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Jeremy W. Gordon3, Hsin-Yu Chen3, Daniel B. Vigneron3, James A. Bankson1,2

1Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, 
TX

2The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical 
Sciences, Houston, TX

3Department of Radiology & Biomedical Imaging, University of California San Francisco, San 
Francisco, CA

Abstract

Purpose: Model constrained Reconstruction with Fourier-based Undersampling (MoReFUn) 

is introduced to accelerate the acquisition of dynamic magnetic resonance imaging using 

hyperpolarized [1-13C]-pyruvate.

Methods: MoReFUn resolves spatial aliasing using constraints introduced by a pharmacokinetic 

model that describes the signal evolution of both pyruvate and lactate. Acceleration was evaluated 

on three single-channel datasets: a numerical digital phantom that used to validate the accuracy of 

reconstruction and model parameter restoration under various signal-to-noise and undersampling 

ratios, retrospectively and prospectively sampled data of an in vitro dynamic multispectral 

phantom, and retrospectively undersampled imaging data from a prostate cancer patient to test 

the fidelity of reconstructed metabolite time series.

Results: All three datasets showed successful reconstruction using MoReFUn. In simulation and 

retrospective phantom data, the restored time series of pyruvate and lactate maintained image 

details, and the mean square residual error of the accelerated reconstruction increased only slightly 

(<10%) at reduction factor up to 8. In prostate data, the quantitative estimation of the conversion 

rate constant of pyruvate to lactate was achieved with high accuracy of less than 10% error at 

reduction factor of 2 compared to the conversion rate derived from unaccelerated data.

Conclusion: MoReFUn can be used as an effective and reliable imaging acceleration method for 

metabolic imaging using hyperpolarized [1-13C]-pyruvate.

*Corresponding author: James A. Bankson, Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, 
1515 Holcombe Blvd – Unit 1902, Houston, TX 77030, USA; jbankson@mdanderson.org. 
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1. INTRODUCTION

Hyperpolarized (HP) MRI1 using [1-13C]-pyruvate is a minimally invasive imaging 

approach for measuring metabolic exchange2,3. The MRI signal of 13C-labeled substrates 

can achieve a >10,000-fold gain in signal intensity, compared to thermal equilibrium, 

through the process of dissolution dynamic nuclear polarization (dDNP).4 This large signal 

increase enables real-time measurement of metabolism. In particular, the conversion of HP 

[1-13C]-pyruvate to lactate is generally elevated in the setting of cancer, and has shown 

tremendous potential as a robust imaging biomarker for staging cancer4,5 and assessing 

tumor response to therapy6–8 as a relatively short acquisition that can be added to a 

conventional MRI exam.

However, HP MRI is technically challenging due to the transient and non-renewable 

HP signal. The signal is continuously lost via spin-lattice relaxation9 and depleted by 

radiofrequency excitations and chemical conversion to other metabolites. Despite dDNP 

providing a massive, yet transient signal increase, images of HP agents are still frequently 

limited by a low SNR and/or spatial resolution. Therefore, significant research has been 

focused on acceleration approaches to reduce the impact of excitation losses and preserve 

SNR. Parallel imaging10–13 and compressed sensing14–16 based approaches have been 

proposed for acquisitions with up to 6.6-fold acceleration in the spatial domain. The k-t 
(spatial-temporal) space undersampling approach achieved up to an 8-fold acceleration 

by targeting redundancy in the spatial and temporal domains.17,18 Although effective in 

specific applications, these approaches rely on the employment of multi-channel coils or 

fully sampled center k-space for training that compromises the actual acceleration ratio. 

These requirements can be challenging for HP imaging due to the limited signal acquisition 

window, restrictions on receiver coil size, or small matrix size in clinical setup. Therefore, 

alternative acquisition strategies for HP MRI are needed.

Model-based constrained reconstruction, which depicts the signal evolution in a controlled 

manner, is a specialized algorithm suitable for HP [1-13C]-pyruvate imaging. The dynamic 

signal evolution of perfused HP substrates in vivo can be modeled by compartmental 

exchange driven by a vascular input function (VIF). The VIF can be measured or estimated, 

often in the form of a gamma variate function, and metabolic activity can be described 

by pharmacokinetic (PK) models.19–21 Model-based constraints can be incorporated to 

reconstruct full-resolution image series from undersampled data. Similar ideas have been 

employed in dynamic contrast-enhanced MRI studies at an in-plane acceleration ratio of 

as high as 100-fold at a sub-millimeter resolution, in which the unknowns of PK models 

were directly estimated by fitting a time series representing voxel intensities measured 

during intravenous administration of a gadolinium contrast agent.22–24 Unlike dynamic 

contrast-enhanced MRI that measures changes in signal due to enhanced longitudinal signal 
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relaxation, HP [1-13C]-pyruvate MRI measures the distribution of pyruvate and its metabolic 

conversion to multiple biochemical endpoints. PK models for HP MRI have shown 

tremendous potential previously in the reconstruction of spatiotemporally undersampled 

dynamic spectroscopic images with radial encoding21.

