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Computational methods for the identification of drug-metabolizing  

species and enzymes in the human gut microbiome. 

Annamarie Bustion 

Abstract 

It is well established that the composition of a human’s microbiome can contribute to variations 

in drug metabolism. Indeed, from cumulative research efforts over the past sixty years, hundreds 

of drugs are now known to be altered in the presence of the gut microbiome, and many of these 

changed therapeutic profiles are due to direct metabolism by bacterial enzymes. While studies 

exploring chemical transformations within the human gut microbiome increasingly employ high-

throughput methods, determining metabolite identities and the genetic elements responsible for 

their production is still a low-throughput process. What results are large knowledge gaps that 

must be overcome before the physiological and clinical relevance of a given bacterial drug 

metabolism event can be determined. In this thesis, I demonstrate that computational techniques 

can help alleviate such knowledge gaps. Attempts have been made in the past to computationally 

predict which bacterial species and enzymes are responsible for chemical transformations in the 

gut environment, but with limited utility and low accuracy.  

 

This dissertation begins with an overview of current computational approaches for exploring 

single-step xenobiotic transformations in the microbiome. I highlight the strengths and weakness 

of current approaches and make architectural recommendations for future tools. Based on these 

observations and recommendations, I present an in silico approach that employs chemical and 

protein Similarity algorithms that Identify MicrobioMe Enzymatic Reactions (SIMMER). I show 

that SIMMER predicts the chemistry and responsible species and enzymes for a queried reaction 
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with high accuracy, unlike previous methods. I demonstrate SIMMER use cases in the context of 

drug metabolism by predicting previously uncharacterized enzymes for 88 drug transformations 

known to occur in the human gut. Bacterial species containing these enzymes are enriched within 

human donor stool samples that metabolize the query compound. After demonstrating its utility 

and accuracy, I chose to make SIMMER available as both a command-line and web tool, with 

flexible input and output options for determining chemical transformations within the human gut. 

Lastly, we demonstrate an experimental use-case of SIMMER by performing the first species-

level characterization of methotrexate metabolism in the microbiome of Rheumatoid Arthritis 

patients. 

 

I present SIMMER as a computational addition to the microbiome researcher’s toolbox, enabling 

them to make informed hypotheses before embarking on the lengthy laboratory experiments 

required to characterize novel bacterial enzymes that can alter human ingested compounds. 

Beyond pharmaceutical applications, SIMMER can additionally be employed to determine 

bacterial enzymes responsible for breaking down non-therapeutics, such as dietary compounds or 

environmental pollutants. The method can also be extended in the future to make predictions on 

microbes in other body sites or environments. 
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Chapter 1  

An introduction to computational approaches for exploring single-step xenobiotic 

transformations in the microbiome. 

 
1.1 Introduction 
Pharmacogenomics research has revealed that host genetic variants lead to interindividual 

variation in human response to drugs. To ensure that patients receive an effective therapeutic at 

an appropriate dosage, clinicians now consider such genetic variants when prescribing drugs 

(Thorn et al., 2013). While some of this variation is explained by human gene variants, all 

therapeutics still exhibit pharmacokinetic and/or pharmacodynamic idiosyncrasies that cannot be 

explained by host-variants alone (Artacho et al., 2020). From cumulative research within the 

recently minted, yet nearly century-old, field of pharmacomicrobiomics, however, we now know 

that the bacterial organisms residing within human hosts also contribute to altered drug 

disposition profiles (Rizkallah et al., 2010). 

 
Many of the early discoveries in this space were low throughput, deep characterizations of single 

reactions, such as digoxin’s reduction by Eggerthella lenta Cgr2 (Haiser et al., 2014; Koppel et 

al., 2018; Pollet et al., 2017; Spanogiannopoulos et al., 2016; Zimmermann et al., 2019a). In 

recent years, however, high-throughput studies using large drug libraries applied to either human 

ex vivo stool samples or mono-cultures of gut isolates greatly expanded the number of 

microbiome affected drugs from under 100 to 273 (Javdan et al., 2020; Zimmermann et al., 

2019a). The majority of these xenobiotics are assumed to be directly metabolized by bacterial 

enzymes, but only 110 of these compounds are associated with an identified bacterial metabolite 
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(Figure 1.1, 

Supplementary File 1). 

Furthermore, only 31 of 

these reactions have 

been linked to a 

characterized bacterial 

enzyme in human 

gastrointestinal tracts 

(Figure 1.1, Table 1.1). 

Thus, high-throughput 

experimental 

pharmacomicrobiomics 

research has greatly increased our knowledge of the number of drugs altered by bacteria in the 

human gut, but has also led to various knowledge gaps.  

 
 
My previous review sought to guide the microbiome-based pharmacologist in the appropriate 

experimental directions (Bisanz et al., 2018), so here, I guide the researcher on which 

computational methods can complement these workflows. In addition, I will comment on the 

state and comprehensivity of pharmacomicrobiomics, microbiome gene catalog, and microbiome 

reaction databases.  

 

 

 

Knowledge of the number of drugs altered by the microbiome far 
outpaces knowledge of the metabolites formed, and bacterial 
enzymes responsible. 

 Figure 1.1 Existing bottlenecks in pharmacomicrobiomics 
research. 
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Table 1.1 Drugs metabolized by characterized bacterial enzymes in the human gut. 

Drug Microbial metabolite Microbial enzyme EC 

hydrocortisone (cortisol) 20A-dihydrocortisone 20A-HSDH 1.1.1.1 

hydrocortisone (cortisol) 20B-dihydrocortisone 20B-HSDH 1.- 

balsalazide 5-aminosalicylic acid, 4-
aminobenzoyl-beta-alanine AzoR 1.7.1.6 

olsalazine 5-asa AzoR 1.7.1.6 

prontosil triaminobenzene, sulphanilamide AzoR 1.7.1.6 

nicardipine aminonicardipine AzoR 1.5.1.34 

sulfasalazine sulfapyridine, 5-ASA AzoR, BT_0217, 
BT_1429 1.7.1.6 

ezetimib glucuronide ezetimib Beta-glucuronidase 3.2.1.31 

diclofenac glucuronide diclofenac Beta-glucuronidase 3.2.1.31 

indomethacin glucuronide indomethacin Beta-glucuronidase 3.2.1.31 

ketoprofen glucuronide ketoprofen Beta-glucuronidase 3.2.1.31 

morphine 6-glucuronide morphine Beta-glucuronidase 3.2.1.31 

SN38-G SN-38 Beta-glucuronidase 3.2.1.31 

diltiazem desacetylditiazem BT_4096 - 

pericyazine acetylpericyazine BT_2367 - 

pericyazine propionylpericyazine BT_2367 - 

digoxin dihydrodigoxin Cgr2 1.3.2.- 

gemcitabine 2′, 2′-difluorodeoxyuridine Cytidine deaminase 3.5.4.5 

dopamine m-tyramine DadhR506 1.1.-.- 

4-ASA N-acetyl-4-aminosalicylic acid N-acetyltransferase 2.3.1.5 

5-ASA (mesalazine) N-acetyl-5-aminosalicylic acid N-acetyltransferase 2.3.1.5 

clonazepam nitroreduction NfsB 1.5.1.34 

flunitrazepam nitroreduction NfsB 1.5.1.34 

nitrazepam 7-aminonitrazepam NfsB 1.5.1.34 

5-FU 5-fluorodihydropyrimidine-
2,4(1H,3H)-dione PreTA 1.3.1.1 
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Drug Microbial metabolite Microbial enzyme EC 

brivudine bromovinyluracil BT_4554 2.4.2.2 

sorivudine bromovinyluracil BT_4554 2.4.2.2 

capecitabine deglycocapecitabine 
Thymidine 
phosphorylase, 
Uridine phosphorylase 

2.4.2.- 

doxifluridine 5-fu 
Thymidine 
phosphorylase, 
Uridine phosphorylase 

2.4.2.- 

trifluridine trifluorothymine 
Thymidine 
phosphorylase, 
Uridine phosphorylase 

2.4.2.- 

levodopa dopamine TyrDC 4.1.1.25 

1.2 Computational approaches for discovering bacterial drug metabolizing enzymes 

Knowledge of a bacterial drug metabolism event can stem from many types of experimental 

techniques (Bisanz et al., 2018), but most examples of drug metabolism were learned from high 

throughput methods such as drug library screens against strain collections or against patient stool 

sample incubations (Javdan et al., 2020; Zimmermann et al., 2019a). While these methods are 

powerful in their ability to quickly find communities and species capable of depleting a parent 

compound, they do not yet comprehensively address the genetic determinant of metabolism, 

enzymes. Furthermore, of the few species and enzymes identified experimentally in these 

studies, it remains unknown how far the demonstrated functions extend beyond the bacterial tree 

studied. 

