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Information Accessibility and Cryptic Processes:

Linear Combinations of Causal States

John R. Mahoney,1, ∗ Christopher J. Ellison,1, † and James P. Crutchfield1, 2, ‡

1Complexity Sciences Center and Physics Department,
University of California at Davis, One Shields Avenue, Davis, CA 95616

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
(Dated: May 28, 2018)

We show in detail how to determine the time-reversed representation of a stationary hidden
stochastic process from linear combinations of its forward-time ǫ-machine causal states. This also
gives a check for the k-cryptic expansion recently introduced to explore the temporal range over
which internal state information is spread.

PACS numbers: 02.50.-r 89.70.+c 05.45.Tp 02.50.Ey

INTRODUCTION

We introduced a new system “invariant”—the cryp-

ticity χ—for stationary hidden stochastic processes to
capture how much internal state information is directly
accessible (or not) from observations [1, 2, 3]. Two ap-
proaches to calculate χ were given. The first, reported
in Ref. [1] and Ref. [2], used the so-called mixed-state

method, which employs linear combinations of a pro-
cess’s forward-time ǫ-machine. The second, appearing
in Ref. [3], developed a systematic expansion χ(k) as a
function of the length k of observed sequences over which
internal state information can be extracted. The mixed-
state method is the most efficient way to calculate cryp-
ticity and other important system properties, such as the
excess entropy E, since it avoids having to write out all
of the terms required for calculating χ(k). It also does
not rely on knowing in advance a process’s cryptic order.
As such, we reported results in Ref. [3] that use the

mixed-state method to, in a sense, calibrate the χ(k)
expansion and to understand its convergence.
Here we provide the calculational details behind those

results. Generally, though, the goal is to find out what
a stochastic process looks like when scanned in the “op-
posite” time direction. Specifically, starting with a given
ǫ-machine M of a process, calculate its reverse-time rep-
resentation M−. (The latter is not always minimal and
so not, in that case, an ǫ-machine.) This is done in two

steps: (i) time-reverseM , producing M̂ = T (M), and (ii)

convert M̂ to a unifilar presentation U(M̂) using mixed

states, which are linear combinations of the states of M̂ .
In the following, we show how to implement these steps

for the various example processes presented in Ref. [3]:
the Butterfly, Restricted Golden Mean, and Nemo Pro-
cesses. We jump directly into the calculations, assuming
the reader is familiar with Refs. [1], [2], and [3]. Those
references provide, in addition, more discussion and mo-
tivation and reasonable list of citations.
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FIG. 1: A 2-cryptic process: The ǫ-machine representation
of the Butterfly Process. Edge labels t|x give the probability

t = T
(x)
σσ′ of making a transition and from causal state σ to

causal state σ′ and seeing symbol x.

BUTTERFLY PROCESS

Figure 1 shows the ǫ-machine for Ref. [3]’s Butter-
fly process—an output process over eight symbols A =
{0, 1, . . . , 7}.
Since its transition matrices are doubly stochastic, the

stationary state distribution is uniform. This immedi-
ately gives its stored information: the statistical com-
plexity is Cµ = log2(5) bits. It also makes the construc-
tion of the time-reverse machine straightforward: We
simply reverse the directions of all the arrows. (See Fig.
2.) Note that the time-reverse presentation is no longer
unifilar and, therefore, it is not the reversed process’s
ǫ-machine.
Due to this we must calculate the mixed-state pre-

sentation to find a unifilar presentation. The calculated
mixed states and the words which induce them are given
in Table I.
The result is the reverse ǫ-machine shown in Fig. 3.
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FIG. 2: Time-reversed Butterfly Process.

Allowed Words µ or Previous Word
0 (0, 1

2
,0, 1

2
,0)

1 (0,0, 1
2
,0, 1

2
)

2 (1,0,0,0,0)
3 2
4 (0,1,0,0,0)
5 (0,0,0,1,0)
6 (0,0,1,0,0)
7 (0,0,0,0,1)
02 2
03 2
04 4
05 5
10 0
16 6
17 7
21 1
42 2
44 4
53 2
55 5
60 4
66 6
70 5
77 7

TABLE I: Calculating the time-reversed Butterfly Process’s
ǫ-machine via the forward ǫ-machine’s mixed states. The 5-
vector denotes the mixed-state distribution µ(w) reached after
having seen the corresponding allowed word w. If the word
leads to a unique state with probability one, we give instead
the state’s name.