In this study, we extend the model constraint into the construction of spatially 

undersampled data on a Cartesian grid. Model constrained Reconstruction with Fourier-

based Undersampling (MoReFUn) encodes spatial information with additional encoding 

phases determined by a temporally varying Fourier-based spatial undersampling function. 

Reconstruction was implemented by an explicit estimation of parametric pharmacokinetic 

signal model images. We investigated two PK models to describe the dynamic signal profiles 

of multiple metabolites. The model-based constraint was used to accurately resolve aliased 

voxels with a modest SNR penalty. We demonstrate this technique in silico, in vitro, and in 

vivo in order to assess its performance.

2. THEORY

2.1. SPATIAL ENCODING USING MOREFUN

MoReFUn shares the same data sampling strategy as the classic k-t space encoding method 

UNFOLD25. For the conventional fully sampled HP MR imaging protocol, each metabolite 

is probed sequentially at each time point t = n × TR, (n= 0,1,2…N) using spectral-spatial 

excitations followed by an echo-planar imaging (EPI) readout26, and each acquisition fully 

samples k-space at the designated matrix size. The undersampling ratio, R, is defined as 

the ratio of the number of samples in the fully sampled matrix to the number of samples 

acquired in the under-sampled dataset. In the undersampled dataset, k-space is sampled 

by increasing the distance between acquired phase encoding steps by a factor of R, and 

the resultant under-sampled image encodes a reduced FOV (FOV/R) in the phase encode 

direction when compared to the full target FOV. Each set of under-sampled k-space data is 

acquired at an offset from the center of k-space in the phase encoding direction (kPE=0) by 

a factor of r∙ΔkPE, where r is an integer value that varies as a function of n, and ΔkPE is the 

distance between phase encoding lines in fully encoded k-space data of the full target FOV. 

The undersampling patterns in k-space for different metabolites are defined as the same for 

the simplicity of encoding in this manuscript, but they are subject to independent design.

After performing the Fourier transform, undersampled images are comprised of aliased 

voxel values, A, that represent a summation of true voxel values (Pr
m ) whose phase is 

modulated by their position (m) and k-space offset (r). The selection of r should cover all 

k-space within R consecutive repetitions. For the simplicity of implementation, we define 

r = (n + floor( − R
2 + 1))modR − floor( − R

2 + 1), which alternatives between floor − R
2 + 1

and floor R
2  as the same values that m does in this manuscript. For the case of R=2, 

which is illustrated in Figure 1, r = (0, 1, 0, 1…). Two data points, Pn
0  and Pn

1 , which are 

FOV/2 away from each other in the image space will alias to the same image location. The 

relationship between aliased voxel values, A, and true voxel values, P, is generalized as
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An, r = ∑
m = floor − R

2 + 1

floor R
2

Pn
m ⋅ ejφ m ⋅ e−j2πm ⋅ r

R (1)

Where m indexes the position of voxels that are separated from the center of the FOV by 
m ⋅ FOV

R . φ(m) stands for the original phase of each voxel from the full FOV. The phase of 

the time series for each metabolite at each voxel may be assumed to be constant over time 

with mild variations due to noise. The second phase term 2πm ⋅ r
R  represents an additional 

temporally varying phase shift to each of the aliasing voxels due to the temporally varying 

gradient encoding.

MoReFUn resolves the aliased time series by using spatial-temporal constraints provided by 

a PK model. Given a set of model parameters that describe signal evolution at each spatial 

location, the time series Pn
m  can be synthesized according to:

Pn
m = PK ρ m , t

ρϵRl (2)

where ρ is the parameter vector of the underlying model (described in the following section 

2.2) composed by l parameters (kPL, KVe, etc) for the time series at the target locations. 

All parameters are defined as real numbers (R) only in the model optimization; the phase 

of the complex input is co-estimated with the magnitude as described in Eq. [1]. The 

synthesized time series at n locations are aliased deliberately to An, r subject to Eq. [1]. 

The reconstruction is iteratively optimized by minimizing the L2 norm between synthesized 

An, r and sampled data An,r. Details of equation solver is presented in image reconstruction 

(section 3.4).

ρ 0 , ρ 1 , ..ρ R − 1 = arg min An, r − An, r Pyr, An, r − An, r Lac (3)

This process operates on N under-sampled complex images to generate a set of parameter 

values (l) for each voxel in the full target FOV, which can then be used to reconstruct signal 

intensity at the original temporal sampling scheme or at any arbitrary time.

2.2. PHARMACOKINETIC MODELING

Pharmacokinetic models have previously been introduced to describe the dynamic signal of 

HP pyruvate and its substrates21. In this study, we employed two models composed of two 

chemical pools (pyruvate and lactate) and one or more physical compartments to account for 

signal exchange under different conditions of mixture.