 
A computational approach one can employ to narrow in on genetic elements is through 

metatranscriptomics studies that differentiate changes in gene expression between drug-exposed 

or drug-naive bacterial communities, with the rationale that many enzymes are under substrate 

upregulation (Maini Rekdal et al., 2020, 2019; Maurice et al., 2013). Drawbacks of this method 

are that availability of RNA-seq data in previously published datasets varies, and not all enzymes 
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undergo substrate induction (Bisanz et al., 2018). Related, one could choose to use comparative 

genomics approaches such as ElenMatchR or PhenoLink, that can determine the genes or SNPs 

that differ in presence between a metabolizer and non-metabolizer strain/sample (Bayjanov et al., 

2012; Bisanz et al., 2020). Thus far, these studies appear most helpful when comparing strains 

within a species.  

 
Due to the rising popularity of high-throughput LC-MS/MS techniques in 

pharmacomicrobiomics research, researchers also attempt to identify responsible enzymes by 

attempting to correlate genetic and metabolomic data. The concept here is that as a particular 

gene rises in abundance across samples, metabolites in association will also rise. What results is 

linked clusters of metabolites and genetic elements that may then be further screened for direct 

associations. This methodology can be cumbersome due to the difficulty of finding associations 

in such large datasets, and by the fact that abundance measures may be inappropriately 

calculated or not directly related to rising metabolite levels (Cao et al., 2019; Gloor et al., 2017; 

Melnik et al., 2017; Yan et al., 2022).  

 
Finally, there also exist methods to directly predict enzymes responsible for a drug-

transformation event based on shared chemistry with characterized bacterial reactions from the 

literature. The two existing tools in this category are DrugBug and Microbe FDT (Guthrie et al., 

2019; Sharma et al., 2017); the rest of this introduction will focus on such methods’ merits and 

drawbacks, and what improvements can be made to create more accurate enzyme prediction 

tools. 
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1.3 Use of chemical and protein similarity to identify new bacterial enzyme functions 

While different from each other in design and scope, both DrugBug and MicrobeFDT leverage 

chemistry-enzyme linked databases to predict human gut microbiome enzymes responsible for 

degrading a query compound. As has been discussed previously in the literature (Aziz et al., 

2018) and will be further examined in Chapter 2, however, both tools remain preliminary and 

exhibit low accuracy species and enzyme predictions. Here, I will discuss remedies to the pitfalls 

of these existing methods, and in Chapter 2 I will present an alternative method designed based 

on the recommendations that follow. 

1.3.1 Chemical and protein information must be drawn from comprehensive databases 

Even though the human gut microbiome protein space remains largely (~40%) unannotated 

(Almeida et al., 2020; Thomas and Segata, 2019), microbiome enzyme predictions are possible 

by comparing sequence information from the microbiome to protein information found in 

bacterial reaction and pathway databases. For best results, any predictive tool must be built upon 

the most comprehensive databases possible for 1. Microbiome sequencing data, and 2. Literature 

curated metabolic pathway databases. 

 
Human gut microbiome sequencing data is well captured in the Integrated Gene Catalog (IGC), 

and more recently, the comprehensive Unified Human Gastrointestinal Protein (UHGP) catalog 

(Almeida et al., 2020; Li et al., 2014). The former comprises 9,879,896 genes found from large 

metagenomic sequencing studies available at the time of creation, while the latter comprises 

170,602,708 genes of 286,997 genomes garnered from existing human gut microbiome datasets. 

Of these two resources, UHGP is currently the most comprehensive, and preferable because it 

retains readily available information on from which genome(s) a given gene stems. Neither 
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DrugBug (built on a custom database of 491 bacterial genomes) nor MicrobeFDT (built on 

IMG’s 3,008 bacterial genomes) utilized these resources, thus limiting the completeness of their 

predictions (Markowitz et al., 2012; Sharma et al., 2017).  

   

MetaCyc and KEGG are currently the most informative literature-curated pathway databases, 

both containing more bacterial reactions than BRENDA, Reactome, or Rhea (Altman et al., 

2013). In terms of single-step reactions, MetaCyc (version 24.1) exceeds KEGG (Release 104.0) 

from a numbers standpoint (16,810 reactions versus KEGG’s 11,841). From a protein 

perspective too, MetaCyc exceeds KEGG in reaction representation (237,506 bacterial enzymes 

to KEGG’s 10,249 bacterial enzymes). Interestingly, the overlap between MetaCyc and KEGG is 

not as high as one would assume and was last calculated as only 1,961 reactions in common 

(Altman et al., 2013). Combining both bacterial chemistry databases, therefore, would be the 

most comprehensive representation of bacterial chemistry. Interestingly, neither DrugBug nor 

MicrobeFDT utilized reaction databases, instead opting for the simplicity of substrate databases. 

This decision drastically affected both methods’ accuracy as will be touched on in Section 1.3.3 

and explored in Chapter 2. 

 
Any microbiome enzyme prediction tool, even one drawing on the most comprehensive 

information available for bacterial reactions, will suffer from the underexplored nature of 

microbiome chemistry. For this reason, populating and updating MetaCyc and KEGG with 

characterized microbiome chemistry as it emerges is of critical importance. As it stands, both 

databases only contain a handful of single-step reactions specific to bacteria in the human gut 

microbiome. To circumvent this problem currently, researchers may turn to 

pharmacomicrobiomic-specific databases, though these still leave room for improvement in 
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terms of completeness and updates (Aziz et al., 2018; Rizkallah et al., n.d.; Sun et al., 2018; 

Zeng et al., 2021).  

1.3.2 Functional transfer between databases is sensitive to protein search algorithms 

When drawing connections between existing bacterial reaction databases and microbiome 

catalogs, it is necessary to use appropriate protein searches that do not rely on functional 

annotations, as annotations are missing ~40% of the time in microbiome gene collections 

(Almeida et al., 2020; Thomas and Segata, 2019). When comparing database entries instead 

based on sequence similarity, the algorithm employed plays a critical role. Homology searches in 

pharmacomicrobiomics research are often conducted using pairwise search algorithms such as 

BLAST (Altschul et al., 1990). A limitation of this method is that substitutions, deletions, and 

insertions are penalized by a set amount, regardless of where in the alignment they occur. For a 

given collection of functional enzymes, however, sequence conservation varies at different sites 

in the protein, as a result of differing strengths of selection pressures on different residues (i.e. 

high conservation at active sites versus low conservation in disordered domains). This position-

specific information can be leveraged by performing homology searches with profile Hidden 

Markov Models (pHMMs), which encode protein family evolutionary patterns present in a 

multiple sequence alignment (Eddy, 1998). In the antibiotic resistance protein space, for 

example, pHMMs that incorporate position specific information have found distant homologs 

with retained function not recovered via pairwise search methods (Gibson et al., 2015). pHMM 

searches are an improvement over BLAST from the standpoint of finding distant homologs and 

from the standpoint of finding targets with retained activity, as previous research has shown that 

global sequence identity does not necessarily map to similar function (Gerlt et al., 2012).  
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Again, current enzyme prediction methods do not employ best practices for sequence search 

algorithms, with both DrugBug and MicrobeFDT utilizing functional annotation transfer based 

on Enzyme Commission (EC) codes (Guthrie et al., 2019; Sharma et al., 2017). EC codes are 

four-digit identifiers of enzyme-driven reactions, where each digit describes the reaction with 

increasing chemical granularity (McDonald et al., 2009). The first digit, the EC class, describes 

broad chemistry such as whether the reaction is an oxidoreduction, hydrolysis, etc. event. The 

second and third digits, the EC sub-class and sub-sub-class, describe more detailed chemical 

information such as electron donor or transfer group identity. The fourth and final digit, the EC 

serial designation, often describes a reaction’s substrate specificity. All in all, while EC codes are 

helpful for describing reaction types, they are not sufficient for functional predictions of 

microbiome orthologues due to the paucity of EC annotations in this dataspace. EC entries 

themselves are sometimes incomplete, with about 36% of assigned EC numbers lacking either a 

gene or protein sequence (Pouliot and Karp 2007). Lastly, the EC fails to adequately express the 

complexity of peptidase enzymes (EC 3.4, about 10% of the enzymes classified by EC). All 

peptidases catalyze a nearly identical reaction, hydrolysis of a peptide bond, and as a result, the 

EC has lumped peptidases of diverse functions into only a few low resolution sub-classes 

(McDonald and Tipton 2021; McDonald and Tipton 2014). For this reason, chemists instead turn 

to the MEROPS database that classifies peptidases based on structural features and evolutionary 

relationships (McDonald and Tipton 2021; McDonald and Tipton 2014; Barrett et al. 2001).   

