
the undrained change of the quasi-static poroelastic 
theory once wave mediated transfer of stresses has 
occurred (approximately at 0.02 s in most examples).

Perhaps, the most interesting result from simulat-
ing the dynamic pore-pressure is that the P-wave car-
ries pore-pressure change over a distance much larger 
than the source dimension. For example, in Fig. 5e at 

the distance of yo = 20 m, which is 4 times the source 
dimension. The static poroelastic response at short 
distances ( |x| < 20 m) and the dynamic response 
are of similar magnitude. However, the dynamic 
response is carried much further parallel to the fault 
and maintains a significant value all the way to the 
boundary. We notice, also in the line-plots in Fig. 4, 
that the arrival of the P-wave is associated with a 
peak in pressure. Whether this peak is positive or 
negative depends on if the observation point is in the 
compressional or dilational area of the P-wave com-
pared to the seismic source. The pressure decreases 
in magnitude once the P-wave has passed and either 
stabilize at a lower magnitude (in an absolute sense) 
or increases again if close enough to be affected by 
the quasi-static response.

In the complex source pore pressure, we observe 
some distinct characteristics. First, there are areas 
where positive pore-pressure change occurs in a pre-
dominantly negative pore-pressure area and vice-
versa (Fig. 5b). However, as you move further away 
d,f the sign changes, this suggests that in the near-
field of a seismic source, the pore-pressure can be 
complex and possibly difficult to interpret.

3.4  Comparison of fully coupled and decoupled 
simulations

We now investigate if we can approximate the poroe-
lastic effects, which results from the two way cou-
pling of strain and pore pressure, with a decoupled 
representation. In the governing equations (Eqs. 1 and 
2) we observe decoupling of Eqs. 1 and 2 if � = 0 and 
�f = 0 . In this case Eq. 1 simply become the elastic 
wave equation with density (1 − n)�s . Similarly Eq. 2 
simply becomes a diffusion equation. Since we don’t 
impose any changes in the pore pressure in the decou-
pled case, it will not change. In contrast, quasi-static 
poroelasticity only requires setting � = 0 to decouple 
the elastic deformation and pore-pressure. Further, 
analysis of quasi-static poroelasticity provides a rela-
tionship between undrained pore pressure change and 
the volumetric stress (Rice and Cleary 1976)

where B is Skempton’s coefficient, which here is 0.37 
given the parameters in Table 1.

(23)pun = −B
�kk

3
,
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First we explore if we may reasonably well approx-
imate the pore-pressure response using Eq.  23 by 
comparing the pore pressure response at yo = 10 m 
for both a complex near-field seismic source and for 
simple dislocation source (see Fig. 2). The compari-
son is presented in Fig. 6.

Our results suggest that one can quite accurately 
approximate the dynamic pore pressure response 
using the decoupled method where only the elastic 

wave equation is solved, and then the pore-pressure 
response is computed with Eq.  23 after the simula-
tion has been carried out. Here we have focused our 
attention on the short time scale, but we stress that 
at longer time scales, the decoupled and coupled 
approaches diverge as diffusion of the pore pressure 
becomes relevant.

To understand event clustering and fault interac-
tions in induced seismicity settings, as well as other 

Fig. 5  Visualization of 
the dynamic pore-pressure 
fields for both the simple 
source (left) and the com-
plex source (right) at obser-
vation planes at varying 
distances: for a, b yo = 5 m, 
for c, d yo = 10 m, and for 
e, f yo = 20 m
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cases, we investigate the dynamic stresses on faults of 
different orientations, specifically the Coulomb stress 
(with the coefficient of friction set to 0.6) and the 
effective normal stress. Since the Coulomb and effec-
tive normal stresses incorporate several components 
of the strain and the pore-pressure, we suggest that if 
there are significant differences observed in any of the 
relevant fields, that should be revealed by investigat-
ing the Coulomb and effective normal stresses.