We have previously introduced a dynamic HP phantom system that contains HP pyruvate, 

lactate, and coenzymes (LDH, NADH) that mediate the conversion of HP pyruvate into 
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lactate27. This phantom represents a closed system, and signal from this phantom will evolve 

according to:

Pyr t = Pyr0e− kPL + R1, Pyr t (4)

Lac t = Lac0e− R1, Lac t + kPLPyr0
R1, Lac − R1, Pyr − kPL

e− kPL + R1, Pyr t − e− R1, Lac t
(5)

This closed model (Eq. [4] and [5]) can be used to describe the longitudinal signal evolution 

in a piecewise continuous manner that enforces excitation losses at the start of each TR 

period. Here, kPL is the apparent rate constant for conversion of HP pyruvate into lactate. 

R1,Pyr and R1,Lac reflect losses due to T1 relaxation for pyruvate and lactate, respectively.

In regards to in vivo applications, HP 13C MRI signal evolution can be described using a 

PK model with two spatial compartments (intravascular, extravascular) and two chemical 

pools (pyruvate, lactate)21,28–30. This two-compartment model is a simplification of a more 

physiologically accurate three-compartment model21, based on the assumption that the 

extravascular compartment represents a well-mixed combination of intracellular space in 

rapid equilibrium with interstitial space. The chemical conversion of pyruvate into lactate 

is confined to the extravascular compartment and pyruvate exchanges between the two 

physical compartments according to the extravasation rate (kve). The apparent rate constant 

for chemical conversion in the mixed extravascular space is denoted by kPL′ . The VIF for 

pyruvate is denoted as Pyriv(t), and it is assumed that HP lactate is not carried into tissue 

through vasculature (Laciv(t)=0). Here, reverse chemical conversion (kLP) is assumed to be 

negligible.

The total observed signal is the sum of individual physical compartments, weighted by their 

relative volume fractions (intravascular, vb; and extracellular ve = 1 − vb):

Pyrev t
Lacev t = eCt Pyr0

Lyr0
+ kve

ve ∫
0

t
eC t − τ Pyriv τ

Laciv τ dτ (6)

C =
− kve

ve
+ kPL′ + R1, Pyr 0

kPL′ −R1, Lac

(7)

Pyr t
Lac t = vb

Pyriv t
Laciv t + 1 − vb

Pyrev t
Lacev t (8)
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This model (Eq. [6]–[8]) serves as the basis for our in silico study using a numerical 

phantom composed of regions with distinct parameter sets, and the in vivo study using 

image data from a patient with prostate cancer.

These two models were selected because they have previously well described the metabolic 

reaction from pyruvate to lactate. We concentrate on the exchange rate between pyruvate 

and lactate because this is the primary interest in cancer imaging, but they can certainly be 

extended to include other chemical endpoints (such as bicarbonate) and corresponding rate 

constants.

3. METHODS

3.1. IN SILICO STUDY

A digital reference object (DRO1) was created to evaluate MoReFUn in resolving small and 

large features with various kPL′  values, as shown in Figure 2a. The phantom (matrix size 16 

× 16) was composed of four regions: two regions of interest (ROIs) with relatively high kPL′

(0.06 s−1) in the center square and moderate kPL′  (0.04 s−1) in the square at the bottom right 

corner; a larger square ROI with low kPL′  (0.001–0.005 s−1), which simulated regions with 

low chemical exchange; and a background boundary-simulating region where no HP agent 

was expected. The kve (0.0066 s−1) and vb (0.037) maps remained constant for simplicity at 

regions with non-zero kPL′ . This phantom was used to generate dynamic data according to 

the PK model with two spatial compartments (Eq. [6–8]) with parameters described below. 

T1 remained constant over all locations (T1,Pyr = 43s, T1,Lac = 33s). The excitation angle 

was set to 20° for both pyruvate and lactate over 60 repetitions with TR = 2s. P0 and L0 

were set to zero at the start of the simulation for both metabolites. The shape of the VIF 

was defined by a gamma function (f t = βα
α − 1 ! tα − 1e−βt, with α = 2.8, β = 4.5).31,32 The 

time series from each voxel was assigned a phase that was constant over time but random 

across positions. Complex Gaussian white noise was added to the synthesized pyruvate and 

lactate time series at all locations in the Fourier transformed k-space to provide a maximum 

pyruvate SNR (max(pyr)/σ) of 30. The simulation was repeated 100 times with the same 

amount of noise variance.

A second DRO (DRO2) was created to test the reliability of the reconstruction in the 

presence of multiple similar overlapping signals. Measurements were repeated 1000 times 

with varying levels of maximum pyruvate SNR, ranging from 10 to 50. The target voxel 

was synthesized at various kPL′  values (0.005–0.1 s−1); the aliasing voxels were set to cover 

the kPL′  from 0.005 up to 0.2 s−1 that broader than the common measured value in vivo 

(Supporting Information Table S1). All other parameters remained constant for all voxels.

