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A B S T R A C T

Resistance to anti-tumor therapeutics is an important clinical problem. Tumor-targeted therapies currently used
in the clinic are derived from antibodies or small molecules that mitigate growth factor activity. These have
improved therapeutic efficacy and safety compared to traditional treatment modalities but resistance arises in
the majority of clinical cases. Targeting such resistance could improve tumor abatement and patient survival. A
growing number of such tumors are characterized by prominent expression of the human epidermal growth
factor receptor 3 (HER3) on the cell surface. This study presents a “Trojan-Horse” approach to combating these
tumors by using a receptor-targeted biocarrier that exploits the HER3 cell surface protein as a portal to sneak
therapeutics into tumor cells by mimicking an essential ligand. The biocarrier used here combines several
functions within a single fusion protein for mediating targeted cell penetration and non-covalent self-assembly
with therapeutic cargo, forming HER3-homing nanobiologics. Importantly, we demonstrate here that these
nanobiologics are therapeutically effective in several scenarios of resistance to clinically approved targeted
inhibitors of the human EGF receptor family. We also show that such inhibitors heighten efficacy of our na-
nobiologics on naïve tumors by augmenting HER3 expression. This approach takes advantage of a current
clinical problem (i.e. resistance to growth factor inhibition) and uses it to make tumors more susceptible to HER3
nanobiologic treatment. Moreover, we demonstrate a novel approach in addressing drug resistance by taking
inhibitors against which resistance arises and re-introducing these as adjuvants, sensitizing tumors to the HER3
nanobiologics described here.

1. Introduction

Expression of human EGF receptor 3 (HER3, ERBB3) is increased on
many tumor types, including breast, prostate, gastric, colon, lung,
pancreatic, head and neck, ovarian, cervical, glioblastoma and skin
cancers [1–13] in experimental models, and patient specimens [14].
Increased cell surface HER3 also associates with resistance to a number
of targeted tumor treatments, including inhibitors of EGF-R (lapatinib),
HER2 (lapatinib, trastuzumab), HER2–3 dimerization (pertuzumab),
PI3K, and antibody-drug conjugates such as T-DM1 [1,2,7,15–19].

HER3 is the preferred heterodimerization partner of the HER2 receptor
tyrosine kinase on HER2+ tumors, and its phosphorylation activates
the PI3K-Akt pathway supporting tumor progression and survival
[20–22]. HER3 increase sustains this activation in the face of targeted
therapies [1,2,7,15–19]. Patients with such refractory tumors currently
have limited treatment options and poor prognoses. There are no cur-
rently available HER3-targeted therapies used in the clinic, as the HER3
kinase domain is relatively inactive [23,24]. Moreover, as up to 70% of
cases resist or acquire resistance to receptor blockade therapies
[2,15,25], an alternative approach addressing this problem has the
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potential for significant clinical impact.
Here we examine whether nanobiologics that exploit the receptor

binding activity of the neuregulin family of ligands show specificity to
HER3 and possible therapeutic efficacy on tumors resisting clinically
approved ErbB receptor inhibitors. Neuregulins represent the products
of several genes (and their splice variants) recognizing different ErbB
receptor family members, and can be synthesized as membrane-bound
proteins that are cleaved from the cell surface [26]. The recombinant
multidomain polypeptide, HerPBK10 (designated HPK in the present
study), incorporates a minimal receptor-binding domain from neur-
egulin-1α1, produced as a recombinant fusion to exogenous protein
domains for self-assembly with therapeutic cargo and targeted pene-
tration into tumor cells [27]. Although we have previously evaluated
this protein for delivery of various payloads to HER2+ tumors
[27–29], its exact receptor family member specificity has been unclear
and mostly inferred from known activities of the related ligand, neur-
egulin-1β1. HER2 lacks its own ligand-binding domain while hetero-
dimerizing with HER1, HER3, and HER4 receptor family members
[20–22], which can be present at varying levels on different tumor
types and cell lines. The findings from ligand interaction studies con-
ducted mostly on the beta-isoform of neuregulin-1 [30] are not ne-
cessarily applicable to the alpha-1 isoform, much less the minimal
binding domain used in the present study. However, if the polypeptide
used here is indeed specific to HER3, this predicts that nanobiologics
derived from this polypeptide may show particular affinity for tumors
resisting clinically approved inhibitors due to tumor upregulation of
HER3.

Therefore, in the present study we have examined the HER3 spe-
cificity of HPK-derived particles and their capacity to direct therapeutic
efficacy to HER3-expressing tumor cells, especially those associated
with resistance to ErbB receptor inhibitors. These studies provide new
insight on the receptor dynamics of the targeting protein, as well as its
structure and particle assembly. Importantly, we have investigated
whether these nanobiological particles have augmented therapeutic
efficacy on resistant over parental tumor cells; and finally, determine
whether signal-inhibitors currently used in the clinic prime both naïve
and inherently-resistant breast tumor cells for nanobiologic attack
through induced elevation of HER3.