Note that it has two more states than the original (for-
ward) ǫ-machine of Fig. 1.
The stationary distribution of this reversed machine

is π = (0.1, 0.2, 0.2, 0.15, 0.15, 0.1, 0.1). Now we are in

position to calculate E using the result of Ref. [1]:

E = Cµ − χ (1)

E = Cµ −H [S+|
−→
X ] (2)

= Cµ −H [S+|S− = ǫ+(
−→
X )] . (3)

In this case, we find a crypticity of:

χ = H [S+|S−]

= 0.1H [(0,
1

2
, 0,

1

2
, 0)] + 0.2H [(0, 0,

1

2
, 0,

1

2
)]

+ 0.2H [(1, 0, 0, 0, 0)] + 0.15H [(0, 1, 0, 0, 0)]

+ 0.15H [(0, 0, 0, 1, 0)] + 0.1H [(0, 0, 1, 0, 0)]

+ 0.1H [(0, 0, 0, 0, 1)]

= 0.1 + 0.2

= 0.3 bits.

So, E = log2(5) − 0.3 ≈ 2.0219 bits, in accord with the
result calculated via Thm. 1 of Ref. [3].
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FIG. 3: Reverse Butterfly Process.

RESTRICTED GOLDEN MEAN PROCESS

For reference, we give the family of labeled transition
matrices for the binary Restricted Golden Mean Process
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(RGMP):

T (0) =




0 1
2 0 0 0 · · ·

0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .

0 0 0 0 0 · · ·




and

T (1) =




1
2 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .

1 0 0 0 0 · · ·




.

Its ǫ-machine is given in Fig. 4 and its stationary distri-
bution is:

π =

(
2

k + 2
,

1

k + 2
,

1

k + 2
, . . . ,

1

k + 2

)
.
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FIG. 4: The ǫ-machine for the Restricted Golden Mean Pro-
cess.

Through other methods, we can show that the RGMP
is reversible. We “push” RGMP to an edge machine pre-
sentation and “pull” T (RGMP) also the same type of
presentation. (An edge machine presentation of a ma-
chine M has states that are the edges of M .) These
machines are the same. Therefore, the forward and re-
verse ǫ-machines are the same and, moreover, we can use
the same mixed-state inducing word list. It is easy to see
that one such list is (0, 01, 011, . . . , 01k). Table II gives
the mixed states for these allowed words. It is also rea-
sonably clear from the above mixed-state presentation
that these correspond to the recurrent causal states for
the time-reversed process’s ǫ-machine.
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FIG. 5: Time-reversed presentation of the Restricted Golden
Mean Process.
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FIG. 6: Reverse Restricted Golden Mean Process.

With this, we can now compute χ using H [S+|S−], as
follows:

H [S+|S− = 0] = H [(1, 0k)] = 0 and

H [S+|S− = 0(1)n] = H [(
1

2n
, 0k−n,

1

21
1

22
1

23
, . . . ,

1

2n
)] .

So that, in general, we have:

H [S+|S−] =

k−1∑

n=1

1

k + 2
H [(

1

2n
, 0k−n,

1

21
1

22
1

23
, . . . ,

1

2n
)]

+
2

2 + k
H [(

1

2k
,
1

21
1

22
1

23
, . . . ,

1

2k
)] .
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Allowed Words µ or Previous Word

0 (1, 0k)
1 ( 1

k+1
, 1
k+1

, . . . , 1
k+1

)

01 ( 1
2
, 0k−1, 1

2
)

10 0
11 1

k
( 1
2
, 1, 1, . . . , 1, 1

2
)

...
...

0(1)n for 1 ≤ n ≤ k ( 1
2n

, 0k−n, 1
21

1
22

1
23
, . . . , 1

2n
)

1(1)n for 1 ≤ n ≤ k 1
k−n+1

( 1
2n

, 1k−n, 1
21

1
22

1
23
, . . . , 1

2n
)

0(1)k ( 1
2k

, 1
21

1
22

1
23
, . . . , 1

2k
)

1(1)k 0(1)k

0(1)k0 0
0(1)k1 0(1)k

TABLE II: Calculating the reversed RGMP using mixed
states over the ǫ-machine states.

It can then be shown that:

H [(
1

2n
, 0k−n,

1

21
1

22
1

23
, . . . ,

1

2n
)]

= H [(
1

2n
,
1

21
1

22
1

23
, . . . ,

1

2n
)]

= 2− 2(1−n) .

Therefore, returning to the causal-state-conditional en-
tropy of interest, we have:

H [S+|S−] =
1

k + 2

k−1∑

n=1

(2 − 2(1−n)) +
2

2 + k
(2− 2(1−k))

=
1

k + 2
(2(k − 1) + 2(2− 21−k)− (2− 22−k))

=
2k

k + 2
.