A thrid DRO (DRO3), similar to the DRO1, was created to compare the restruction accuracy 

and partial volume effect at different spatial resolutions. The highest spatial resolution DRO 

was designed with matrix size of 64×64, with kPL′  map similar to DRO1 but included 

details (squares with low kPL′  values inside the high kPL′  greenish square at the center) at 
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multiple sizes. The other model parameters (kve, vb, T1,P, T1,L, etc) were the same as those 

from DRO1. Noise was first added to the metabolite image series in spatial domain at peak 

pyruvate SNR=7.5, then lower spatial resolution(matrix size of 32×32 and 16×16) images 

was acquired by subsampling the center portion of highest spatial resolution in the Fourier 

transformed k-space at the ratio of matrix size of two resolutions. The T2* effect of different 

TE was ignored for simplicity.

3.2. IN VITRO STUDY

Fully encoded HP MRI data from a dynamic HP phantom33 was retrospectively 

undersampled to evaluate MoReFUn. The phantom consisted of a 50 mL conical tube 

containing two 2mL vials submerged in relaxed water. One vial was prefilled with 1mL 

solution containing 40 U/mL LDH (Worthington Biomedical, Lakewood, NJ) and 10 mM 

NADH dissolved in TRIS buffer (both from Sigma Aldrich, St. Louis, MO), and the other 

vial was prefilled only with 1 mL of TRIS buffer. Next, 1 mL of HP [1-13C]-pyruvate 

was injected into both vials simultaneously, resulting in pyruvate signal in both vials but 

lactate signal only in the vial containing LDH. An echo-planar imaging sequence with 

spectral-spatial excitations (similar to reference26) was used for the dynamic acquisition 

of pyruvate and lactate images for 90 repetitions with TR/TE/echo spacing = 2000ms/14ms/

1.152ms and 20° excitation angle on both metabolites. The acquisition used a 1cm-thick 

spectral-spatial excitation matched with single shot flyback EPI readouts encoding a 16×16 

matrix over a 4×4 cm2 FOV. The imaging acquisition began prior to the HP agent injection 

and ran until the HP signal completely vanished. Images were acquired on a 7T small animal 

MRI system (Biospec 70/30 USR, Bruker Biospin MRI, Billerica, MA).

A prospective undersampling at R=2 was performed with the same phantom system27 and 

the same imaging setup (sequence, scanner) as the retrospective study listed above. The 

spatial resolution, TR, and number of repetitions were unchanged, but the halved k-space 

matrix resulted a shorter TE=9.6ms. The odd-only and even-only phase encoding steps were 

acquired at alternative TRs in the same way as previously introduced in section 2.1.

3.3. IN VIVO STUDY

Fully encoded HP MRI images from a patient with prostate cancer were retrospectively 

undersampled to evaluate clinical HP data using MoReFUn. Axial 13C images were acquired 

using a 2D multislice EPI sequence with singleband spectral-spatial excitations34,35 at 

metabolite-specific flip angles for the dynamic acquisition of pyruvate and lactate images. 

There were 21 repetitions in total with 2s temporal resolution and an excitation angle of 15° 

for pyruvate and 30° for lactate. The spatial resolution was 8mm isotropic (0.5 cm3) and 

the encoding matrix size was 16×16 across 16 slices. Proton images were collected within 

the same scanning session and coregistered as overlay reference. Anatomic T2-weighted 

fast spin echo proton images were had resolution of 0.35×0.35×3 mm and matrix size 

of 512×512. All images were acquired on a GE 3T MRI scanner. 13C imaging was 

performed using a Helmholtz-style 13C volume transmit “clamshell” coil (GE Healthcare) 

and a specialized dual-element 13C/1H endorectal receiver coil.36 The patient study followed 

IND/IRB approved protocol, and all data sharing were HIPAA-compliant.
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3.4. IMAGE RECONSTRUCTION

Image reconstruction was implemented using MATLAB 2020b (MathWorks, Natick, MA, 

USA). Model parameters were estimated by solving equation [3] with nonlinear least square 

fitting (lsqnonlin) using a trust-region-reflective method37. The numerical optimization 

details and PK model constraints were listed in Supporting Information Table S2.

The two-compartment PK model was used to estimate aliased voxel values (Pn
m ) and their 

signals were combined (An, r) using Eq. [6–8] for the DROs and the in vivo study. To 

facilitate parameter mapping, initial values were estimated by using temporally view-shared 

data describe as following. At undersampling ratio of R, undersampled data at consecutive 

R time points in image-space were corrected for longitudinal magnetization loss due to 

excitation and T1 relaxation effects, and combined in k-space to create a spatially fully 

sampled, but R-fold temporally undersampled data series for each metabolite. The view-

shared data were interpolated back to the original temporal resolution. Next, the interpolated 

data were used to estimate the initial values of the model parameters with MoReFUn in 

a voxelwise manner. In both the DRO study and prostate patient study, kPL′ , kve, vb, VIF 

scaling factor, φPyr, and φLac were estimating parameters of the two-compartment model. In 

the prostate patient study, Pyr0 and Lac0 were also set as unknown to account for potential 

non-zero HP metabolite signal present at the start of the acquisition.