2. Material and methods

2.1. Materials

HPK protein, and associated particles (H3-D and H3-G) were pro-
duced as described in Supplemental Materials. HER3 and HER4 pep-
tides were obtained from Prospec (Ness-Ziona, Israel) and Abnova
(Taiwan), respectively. Betacellulin was purchased from Peprotech (NJ,
USA). Tz and lapatinib (Lp) were purchased from the Cedars-Sinai
Pharmacy. Pertuzumab (Pz; Clone 2C4) was acquired from Genentech.
HER1, HER2, and HER4 antibodies were purchased from Abgent (CA,
USA; Anti-ErbB1/Her1, rabbit polyclonal, Cat# AP7628a; Anti-ErbB2/
HER2, rabbit polyclonal, Cat# AP7629a; Anti-HER4, rabbit polyclonal,
Cat# AP7631a. Anti-HER3 [H3.105.5 (Ab105), Cat# MA5-13008] was
purchased from Pierce-ThermoFisher (MA, USA). Anti-RGS-His tag
(#34650) was purchased from Qiagen (CA, USA). Note: The HER2
antibody used here recognizes aa 21-52 of the HER2 extracellular do-
main, and does not overlap with the trastuzumab binding domain [re-
sidues 557–561 (loop 1), 570–573 (loop 2) and 593–603 (loop 3)] [31].

BT-474 and SKBR3 breast cancer cell lines obtained from and au-
thenticated by ATCC were maintained at 37 °C/5% CO2 under myco-
plasma-free conditions in complete media comprised of DMEM
(Dulbecco's modified Eagle's medium), 10% fetal bovine serum, 100 U/
mL penicillin, and 100 μg/mL streptomycin. Two SKBR3 Tz-resistant
lines were generated by chronic exposure (> 216 h) to Tz (28 μM). Tz-
resistant BT-474 lines were generated by long-term culture with in-
creasing concentrations of Tz. JIMT1 cells were a kind gift from Dr.

Julia Ljubomova (Cedars-Sinai Medical Center). All cells except JIMT1
were maintained at 37 °C in complete DMEM at 5% CO2. JIMT1 cells
were maintained in RPMI (Roswell Park Memorial Institute Media),
10% Fetal Bovine Serum, 100 U/mL penicillin, 100 μg/mL strepto-
mycin and 1 mM sodium pyruvate at 5% CO2. Resistant lines were
maintained with low levels of Tz in the media (10 μg/mL). Matrigel was
purchased from BD Biosciences, NJ, USA. PBS+: 1% MgCl2, 1% CaCl2
in PBS.

2.2. Cell surface ELISA

JIMT1 and SKBR3 cells plated at 1e4/well and BT474 cells plated at
1.5e4/well were maintained for 24 h, then washed with PBS+ fol-
lowed by fixation without permeabilization (to detect cell surface pro-
teins only) and ELISA processing as described [28]. The indicated pri-
mary and secondary antibodies were used at 1:500 and 1:1000
dilutions, respectively. After ELISA development, the plates were pro-
cessed for crystal violet staining to normalize for cell number as de-
scribed previously [32]. Where indicated, cells were treated with
0.1 mg/mL of Tz for 24 h before washing and fixation. Cell surface
receptor levels were compared to mock (PBS)-treated cells.

2.3. Receptor-binding

Cells growing in 96-well plates were exposed to indicated proteins,
peptides, or reagents on ice for 30 min to promote receptor binding but
not internalization, followed by processing for cell surface ELISA as
described earlier. HPK was detected using an anti-RGS-His tag antibody
(1:1000; Qiagen, MD, USA) and anti-mouse secondary antibody
(1:2000).

