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Abstract

Rationale and Objectives—To establish a proof-of-principle for combined assessment of 

pulmonary ventilation and perfusion using single-energy computed tomography (CT) and image 

processing/analysis (denoted as single-energy CT ventilation/perfusion imaging).

Materials and Methods—Breath-hold CT scans were acquired at end-expiration and end-

inspiration before injection of iodinated contrast agents, and repeated at end-inspiration after 

contrast injection for 17 canines (8 normal and 9 diseased lung subjects). Ventilation images were 

calculated with deformable image registration to map the end-expiratory and end-inspiratory CT 

Corresponding Author: Tokihiro Yamamoto, 4501 X Street, G-145, Sacramento, CA 95817, Phone: (916) 734-0604, 
toyamamoto@ucdavis.edu. 

Declarations of interest: None

HHS Public Access
Author manuscript
Acad Radiol. Author manuscript; available in PMC 2022 May 01.

Published in final edited form as:
Acad Radiol. 2021 May ; 28(5): 636–646. doi:10.1016/j.acra.2020.04.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



images and quantitative analysis for regional volume changes as surrogates for ventilation. 

Perfusion images were calculated by subtracting the end-inspiratory precontrast CT from the 

deformably-registered end-inspiratory postcontrast CT, yielding a map of regional Hounsfield unit 

enhancement as a surrogate for perfusion. Ventilation-perfusion matching, spatial heterogeneity, 

and gravitationally directed gradients were compared between two groups using a Wilcoxon rank-

sum test.

Results—The normal group had significantly higher Dice similarity coefficients for spatial 

overlap of segmented functional volumes between ventilation and perfusion (median 0.40 vs. 0.33, 

p=0.05), suggesting stronger ventilation-perfusion matching. The normal group also had greater 

Spearman’s correlation coefficients based on 16 regions of interest (median 0.58 vs. 0.40, p=0.09). 

The coefficients of variation were comparable (median, ventilation 0.71 vs. 0.91, p=0.60; 

perfusion 0.63 vs. 0.75, p=0.27). The linear regression slopes of gravitationally directed gradient 

were also comparable for ventilation (median, ventilation −0.26 vs. −0.18, p=0.19; perfusion 

−0.17 vs. −0.06, p=0.11).

Conclusion—These findings provide proof-of-principle for single-energy CT ventilation/

perfusion imaging.

Keywords

pulmonary functional imaging; ventilation; perfusion; single-energy computed tomography (CT); 
deformable image registration

1. Introduction

Pulmonary function tests (PFTs) are non-invasive and simple tests that provide important 

information about global lung function. Although PFTs are a well-established method to 

measure the global lung function, they do not provide spatial information about regional 

lung dysfunction (1). PFTs are not sensitive enough to detect early lung dysfunction (2), 

especially in the case of heterogeneous ventilation and perfusion abnormalities such as 

pulmonary embolism. Pulmonary embolism can be diagnosed with imaging techniques, such 

as ventilation and perfusion scintigraphy (or single-photon emission computed tomography 

(SPECT)) and CT angiography (3). Both imaging techniques have been found to have high 

diagnostic accuracy (4). However, combined assessment of regional ventilation and 

perfusion with SPECT has a higher sensitivity and specificity than CT angiography (5). 

Moreover, combined assessment of ventilation and perfusion has the potential to serve as a 

sensitive biomarker of early stage chronic obstructive pulmonary disease (COPD) (6, 7) and 

pulmonary hypertension (8). These findings suggest the importance of combined assessment 

of regional ventilation and perfusion in the evaluation of lung diseases.

Several imaging modalities can be used for combined assessment of pulmonary ventilation 

and perfusion. Planar scintigraphy and SPECT have been widely accepted as clinical 

standard imaging modalities for ventilation and perfusion assessment. More advanced 

imaging methods have also recently been investigated, including positron emission 

tomography (PET) (4), magnetic resonance imaging (MRI) (9), and dual-energy CT (10). 