1.3.3 The importance of choosing appropriate chemical representations 

Another foundational aspect of building predictive tools from existing chemistry-protein 

databases is the use of appropriate chemical representations, as any query compound will be 

computationally compared to database reaction entries. Chemical representations for the problem 
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at hand need to be considered in two ways, first—how individual molecules are represented, and 

second—whether and how to represent an entire reaction. To the first point, many types of 

chemical fingerprints (boolean arrays or bitmaps representing patterns found in a molecule) 

exist, each with pros and cons that must be weighed depending on the chemical search in which 

they will be used (Capecchi et al., 2020; Duan et al., 2010; Schneider et al., 2015). Table 1.2 is a 

non-exhaustive list, but describes the most common 2D chemical fingerprint options found in 

chemoinformatics software packages. Various benchmarking studies have demonstrated that 

structural keys (like MACCS) exhibit the worst performance, being unable to discriminate 

between two molecules when highly similar (Capecchi et al., 2020; Duan et al., 2010; Wild and 

Blankley, 2000). Of the three hashed representations in Table 1.2, all perform better than 

structural keys in benchmarking studies, but of note, ECFP fingerprints do not capture global 

molecular details such as size and shape of a chemical species (Capecchi et al., 2020). To date, 

all microbiome metabolism tools have employed structural key fingerprints (Guthrie et al., 2019; 

Mallory et al., 2018; Sharma et al., 2017). 

 
Table 1.2 Chemical fingerprint options 

Fingerprint Type Description 

Structural keys 
Boolean array representing the presence/absence of 155 (MACCS) 
or 881 (PubChem) predefined structural features (e.g., “at least one 
Nitrogen”). 

Atom-Pair  
(AP) 

Hashed representation of all pairwise atoms (plus number of heavy 
neighbors and number of pi electrons) in a molecule and the 
shortest topological distance separating them. 

Topological Torsion 
(TT) 

Hashed representation of each length 4 (atoms) linear path and all 
atoms along the path. 
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Fingerprint Type Description 

Extended connectivity 
fingerprint (ECFP) 

Hashed representation of all atoms and bonds within nested 
fragments grown radially from a heavy atom center. Also known as 
Morgan fingerprints. 

 
The second consideration for representing chemistry in an enzyme prediction tool, is the use of 

substrate versus reaction fingerprints. Current microbiome enzyme prediction tools solely 

consider substrates when making their predictions, resulting in low accuracy output further 

discussed in Chapter 2 (Guthrie et al., 2019; Sharma et al., 2017). Biotransformations (described 

in databases like MetaCyc and KEGG) involve the relationship between substrate(s), cofactor(s), 

and an enzyme to yield a particular product(s). As one substrate can exhibit affinity for multiple 

enzymes, resulting in multiple unique products, sole employment of substrates in a chemical 

fingerprint does not achieve the resolution necessary to make relevant predictions. Recent 

research (Mallory et al., 2018) appropriately employed both substrate and product chemistry, by 

representing reactions as a single fingerprint vector (resulting from the difference between a 

product’s and substrate’s vector); these fingerprints were used to compare bacterial-drug 

metabolism events to primary reactions in the MetaCyc database, but without the end-goal of 

enzyme identity prediction. From a reaction description standpoint, the published method was 

still limited in that it only included a description of one substrate and one product per reaction, 

precluding it from utilizing cofactors and from accurately describing transformations that employ 

multiple substrates and/or produce multiple products. To circumvent this pitfall, chemical 

representations should describe multiple inputs and outputs for a single 

reaction (Schneider et al., 2015). 
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1.4 The future of microbiome metabolism prediction tools 

In my thesis work that follows, I address the above issues with current microbiome metabolism 

prediction tools, and implement my recommendations. What results is a novel computational tool 

for exploring species and enzymes capable of performing any query reaction of interest. The 

architecture and computational validation of this tool is described in Chapter 2. I demonstrate the 

utility of my method by using it to corroborate previously collected information on xenobiotic 

transformations occurring in the human gut. Finally, in Chapter 3, I present preliminary 

experimental findings demonstrating my method’s ability to predict bacterial species responsible 

for the degradation of methotrexate (MTX), an anti-arthritic compound which only exhibits 

efficacy in half of the prescribed population (Scher et al., 2020). In sum, this work represents a 

clear departure from and improvement over previous methods, and lays the foundation for future 

characterizations of xenobiotic degradation in the human gut, demonstrated here with the first 

species-level characterization of Methotrexate metabolism by bacteria in the human gut 

microbiome. 
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Chapter 2  

A novel in silico method employs chemical and protein similarity algorithms to accurately 

identify chemical transformations in the human gut microbiome. 

2.1 Introduction 

Humans consume a large array of foods, therapeutics, and other xenobiotics that are processed, 

in part, by enzymes of bacteria residing within the gut. While some bacterial enzymes are 

orthologous to the human metabolism repertoire, many bacteria possess metabolic capabilities 

distinct from our own (Zimmermann et al., 2019a). It is important to ascertain the extent of 

microbial capacity for chemical transformation because it has implications for the bioavailability, 

toxicity, and efficacy of the compounds humans ingest (Koppel et al., 2017; Spanogiannopoulos 

et al., 2016). Additionally, because the human gut microbiome differs from individual to 

individual, knowledge of the prevalence and abundance of bacterial enzymes must be determined 

before beneficial clinical and dietary decisions can be made (Javdan et al., 2020). 

 

While experimental methods can be employed to expand what we know of bacterial enzymatic 

capabilities in the gut, the scientific community lacks genetic tools for nearly all bacterial species 

of the human microbiota, and heterologous expression in model organisms can fail for a plethora 

of reasons (Bisanz et al., 2020; Patel et al., 2022). When experimental methods are tractable, the 

time required is often so extended that knowledge is gained in a low-throughput manner. For 

these reasons, attention should turn to the employment of in silico computational methods that 

can guide experimentalists in their hypothesis-building process by aiding in the prioritization of 

substrates, species, and genes worth studying.  
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As described in Chapter 1, recent attempts have been made to create computational descriptions 

of chemical transformation by human gut bacteria, but none can be expanded to predict the 

metabolic capabilities of bacterial proteins with unknown function or to explore the capacity of 

microbial enzymes to degrade novel substrates. Two previously published methods aimed to 

predict known drug metabolism events within the human gut microbiome, but the accuracy of 

their predictions was limited due to the fact that both tools only consider substrates, rather than a 

full chemical description of substrate(s), cofactor(s), and product(s) formed in a reaction. Both 

tools were also limited by the use of small databases that do not fully capture the diversity of the 

human gut microbiome (Guthrie et al., 2019; Sharma et al., 2017).  

 

To address these gaps in accurate predictive software for bacterial chemical transformations, I 

present SIMMER, a tool that combines chemoinformatics and metagenomics approaches to 

accurately predict bacterial enzymes capable of metabolism events. Given an input reaction, 

SIMMER predicts an Enzyme Commision (EC) code that describes the chemical nature of the 

query. SIMMER additionally predicts specific bacterial enzyme sequences, functions, 

prevalence, and abundance for the reaction. Our key innovations are the use of full chemical 

representations that include cofactors employed and products produced in a reaction, the use of 

statistically informed sequence searches of a comprehensive human gut microbiome gene 

catalog, and the development of a novel EC predictor based on reaction rather than gene 

sequence. As a use-case, I present evidence that SIMMER provides high accuracy predictions of 

bacterial enzymes responsible for known drug metabolism events, and I identify the likely 
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bacterial enzyme for 88 drugs known to be metabolized by the gut microbiome for which the 

enzyme was previously unknown.  