2.4. Cell uptake and intracellular trafficking

MDA-MB-435 cells were plated on coverslips in a 12-well plate
(100,000 cells/well) and allowed to grow for 36 h. The cells were then
pre-chilled by placing plates on ice, and the media replaced with cold
Buffer A (20 mM HEPES, pH 7.4; 2 mM MgCl2; and 3% BSA in DMEM)
containing HPK or Tz (10 μg, or 0.1 nmol, each). Plates were agitated
on ice for 1 h to promote receptor binding but not internalization,
followed by aspiration and washing with Buffer A to remove unbound
protein. Wells then received pre-warmed complete cell media and
plates incubated at 37 °C/5% CO2 to promote receptor-mediated up-
take. At the indicated time points, separate coverslips were removed
from the plates, fixed and processed for immunocytofluorescence as
described previously [33]. Specifically, coverslips were washed with
1% MgCl2/PBS, then fixed in 4% PFA/PBS (15 min), followed by
washing in PBS and incubation for 5 min in 50 mM ammonium
chloride/PBS to quench endogenous fluorescence. Cells were then wa-
shed with PBS and permeabilized in 0.1% Triton X-100/PBS (5 min),
washed again, and then incubated in 1% BSA/PBS (> 1 h) to block
non-specific sites. For the HPK-treated cells, coverslips were transferred
to blocking buffer containing rabbit primary antibody against HPK
(1:150 dilution of #Ab6982, which recognizes the penton base domain;
Abcam, MA, USA) overnight at 4 °C. After washing to remove non-
specifically bound antibodies, coverslips were incubated in Alexafluor
488-conjugated secondary antibody (1:500; Life Technologies/Thermo
Fisher, CA, USA) against either rabbit or human IgG (to identify HPK or
Tz, respectively) for 1 h in the dark. Cells were counterstained with
rhodamine phalloidin and DAPI to identify actin and nuclei, respec-
tively, followed by washing and mounting. Images were obtained using
a Leica SPE laser scanning confocal microscope.

2.5. Co-precipitation with nickel beads

HPK (~200 μg) was bound to pre-equilibrated nickel (Ni-NTA;
Qiagen) beads in a 100 μL 50% slurry of incubation buffer (50 mM
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NaH2PO4, pH 8.0; 0.1 M NaCl; 5 mM imidazole; 10% glycerol) for 1 h
on ice with agitation, followed by washing 3× to remove unbound
protein. Pre-formed DNA-Dox was incubated with beads (with or
without pre-bound protein) for 45 min at RT, followed by pelleting and
washing 3×. Beads were then incubated in 100 μL elution buffer
(50 mM NaH2PO4, pH 8.0; 0.1 M NaCl; 400 mM imidazole; 10% gly-
cerol), and supernatants isolated from bead pellets.

2.6. In vitro cytotoxicity

Cells were plated at 10,000 cells per well (JIMT1 and SKBR3) or
15,000 cells per well (BT-474) in 96-well plates. At 48 h after plating,
the media was replaced with 40 μL of complete media containing the
indicated concentrations of H3-D, Tz, Pz, Tz/Pz combination, Lp, or
vehicle. Plates were rocked for 4 h at 37 °C and then 60 μL of complete
media was added to each well to bring the total volume to 100 μL,
followed by continued incubation without rocking for 44 h at 37 °C, 5%
CO2. At the conclusion of the incubation, relative cell viability was
determined by measuring metabolic activity (MTS assay, Promega)
according to manufacturer's instructions, followed by crystal violet
stain to assess relative cell number as described previously [32]. Where
indicated, H3-D was incubated with HER3 peptide (Prospec) at 1:1 M
(peptide:protein) ratio on ice for 1 h before the particle was added to

cells. Particles, Tz or Tz + Pz were administered at concentration
ranges previously established for eliciting therapeutic efficacy
[1,2,29,34,35].

2.7. In vivo procedures

Immunodeficient (NU/NU) mice were obtained from Charles River
Laboratories, Inc. All procedures involving mice were performed fol-
lowing IACUC-approved protocols #6037 and #5790 in accordance
with the institutional and national guide for the care and use of la-
boratory animals. Specifically, female nu/nu mice (6–8 weeks) re-
ceiving bilateral xenograft implants of indicated tumor cells (1e7 cells/
implant) in matrigel (1:1 vol:vol) were randomized at tumor estab-
lishment (≥100 mm3). Tumor volumes (height × width × depth)
were monitored ~3×/week under single-blinded conditions (treat-
ment groups unknown to the individual acquiring measurements). Mice
receiving BT474 cells were implanted with an estradiol pellet
(Innovative Research of America) one week before tumor implant.
BT474-TR resistance was maintained by weekly IP administration of
2 mg/kg Tz. When tumors reached 200–300 mm3, saline or H3-G
(0.004 mg/kg final corrole dose, as determined previously) [28] was
i.v. administered daily for one week, then continued weekly for the
remainder of the experiment. When JIMT-1 tumors reached
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100–200 mm3, mice received daily i.v. injections of H3-D or Dox (both
at 0.02 mg/kg doxorubicin, or HPK (at equivalent protein dosage to H3-
D) for 1 week, then 2×/week thereafter. Tz treatment for both mouse
models entailed 2 mg/kg twice weekly via tail vein injection for the
duration of experiments. At the experiment's termination, all animals
were sacrificed and tissues collected.