Both ventilation and perfusion images can also be acquired with an emerging modality 
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based on single-energy CT and image processing/analysis (referred to as single-energy CT 

ventilation/perfusion imaging). Regional ventilation can be estimated based on the local 

volume change between inhalation and exhalation CT images (11, 12). Moreover, regional 

perfusion can be estimated based on regional HU enhancement in contrast-enhanced CT 

images (13, 14). Among these functional imaging methods, single-energy CT ventilation/

perfusion imaging has great potential for widespread adoption, as single-energy CT scanners 

are available in most centers. Ventilation imaging does not require any tracers or contrast 

agents, while perfusion imaging only requires intravenous (IV) injection of iodinated 

contrast agents that are frequently used in clinical practice. Several studies have extensively 

investigated the accuracy and reproducibility of single-energy CT ventilation imaging in 

animal models (15–17) and human subjects (18–20), indicating its physiological 

significance. The feasibility of single-energy CT pulmonary perfusion imaging has also been 

demonstrated through animal studies (13, 14). However, to the best of our knowledge, no 

studies have been conducted on the combined assessment of ventilation and perfusion (e.g., 
regional ventilation-perfusion matching) with single-energy CT.

The purpose of this study was to establish a proof-of-principle for single-energy CT 

ventilation/perfusion imaging. We compared ventilation-perfusion matching between normal 

and diseased lungs using two measures: (1) Spearman’s correlation coefficient based on 16 

regions of interest (ROIs) (defined by dividing the lungs), and (2) Dice similarity 

coefficients (DSCs) for the spatial overlap of segmented functional volumes. Moreover, we 

compared spatial heterogeneity and the gravitationally directed gradients of regional 

ventilation and perfusion between normal and diseased lungs.

2. Methods and materials

2.1. Subjects

We used a total of 17 canines (specifically, 8 canines with normal lungs and 9 canines with 

diseased lungs (including primary lung tumor, lung metastasis, and bronchointerstitial 

pneumonia)). The canines had to be at least one year old, weigh between 10 and 50 kg, and 

demonstrate adequate health and organ function as determined by physical examination, 

complete blood count, and a chemistry panel to verify that anesthesia could be safely 

administered. The experimental protocol was approved by the institutional clinical trials 

review board and the institutional animal care and use committee. Written informed consent 

was obtained from owners.

2.2. Overview of single-energy CT ventilation/perfusion imaging

Figure 1 shows a schematic diagram for single-energy CT ventilation/perfusion imaging and 

the studies performed. Three CT scans at end-expiration (CTend_exp
pre ), mid-inspiration 

(CTmid_ins
pre ), and end-inspiration (CTend_ins

pre ) were obtained before IV injection of iodinated 

contrast for ventilation imaging, followed by another CT scan at end-inspiration after 

contrast injection (CTend_ins
post ) for perfusion imaging. Deformable image registration (DIR) 

was used to spatially map the four CT image datasets. A ventilation image was calculated 
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with the deformably registered CTend_exp
pre  and CTend_ins

pre , and the HU-based metric (11) as a 

surrogate for regional ventilation. The DIR between CTend_exp
pre  and CTend_ins

pre  was performed 

through two steps: CTend_exp
pre (moving) to CTmid_ins

pre  (fixed) and CTmid_ins
pre  (moving) to 

CTend_ins
pre  (fixed), owing to large deformation. A perfusion image was created with the 

deformably registered CTend_ins
post  and CTend_ins

pre  by subtraction of the precontrast image dataset 

from the postcontrast image dataset, yielding a map of regional HU enhancement as a 

surrogate for regional perfusion.

2.3. Animal preparation and CT acquisition

All canines were maintained under general anesthesia for the duration of the imaging 

studies. The anesthesia was induced with Propofol (2 mg/kg IV) and midazolam (0.1 mg/kg 

IV) to effect in most cases. Heart rate, arterial pressure, body temperature, depth of 

anesthesia, and end-tidal carbon dioxide were monitored throughout the anesthetic 

procedure.

CT scans were performed with a LightSpeed 16-slice CT scanner (GE Healthcare, 

Waukesha, WI). The scan parameters were as follows: the tube voltage was 120 kV; the tube 

current was 150 mA; the rotation time was 1.0 s; and the pitch was 1.375. The images were 

reconstructed with 1.25-mm slice thickness using a sharp reconstruction kernel (GE Lung). 

Three CT scans at end-expiration, mid-inspiration, and end-inspiration were obtained before 

IV injection of iodinated contrast, followed by another CT scan at end-inspiration after 

contrast injection. All CT images were acquired in the prone position using a breath-hold 

technique. Assisted hyperventilation was performed before CT scans to facilitate breath-

hold. An iodinated contrast material (3 mL/kg; Isovue, 370 mg of iodine/mL; Bracco 

Diagnostics, Cranbury Township, NJ) was injected into the cephalic vein at a flow rate of 4 

mL/s. The postcontrast scan was initiated with a delay of 13 s to 20 s, depending on the 

volume of the contrast agent administered, which was adjusted according to body weight. 