2.2 Results 

2.2.1 SIMMER pipeline to predict xenobiotic metabolizing enzymes 

There are many desiderata for a bacterial drug metabolism predictor (Table 2.1). Such a tool 

must be able to, based on quantified chemical similarity, predict EC annotations, specific enzyme 

sequences, and the prevalence and abundance across human samples of those predicted 

sequences. I developed SIMMER, a tool that leverages chemical and protein similarity to 

identify enzymes in the human microbiome that could perform a queried chemical reaction 

(Figure 2.1). Given input substrate(s), metabolite(s), and any known cofactors, SIMMER 

predicts bacterial enzymes 

capable of performing the 

reaction and quantifies their 

prevalence and abundance in 

the human gut. SIMMER 

accomplishes this by 

chemically fingerprinting an 

input reaction, and then 

comparing it to all reactions 

in MetaCyc. Enzyme 

annotations from the most 

similar MetaCyc reactions 

Table 2.1 Desired elements of a microbiome chemical 
transformation predictor. 
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are then used as queries for a protein similarity search to find homologs in the genomes of gut 

bacteria. To decrease the runtime of a SIMMER query, I precomputed chemical descriptions and 

protein similarity searches for all reactions in MetaCyc. 

 

Figure 2.1 SIMMER architecture. 
(A) Precomputation on 8,914 gene annotated bacterial reactions downloaded from MetaCyc. 

Chemical fingerprints representing each MetaCyc reaction were created from SMILES 
descriptors. A latent chemical space was then created via a pairwise reaction similarity matrix 
based on Tanimoto coefficients. For each reaction, relevant gene sequences were retrieved from 
UniProt and Entrez database linkouts and used to create multiple sequence alignments and 
subsequent pHMMs using ClustalO and HMMER3 respectively. pHMMs were used to retrieve 
homologs in a catalog of human gut microbiome genes. (B) Running a SIMMER query. After 
receiving a reaction query (input compound, co-factors, products), SIMMER fingerprints the 
reaction and compares it to the precomputed chemical space from 1A. MetaCyc reactions are 
sorted by similarity to the query. Significantly enriched EC identities are reported, and from the 
most similar reaction, human gut microbiome enzymes are reported along with their abundance 
and prevalence in gut microbiomes.  
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SIMMER’s underlying data was drawn from the MetaCyc reaction database because its small-

molecule reaction descriptions each possess at least one experimentally validated enzyme 

annotation and often include a description of the reaction type via EC code. To build a 

precomputed chemical search space for SIMMER queries (Figure 2.1A), I created two-

dimensional fingerprint representations for 8,914 enzyme driven reactions in MetaCyc (Caspi et 

al., 2008; Schneider et al., 2015). Using these fingerprints, I estimated the similarity between all 

pairs of reactions based on Tanimoto coefficients. To build the enzyme backbone of SIMMER, I 

compiled the Uniprot and/or Entrez gene identifiers linked to each MetaCyc transformation into 

a profile hidden Markov model (pHMM) that represents the diversity of the enzyme family for a 

respective reaction. The resulting pHMMs were then used to query the Unified Human 

Gastrointestinal Genome (UHGG) collection of 286,997 isolate genomes and metagenome 

assembled genomes from the human gut environment (Almeida et al., 2020). Additionally, 

prevalence and abundance of all pHMM search hits were assessed in stool metagenomes from 

the PREDICT human cohort using MIDAS2, an implementation of Metagenomic Intra-Species 

Diversity Analysis System (MIDAS) designed for use with the UHGG catalog (Almeida et al., 

2020; Nayfach et al., 2016; Zhao et al., 2022). 

 

After creating SIMMER’s precomputed chemical and pHMM search space, I next made 

SIMMER queryable (Figure 2.1B). When queried with a chemical transformation, SIMMER 

computes the chemical similarity of the input to all precomputed MetaCyc reactions, and sorts all 

MetaCyc reaction fingerprints according to their ascending Euclidean distance from the query. 

From this sorted list, SIMMER outputs enzymes (i.e. the precomputed pHMM search hits for the 

closest reactions) responsible for the query reaction and an EC code (i.e. reaction type) 
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prediction. I implemented and validated a novel method to predict EC codes by extending a 

common approach to gene set enrichment analysis (GSEA) (Figure 2.2—figure supplement 1) 

(Subramanian et al., 2005). With this enrichment method, SIMMER predicted reaction types for 

queries with high recall, precision, and accuracy for EC classes, sub-classes, and sub-sub-classes 

(Figure 2.2B, Figure 2.2—source data, Figure 2.2—figure supplement 1).  

 

I hypothesized that SIMMER accurately predicted chemical transformations due to its use of a 

full reaction that includes reactants, cofactors, and products, rather than just substrates. I assessed 

this hypothesis by demonstrating that SIMMER groups similar reactions together in chemical 

space. MetaCyc reactions possess EC annotations that describe the chemical class of a reaction 

(e.g. oxidoreduction, hydrolysis, intramolecular rearrangement, etc). I queried SIMMER with all 

EC annotated MetaCyc reactions and demonstrated that queries group significantly closer to 

other reactions within their EC class than they do to reactions of a different class (Figure 2.2A). I 

determined that SIMMER’s ability to group similar reactions in chemical space is resilient to 

different fingerprinting methods (Figure 2.2—figure supplement 2), but not to loss of products 

created and cofactors consumed in a reaction (Figure 2.2—figure supplement 3). Thus I showed 

that similar reactions only cluster together in chemical space when a full reaction description (i.e. 

SIMMER’s representation method) is employed.  
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Figure 2.2 SIMMER’s chemical representations capture information relevant to enzymatic 
reactions.  
(A) SIMMER clusters similar reactions together in chemical space. To analyze SIMMER’s 
ability to group chemically similar reactions, I examined reaction similarity within versus 
between EC classes using the procomputed MetaCyc reaction dataset (N=8,914 reactions). A 
silhouette-like euclidean distance score was created by determining for each reaction its 
euclidean distance to all reactions within its EC class versus outside its EC class. For all EC 
classes, scores were smaller within versus between EC classes using SIMMER’s chemical 
representation, indicating that SIMMER can detect reaction similarity within EC classes. From 
the pairs of distributions I computed a Kolmogorov-Statistic to determine if the distributions 
significantly (p<0.05) differed. (B) The F1-score, or harmonic mean of SIMMER’s precision and 
recall, when predicting EC numbers on a subset of the MetaCyc database (N=576 reactions total; 
96 per EC class). The score is high for EC classes, and it generally decreases as an EC number’s 
resolution increases.  

 
Because SIMMER was created with the assumption that chemically similar reactions are 

mediated by sequence similar enzymes, I next ensured that similarity within SIMMER’s 

chemical space could be used to find shared, responsible enzymes. First, for all MetaCyc 

enzymes associated with multiple reactions, one reaction was used as a SIMMER query, and the 

second reaction searched for in the ordered reaction list output. As a negative control, these 

reaction similarity results were then compared to all possible pairwise combinations of reactions 

not conducted by the same enzyme. SIMMER predicted high similarity between reactions 

conducted by a shared enzyme, and low similarity for those reactions without a shared enzyme, 
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(Figure 2.3A). I also found a negative association between chemical reaction distance and 

sequence similarity of MetaCyc enzyme annotations, indicating that reactions with similar 

chemistry are conducted by sequence similar enzymes, though there is much variation in this 

relationship (Figure 2.3B). This reflects the known association between sequence similarity and 

similarity in chemical function, as well as reports that this relationship can often be 

overestimated (Tian and Skolnick, 2003). Together, these analyses demonstrated that sequence 

similar enzymes do indeed mediate chemically similar reactions, strengthening the logic of 

combining chemical and protein similarity in a microbiome enzyme prediction tool.     