2.8. Immunohistofluorescence

Tissues harvested from mice were preserved in 4% paraformalde-
hyde in PBS (phosphate buffered saline) and then transferred to 70%
ethanol. Tissues were then paraffin embedded, sectioned, and mounted
onto slides. The slides were deparafinized by incubating in a dry oven
for 1 h and then washing slides in xylene 5 times for 4 min each, fol-
lowed by sequential rinses in 100%, 95%, 90%, 80%, and 70% ethanol,
2× each for 3 min. The slides were then submerged in water. Epitope
retrieval was performed by incubating the slides for 30 min at 37 °C in
20 μg/mL Proteinase K in 10 mM Tris pH 7.8. A TUNEL assay was then
performed on the slides according to the manufacturer's instructions
(Roche). Following treatment, slides were counterstained with DAPI
(Thermofisher) and mounted with Prolong Antifade (Thermofisher).
Images of the tissues were captured using a Leica SPE laser scanning

confocal microscope. Images were analyzed using ImageJ.

2.9. Human subjects

De-identified specimens were obtained by informed consent under
IRB-approved protocols #3870 and #29973.

2.10. Processing and plating of patient-derived tissue

Live human breast tumor tissue was dissociated as described in
StemCell Technical Bulletin for Mammary and Prostate Tissue
Dissociation [36]. Briefly, after removal from the patient, tissue was
placed in DMEM/F12 media supplemented with 5% BSA. Tissue was
finely minced using a sterile razor blade. Minced tissue was placed into
50 mL of the above media supplemented with 5 mL of 10× Col-
lagenase/Hyaluronidase (StemCell) and 2% BSA in a 250 mL Erlen-
meyer flask. The minced tissue and media were incubated for 16 h in a
table-top shaker at 37 °C and 210 RPM. Media/cell mixture was spun
down in a 50 mL conical tube at 80 ×g for 30 s in a clinical centrifuge.
Supernatant was poured into a new conical tube and the pellet (Pellet
#1) was saved and processed as described below. The supernatant was
spun down for 3 min at 1200 ×g. The supernatant was discarded and
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the pellet (Pellet #2) was saved. Pellets 1 and 2 were processed by
resuspending the cells in 2 mL of pre-warmed Trypsin-EDTA (Corning).
The cell mixture was gently pipetted up and down for 3 min. Next,
10 mL of cold HBSS supplemented with 2% FBS was added to the cell/
media mixture and spun down for 5 min at 350 ×g. The supernatant
was removed, and 2 mL of pre-warmed 5 mg/mL Dispase (StemCell)
and 0.2 mL of 1 mg/mL DNase I were added to the pellet. The sample
was pipetted with a P1000 tip for 1 min. The cell suspension was di-
luted with an additional 10 mL of cold HBSS supplemented with 2%
FBS and put through a 40 μm cell strainer into a 50 mL conical tube.
The cells were spun down at 350 ×g for 5 min. The supernatant was
discarded, and the cell pellet was resuspended in DMEM/F12 with 10%
FBS and plated in a T-75 dish. Once the primary cells were confluent,
they were split into 96-well dishes at 7000 cells per well and treated as
indicated.

2.11. Statistical methods

Except where indicated, in vitro data are presented as the mean of
triplicate samples ± s.e.m. from three independent experiments
(hence, n = 9). For normally distributed in vitro data, significances
were determined by one-way ANOVA followed by Tukey post hoc
analyses unless otherwise indicated. In vivo data are presented as nor-
malized mean ± s.e.m. Significances within in vivo experiments were
determined by a Kruskall-Wallis test followed by a Mann-Whitney post
hoc analysis.

3. Results

3.1. HER3 specificity and effect of human patient sera

The functional domains of our polypeptide (designated here as HPK)
are independently derived from naturally occurring proteins used to
promote assembly with therapeutic cargo, tumor targeting, and pene-
tration across the plasma membrane (Fig. 1A). The targeting ligand,
drawn from the minimal receptor-binding domain of neuregulin-1α1
[37], exhibits reduced activation of HER3 (present on the tumor cells
used in this study; Fig. S1) compared to neuregulin-1β1 (Fig. S2A).
Additionally, this ligand and full-length HPK have no growth-inducing
effect on HER3-expressing tumor cells (Fig. S2B–C). In the context of
HPK, this ligand is produced as a recombinant fusion to a membrane-
penetrating moiety extracted from the adenovirus penton base capsid
protein (Fig. 1A) [33]. A cationic domain mediates assembly with an-
ionic payloads, including nucleic acids and sulfonated corroles
[27,28,38] (Fig. 1A).