The 13–20 s delay time is consistent with previous CT pulmonary perfusion studies based on 

breath-hold scans (13, 21). Fuld et al. (21) demonstrated a strong correlation between the 

iodine map of dual-energy CT based on a 15 s scan delay and pulmonary blood flow 

assessed with dynamic CT imaging.

2.4. Deformable image registration (DIR)

For the ventilation image calculation, DIR was used to spatially map the CTend_exp
pre  and 

CTend_ins
pre  images. Two separate registrations (CTend_exp

pre (moving) to CTmid_ins
pre  (fixed), and 

CTmid_ins
pre  (moving) to CTend_ins

pre  (fixed)) were performed to improve the spatial registration 

accuracy of the DIR between the maximum phases. For the perfusion image calculation, the 

DIR was used to spatially map the CTend_ins
post  (moving) and CTend_ins

pre  (fixed) images. The 

DIRs were performed using elastix, an open source software package (22). The DIR 

parameter settings were similar to Yamamoto et al. (14), which was based on the optimized 

settings for thoracic CT images established by (23). The DIR was performed in a multigrid 
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setting that was driven by a similarity function and a transform bending energy penalty (24) 

(set to 0.05 for all conditions). Two similarity functions—namely, mutual information (MI) 

and normalized cross correlation (NCC)—were compared to select the function that showed 

better performance based on visual and quantitative assessment. For the image data, 

Gaussian pyramids were used for down-sampling to increase robustness. A multigrid 

approach was used for the B-spline transformation. The DIR was performed with lung 

masks that were generated by segmenting the lungs on both the fixed and moving CT images 

and merging those segmented lungs together.

The accuracy of the DIR was quantitatively evaluated based on the target registration error 

(TRE) of anatomic pulmonary landmarks and the singularity of the deformation field. We 

used the iX software (25) to generate 50 landmarks per subject distributed throughout the 

lungs. Manual annotation of these landmarks was performed by a medical physicist. The 

Jacobian determinant of the displacement vector field (DVF) was calculated for each voxel 

and analyzed to examine whether there was any voxel with a negative Jacobian value. The 

negative Jacobian was a singularity in the deformation. The TRE was evaluated for the 

following two DIR scenarios: CTend_exp
pre (moving) to CTmid_ins

pre  (fixed), and CTend_ins
post

(moving) to CTend_ins
pre  (fixed). The TRE for DIR between CTmid_ins

pre  to CTend_ins
pre  was not 

evalauted because the lung volume change between CTmid_ins
pre  and CTend_ins

pre  was 

considerably smaller than between CTend_exp
pre  and CTmid_ins

pre  (the mean percentage lung 

volume change, 110% vs. 134%), and hence the accuracy of DIR between CTmid_ins
pre  and 

CTend_ins
pre  was assumed to be no worse than DIR between CTend_exp

pre  and CTmid_ins
pre .

2.5. CT ventilation imaging

Ventilation images were calculated with the deformably registered CTend_exp
pre  and CTend_ins

pre

images. Regional ventilation was quantified using the HU-based metric (VHU) (11), which 

was defined based on the relationship between the local HU change and the local volume 

change. The VHU in the voxel at location x is given as follows:

V HU =
HUend_exp

pre (x + u) − HUend_ins
pre (x)

HUend_ins
pre (x) + 1000

ρscaling, (1)

where HU is the HU value; u is the displacement vector mapping the voxel of the end-

expiratory image to the corresponding location of the end-inspiratory image; and ρscaling is 

the CT density scaling factor, which takes a value ranging from zero for the voxel with the 

lowest CT density to one for the voxel with the highest CT density (−250 HU) (18, 20). We 

applied a mass correction to HUend_ins to account for the changes in the blood distribution 

between the end-expiratory and end-inspiratory images, in the same manner as that in (12). 

The influence of CT noise was reduced by smoothing the CT images after DIR using a 3D 

Gaussian filter kernel with a variance σ = 1.5 mm before computing VHU. The smoothing 

level was applied to allow removal of abnormal high-intensity tails of ventilation and 

perfusion values and small changes from the original distributions. All CT images were 
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smoothed in the same manner for both ventilation and perfusion quantification. Abnormally 

high ventilation values were observed in peripheral lung regions (Supplementary Fig 

A.1(a)), which was likely due to image smoothing and DIR errors. Thus, we excluded voxels 

within 1.5 mm of the outer boundaries of lung masks from the analysis (Supplementary Fig 

A.1(b)).