 

Figure 2.3 SIMMER’s chemical representations can be used to find shared, responsible 
enzymes.  
(A) When SIMMER was queried with a MetaCyc reaction, other reactions driven by the same 
enzyme are returned as the most similar. As a contrast, reactions driven by a different enzyme 
yield a more uniform rank distribution. Solid lines of the violin plots depict median reaction 
similarity rank and dashed lines represent lower and upper quartile ranges. (B) Similarly, there is 
a negative association between pairwise reaction euclidean distance and pairwise protein 
identity, demonstrating that SIMMER can capture the known, albeit weak relationship between 
sequence identity and similar reaction chemistry (Tian and Skolnick, 2003).  
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2.2.2 An expanded list of gut bacterial enzymes relevant to known cases of drug metabolism 

To assess SIMMER’s prediction accuracy for previously characterized reactions and to mount a 

comparison to existing methods, I used drug metabolism as a use case. First, I curated 298 drug-

metabolism events associated with the human gut microbiome from the literature 

(Supplementary File 1). For 31 of these reactions the responsible bacterial enzyme, characterized 

metabolite(s), and associated EC annotation are known (Supplementary File 1, Table 1.1). These 

31 reactions are conducted by 18 enzymes. Due to 

orthology and proclivity for genetic transfer 

between even distantly related bacteria, however, 

there are likely many as yet undiscovered 

homologs of these drug-metabolizing enzymes that 

can catalyze identical drug metabolism events 

(Pollet et al., 2017). To account for this, I created 

an expanded database (Figure 2.4, Figure 2.4—

figure supplement 1, Figure 2.4—source data) of 

the 18 characterized enzymes from pHMM and 

phmmer searches of the UHGG database (Almeida 

et al., 2020), yielding 52,849 total candidate 

homologs (a median of 1,087 candidates per 

enzyme). After filtering enzymes by hmmer significance, alignment length, presence in data 

from the human jejunum (Zmora et al., 2018) and RNA-sequencing studies (Integrative HMP 

(iHMP) Research Network Consortium, 2019), and predicted affinity for the substrate in 

question using the Similarity Ensemble Approach (Keiser et al., 2007), our database contained a 

Eleven of the 18 enzymes 
responsible for positive control drug-
metabolism events have high 
confidence homologs that I gathered 
by filtering for biological 
significance. 
 

Figure 2.4 An expanded list of 
gut bacterial enzymes relevant to 
known cases of drug metabolism. 
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median of 2 high-confidence homologous sequences per enzyme (range = 0 to 460 across the 18 

enzyme families, Figure 2.4, Figure 2.4—figure supplement 1, Figure 2.4—source data). These 

741 additional enzyme sequences for 31 reactions formed our positive control set of known gut 

bacterial enzymes. 

2.2.3 SIMMER captures known gut bacterial enzymes involved in drug metabolism 

With our expanded database of drug-metabolizing enzymes from the human gut microbiome in 

hand, I next verified that SIMMER can accurately predict reaction types and responsible 

enzymes for the 31 known chemical transformations. Only 3 of these 31 reactions are themselves 

MetaCyc entries (5-ASA, dopamine, and levodopa degradation); if EC codes and enzymes of 

reactions not described in MetaCyc were also accurately predicted, it would show that SIMMER 

can discover non-identical yet chemically similar reactions.  

 

Of the 31 drug-metabolism events known to occur via human gut bacterial enzymes, EC 

annotations exist for 28. SIMMER identified the correct EC class for 26 of these 28 reactions 

(93%) (Figure 2.5, Figure 2.5—source data). For some queries SIMMER predicted more than 

one significant EC code, but again, for 26 out of the 28 reactions, the top EC class prediction was 

a match (Figure 2.5, Figure 2.5—figure supplement 1, Figure 2.5—source data). The two failed 

EC predictions were for nicardipine reduction (inappropriately predicted as an isomerase 

reaction) and for brivudine transformation (for which SIMMER made no significant prediction).  

 

In addition to accurate EC (i.e. reaction type) identification, SIMMER also accurately predicted 

the specific enzymes from the human gut microbiome that conduct the 31 query reactions 

(Figure 2.5—source data). This enzyme list was populated by the results of the precomputed 
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pHMM searches of human microbiome catalogs with annotated gene sequences from MetaCyc 

reactions (Figure 2.1A). In 27 cases (87%), the characterized (i.e. positive control) enzyme(s) for 

a reaction was found in the output enzyme list for the top 20 of the ranked MetaCyc reactions 

(Figure 2.5—figure supplement 1). Since the positive controls span four EC classes (EC1 

oxidoreductases, EC2 transferases, EC3 hydrolases, and EC4 lyases) this result demonstrates 

SIMMER’s ability to accurately predict microbiome based enzymes for a diversity of reaction 

types. Also, despite inaccurate EC predictions for nicardipine reduction and brivudine 

transformation, SIMMER was able to respectively predict AzoR and BT_4554 enzymes as 

responsible for the reactions (Figure 2.5, Figure 2.5—figure supplement 1, Figure 2.5—source 

data).  

 

Figure 2.5 SIMMER captures known gut bacterial enzymes involved in drug metabolism. 
(A) SIMMER accurately predicted EC classes for 28 previously characterized reactions that 
possess EC annotations. As with the MetaCyc database (Figure 2.2B), accuracy dropped off as 
EC resolution increased. (B) SIMMER predicted bacterial sequences previously shown to drive 
31 drug-metabolism events in the gut microbiome. Depicted is the rank (out of N=8,914 
reactions) of the MetaCyc reaction that yielded a gut microbiome homolog matching the known 
positive control sequence. Reported accuracy is based on such a reaction being within the top 25 
ranked reactions (dashed blue line).  
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2.2.4 SIMMER outperforms existing methods 

To mount a comparison to the other in silico methods that, in part, aimed to describe microbiome 

drug metabolism, I next queried the 31 positive control reactions using MicrobeFDT and 

DrugBug (Table 2.1) both of which rely solely on substrate chemical similarity rather than 

information from a whole reaction (Guthrie et al., 2019; Sharma et al., 2017). For the 28 EC 

annotated positive control reactions, DrugBug had 39% accuracy in predicting EC classes (in 

comparison to SIMMER’s 93%), and predicted the correct enzyme for a single reaction, SN38 

glucuronide deconjugation, despite the presence of chemically similar reactions metabolized by 

the same enzyme amongst the positive controls (Table 2.1—source data). I additionally queried 

SIMMER with the four positive controls (ginsenoside Rb1, quercetin-3-glucoside, cycasin, and 

sorivudine) associated with characterized bacterial enzymes from the original DrugBug 

publication (Table 2.1—source data). Both DrugBug and SIMMER were able to predict EC 

classes for sorivudine, but only SIMMER was able to accurately predict the specific enzyme 

(BT_4554) responsible for the drug’s degradation. For ginsenoside Rb1 (3.2.1.192), quercetin-3-

glucoside (3.2.1.21), and cycasin (3.2.1.21), SIMMER was able to accurately predict EC codes 

out to sub-sub-class (3.2.1.-), serial designation (3.2.1.21), and sub-sub-class (3.2.1.-) 

respectively, which was a resolution improvement over DrugBug (Table 2.1—source data). 

 

I next queried the 28 EC annotated drug-metabolism positive controls against MicrobeFDT 

(which uses a chemical graph to predict EC codes, but not enzymes) in two ways: first by 

looking for direct enzyme metabolism events, and second, by looking for enzyme metabolism of 

compounds that overlap chemically with the positive control in question. When directly queried, 

MicrobeFDT produced metabolism predictions for four of the 28 positive controls, three of 
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which were correct. When queried with chemically similar compounds according to its graph, 

MicrobeFDT produced metabolism predictions for 13 of the 28 positive controls, and four were 

correct (14% overall accuracy in comparison to SIMMER’s 93%). It is important to note that 

MicrobeFDT is reliant on a fixed database that cannot be modified by the user, meaning that a 

compound cannot be queried if it is not already present in MicrobeFDT’s graph. I finished the 

comparison between SIMMER and MicrobeFDT by querying SIMMER with the metabolism 

use-case described in the MicrobeFDT publication, altretamine demethylation. In our hands, 

there was no Cypher query against the MicrobeFDT database that resulted in a demethylase EC 

code; I determined possible demethylase EC codes by running a query in the Swiss Institute for 

Bioinformatics Enzyme Nomenclature Database (Bairoch, 2000). I performed queries of direct 

EC annotation for melamine and altretamine, as well as EC annotation queries for any compound 

with either substructure or toxicity overlap with altretamine or melamine. The closest result to a 

demethylase enzyme was a cypher query of toxicity overlap with altretamine that yielded a nitric 

oxide synthase (EC 1.14.13.39) acting on L-arginine among its results (Table 2.1—source data). 

For its significant EC (reaction type) prediction, SIMMER identified altretamine demethylation 

appropriately as an oxidoreductase reaction acting on a CH-NH group of donors (EC 1.5.-), but 

not significantly as a demethylation event (Table 2.1—source data). 