HPK binds considerably to a peptide containing the extracellular
domain (ECD) of human HER3 (Fig. 1B–C) but not the HER4 ECD
(Fig. 1B). This binding was inhibited by pre-adsorption with soluble
HER3 peptide in vitro (Fig. 1C). Binding to HER2+ BT-474 and SKBR3
cells (which display HER3 on the cell surface; Fig. S1AeB) was also
inhibited by the same HER3 peptide (Fig. 1D). However, cell binding
was not inhibited by pre-incubation with a HER4 peptide, or by
blocking HER1/EGF-R and HER4 with betacellulin [39] (Fig. 1D), de-
spite the expression of both receptors on these cells (Fig. S1AeB). In
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further support, cell binding and uptake is significantly reduced on cells
deficient in cell surface HER3 (Fig. S2D–E). Whereas HER2-3 hetero-
dimers are prevalent on HER2+ tumor cells [21], pertuzumab (Pz),
which inhibits HER2 dimerization with other HER family members
including HER3 [40], did not prevent cell binding (Fig. 1D). Finally,
whereas the extracellular domains of HER2 and HER4 can be shed in
patient sera [41,42], here we show that sera from HER2+ patients and
age-matched controls did not prevent HPK binding to HER3-expressing
cells in culture (Fig. 1E).

Compared to Tz, which has been evaluated as an antibody-drug
conjugate [43], HPK exhibited robust cell surface clustering followed
by significant endocytosis within 45 min after cell uptake, whereas Tz
remained in sparsely punctate areas on the cells up to 2 h after cell
binding (Fig. 1F). Analyses of subcellular compartments show that HPK
distributes to the cytoplasm whereas the membrane fraction retains a
significant portion of cell-bound Tz (Fig. 1G-H).

3.2. Efficacy on tumors with acquired resistance to trastuzumab

Here we tested the delivery of two therapeutic payloads: the DNA-
intercalating agent, doxorubicin (Dox) and a sulfonated corrole.
Notably, sulfonated corroles require a cell-penetrating carrier to breach
the plasma membrane and are cytotoxic upon entering the cell cyto-
plasm [28,32,38]. Molecular modeling of HPK predicts that it oligo-
merizes in solution, and may likely form pentamers driven by the
penton base domain (Fig. 2A–B). The hydrodynamic diameter of HPK in
solution (~10 nm dia.) is consistent with oligomerization (Fig. 2C). The
nanobiologic designated here as H3-G (also known as HerGa) [28]

forms from the serum-stable, noncovalent assembly of HPK with sul-
fonated gallium-metallated corroles (Fig. 2B; described in Supplemental
Materials). The alternative nanobiologic, designated H3-D (also known
as HerDox) [29], results from non-covalent packaging of DNA-inter-
calating drugs via a small nucleic acid as a molecular net for drug
capture and retention (Fig. 2B). Assembly of HPK with anionic payloads
yields a multivalent micellar-like complex in which the protein coats
the cargo (Fig. 2B), resulting in ~20–40 nm diameter round particles
(Fig. 2C–E). The capacity for HPK to encapsulate and retain payload
molecules is supported by its ability to protect small nucleic acids from
serum nuclease digestion (Fig. 2F), and to retain such molecules in vitro
during precipitation by affinity resin (Fig. 2G), in situ during uptake into
cells (Fig. 2H), and in vivo after systemic delivery to mice bearing HER3-
expressing tumors (Fig. S2G). Importantly, the latter finding also de-
monstrates the advantage afforded by HPK, as systemic H3-D exhibits
tumor-preferential accumulation and prolonged tumor retention of
drug, whereas the free drug exhibits comparatively higher accumula-
tion in non-tumor tissues (Fig. S2G). Finally, each particle (H3-G and
H3-D) shows high retention of its respective payload after prolonged
exposure (30–60 min) to 100% mouse serum, with no detectable drug
loss (Fig. 2I).