For the analysis, normalization is necessary to compare ventilation and perfusion, which are 

measured using different scales. The ventilation values were normalized by the mean of the 

highest 5% of the ventilation values, yielding a ventilation distribution with a range of 

approximately 0 to 1. This normalization method is consistent with that implemented in the 
129Xe MRI ventilation study reported by (26). Given that abnormal ventilation values may 

be caused by image processing, abnormally high and low ventilation values (mean ± 2SD as 

a threshold) were excluded from the analysis.

2.6. CT pulmonary perfusion imaging

Perfusion images were calculated by subtracting the CTend_ins
pre  from the deformably 

registered CTend_ins
post , yielding a map of the regional HU enhancement as a surrogate for 

perfusion (Q) (14). Q in the voxel at location x, is given as follows:

Q = HUend_ins
post (x + u) − correctedHUend_ins

pre (x), (2)

where HUpost and HUpre are the HU values of the CTend_ins
post  and CTend_ins

pre  images, 

respectively; and u is the displacement vector mapping the voxel of the CTend_ins
post  image to 

the corresponding location of the CTend_ins
pre  image. Given that the HU values of the lung 

tissues varied with the lung inflation level, we corrected the HUs of CTend_ins
pre  for the lung 

inflation variation based on a relationship between the HU for each voxel and the total lung 

volume as a measure of the lung inflation level (yielding correctedHU). This correction is 

consistent with that implemented in (14). The CT images were also smoothed using a 3D 

Gaussian filter kernel with a variance σ = 1.5 mm before computing Q. The perfusion image 

was also normalized by dividing the mean of the highest 5% of the perfusion values. Given 

that abnormal perfusion values may be caused by image processing and CT artifacts (i.e., 
streak artifacts), abnormally high and low perfusion values (mean ± 2SD as a threshold) 

were excluded from the analysis.

2.7. Analysis of the ventilation and perfusion images

Ventilation-perfusion matching was quantified using two measures: (1) the Spearman’s 

correlation coefficient based on 16 ROIs (defined by dividing the lungs), and (2) DSCs for 

the spatial overlap of four segmented functional volumes (defect, and low-, moderate-, and 

high-functional volumes). Efficient gas exchange requires intimate matching of regional 

ventilation and perfusion, i.e., an ideal ventilation-perfusion ratio of 1.0. Gas exchange 

impairment occurs when ventilation and perfusion are mismatched. We generated lung 

masks by delineating lung voxels with HU values less than a threshold of −250 HU (12) 
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within the lung contours generated by the model-based segmentation. To quantify 

Spearman’s correlation coefficients, each of the right and left lungs were equally divided 

into 8 ROIs (AP × RL × SI: 2 × 2 × 2 regions). The mean normalized ventilation and 

perfusion values were then calculated for each ROI, and used to quantify the correlation. To 

quantify DSCs for the spatial overlap of segmented functional volumes, we performed 

hierarchical k-means clustering (27) to partition the ventilation and perfusion images into 

four functional volumes in a manner similar to a previously described method for 3He MRI 

ventilation images (28). Figure 2 shows a schematic of the hierarchical k-means clustering 

method, which mainly consists of seven steps: (1) the function image was initially divided 

into left and right lung, (2) k-means with 10 clusters was applied to the two volumes, (3) the 

top five clusters from step 2 were merged to represent higher functional region and the 

residual five volumes were also merged to represent lower functional region, (4) k-means 

with 10 clusters were then reapplied to the higher and lower functional region, (5) the 

clusters were merged to higher and lower functional region as with step 3, (6) the segmented 

volumes were sorted by the mean of the ventilation or perfusion values in each ROI, (7) the 

sorted volumes were merged every two ROIs into a single ROI from the lowest to the highest 

functional volume. For both steps 2 and 4, the initial centroids were determined by dividing 

each distribution into 10 deciles, the upper limits of which are defined by the 10th, 20th, …, 

90th, and 100th percentile, and selecting the interval center as the centroid for each cluster. 

The resulting four segmented functional volumes of ventilation were compared with those of 

perfusion to quantify DSCs. For the k-means clustering, the optimal number of clusters (step 

2 above) in a data set is a fundamental issue in partitioning clusters. The optimal number of 

clusters was determined based on minimizing sum of squared distances within a cluster. We 

measured the sum of squared distances by varying cluster number from 4 to 20, and the 

optimal number of clusters was 10 in our study.