 

This comparison illustrates SIMMER’s enhanced accuracy over other methods for the use case 

of characterized drug metabolism events by gut bacteria, and also illustrates SIMMER’s novel 

ability to predict chemical transformations not previously described in literature or databases. 
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2.2.5 SIMMER predicts novel drug-metabolizing enzymes 

After establishing SIMMER’s accuracy in predicting drug-metabolizing enzymes in the human 

gut environment, I predicted EC codes, functional annotations, and enzyme sequences for novel 

microbiome drug metabolism reactions that do not yet possess a responsible, characterized 

enzyme (Figure 2.6—source data). From our literature curation of 298 non-antibiotic 

therapeutics affected by the microbiome (Supplementary File 1), I was confident that 88 are 

directly metabolized by gut bacteria due to their association with an identified bacterial 

metabolite in the literature. I formatted these 88 reactions in SMILES format and input them as 

queries to SIMMER. 

 

Of the 88 reactions queried, SIMMER determined significant EC predictions for 75 reactions 

(86.2%), and 61 (70.1%) of these were out to the serial designation (i.e. highest resolution) EC 

code (Figure 2.6—source data). This list of 61 transformations presents reactions for which I 

believe enzyme characterization is worth pursuing as our predictions are significantly similar to 

enzymes already explored in the literature. SIMMER’s EC predictions resulted in expanded and 

diversified EC class membership for drug-transformations known to occur in the microbiome 

(Figure 2.6C). Of interest, this analysis resulted in a large expansion of putative hydrolysis, 

reduction, and isomerization reactions in the human gut microbiome. The number of SIMMER 

predictions varies widely by reaction, with median output of 372 genes, 286 genomes, and 10 

phyla predicted as responsible across the 88 reactions (Figure 2.6—source data, Figure 2.6A). 

Unsurprisingly, many of these reactions are predicted to occur due to enzymes found in 

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, but there are also SIMMER 

enzyme predictions in phyla not previously associated with drug metabolism (Figure 2.6B). 
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Figure 2.6 SIMMER predicts novel drug metabolizing enzymes. 
(A) Distributions depict the unique number of genes, strains, and phyla predicted to be 
responsible for 88 reported drug transformation reactions, as well as predicted gene functions. 
(B) A heatmap illustrating the number of phyla from the UHGG database capable of performing 
88 drug metabolism events. Color intensity refers to the number of unique drug-metabolizing 
enzymes for a given phylum conducting a given reaction. (C) Enzyme Commission Class 
representation for bacterial transformations of therapeutics before and after the employment of 
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SIMMER. My predictions greatly expand the number of characterized reduction (EC1), 
hydrolysis (EC2), and isomerization (EC5) events and modestly increase the number of 
transferase (EC2) and lyase (EC4) events. 
 

Eight of the 88 novel transformations were among those investigated in a high-throughput study 

exploring the metabolism of 571 compounds in ex vivo stool samples (Javdan et al., 2020). This 

publication demonstrated bacterial degradation of 57 therapeutics in a single pilot donor stool 

sample (with associated shotgun sequencing), as well as in 20 human stool samples (with 

associated 16S rRNA gene sequencing). While this study greatly expanded the number of drugs 

known to break down in the presence of gut bacteria and identified eight metabolite structures, it 

only identified a responsible enzyme in two of the 57 drug degradation cases due to the low-

throughput nature of enzyme characterization. To further assess SIMMER’s ability to predict 

novel enzymes, and to demonstrate the utility of using SIMMER in an experimental context, I 

investigated the presence of my predictions in the Javdan, et al. study sequencing results. 

Because shotgun metagenomics sequencing for the pilot donor was deposited, I was able to 

confirm via tBLASTn searches that SIMMER enzyme predictions were directly found in the 

pilot donor stool sample for all eight of the reactions with identified metabolites (Figure 2.7—

source data). However, the sequencing data from the 20 human donor study was only 16S 

profiling, so I was unable to look directly for SIMMER enzyme predictions. I was able to ensure 

that genomes found in metabolizing stool samples contain SIMMER predictions. I found that 

donors who could metabolize a given drug possessed a significant enrichment of genomes that 

contain enzymes predicted by SIMMER. This was the case for five out of the six reactions 

analyzed (Figure 2.7—source data, Figure 2.7A). 
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Among the 88 novel transformations was the side-chain cleavage of dexamethasone to 17-

oxodexamethasone. Dexamethasone was recently shown to be metabolized solely by Clostridium 

scindens (ATCC 35704) out of a collection of 76 isolates representative of the human gut 

microbiome (Zimmermann et al., 2019b). When dexamethasone metabolism was assessed in 28 

human stool samples, metabolite formation varied substantially by individual, but could not be 

explained by C. scindens species abundance. I sought to understand this lack of correlation. To 

do so, I assessed the abundance of C. scindens SIMMER predictions across the 28 samples (i.e., 

the amount of enzyme in genomes from different strains, not the amount of the species). I found 

a significant association between metabolite formation and number of SIMMER enzymes, and 

also a significant association between parent compound consumption and number of SIMMER 

enzymes (Figure 2.7B).  

 

It came to my attention while preparing this manuscript that recombinant steroid-17,20-

desmolase (DesAB) enzymes from C. scindens were shown to perform side-chain cleavage on 

prednisone, but also to a lesser extent on dexamethasone. DesAB’s reduced activity for 

dexamethasone was assumed to be due to the compound’s potentially inhibitory 16α-methyl 

group (Ly et al., 2020). To ensure that SIMMER’s enzyme prediction for dexamethasone 

cleavage was not enriched in metabolizing stool samples due to co-occurrence with already 

known DesAB, I next assessed the abundance of desAB reads across the 28 samples, and found 

no significant correlation between number of reads and either metabolite formation or 

dexamethasone consumption slopes (Figure 2.7—figure supplement 1). 
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These results indicate that species level information alone is not enough to predict chemical 

transformations in a microbiome sample, but with SIMMER, knowledge of responsible enzymes 

can recapitulate a sample’s potential for therapeutic degradation.  

 

Figure 2.7 SIMMER predicted enzymes explain inter-individual variations in drug 
metabolism. 
(A) Donors (N=20) from the Javdan, et al. 16S rRNA gene sequencing study (Javdan et al., 
2020) possessed an enrichment of genomes harboring SIMMER enzyme predictions when 
metabolism of a given drug was observed. Violin plot curves were made using a seaborn package 
that performs a kernel density estimation of the underlying datapoint distribution. Chemical 
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transformations were drawn using ChemDraw software. Single asterisks denote p-values ≤ 0.05, 
and double denote p-values ≤ 0.01. (B) There was a significant correlation between a human 
stool sample’s ability to consume dexamethasone (consumption slope, a.u.), to produce 17-
oxodexamethasone (production slope, a.u.), and the number of aligned SIMMER predicted 
sequences for side chain cleavage of dexamethasone. Patient (N=28) conversion slopes and 
metagenomics data were accessed from the original study (Zimmermann et al., 2019). Chemical 
structures were drawn using ChemDraw software. 
 

2.2.6 SIMMER software 

In addition to providing SIMMER (https://github.com/aebustion/SIMMER) as a command line 

tool that quickly generates enzyme sequence predictions (fasta and tab-separated-value files), EC 

predictions (tab-separated-value file), and MetaCyc reactions ranked by similarity (tab-

separated-value file) based on a user’s input reaction, SIMMER is also available as a user-

friendly website (https://simmer.pollard.gladstone.org/). The user can either input one query 

reaction at a time, or upload multiple reactions in tsv file format (Figure 2.8). All output types 

available with the SIMMER command line tool are likewise retrievable via the SIMMER 

website. 
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Figure 2.8 SIMMER webtool. 
The landing page for the SIMMER website (https://simmer.pollard.gladstone.org/) allows the 
user to upload a TSV file of queries or add a single query manually to run SIMMER on. It is 
recommended to use the command-line tool (https://github.com/aebustion/SIMMER) for more 
than 10 input queries. 
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2.3 Discussion 

In this work, I created a tool that appropriately describes reaction chemistry and harnesses all 

current information on gut bacterial sequences, both from isolates and metagenome assembled 

genomes. This advances our ability to discover chemical transformations in the human 

microbiome, because previous methods for in silico metabolism prediction had several key 

limitations, including low accuracy. Here, I demonstrated SIMMER’s ability to recover known 

drug-metabolizing enzymes in the human gut, to extend previous experimental findings for 

multiple drug metabolism events by identifying candidate enzymes, and to add clarity to the 

genetic component of dexamethasone metabolism by C. scindens. 