Sublines of HER2+ breast cancer with acquired resistance to Tz
(BT474-TR and SKBR3-TR) display increased cell surface HER3 com-
pared to parental counterparts (Fig. 3A–B; Fig. S1AeB) and corre-
spondingly augmented sensitivity to H3-G and H3-D (Fig. 3E). The IC50
of H3-D and H3-G shifted from ~1 to 0.3 μM, and ~10 to 1 μM re-
spectively when comparing activity on parental and Tz-resistant BT474
cells (Fig. 3E; Fig. S1D–E). Likewise, the IC50 of H3-D shifted from ~4
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to ~2 μM when comparing activity on parental and Tz-resistant SKBR3
cells, respectively (Fig. 3E). These activities contrast with Tz, which
yielded an IC50 of ~35 μM or higher on parental BT474 cells. Whereas
SKBR3 generally showed less sensitivity to H3-G compared to H3-D,
SKBR3-TR was still more sensitive to H3-G compared to the parental
line (Fig. 3E). Both resistant lines showed negligible responses to Tz and
combination therapy (Tz + Pz) (Fig. 3C-D). BT474-TR cells partially
responded to lapatinib (Lp) but with considerably reduced sensitivity
(IC50 > 5 μM) compared to the parental line (IC50 = ~0.25 μM)
(Fig. 3C), whereas SKBR3-TR cells exhibited Lp-resistance (Fig. 3D).
Both H3-G and H3-D yielded similar toxicity as Tz, Tz + Pz, and Lp on
parental BT474 while showing enhanced efficacy on BT474-TR in
contrast to the reduced efficacy of all three inhibitors on these cells
(Fig. 4A-C). H3-D was more effective than Tz and Tz + Pz on both
parental and resistant SKBR3 (Fig. 4A). Lp efficacy was nearly identical
to H3-D on parental SKBR3, but was ineffective on SKBR3-TR in con-
trast to H3-D (Fig. 4B). Notably, H3-D also improved Dox efficacy on
HER3-expressing tumor lines compared to untargeted drug (liposomal
doxorubicin), lowering Dox IC50’s up to two orders of magnitude (Fig.
S1, D–F and HeI), and elsewhere rendering resistant cells sensitive to
Dox (Fig. S1G).

The substantially augmented efficacy of H3-G on resistant compared
to parental BT474 cells (Fig. 3E and 4C) provided a basis for evaluating
therapeutic efficacy on an in vivomodel of acquired resistance. Systemic
delivery of H3-G showed similar activity as Tz in mice bearing Tz-
sensitive BT474 tumors, whereas Tz-resistant tumors were sensitive to
H3-G but non-responsive to Tz (Fig. 5A). Importantly, free gallium
corrole (S2Ga) alone had no effect on tumor growth (Fig. S3C). Over
time, Tz-sensitive tumors eventually became Tz-resistant (Fig. 5A).
Treating a cohort of these mice with systemic H3-G, however, effec-
tively reversed the tumor burden (Fig. 5A). These findings are attrib-
uted in part to the tumor-preferential distribution of HPK-particles,
accompanied by rapid clearance from non-tumor tissue (Fig. 5B-C). Of
note, mice undergoing long-term maintenance of resistance eventually
developed secondary tumors (Fig. 5B) exhibiting nearly doubled HER3

compared to primary tumors (Fig. 5D-E), and correspondingly two to
three-fold higher particle accumulation (Fig. 5C; Fig. S3A). Importantly,
particle accumulation in resistant tumors was at least doubled com-
pared to parental tumors after systemic delivery in mice (Fig. S3B),
reflecting the nearly doubled HER3 levels of resistant vs parental tumor
cells (Fig. 3A–B) and suggesting that increased uptake by resistant tu-
mors contributes to their augmented particle sensitivity.

3.3. Efficacy on tumors with inherent resistance to trastuzumab

To evaluate therapeutic efficacy on tumors with pre-existing re-
sistance, we assessed the impact of HPK-nanobiologics on a JIMT-1
tumor model. The JIMT-1 cell line is derived from a HER2+ ductal
breast cancer that never responded to Tz [44]. These cells sustain in-
sensitivity to HER2-inhibition, thus providing a clinically relevant
model for inherent resistance and a challenge for therapeutic testing.
The HER3 levels on these cells are ~2× higher than HER2 (Fig. 6A;
Fig. S1C). Competitive inhibition by a HER3 peptide confirms that HPK
recognizes HER3 on these cells (Fig. 6B). In vitro, these cells remained
unresponsive to Tz, Tz + Pz, and Lp, and only partially responsive to
Dox (Fig. 6C) and Lipodox (Fig. S1F). While these cells resisted H3-G,
H3-D yielded considerable efficacy (Fig. 6C).

Systemic delivery of H3-D to mice bearing JIMT-1 tumors mitigated
tumor growth in contrast to Tz and Dox alone (Fig. 6D). Heart tissue
extracted from these mice revealed TUNEL-positive cells (indicative of
apoptosis) associated with Tz (and somewhat with Dox) treatment, in
contrast to the control treatments (saline and HPK alone) (Fig. 6E; Fig.
S4B). Tz and Dox also elicited moderate to considerable apoptosis in the
liver (Fig. 6E; Fig. S4C). Whereas H3-D treatments yielded substantial
apoptosis in residual tumor tissue, no apoptosis was detectable in the
heart tissue of these mice (Fig. 6E; Fig. S4AeB). H3-D-treated mice also
showed no signs of liver cell apoptosis (Fig. 6E; Fig. S4C) or weight loss
(Fig. S4D). These findings are attributed in part to the tumor-pre-
ferential biodistribution of the nanobiologic after systemic delivery
(Fig. 6F), which in turn reflects the comparatively high HER3
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expression in tumors in contrast to the liver (Fig. 6G).