Spatial heterogeneity was quantified based on the coefficient of variation (CoV). The CoV 

was calculated from mean and standard deviation of normalized ventilation and perfusion 

distribution, divided the standard deviation by the mean.

The gravitationally directed gradient was quantified based on the linear regression slope for 

the relationship between the ventral-to-dorsal distance and normalized ventilation or 

perfusion values. The total lung was divided into five coronally sectioned ROIs, equally 

spaced along the ventral-to-dorsal direction. The mean normalized ventilation and perfusion 

values were calculated for each ROI.

We compared ventilation-perfusion matching (the Spearman’s correlation coefficients were 

converted into z sores using Fisher’s transformation), spatial heterogeneity, and 

gravitationally directed gradients between the normal and diseased lung groups using a 

Wilcoxon rank-sum test.
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3. Results

3.1. DIR accuracy

MI resulted in smaller TRE for DIR between CTend_exp
pre  and CTmid_ins

pre  (NCC: 1.4 ± 2.0 mm, 

MI: 0.87 ± 1.0 mm), and TRE for DIR between CTend_ins
pre  and CTend_ins

post  differed only slightly 

(NCC: 0.57 ± 0.55 mm, MI: 0.64 ± 0.54 mm). Negative Jacobians were observed only in 

DIR based on MI between CTend_ins
pre  and CTend_ins

post  (mean 0.03 ± 0.07 %, range 0.0–0.3 %). 

Examination of the other registrations confirmed that all Jacobian values had positive values. 

Consequently, MI was selected for the DIR between CTend_exp
pre  and CTmid_ins

pre  and between 

CTmid_ins
pre  and CTend_ins

pre , and NCC was selected for the DIR between CTend_ins
post  and CTend_ins

pre . 

Across the entire dataset, the mean TREs were smaller than the one-voxel size of 0.6 × 0.6 × 

1.25 mm3, while the registration errors ranged up to 10 mm. The large registration errors 

were observed for the features located in diaphragm region and near streak artifacts in 

postcontrast CT.

The DIR accuracy was comparable between the diseased group and the normal group in 

those DIR scenarios. The TRE for DIR between CTend_exp
pre  and CTmid_ins

pre  was smaller than 

the one-voxel size (median, the diseased lung group 0.67 mm; the normal lung group 1.1 

mm). The TRE for DIR between CTend_ins
post  and CTend_ins

pre  was also smaller than the one-voxel 

size (median, the diseased lung group 0.47 mm; the normal lung group 0.56 mm). Moreover, 

there were no significant differences in visual assessment of the DIR accuracy between the 

two group.

3.2. Ventilation-perfusion matching

Figure 3 shows scatter plots of normalized ventilation and perfusion, and example images of 

ventilation and perfusion for the four representative subjects: normal lung subjects with the 

strongest correlation (subject N1: Spearman’s correlation coefficient R = 0.78 and mean 

DSC = 0.40) and a weak correlation (subject N2: R = 0.39, mean DSC = 0.33) between 

ventilation and perfusion, and diseased lung subjects with a strong correlation (subject D1: 

R = 0.64, mean DSC = 0.45) and the lowest correlation (subject D2: R = −0.03, mean DSC 

= 0.33) between ventilation and perfusion.

Figure 4 shows a comparison of the Spearman’s correlation coefficients between regional 

ventilation and perfusion for the normal lung group and those for the diseased lung group. 

The median Spearman’s correlation coefficients between ventilation and perfusion were 0.58 

(range 0.39–0.92) for the normal lung subjects and 0.40 (range −0.03–0.69) for the diseased 

lung subjects. The correlation coefficients of normal lung individuals were distributed in a 

close cluster around the median of the box plot, whereas those of diseased lung subjects 

were distributed over a wider range with higher standard deviation. The difference between 

the two groups were not statistically significant at the 0.05 level (p=0.09).

Figure 5 shows a comparison of the DSCs for the spatial overlap of segmented functional 

volumes between ventilation and perfusion for the normal lung group and those for the 
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diseased lung group. The mean DSCs of four segmented functional volumes were 

significantly higher in the normal subjects than in the diseased subjects (median 0.40 vs. 