With a few more steps, we arrive at our destination—the
RGMP’s informational quantities:

Cµ = log 2(k + 2)−
2

k + 2
,

χ =
2k

k + 2
, and

E = log 2(k + 2)−
2(k + 1)

k + 2
.

NEMO PROCESS

We now demonstrate how to calculate χ and E for
Ref. [3]’s ∞-cryptic process—the Nemo Process—using
mixed-state methods. As emphasized in Ref. [3], the
k-cryptic expansion there cannot be applied in this case.
Thus, the Nemo Process demonstrates that Refs. [1] and
[2]’s mixed-state method is essential.
Figure 7 shows M+, the ǫ-machine for the forward-

A

B C

p|1

1 − p|0

1|0

1 − q|0

q|1

FIG. 7: The ǫ-machine for the ∞-cryptic Nemo Process.

scanned Nemo Process. Its transition matrices are:

T (0) =




A B C

A 0 1− p 0

B 0 0 1

C 1− q 0 0


 and

T (1) =




A B C

A p 0 0

B 0 0 0

C q 0 0


.

The stationary state distribution is the normalized left-
eigenvector of T ≡ T (0) + T (1) and is given by:

Pr(S+) ≡ π+ =
1

3− 2p

(A B C

1 1− p 1− p

)
.

Then, the statistical complexity is the Shannon entropy
over these states:

Cµ = H [S+]

= log2(3− 2p)−
2(1− p)

3− 2p
log2(1− p) .

The next step is to construct the time-reversed presen-
tation M̃+ = T (M+), shown in Fig. 8. The transition
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1|0

(1 − q)(1 − p)|0
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FIG. 8: The time-reversed presentation, fM+ = T (M+), of
the Nemo Process.

matrices of this machine are:

T̃ (0) =




A B C

A 0 0 (1− q)(1 − p)

B 1 0 0

C 0 1 0


 and

T̃ (1) =




A B C

A p 0 q(1− p)

B 0 0 0

C 0 0 0


.

Finally, we construct the mixed-state presentation of
the time-reversed presentation, U(M̃+), which is shown
in Fig. 9. On doing so, we obtain the following mixed
states:

D ≡ ν(1) =
1

p+ q − pq

(A B C

p 0 q(1− p)

)
,

E ≡ ν(01) =
1

p+ q − pq

(A B C

0 q p(1− q)

)
, and

F ≡ ν(001) =
1

p+ q − pq

(A B C

q p(1− q) 0

)
.

These mixed states form the reverse ǫ-machine causal
states, which are exactly the same as the forward
ǫ-machine. Thus, the Nemo Process is causally reversible.
The mixed states are distributions giving the probabili-
ties of the forward causal states conditioned on a reverse

D

E F

p|1

1 − p|0

1|0

1 − q|0

q|1

FIG. 9: The reverse ǫ-machine for the Nemo Process.

causal state:

Pr(S+|S−) =
1

p+ q − pq




A B C

D p 0 q(1− p)

E 0 q p(1− q)

F q p(1− q) 0


 .

We use this to directly compute:

H [S+|S−] =
1

3− 2p

[
p

p+ q − pq
log2

(
p+ q − pq

p

)

+
q(1 − p)

p+ q − pq
log2

(
p+ q − pq

q(1− p)

)]

+
2(1− p)

3− 2p

[
q

p+ q − pq
log2

(
p+ q − pq

q

)

+
p(1− q)

p+ q − pq
log2

(
p+ q − pq

p(1− q)

)]
.

Finally, we have:

E = Cµ −H [S+|S−]

= log2(3 − 2p)−
2(1− p)

3− 2p
log2(1− p)

−
1

3− 2p

[
p

p+ q − pq
log2

(
p+ q − pq

p

)

+
q(1 − p)

p+ q − pq
log2

(
p+ q − pq

q(1− p)

)]

+
2(1− p)

3− 2p

[
q

p+ q − pq
log2

(
p+ q − pq

q

)

+
p(1− q)

p+ q − pq
log2

(
p+ q − pq

p(1− q)

)]
.

CONCLUSION

The detailed calculations make evident that Refs. [1]
and [2]’s mixed-state method gives a new level of di-
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rect analysis for the informational properties of station-
ary stochastic processes, such as the crypticity and the
excess entropy. The complementary approach given by
the crypticity expansion χ(k) is useful in understand-
ing information accessibility—how internal state infor-
mation is spread over time in measurement sequences [3].
Nonetheless, while χ(k) can be calculated in particular
finite cases, the mixed-state method is the most general
and efficient method.
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