The closed model (Eq. [4] and [5]) was used to estimate dynamic aliased voxel values from 

the LDH phantom. The model constraints were separated into two temporal segments to 

account for absence of chemical exchange after consumption of NADH. The first segment 

was set from the beginning until the time point when the peak lactate magnitude was 

achieved at the aliased time series to describe the period that the signal evolution was driven 

by pyruvate-lactate pool exchanging, T1 decay and excitation loss. The second segment 

described the signal evolution after the pool stopped exchanging, which was dominated by 

T1 decay and excitation losses only. The duration of the first segment was set individually 

at each spatial location to account for the inhomogeneous LDH/NADH distribution and HP 

pyruvate delivery within the phantom. The first segment took kPL and the initial values of 

pyruvate and lactate as the unknowns; the second segment assumed kPL = 0 but inherited 

other unknowns from the first segment through the remainder of the dynamic data.

4. RESULTS

4.1. NUMERICAL SIMULATIONS

MoReFUn successfully reconstructed full-resolution images from undersampled data with 

promising accuracy (Figure 3). When the fully sampled data (R = 1) from DRO1 were used 

as the input, MoReFUn reconstruction was effective as a denoising process by regressing the 

acquired data with PK model. For the displaying image at t=20s, for example, the regional 

SNR of the high kPL′  region (center 7×7 square) was 28.2 for pyruvate and 3.8 for lactate 

in fully sampled raw images, but increased to 75.6 and 22.4, respectively, in MoReFUn R 
= 1 reconstructed images. The regional SNR was defined as the ratio of mean to standard 

deviation of values from voxels in the homogeneous region. The root-mean-square-error 

Xu et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(RMSE) of the pyruvate images over all spatial locations was 0.8 % with respect to noise-

free images. The RMSE of the lactate images was 1.6 %, which was a result of the lower 

SNR of lactate compared to pyruvate. When R = 2, the RMSE of pyruvate and lactate 

increased to 1.0% and 2.2%, respectively. The RMSE further increased moderately at R = 4, 

and 8.

The time series from selected voxels (indicated by arrows in Figure 3) are shown in Figure 

4. When R = 2, the aliased time series of pyruvate presented a fluctuating pattern as a 

result of summation (n = even, r=0) or subtraction (n = odd, r=1) of the pyruvate time 

series voxel (Pn
0 ) and the paired voxels (Pn

1 ). When R = 4, and 8, the aliased time series 

reflect complex phase combinations that vary with time. Under all acceleration ratios, the 

reconstructed time series matched the ground truth with modest deviation.

PK model parameters were estimated by MoReFUn while the full-resolution image series 

were simultaneously synthesized. As a result, the parameter accuracy also served as an 

evaluation index of the reconstruction performance. The estimated kPL′  maps over 100 runs 

at a max pyruvate SNR of 30 are shown in Figure 3(b,d,f,h). No significant differences in the 

mean kPL′  maps were observed across different R values. The median standard deviations 

of the estimated high kPL′  (0.06 s−1) region were only 4.4%, 6.2%, 7.3%, and 9.9%, of the 

nominal value at R = 1, 2, 4, and 8, respectively.

The quantitative estimation of kPL′  was accurate under certain limits, as shown in Figure 5 

(using DRO2). Both high kPL′  and high SNR directly improved the accuracy as a result of 

the improved lactate signal. When kPL′  was as low as 0.02 s−1, the minimal peak pyruvate 

SNR needed to reach an estimation of kPL′  with promising accuracy (both fractional error 

mean and SD < 10%) from undersampled data at R = 2 was 30, while the minimal peak SNR 

for raw pyruvate was 20 for a kPL′  of 0.1 s−1 to achieve the same performance. When R = 4 

and R = 8, the kPL′  error only moderately increased.

The result of simulation using DRO3 was shown in Figure 6. The measured peak pyruvate 

SNR (7.2, 14.7, 29.7) at 64×64, 32×32, and 16×16 matrix size matched SNR in theory (7.5, 

15, 30). At each resolution, the estimated kPL′  map accuracy was evaluated by two matrices: 

1) RMSE(highRes), interpolated then or directly referenced with the ground truth kPL′  map 

composed at highest resolution; 2) RMSE(NsFree), referenced with the estimated kPL′  map 

at the same resolution but noise-free time series. RMSE(highRes) is dominated by partial 

volume. When matrix size decreased from 64×64 to 32×32 and 16×16, the RMSE(highRes) 

of noise free map(2nd column from the left) increased from 0 to 16.4% and 35.8%. When 

R=1, RMSE(highRes) was 16.7%, 25% and 36% respectively: lower SNR at higher spatial 

resolution introduced relatively smaller error on top of that from partial volume. When R > 

2, the RMSE(highRes) further increased. RMSE(NsFree), on the other hand, was primarily 

dominated by SNR. At R=1, the RMSE(NsFree) from matrix size of 64×64 was 16.7%, 

but decreased to 5.1% lowest resolution. But the coarse resolution clearly misinterpreted 

the details (vague boundaries between background and high kPL′  voxels). The selection of 
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RMSE or kPL′  map reference is still an open topic. Here we recommend trading SNR for 

higher spatial resolution, and reducing acquisition time with MoReFUn, as this will result 

less RMSE(highRes) without increasing scan time. This could be an acceptable tradeoff and 

useful application for imaging with sufficient pyruvate and lactate SNR.