3.4. Effect of clinically approved inhibitors

To evaluate whether HPK can recognize HER3 on human primary
tissue, we obtained a fresh breast tumor specimen extracted from a
HER2+ patient (diagnosed by FISH and IHC; Fig. 7A). Notably, this
patient received neoadjuvant Tz and Pz after HER2+ diagnosis and
before surgery. HPK and Tz both exhibited concentration-dependent
binding to disaggregated cells from this tumor sample, with HPK
showing greater binding than Tz (Fig. 7B). This binding curve corre-
lated with the relatively high measured cell surface HER3 and very low
HER2 (Fig. 7B). Importantly, Tz and the HER2 antibody used here re-
cognize non-overlapping sites on HER2 (see note in Material and
methods).

Taken together with our in vivo results on parental BT474 tumors
(Fig. 5A), these findings raise the possibility that Tz may shift tumor

cells to a HER3-elevated phenotype that would facilitate HPK-nano-
biologic delivery to resistant cells. To test this, we exposed parental
SKBR3 and BT-474 lines to Tz for 24 h and then measured cell surface
HER3 levels in comparison with non-treated parental cells. Not only did
Tz-treatment yield nearly doubled HER3 levels (Fig. 7C) but HPK
binding to these cells also was proportionately increased at least two-
fold (Fig. 7D).

To examine how this phenomenon influences therapeutic efficacy,
we treated parental and resistant lines with Tz for 4 h or 24 h before
H3-D treatment. H3-D already exhibited improved cytotoxicity com-
pared with Tz on parental SKBR3 cells, while pre-treatment augmented
toxicity further (Fig. 7E). H3-D toxicity on parental BT474 cells was
modestly improved over Tz, whereas a 4 h and 24 h pre-treatment with
Tz yielded correspondingly enhanced H3-D toxicity (Fig. 7F). Even
HER3-expressing MDA-MB-435 cells, which are already sensitive to H3-
D (Fig. S2F), showed a modest enhancement in toxicity upon 24 h pre-
treatment with Tz (Fig. 7G). The Tz-resistant lines, on the other hand,
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already exhibited potent sensitivity to H3-D and thus pre-treatment was
for the most part unnecessary (Fig. 7H–J). BT474-TR cells in particular
exhibited poor cell viability at all H3-D concentrations tested (Fig. 7I).
Five-fold lower H3-D concentrations still potently reduced cell survival,
while Tz pre-treatment yielded a slight but significant enhancement in
cytotoxicity (Fig. 7J). Importantly, Tz and Pz do not appear to compete
with HPK-nanobiologics for cell binding, as co-treatment does not
modify the therapeutic efficacy of H3-D or H3-G (Fig. 8A-B), whereas
HER3 pre-adsorption significantly blocks H3-D toxicity (Fig. 8C).

4. Discussion

These studies show that HPK itself is inert and does not elicit tumor
proliferation while triggering rapid and robust endocytosis. Unlike
neuregulin, the penton base-derived domain in HPK facilitates en-
dosomal escape and intracellular trafficking [32,33], thus enabling
delivery of a variety of therapeutic molecules, especially those that
otherwise cannot penetrate the endosomal membrane (i.e., anionic
molecules such as nucleic acids and sulfonated corroles) [28,29]. HPK-
nanobiologics therefore act as “Trojan horses” by mimicking the natural
ligand-receptor interaction on HER3 but resulting in delivery of a
tumor-toxic molecule. This effect is augmented on Tz-resistant cells,
which increase HER3 expression (1, 15) in response to HER2 blocking,
becoming prime targets for HPK-mediated attack. The reduction of HPK
binding and particle-mediated cytotoxicity by HER3-blocking peptides
affirms that interaction with HER3 contributes to the cytotoxic me-
chanism of HPK-particles. Several findings in this study suggest that the
enhanced sensitivity of resistant cells to HPK-nanobiologics is attrib-
uted in part to augmented particle uptake mediated by the heightened