0.33, p=0.05). The DSCs for the each volumes (lung defects, and low-, moderate- and high-

functional volumes) were higher in the normal lung subjects than in the diseased lung 

subjects (median, defects 0.39 vs. 0.32; low 0.41 vs. 0.28; moderate 0.25 vs. 0.21; high 0.46 

vs. 0.34). The differences in DSC score for these volumes were not statistically significant at 

the 0.05 level (defects p=0.27; low p=0.08; moderate p=0.48; high p=0.19). These results 

indicate a stronger ventilation-perfusion matching for the normal lung subjects than the 

diseased lung subjects.

3.4. Spatial heterogeneity

Figure 6 shows a comparison of CoVs of regional ventilation and perfusion for the normal 

lung group and those for the diseased lung group. The median CoVs for the normal lung 

subjects were 0.71 for ventilation and 0.63 for perfusion, which were not significantly 

different from those for the diseased lung subjects (0.91 for ventilation, p=0.60; 0.75 for 

perfusion, p=0.27).

3.5. Gravitationally directed gradients

Gravitationally directed gradients of ventilation and perfusion were observed for both 

groups, indicating higher ventilation or perfusion in the ventral regions than in the dorsal 

regions. Figure 7 shows examples gradients of ventilation and perfusion for subjects N1 and 

D2. Figure 8 shows a comparison of the linear regression slopes of ventilation and perfusion 

for the normal lung group and those for the diseased lung group. Both ventilation and 

perfusion gradients tended to be steeper in the normal lung group than in the diseased lung 

group (median −0.26 vs. −0.18 for ventilation; −0.17 vs. −0.06 for perfusion). However, the 

differences were not statistically significant (p=0.19 for ventilation; p=0.11 for perfusion).

4. DISCUSSION

This is the first study to investigate the combined assessment of ventilation and perfusion 

with single-energy CT ventilation/perfusion imaging. We demonstrated stronger ventilation-

perfusion matching (i.e., significantly greater DSCs and nearly significantly greater 

Spearman’s correlation coefficients) in the normal lung subjects than in the diseased lung 

subjects, which is consistent with previous studies (7, 29, 30), providing a proof-of-principle 

for single-energy CT ventilation/perfusion imaging. Table 1 shows a summary of previous 

animal and human studies on ventilation-perfusion matching (7, 29–37). We observed only 

moderate DSCs and Spearman’s correlation coefficients in most normal lung subjects, which 

might reflect limitations of the current method for single-energy CT ventilation/perfusion 

imaging. Another possible explanation is that anesthesia used for all subjects may have led 

to increased ventilation-perfusion mismatch (38).

We observed a non-significant difference in the CoV between the normal and diseased 

groups. Previous studies have shown inconsistent findings including both significant and 

non-significant differences in the CoV between the normal and diseased subjects (30, 39) 

(see Table 1). To identify potential confounders that might affect the CoV, we investigated 
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several factors related to CT imaging and compared those between the normal and diseased 

groups. For CT ventilation, the lung volume change between two paired CT scans was found 

to be moderately correlated with the CoV (R = −0.66) (Supplementary Fig B.2), suggesting 

that a small volume change might lead to a large CoV perhaps because of a relatively low 

signal-to-noise ratio or small HU change. An outlier normal subject with a large CoV of 

2.40 (see Fig 6) showed a considerably smaller lung volume change between CTend_exp
pre  and 

CTend_ins
pre  (129%) compared to the other normal subjects (mean 153±14%). However, there 

was no significant difference in the lung volume change between the normal and diseased 

groups (153±14% vs. 144±11%, p=0.23). For CT perfusion, the volume of negative HU 

enhancement was found to be strongly correlated with the CoV (R = 0.96) (Supplementary 

Fig C.3), most likely because negative HU enhancement caused by streak artifacts leads to 

large standard deviations (14). Although most of abnormal CT perfusion values by severe 

streak artifacts could be suppressed by a thresholding based filtering, the negative HU 

enhancements by mild CT artifacts still remained on the perfusion maps. Future studies with 

strategies that reduce these CT artifacts would provide insights into the accuracy of CT 

ventilation/perfusion imaging.

We observed a non-significant difference in the gravitationally directed gradients for 

ventilation between the normal and diseased groups. The gravitationally directed gradients 

were studied to examine whether ventilation and perfusion imaging can demonstrate the 

known effect of gravity (i.e., greater ventilation and perfusion in gravity-dependent regions 

than in nondependent regions) under normal conditions as shown in several studies (30, 40, 

41) (see Table 1). The presented results were only for the lung cancer and interstitial 

pneumonia patients, and not including any COPD patients. The various pathologies in the 

diseased group is a potential reason for the non-significant difference in the gravitationally 

directed gradients between the two groups.