4.2. LDH PHANTOM UNDERSAMPLING

In addition to simulation of the DRO, MoReFUn was also successfully implemented to 

reconstruct retrospectively undersampled data from a dynamic HP MRI phantom as shown 

in Figure 7. In the reference images, both pyruvate and lactate signals were observed 

in one vial, while only pyruvate signal was observed in the other vial. Retrospectively 

undersampled data was successfully reconstructed using MoReFUn with high fidelity. In the 

raw data, the peak SNR across all voxels within the vial that lactate signal was detected 

was 87±58 for pyruvate, and 34±19 for lactate. When the raw data was modeled using the 

fully sampled data (R = 1), the RMSE between the reconstructed signal and the raw signal 

over all the voxels within the vial mask was about 1% for both metabolites. When the 

undersampling factor R was increased to 2, 4, and 8, the reconstructed images still preserved 

image details, and their RMSEs were comparable to that of R = 1.

MoReFUn was successfully reconstructed prospectively fully sampled (R=1) and 

undersampled (R=2) images (Figure 8). This qualitatively demonstrated the feasibility of 

MoReFUn reconstruction. Measured from the slide-window composed images, the peak 

SNR were also calculated across all voxels within the vial that lactate signal was detected. 

The peak SNR is 25±12 and 25±7 for pyruvate and lactate, respectively.

4.3. RETROSPECTIVE UNDERSAMPLING OF DATA FROM A PATIENT WITH PROSTATE 
CANCER

MoReFUn successfully reconstructed the retrospectively undersampled prostate 13C images, 

as shown in Figure 9. The restored pyruvate time series at R = 2 are visually 

indistinguishable from those with R = 1, and the high correlation(ρ) of 0.91 between their 

kPL map demonstrated the quantitative accuracy. As R increased to 8, the RMSE of both 

pyruvate and lactate image series were both slightly elevated, but the noisy background 

pixels became more noticeable and the estimated kPL map largely deviated from that 

estimated from R = 1. The peak SNR across all voxels was 11.3±3.6 for pyruvate, and 

3.7±0.6 for lactate.

5. DISCUSSION

MoReFUn is a reliable and accurate image acceleration approach for HP [1-13C] pyruvate 

imaging. By transferring information from the spatial to the temporal domain and sampling 

k-t space less densely, MoReFUn reduces the amount of data that must be acquired for 

image reconstruction. Baseline SNR of a given acquisition may be improved by sampling 

data at a lower bandwidth, or with a lower echo time. The model-based constraints resolve 

the spatially aliased time series by enforcing the known dynamic temporal relationship 

between HP pyruvate and its metabolites.
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The biggest innovation of MoReFUn in this study is its incorporation of model constraints 

that permit the use of an effective Cartesian-based acceleration strategy. The SENSE38-

like encoding pattern could be easily integrated into existing imaging sequences. The 

undersampling and encoding pattern in MoReFUn does not require reference scans or 

additional calibration data, resulting in identical nominal and effective acceleration ratios. In 

this study, we tested the reconstruction accuracy up to R = 8 for the small matrix size of 

16-by-16. The reliability of MoReFUn at large spatial undersampling ratio requires further 

study at finer resolution with larger matrix sizes.

The performance of the MoReFUn reconstruction depends on the accuracy of the PK 

model and parameter estimates. In the LDH phantom imaging study, the closed system 

depicted signal evolution with and without active metabolic exchange over two temporal 

segments, and its fidelity was demonstrated by the small RMSE between the raw images 

and MoReFUn-reconstructed images. Similarly, in the DRO study using synthesized data 

with the two-compartment PK model, the decoding returned accurate parameter maps and 

image series. The in vivo data provided a challenging SNR, but the small RMSE of the 

reconstructed data, improved image quality, and robust kPL′  measurement demonstrated the 

feasibility of the reconstruction method at R = 2. For studies designed to observe pyruvate 

downstream metabolites other than lactate, modified PK model should be applicable in 

theory, which will be validated in future to account for bicarbonate production in the 

heart39,40 or brain34 or alanine production for liver41 and pancreatic studies.42

The performance of MoReFUn also depends on the degrees of freedom in the model. 

In this study, the estimation of model parameters was reproducible by fitting only key 

parameters (such as kPL for the closed system, and kPL, kve, vb for the two-compartment 

model) as unknowns, whereas other parameters were assumed to be accurately known. 

By controlling all other parameters, a wide range of kPL values (as low as 0.005 s−1) 

were mapped with high accuracy. However, reproducibility is expected to worsen if more 

unknowns are included. Parameter mapping was also largely affected by the amount 

of unknowns to be estimated.28,43 This work was designed as a proof-of-concept for 

constrained reconstruction employing PK models; a more thorough evaluation of the model 

parameters and reconstruction reproducibility is underway.