The Coulomb stress and effective normal stress 
calculations for the simple source model (see Fig. 2 
for visualization of the source) has revealed several 
interesting phenomena. First, we observe that, on the 
whole, the decoupled and coupled simulations are 
broadly consistent. However, the largest differences 

are found at fault rotation of 135◦ and −45◦ angles, 
which correspond to the same fault plane but differ-
ent sense of slip. In this case, the effective normal 
stress at distances exceeding about 20 m has differ-
ent signs depending on if the simulation is decoupled 
or coupled, and this translates into differences in the 
Coulomb stress. Second, we observe that the onset 
and magnitude of the near-field quasi-static response 
(within 20 m distance from the fault) can be some-
what less abrupt and less intense than in the coupled 
compared to the decoupled simulations. For example, 
angles −45◦ or −90◦ in Fig.  7. Finally, we highlight 
the complexity of the dynamic stress interactions in 
Figs. 7 and 8, both in terms of magnitude, sign and 
spatio-temporal variability even though the source is 

Fig. 6  Comparison of pore-pressure response for the a decou-
pled simulation (a), coupled simulation (b), and residuals of 
coupled–decoupled (c). In the decoupled simulations (a) the 

pore pressure is computed using Eq.  23 after the simulations 
has been carried out. Top row shows the response for the sim-
ple source and the bottom row the complex source
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simple and the observed stresses are in the interme-
diate and far-field, thus suggesting that dynamic trig-
gering can be difficult to model and compare to field 
data.

Next we’ll investigate a complex near-field source 
process (see description of the source in Fig. 2) with 
results presented in Figs. 9 and 10.

In general, we observe for the complex near-field 
source a remarkable agreement between the decou-
pled and coupled simulations (Figs.  9 and 10). In 

contrast to Figs. 7 and 8, where more differences are 
observed, in particular at fault rotation of 135◦ and 
−45◦ , where the the sign of effective normal stress is 
reversed. This suggests that at the intermediate and 
far-field range, the full poroelastodynamic coupling 
may be more important. This may be due to the dis-
persive and attenuating properties of the poroelasto-
dynamic medium. The complex source demonstrates 
that the stress interaction at this distance range can 
be very complex. Even for a parallel fault with the 

Fig. 7  Coulomb stresses (left) and effective normal stress 
(right) calculated on yo = 10 m for different receiver faults 
for both decoupled and coupled solutions. Titles of each 
panel show the angle of the received fault with respect to the 
x-axis where positive rotation angle indices rotation towards 
the y-axis. Slip is always assumed to be right lateral on the 
receiver faults. Thus the first row with angle 0 ◦ represents 
receiver faults parallel to the x-axis, where the rupture occurs, 

and with the same direction of slip as the rupturing fault. 
While it is clear that the decoupled and the coupled cases are 
not identical, they do seem broadly consistent. However, the 
effective normal stress for −45◦ in the dynamic range (>20 
m from the source) we observe opposite sign in the effective 
normal stress. All colours saturate at ±3 MPa to visualize all 
the panels with the same scale. The short black line shows the 
dimension of the source
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same slip direction (Fig.  9, angle 0 ◦ ), there is not a 
complete stress shadow effect adjacent to the source 
region. This is primarily due to complexities in the 
slip distribution and considering the effect of pore-
pressure in the effective normal stress, which is then 
used to compute the Coulomb stress. We have thus 
demonstrated a type of heterogeneity, alongside oth-
ers (e.g. Smith and Dieterich 2010), can explain the 
presence of aftershocks adjacent to fault planes in a 
region of a stress shadow in a smoother and less het-
erogeneous model.

4  Discussion

4.1  Simulating longer time

In this paper, we focused our attention on the short-
term dynamic response and, in fact, only investigate 
a time window of 0.03 s. However, the dynamics of a 
poroelastic solid are not only influenced at the time-
scale of wave propagation but also at the time-scale of 
diffusion. Our approach could, of course, be extended 
over a longer time and thus accounting for deforma-
tion on the diffusional time-scale simply by extend-
ing the time scale over which the kernel is evaluated. 
However, some care needs to be taken. First, for 