The present study has several limitations. First, as described above, our study used canines 

with various types of lung diseases, and some of those may not be an ideal disease model of 

heterogeneous ventilation and perfusion abnormalities. For example, canines with small lung 

tumors might have little effect on regional ventilation and perfusion, which may have also 

contributed to the non-significant differences in the median CoVs of ventilation and 

perfusion and the gravitationally directed gradient of ventilation between the two groups. 

Models with a higher heterogeneity of ventilation and perfusion, such as advanced COPD, 

will be considered in future studies. Another limitation to consider is DIR registration errors. 

The majority of TREs were smaller than the voxel dimension; however, TREs ranged up to 

10 mm. The results of the EMPIRE10 challenge also exhibited larger registration errors for 

the breath-hold CT images because of a large deformation (42). Given that DIR errors 

directly affect the accuracy of ventilation calculations, future developments of DIR 

algorithms that can better handle large deformations would improve CT ventilation imaging. 

Finally, the statistical power of this study was limited due to a small sample size. Further 

studies with a larger sample size are required to confirm the findings from this study.

Further work remains to be performed to investigate the accuracy and precision of single-

energy CT ventilation/perfusion imaging. Previous studies have assessed the accuracy (15–
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20) and reproducibility (43, 44) of single-energy CT ventilation imaging, whereas there is no 

study that quantifies those of single-energy CT perfusion imaging. More studies such as 

cross-modalities comparisons and reproducibility of CT pulmonary perfusion images 

between the two time points are needed in future work. In addition, further study to quantify 

the repeatability of the technique for quantitative assessment of combined ventilation and 

perfusion, e.g., test-retest reliability method, is required in order to understand the source of 

variability in spatial correlation.

Single-energy CT ventilation/perfusion (V/Q) imaging has great potential for widespread 

adoption, as single-energy CT scanners are available in most centers. Furthermore, 

ventilation imaging does not require any tracers or contrast agents, and perfusion imaging 

only requires iodinated contrast agents that is widely used in routine clinical practice. 

Compared to conventional V/Q imaging approaches (including scintigraphy planar imaging 

and SPECT), single-energy CT V/Q imaging can provide a higher spatial and temporal 

resolution, and thereby allows more accurate quantification of regional lung function.

5. Conclusion

This canine study demonstrated significantly better regional ventilation-perfusion matching 

for the normal lung subjects than the diseased lung subjects, providing a proof-of-principle 

for single-energy CT ventilation/perfusion imaging. Further studies such as cross-modality 

image comparisons are needed for validation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

COPD chronic obstructive pulmonary disease

CoV coefficient of variation

CT computed tomography

DIR deformable image registration

DSC dice similarity coefficient

HU Hounsfield unit

MI mutual information

MRI magnetic resonance imaging
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NCC normalized cross correlation

PET positron emission tomography

PFT pulmonary function test

ROI region of interest

SPECT single-photon emission computed tomography

TRE target registration error
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Fig 1. 
Schematic of image acquisition, processing, and analysis for single-energy CT ventilation/

perfusion imaging as well as the studies performed. Ventilation images were calculated with 

the deformably registered end-expiratory and end-inspiratory CT images. DIR was 

performed through two steps (end-expiration to mid-inspiration, and mid-inspiration to end-

inspiration). Perfusion images were created by subtraction of the deformably registered 

precontrast image dataset from the postcontrast image dataset.
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Fig 2. 
(a) Schematic of hierarchical k-means clustering to segment four functional volumes (defect, 

and low-, moderate-, and high-functional volumes). (b) An example image of the four 

segmented functional volumes.
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Fig 3. 
Comparisons of ventilation and perfusion images as well as scatter plots based on 16 ROIs 

for four representative subjects: two normal subjects with (a) strong correlation (subject N1) 

and (b) moderate correlation (subject N2); and two diseased subjects with (c) strong 

correlation (subject D1, interstitial pneumonia) and (d) weak correlation (subject D2, 

bronchointerstitial pneumonia). Each data point represents the mean normalized ventilation 

or perfusion value within each of the 16 ROIs. R represents the Spearman’s correlation 

coefficient.
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Fig 4. 
Box plot of Spearman’s rank correlation coefficients between ventilation and perfusion 

based on 16 ROIs (defined by dividing the lungs) for the normal and diseased lung groups. 