 

To describe chemical reactions, I was initially influenced by recent research that employed 

substrate and product chemistry to compare bacterial-drug metabolism events to primary 

reactions in the MetaCyc database, but without the end-goal of EC and enzyme identity 

prediction (Mallory et al., 2018). From a reaction description standpoint, the published method 

was still limited in that it only included a description of one substrate and one product per 

reaction, precluding it from utilizing cofactors and from accurately describing anything other 

than intramolecular rearrangements (EC class 5, Figure 2.2—figure supplement 3). For this 

reason, I employed a chemical representation technique that can describe multiple inputs and 

outputs for a single reaction (Schneider et al., 2015).  

 

To connect these chemical descriptions to bacterial proteins in the human gut, I knew it was 

important not to rely on EC codes (as previous methods have done) to find relevant sequences. 

While EC codes are helpful for describing reaction types, from an enzyme perspective they 
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contain no information about substrate specificity for a particular compound. I instead chose to 

create sequence searches of large genome databases directly from enzymes known to conduct 

chemically similar reactions, whether or not they have been fully annotated with an EC code. For 

example, enzyme BT_4096 responsible for diltiazem deacetylation (Zimmermann et al., 2019b) 

is not yet annotated by the EC, yet SIMMER was able to accurately predict the deacetylase 

enzyme responsible for diltiazem metabolism because it does not require EC annotation for its 

enzyme predictions. Indeed, instead of relying on EC codes for sequence searches, I harnessed 

EC annotations in the MetaCyc database to create a novel EC predictor. Using this tool, I 

accurately predicted diltiazem deacetylation as an EC3 hydrolysis reaction. While EC prediction 

methods based on sequence exist, to my knowledge, this is the first instance of an EC prediction 

method based solely on the chemical description of a reaction.  

 

SIMMER achieved high accuracy when applied to known drug-metabolism events in the gut 

microbiome. Correct EC designations and enzyme sequences were recovered for 31 drug 

metabolism events previously characterized in microbiome literature. These reactions span 

multiple EC classes, and were described by multiple publications, demonstrating the wide 

application and accuracy of SIMMER. While SIMMER provides high accuracy (i.e. true 

positive) enzyme predictions for chemical transformations in the human gut, the potential for 

false positives may be high, as its enzyme lists are not filtered by biologically relevant metrics 

like substrate affinity or flux consistency in a microbial community. To the former point, users 

may wish to employ tools like Similarity Ensemble Approach to narrow in on hits most likely to 

interact with compounds of interest (Keiser et al., 2007). To the latter, a user could choose to 

further analyze their SIMMER output for flux-balance if the predicted SIMMER bacterial 
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species are described in current metabolic reconstruction models (Heinken et al., 2020; 

Magnúsdóttir et al., 2017).  

 

Due to its high accuracy predictions for previously described drug-metabolism events, I also 

used SIMMER to predict novel drug metabolism chemistry in the human gut, and expanded what 

we know of the bacterial enzymes at play in identified drug transformations by gut bacteria. 

Recent high-throughput experimental research has greatly increased our knowledge of the 

number of drugs altered by bacteria in the human gut, but has led to a bottleneck in 

identifying the responsible bacterial enzymes. While direct experimentation is a necessary 

component to elucidating the bacterial players responsible, in silico methods like SIMMER are 

needed to help prioritize which of the many bacterial species and enzymes to assess. Here I 

showed that SIMMER both corroborates previous high throughput experimental data, and also 

adds increased clarity to the findings. While a previous experimental study was able to elucidate 

the importance of an isolate C. scindens in the metabolism of dexamethasone, the abundance of 

C. scindens in human samples did not correlate with metabolism. When assessed with SIMMER, 

however, a significant correlation between metabolite production and amount of SIMMER 

predictions was observed. This finding demonstrates that species identity alone is not enough to 

explain bacterial chemical transformation, and that responsible genetic elements must be 

interrogated as well.  

 

Two previous computational tools exist for describing non-antibiotic microbial drug metabolism. 

MicrobeFDT groups thousands of compounds based on their similarity to one another and 

annotates compound groups based on any known links to EC numbers, and subsequently, 
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microbes known to contain such EC codes (Guthrie et al., 2019). This network approach was an 

important addition to the exploration of microbiome metabolism, but its use is limited to a fixed 

database of chemicals and EC annotations which prevents the user from exploring novel 

chemistry and also from utilizing hypothetical protein data gathered from metagenomic 

sequencing studies. Furthermore, MicrobeFDT’s accuracy within its database of substrates is 

limited by its exclusive description of substrates rather than full reactions. DrugBug, a tool that 

employs Random Forests rather than a network approach, also exhibits limited power and 

accuracy due to its sole reliance on substrate chemistry and relatively small database of only 491 

isolated bacterial genomes from the human gut (Sharma et al., 2017). Of note, my comparison of 

SIMMER’s performance to existing methods necessitated downloading and analyzing my 

positive control list against the other tools, as none of the previous publications provided any 

computational validation or accuracy metrics. 

 

One user pitfall of SIMMER in comparison to previous methods, is that a reaction’s product(s) 

and cofactor(s) identity is required to achieve the high accuracy enzyme prediction described 

here. This is a limitation, as a growing amount of LC-MS/MS data in microbiome research only 

reports whether or not a compound is depleted in the microbiome and the mass/charge ratio of 

the product formed, not the product identity. While it is technically possible for the user to 

submit a SIMMER query that only consists of a substrate, or uses a compound identity as both 

substrate and product, I do not recommend this due to the previously discussed lack of accuracy 

when only considering substrates (Figure 2.2—figure supplement 3, Table 2.1—source data). 

For users wishing to utilize SIMMER with a compound of interest and its either unknown or 

uncharacterized products, additional tools such as BioTransformer could be used in tandem to 
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create product template predictions before querying (Djoumbou-Feunang et al., 2019). Lastly, if 

the user does not hold a certain level of knowledge in chemistry, appropriate cofactors (such as 

water employed in a hydrolysis event) might be omitted from a query, leading to lower accuracy 

predictions. If a user is unsure which cofactors may be at play in their reaction of interest, 

reaction rules tools such as RetroRules could be employed (Duigou et al., 2019).  

 

Another limitation of SIMMER is that its underlying protein data is solely metagenomics data 

from the human gastrointestinal tract, but some compounds, such as the vaginal gel tenofovir, are 

known to be altered by bacteria in non-GI tract settings (Klatt et al., 2017). That being said, for 

transformations in the human gut, SIMMER employs the largest available database of relevant 

bacterial sequences, and the tool could easily be expanded in the future to include other human 

body sites as well as non-host associated environments. Further related to database constraints, 

while SIMMER is novel in its ability to query reactions not previously described in chemistry 

databases, its search space is still limited to reactions that broadly relate to those captured in 

MetaCyc. As MetaCyc expands, or additional databases get employed, SIMMER will likely be 

able to make increasingly fine-tuned predictions.  

 

SIMMER enters microbiome biotransformation research at an important point: while there are 

hundreds of microbiome altered compounds which are in need of enzyme identification, there are 

also a sufficient number with characterized enzymes to enable us to test the tool’s accuracy. Its 

ability to predict these known enzymes accurately builds confidence for its predictions of yet 

unknown enzymes. With this tool in hand, microbiome researchers can make informed 

hypotheses before embarking on the lengthy laboratory experiments required to characterize 
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novel bacterial enzymes that can alter human ingested compounds. Continued refinement of 

SIMMER and other computational tools will accelerate microbiome research, providing data-

driven hypotheses for experimental testing and a first step towards understanding the full scope 

of metabolism by the human microbiome.  

2.4 Materials and methods 

Preparation of SIMMER’s underlying chemical data 

13,387 gene annotated bacterial reactions were downloaded from MetaCyc (Caspi et al., 2008). 

Each reaction from the database contained Simplified Molecular Input Line Entry System strings 

(SMILES) of reactant(s) and product(s), EC code if available, and UniProt or Entrez identifiers 

for sequences that catalyze the reaction. All MetaCyc compounds were then protonated based on 

the pH environment of 7.4 in the human small intestine, where most oral drug absorption occurs. 