Fig. 8  Same as Fig. 7 but showing more of the receiver fault. Here we observe substantial differences in both Coulomb stress and 
effective normal stress for the 135◦ angle
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each wavenumber k the diffusional time-scale should 
be well temporally resolved. The diffusional time-
scale in the bulk is 1∕(k2c) (Heimisson et  al. 2021), 
where c is the hydraulic diffusivity. We thus observe 
a very strong dependence on the wavenumber, and the 
maximum time-step in discretizing the kernel should 
reflect that. Another important aspect of simulating a 
longer time-scale is the periodic boundary conditions 
imposed by the spectral boundary integral approach. 
Thus waves do not leave the domain if traveling par-
allel to the x-axis. For this, there may be two solu-
tions, first, truncation of the convolution kernels at a 
certain time similar to Lapusta et  al. (2000). In this 
case, we postulate that one needs to separate the ker-
nel into a dynamic part and a quasi-static part and 

only truncate the dynamic part. How to implement 
this part requires further investigation. Secondly, one 
would need to adapt the approach of Cochard and 
Rice (1997); Noda (2021), but this is likely not trivial.

4.2  Extension to 3D

The method presented can also be applied to 3D 
problems. This would require taking a 2D Fou-
rier transform in Eqs. 1 and 2, but otherwise follow 
nearly identical steps. The main issue is that to obtain 
the same spatial resolution as for plane strain simu-
lations with n Fourier modes, one needs n2 Fourier 
modes, which may require substantial computational 
resources. However, due to the fully parallel nature 

Fig. 9  Same as Fig. 7 but for a complex near-field source
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of the kernel computation, this can be done in theory 
relatively fast if the resources are available.

4.3  Wider applicability

The general method we have presented to construct 
the spectral convolution kernels and using a numeri-
cal inversion of the Laplace transform could be 
applied more widely to obtain spectral boundary 
integral solutions for problems that cannot be solved 
fully analytically. For example, the method could 
be extended to problems with a more complex bulk, 
for example, with fault parallel layered structure or 
more complex properties such as thermo-poroelastic. 
The approach can also compliment new numerical 

strategies that couple spectral boundary integrals with 
finite elements for effeciency and wave absorption 
(Ma et al. 2019) and the desired boundary conditions 
for finite element domain can be tailored without 
much analysis by hand.

5  Conclusions

Here we have presented a spectral boundary integral 
approach to simulate, understand, and analyze finite 
fault slip and earthquake ruptures in a poroelasto-
dynamic solid. Our analysis and focus have been 
on plane strain ruptures, but a comparable approach 
could be applied to a 3D problem. The methodology 

Fig. 10  Same as Fig. 8 but for a complex near-field source
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is based on numerically constructing a convolution 
kernel. Once the convolution kernel has been con-
structed, the simulation of dynamic and static fields 
can be carried out very efficiently. The first step of 
constructing the kernel is computationally expensive 
but trivially parallelizable such that the only signifi-
cant limit on computational time is the computation 
resources available. The second step, which is the 
actual convolution, is computationally efficient. Since 
the boundary integral method does not easily lend 
itself to account for the heterogeneity of the bulk, we 
suggest that this approach is most promising to simu-
late the bulk response at distances comparable to the 
fault rupture size.

With this new method, we investigate two prob-
lems. First, we try to address a practical issue by 
experimenting if we can solve the corresponding 
elastic problem and use an undrained pore-pressure 
response (decoupled) to simulate the problem. We 
find that for a complex and near-field seismic source, 
the agreement between the decoupled approached 
and the fully coupled poroelastodynamic approach 
is remarkably good. However, for a simple source 
at intermediate to far-field distances, there are some 
significant differences observed, in particular in the 
effective normal stress on receiver faults. We suggest 
that this is caused by the dispersive and attenuating 
effects introduced by the full poroelastodynamic solu-
tion. Second, we investigate the dynamic pore-pres-
sure response. We highlight that the P-wave carries a 
significant pore-pressure change over large distances. 
P-wave arrival is associated with a peak in pressure, 
but the pressure then decreases again and may or may 
not recover later on, depending on if the observation 
point is close enough to be affected by the quasi-static 
response. We suggest that high-rate pressure meas-
urements near-fault may offer significant insight into 
source processes.
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