The central mark on each box represents the median, while the bottom and top edges 

indicate the 25th and 75th percentiles, respectively. Data points overlaid on the box plot 

represent individual subjects.
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Fig 5. 
Box plots of DSCs for the spatial overlap of four segmented functional volumes (defect, and 

low-, moderate-, and high-functional volumes) between ventilation and perfusion for the 

normal and diseased lung groups. The central mark on each box represents the median, 

while the bottom and top edges indicate the 25th and 75th percentiles, respectively.
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Fig 6. 
Box plots of the CoVs of ventilation and perfusion for the normal and diseased lung groups. 

The central mark on each box represents the median, while the bottom and top edges 

indicate the 25th and 75th percentiles, respectively.
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Fig 7. 
Ventral-to-dorsal gradients of (a) ventilation and (b) perfusion for two representative 

subjects: subjects N1 (normal, solid lines) and D2 (diseased, dashed lines). The linear 

regression slope and coefficient (R2) are shown.
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Fig 8. 
Box plots of ventral-to-dorsal gradients (linear regression slopes) of ventilation and 

perfusion for the normal and diseased lung groups. The central mark on each box represents 

the median, while the bottom and top edges indicate the 25th and 75th percentiles, 

respectively.
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Table 1.

Summary of previous studies on ventilation-perfusion matching, spatial heterogeneity, and gravitationally 

directed gradients.

Study Modality Subjects Key finding

Ventilation-perfusion matching

Robertson et al.(1997) FMS 5 normal pigs Moderate to strong correlation (range 0.53–0.89) between V 
and Q

Altemeieret al.(1998) FMS 5 normal pigs
Moderate to strong correlation (mean 0.89, range 0.76–0.95) 
between V and Q; After embolization, correlation decreased 
to 0.67 (range 0.57–0.74)

Altemeieret al.(2000) FMS 6 normal pigs Moderate to strong correlation (range 0.62–0.87) between V 
and Q

Melsomet al.(1997) RMS 5 normal goats Moderate to strong correlation (mean 0.81, range 0.68–0.87) 
between V and Q

Vidal Melo et al.(2000) PET 6 normal volunteers Greater V/Q heterogeneity (p < 0.05) in COPD

10 COPD patients

Suga et al.(2010) SPECT 12 normal controls Greater V/Q heterogeneity (p < 0.01) in emphysema

38 PE patients

Sando et al.(1997) SPECT
10 normal volunteers 7 PVD, 9 
PE, 18 BC, and 12 
miscellaneous disease patients

Greater V/Q heterogeneity (p < 0.01) in PVD, PE, and BC

Yuan et al.(2011) SPECT 51 NSCLC patients 39 % of patients had high V/Q mismatched areas

Ogawa et al.(1997) Planar 
scintigraphy 40 ILD patients 49 % of patients had high V/Q mismatched areas V/Q 

matched defects were seen in 56%

Hwang et al.(2016) Dual energy CT 52 COPD patients
Normal lung parenchyma showed a matched V/Q 
pattern;bronchial wall thickening showed a reversed 
mismatched V/Q ratio pattern (no quantitative data)

Spatial heterogeneity

Tzeng et al.(2009) MRI 6 normal volunteers Higher V heterogeneity (p = 0.08) in asthmatics

10 asthmatic patients

Vidal Melo et al.(2010) PET 6 normal volunteers Higher heterogeneity of V (p < 0.01) and Q (p < 0.01) in 
COPD

10 COPD patients

Gravitationally directed gradients

Vidal Melo et al.(2010) PET 6 normal volunteers Higher V gradient (p < 0.05) in normal subjects;

10 COPD patients Nonsignificant difference in Q gradient

Peterssonet al. (2007) SPECT 8 normal volunteers V and Q gradients different from zero (p < 0.05)

Bauman et al.(2011) MRI and 
SPECT/CT 7 normal pigs V and Q gradients confirmed with both modalities in all 

animals (no quantitative data)

Abbreviations: V = ventilation, Q = perfusion, FMS = fluorescent microspheres, RMS = radioactive microspheres, BC = bronchogenic carcinoma, 
NSCLC = non-small-cell lung carcinoma, PE = pulmonary emphysema, ILD = interstitial lung disease, COPD = chronic obstructive pulmonary 
disease, PVD = pulmonary vascular disease, PFT = pulmonary functional test.
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