In addition to noise and PK model accuracy, MoReFUn reconstructed images may be 

impaired by systematic errors, such as B1 miscalibration44, inhomogeneities28, excitation 

schemes29, etc. The related artifacts and distortion will have a similar negatively impact 

on MoReFUn as on full acquisition. Similar with SENSE and UNFOLD, MoReFUn is an 

image-space undersampling method in which the systematic error in the alised pixel value 

is govern by the cross-talk of equidistant pixels suffering from the localized distortion. 

Specifically, Pn
m  and φ(m) in equation [1] will be distorted but encoded into the mapped 

model and the error will be first pass to the PK model forwardly composed images (equation 

2) then to the optimization formula (equation 3). Therefore, the reconstructed image will 

have similar appearance as the fully sampled images.

A conservative kPL evaluation threshold of 10% was set in simulation and the result 

suggested a reliable implementation of this approach only on studies that sufficient pyruvate 

Xu et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SNR (>20) or kPL (>0.01) were expected. For data with poor observed SNR or low 

estimated kPL, MoReFUn will introduce noticeable error. One way to overcome this 

limitation, is to discarding voxels with SNR below empirical standard from clinical analysis, 

or applying additional constraints such as those could exploit the spatial correlation of PK 

model parameter maps43 or regularization45 to suppress noise into Eq. [3] to improve the 

reconstruction accuracy.

The future development of MoReFUn will require testing its compatibility with established 

techniques that could further improve reconstruction accuracy. MoReFUn is established to 

accelerate acquisition regardless of the coil geometry. In application using single element 

coils such as HP prostate imaging, the acceleration could be implemented exactly following 

Eq. [1]. In applications using phased array coils, future work is needed to develop methods 

for integrating MoReFUn with parallel imaging strategies11,38,46. Here, MoReFUn was 

demonstrated using spectral/spatial excitations with individual readout of each metabolite. 

This approach can also be used to reduce sampling requirements for multi-echo chemical 

shift decomposition.33,47

6. CONCLUSION

MoReFUn is a model-based constrained reconstruction algorithm that is specialized for 

dynamic HP [1-13C]-pyruvate imaging. By incorporating the unique spatial-temporal 

constraint provided by the PK model that mimics the metabolic activity associated with 

in vivo chemical exchange between pyruvate and its metabolites, this framework can be 

used to accelerate signal encoding and data sampling. Robust reconstruction accuracy was 

demonstrated under conditions of low SNR. This study demonstrates feasibility for the 

use of PK model constrained reconstruction and quantitative analysis of HP [1-13C] MRI 

data, while the quantitative accuracy and feasibility must be justified by future prospective/

retrospective in vitro and in vivo studies.
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Figure 1. 
Data acquisition and constrained reconstruction scheme for MoReFUn. R stands for the 

undersampling ratio, P stands for the value of a voxel in the full FOV image, A stands for 

the value of an aliased pixel in the undersampled image with reduced FOV, A_cap is the 

estimated aliased pixel that is synthesized under the same undersampling scheme as A from 

the MoReFUN reconstructed image. ‘PK’ stands for the pharmacokinetic model as stated 

by equation 4,5 or equation 6–8 depends the application. ‘ρ’ stands for the parameter space 

(kPL, kve, vb, etc.) going to be estimated. ‘r’ defines the amount of k-space shift depending 

on undersampling pattern. The solid and dashed lines represent, respectively, the acquired 

and skipped phase steps in k-space. The k-space undersampling patterns vary over time, but 

are set as identical across pyruvate and lactate.
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Figure 2. 
Parameter maps for the two-physical-compartment model and representative full resolution 

images. (a) Maps of primary parameters for the digital reference object. The kPL′  map 

is comprised of boxed regions at relatively large (yellow), moderate (teal), and small 

(blue) kPL′  values indicating tissue at different metabolic rates. The kve and vb maps are 

homogeneous for simplicity. (b) Noise-free pyruvate and lactate images from three time 

points.
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Figure 3. 
PK model parameter rate map estimation from MoReFUn reconstructed data. The peak 

pyruvate tSNR of the raw data was 30. Measurement was made over 100 runs. The mean 

of estimated kPL maps accurately reflected the ground truth (figure 2a). The medians of the 

standard deviation (SD) of the estimated kPL were 4.4% and 5.5% for the high kPL region 

(center square) and the moderate kPL region (bottom right square) when the undersample 

ratio R = 1, 6.1% and 8.1% when R = 2, 7.4% and 9.9% when R = 4, 9.9% and 12.8 

when R = 8. The arrows and crosses indicate voxels at the same location from different 

image modalities, whose time series are shown in Figure 4. Similar with kPL estimation, 

kve (medians of SD = 2.8%, 3.9%, 4.8%, 6.3% at R=1,2,4,8, respectively) and vb (medians 
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of SD = 4.3%, 6.1%, 7.5%, 10.5% at R=1,2,4,8, respectively) maps were also accurately 

mapped.
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Figure 4. 
The time series at the same voxel location with different undersampling rates. Only the 

real components from phase corrected time series are displayed. (a) The fully sampled 

metabolite series (‘x’) at peak pyruvate SNR = 30 fluctuates along the noise-free series 