HER3 levels on resistant cells. These findings include the observations
that: 1. Tz-exposed tumor cells exhibit at least doubled the HER3 levels
of naïve tumor cells and bind proportionately (nearly two to three-fold)
increased HPK (Fig. 7C-D); 2. accumulation of circulating HPK-particles
into Tz-resistant tumors was at least doubled compared to parental
tumors in vivo (Fig. S3B), reflecting the nearly doubled HER3 levels on
resistant compared to parental tumor cells (Fig. 3A–B); and, 3. meta-
static tumors showed at least doubled HER3 receptor levels compared
to primary tumors and concomitantly two to three-fold higher particle
accumulation (Fig. 5C–E). Importantly, the resistant tumors here show
little or no response to Tz, Lp, or Tz + Pz therapy in vitro (though this
approach does not assess the impact of antibody-dependent cellular
cytotoxicity that contributes to Tz efficacy), but can be effectively mi-
tigated by HPK-therapeutics. This includes the HER2+ JIMT-1 tumor
line that, unlike lines with acquired resistance, never responded to
HER2-inhibitors [44] and represents one of the most recalcitrant sce-
narios for therapeutic treatment. Importantly, the resistant tumors here
show little or no response to Tz, Lp, or Tz + Pz therapy in vitro (though
this approach does not assess the impact of antibody-dependent cellular
cytotoxicity that contributes to Tz efficacy), but can be effectively mi-
tigated by HPK-therapeutics. This includes the HER2+ JIMT-1 tumor
line that, unlike lines with acquired resistance, never responded to
HER2-inhibitors [44] and represents one of the most recalcitrant sce-
narios for therapeutic treatment.

The advantage of using HPK to deliver therapeutic cargo is de-
monstrated by comparing the biodistributions of H3-D with free Dox
after systemic delivery in mice bearing HER3-expressing tumors. H3-D
exhibits tumor-preferential accumulation and prolonged tumor reten-
tion whereas Dox exhibits comparatively higher accumulation in non-
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tumor tissues (Fig. S2G). This is also demonstrated therapeutically, as
H3-D shows improved therapeutic efficacy compared to untargeted
drug both in vitro (Fig. 6C and Fig. S1DeI) and in vivo (Fig. 6D), as well
as improved safety over free Dox in vivo (Fig. 6E–G). Likewise, free
gallium corrole has no detectable effect on tumor growth whereas H3-G
exhibited effective mitigation of both parental and resistant tumors in
vivo (Fig. S3C).

Pre-treating naïve tumors with Tz or Tz + Pz yielded a HER3-ele-
vated phenotype accompanied by enhanced HPK-binding and aug-
mented sensitivity to HPK particles. Two possible mechanisms, or a
combination of the two, may contribute to the increased HER3 ob-
served here. First, in a heterogeneous tumor environment, neoadjuvant
treatment of primary tumors can impart selective pressure that enable a
subset of resistant cells to expand [45]. Likewise, in these studies, the
removal of HER2-sensitive cells by Tz or Tz + Pz pre-treatment may
leave a population of pre-existing cells expressing high HER3 to expand.
Under such circumstances, HPK particles can enhance the efficacy of
current targeted therapeutics by attacking those cells that survive
HER2-blocking treatment. On the other hand, it is possible that HER3 is
induced as an acute response to HER2 inhibition. HER3 up-regulation
can occur within hours of EGFR or HER2 inhibition on HER2+ tumor
cell lines [1], leading to acquired resistance. In agreement, we found
that Tz or Tz + Pz pre-treatment for as little as 4 h markedly enhanced
H3-D efficacy on parental tumor lines. Importantly, co-treatment of the
antibodies with the nanobiologic did not necessarily produce an am-
plified effect nor did they block nanobiologic potency. Altogether, these
findings suggest that existing targeted therapies currently used in the
clinic can act as adjuvants to prime and sensitize newly diagnosed tu-
mors for HPK-mediated therapy. Thus it is possible to exploit either

phenomenon by using HER2 inhibition to set up primary tumors for
HPK-mediated attack. Importantly, resistance is not a pre-requisite for
our particle to be effective, as HPK-particles exhibit efficacy on both
sensitive and resistant tumor cells, but have obvious advantages on
resistant tumors compared with existing targeted therapies.

5. Conclusions

The studies here provide support for the association of the HER3 cell
surface protein with resistance to clinically approved blockers of the
ErbB receptor family, and show that use of HER3-targeted nanobiolo-
gics are therapeutically effective on these resistant tumors (which in-
clude models of both acquired and inherent resistance). These findings
show that nanobiologic targeting and therapeutic efficacy corresponds
with HER3 level, and accordingly, potency is heightened on resistant
tumor cells. Importantly, nanobiologic potency is enhanced on naïve or
parental tumors when applied within hours after trastuzumab treat-
ment due in part to the increased HER3 occurring after exposure to the
HER2 blockade. The identification of HER3 upregulation in diverse
tumor cell types in response to a growing list of clinically-approved
inhibitors suggests that HPK-nanobiologics may be applicable to a
broad array of resistant tumors.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jconrel.2017.12.024.
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