(dashed lines), while the estimated series (solid) from pharmacokinetic model matches the 

noise-free series with a slight offset. (b) The undersampled pyruvate series with undersample 

ratio R = 2 (blue ‘x’) fluctuates dramatically around the noise-free series (dashed lines), 

and the lactate series (red ‘x’) is severely deviated, but the MoReFUn restored series (solid) 

matches the noise-free series with only a moderate offset. (c,d) The undersampled data and 

the MoReFUn reconstructed data at R = 4, and R = 8 respectively.
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Figure 5. 
Estimation accuracy of kPL′  estimation from MoReFUn reconstructed images of 

undersampled images at R = 2, R = 4, and R = 8 at peak pyruvate SNR ranging from 

10 – 50. Estimation RMSE and SD is over 1000 runs. The reliable estimation, defined as 

the relative RMSE and standard deviation, both are less than 10% from the actual kPL and 

labeled with dots in the above bar graph of the corresponding R.
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Figure 6. 
The estimation of kPL from various spatial resolutions, using DRO 3. This new DRO was 

designed with kPL′  map including details at multiple level(high kPL′ : at the center region, 

medium kPL′ : at the right bottom region), and homogeneous kve (=0.0066) and vb (=0.037) 

maps for simplicity (left column). The other model parameters (T1,P, T1,L, flip angle, kve, 

vb VIF profile) were the same as those from original DRO introduced in the method 

section 3.1,. The images with highest spatial resolution was reconstructed at matrix size of 

64×64 and pixelwise SNR=7.5. The time series were then spatially subsampled to matrix 

size of 32×32, 16×16. The low spatial resolution time series were then undersampled and 

reconstructed by MoReFUn (undersampling ratio R=1,2,4,8). RMSE was measured over 

the high kPL′  region. RMSE(HighRes): first interpolated then or directly compared with the 

ground truth high resolution kPL′  map (the top left image). RMSE(NsFree): measured with 

the kPL′  map (the 2nd column from the left) at the same spatial resolution but noise-free time 

series.
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Figure 7. 
MoReFUn reconstruction using retrospective LDH phantom data. (a) 1 ml of 20 mM HP 

[1-13C] pyruvate was simultaneously injected into a vial (left) prefilled with 1 ml solution 

containing LDH, NADH, and TRIS buffer, and a vial (right) prefilled with 1 ml TRIS 

buffer. (a) Raw images of the dynamic pyruvate and lactate from spectral-spatial selected 

flyback-EPI at t=12s, and auto-thresholded mask that calculated using lactate AUC map 

for RMSE measurement. (b) Estimated images using the full k-space. (c, d, e) MoReFUn 

reconstructed imaging from the undersampled k-space at acceleration ratios of R = 2, R = 

4, and R = 8, respectively. Both pyruvate and lactate image series are self-normalized for 

displaying. (f) T1 reference image and the correlation between kpl maps estimated from 

different R values. Statistically significant correlation coefficient value (p<0.05) in the top 

left corner were colored in red. Arrows refer two representative voxels with low lactate 

SNR and large kve offset between R=1 and R=8. In the raw data, the peak SNR across all 

voxels within the vial that lactate signal was detected was 87±58 for pyruvate, and 34±19 

for lactate. The large SNR variation resulted from the heterogeneous metabolite distribution 

following injection.
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Figure 8. 
Prospective MoReFUn reconstruction at R=2. Using the same LDH phantom system as 

retrospective study (result in figure 6). Quantitative analysis was not performed due to the 

drastic inter-trial difference of the phantom system. The peak SNR is 25±12 and 25±7 for 

pyruvate and lactate.
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Figure 9. 
MoReFUn reconstruction using a retrospectively undersampled in vivo prostate dataset. (a) 

Lactate area under the curve (AUC) map overlaid on the corresponding T2 anatomical 

reference. The FOV of the overlay was highlighted at the boundary voxels. The pyruvate 

AUC map, lactate AUC map, and the auto-thresholded RMSE mask based on the lactate 

AUC map were displayed at the corners. Only voxels within the mask were used for RMSE 

calculation and comparison of estimated kPL across different R values. (b) Raw images of 

the dynamic pyruvate and lactate at t = 20s. (c) Estimated images using MoReFUn with the 

full k-space. (d,f,g) reconstructed images by MoReFUN from the undersampled k-space at 

acceleration ratios of R = 2, 4, and 8. Both pyruvate and lactate images were self-normalized 

for displaying. The estimated kPL maps and their voxelwise comparison across different 

R factors were listed in (e); significant correlation coefficient (p < 0.01) that stated at the 

top-left corner were colored in red, while insignificant correlation coefficient (p > 0.05) were 
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colored in black. The peak SNR across all voxels was 11.3±3.6 for pyruvate, and 3.7±0.6 for 

lactate.
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