Protonation states were calculated using ChemAxon’s cxcalc majorms software (“cxcalc 

calculator functions,” n.d.).  

 

RDKit’s rdChemReactions module was employed to create chemical fingerprints representing 

each MetaCyc reaction. Chemical reaction objects were constructed from reaction SMILES 

arbitrary target specification (SMARTS) strings. Fingerprints for these reactions were then 

created using the resulting difference of product(s) and reactant(s) Atom-Pair fingerprints 

(Schneider et al., 2015). SIMMER users can also opt to use Topological Torsion, Pattern, or 

RDKit fingerprints, but unless otherwise stated, all analyses in this manuscript use Atom-Pair 

difference fingerprints. Of the 13,387 MetaCyc reactions, 8,914 were able to be fingerprinted 

using this method. Failed fingerprints were due to ambiguous SMILES identifiers or presence of 

non-small molecule compounds in a reaction, such as peptides.  
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After creating fingerprint vectors for all MetaCyc reactions, an 8,914 by 8,914 pairwise 

similarity matrix of Tanimoto coefficients was created. These Tanimoto vectors make up 

SIMMER’s underlying chemical data.  

 

Preparation of SIMMER’s underlying protein data 

For each of the 8,914 fingerprinted MetaCyc reactions, all relevant gene sequences were 

retrieved from the MetaCyc reaction’s UniProt and Entrez database linkouts. If at least two 

genes, with a median pairwise sequence similarity greater than or equal to 27%, were linked to a 

given MetaCyc reaction, the sequences were used to create a multiple sequence alignment and 

subsequent profile hidden Markov model (pHMM) using Clustal Omega and HMMER3 (version 

3.2.1) software respectively (Eddy, 2009; Sievers and Higgins, 2014). This similarity cutoff was 

chosen based on previous protein family literature (Mi et al., 2021). If fewer than two genes, or 

genes with less than 27% global similarity, were associated with a given MetaCyc reaction, a 

pHMM of the MetaCyc gene(s) PANTHER subfamily was retrieved via InterPro linkouts (Mi et 

al., 2021). MetaCyc derived and PANTHER subfamily pHMMS were then queried against a 

Unified Human Gastrointestinal Genome (UHGG) collection of 286,997 isolate genomes and 

metagenome assembled genomes from the human gut environment using the HMMER3 

hmmsearch module (Almeida et al., 2020; Eddy, 2009). In the case of MetaCyc reactions with 

too few sequences, too low a median pairwise sequence identity, and a missing PANTHER 

database subfamily pHMM, single sequence protein queries were conducted against the UHGG 

databse using HMMER3’s phmmer module, which internally created protein profiles for the 

single query sequences based on a position-independent scoring system. Resulting enzyme hit 
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lists were filtered to only include high significance hits (e-value < 1E−5, and hit length >= half 

of the input pHMM alignment or single sequence length). In sum, for each MetaCyc reaction, a 

profile representing the diversity of the enzyme family for that chemical transformation was used 

to find sequence similar hits in the human gut microbiome that can mediate chemically similar 

reactions.  

 

Each human gut microbiome hit was further described by the identity, prevalence, and 

abundance of the bacterial strain in which it resides. To establish prevalence and abundance of 

UHGG strains, metagenomic analysis was performed on the Predict (Personalised Responses to 

Dietary Composition Trial) cohort due to its high number of samples and favorable sequencing 

depth (Asnicar et al., 2021). Shotgun metagenomic reads were analyzed with MIDAS2 an 

implementation of Metagenomic Intra-Species Diversity Analysis Subcommands (MIDAS) 

(Nayfach et al., 2016; Zhao et al., 2022) designed for the UHGG database. Presence of a 

SIMMER predicted species in a given sample was established when reads mapped (HS-

BLASTN) to 15 single-copy universal genes for that species (Chen et al., 2015), with at least 

75% alignment coverage. To assess the gene content of a sample, shotgun metagenomic reads 

were aligned to a MIDAS2 created pangenome of the SIMMER species’ genes clustered at 99% 

nucleotide identity. Copy number of a SIMMER gene prediction was established by dividing 

aligned prediction reads by the full length of the prediction. This number was then normalized by 

the read coverage of 15 single-copy universal genes in the same sample to estimate copy number 

per cell. Presence of a SIMMER enzyme was established if at least 0.35 gene copies per cell 

were present in a sample.  

 



 41 

Phylogenetic trees were also constructed for each hmmsearch and phmmer result. For each set of 

MetaCyc reaction human gut microbiome enzyme hits, CD-HIT was used to cluster results at 

95% identity (Fu et al., 2012). Then MUSCLE was used to create a multiple sequence alignment 

for input to FastTree (Edgar, 2004; Price et al., 2009). Compact tree visualizations were made in 

R using ggtree and ggtreeExtra (Xu et al., 2021; Yu et al., 2017). All tree tips were colored by 

phylum, and surrounded by circle annotators describing a given hit’s Prokka predicted function, 

genome type (i.e. from an isolate or metagenome assembled genome), and prevalence/abundance 

in the Predict cohort (Seemann, 2014). 

 

Query functionality of SIMMER 

The query functionality of SIMMER was designed similarly to the precomputed chemistry data. 

After receiving an input chemical transformation (or tsv describing multiple input reactions) in 

the form of SMILES, SIMMER fingerprints the reaction(s) and compares it to the precomputed 

chemical space by computing the Tanimoto coefficients between the input(s) and all 

precomputed reactions. The 8,914 precomputed MetaCyc reaction Tanimoto vectors are then 

sorted by ascending euclidean distance to the query Tanimoto vector. SIMMER by default ranks 

reactions’ euclidean distances based directly on the Tanimoto vectors, but if a user’s inputs 

require a decrease in computational burden, PCA can be employed after similarity matrix 

creation and before euclidean distance rankings. The number of PCs to be used depends on the 

fingerprint style employed, and was determined by the Kaiser criterion. Unless otherwise stated, 

all analyses in this manuscript employed the full Tanimoto similarity matrix with no PCA 

reduction. Human gut microbiome enzymes that may conduct the input reaction are reported 
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from the precomputed UHGG hmmsearch or phmmer results of the closest euclidean distance 

MetaCyc reaction. Significantly enriched EC identities (i.e. reaction types) are also reported. 

 

Reaction type predictions 

SIMMER predicts an EC code (i.e. reaction type) for a query reaction if there is an enrichment of 

a particular EC at the top of the reaction list. Enrichment was determined in a manner similar to 

gene set enrichment analysis (GSEA).(Subramanian et al., 2005) For each EC code associated 

with MetaCyc reactions, an enrichment score (ES) was calculated by walking down the ranked 

list of reactions. Starting with a score of zero, each time the given EC is encountered the score 

increases by one, and each time a different EC is encountered the score decreases by one. At the 

end of this process, each EC receives an ES that is the score’s maximum distance from zero after 

walking through the list (Figure 2.2—figure supplement 1A). Because the MetaCyc database of 

reactions is unbalanced in its EC code representation, ES scores for a given EC type are divided 

by the number of times the EC in question occurs in the database. This yields a normalized ES 

(NES) for SIMMER reporting. Significance is established by comparing the true NES to the 

NES achieved from 1000 permutations of a shuffled reaction list (Figure 2.2—figure 

supplements 1B-C). When multiple EC codes are predicted as significant, they are ranked in 

ascending order of where in the list of 8,914 reactions the NES occurs. This method was verified 

by subsampling the database of MetaCyc reactions to equal numbers (N=96) of reactions for 

each EC class, the broadest resolution level of an EC code. Each of these subsampled reactions 

was then queried with SIMMER against the entire MetaCyc reaction database to create sorted 

reaction lists for each query. SIMMER predicted an EC code(s) for each reaction based on the 

most highly enriched EC. SIMMER’s recall, precision, and accuracy are high for EC class, sub-
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class, and sub-sub-class level resolution (Figure 2.2B, Figure 2.2—source data). For the serial 

designation of an EC code (the most granular description of an EC code), however, SIMMER’s 

performance diminished, potentially because enrichment calculations suffer from increased 

uniqueness in the ranked list and therefore reduced power to determine a match (Figure 2.2—

source data). This indeed appears to be the case; when the database is subsampled to ensure at 

least three of each unique serial designation, F1-scores (the harmonic mean of precision and 

recall) and accuracy remain high despite the increased EC resolution (Figure 2.2—source data, 

Figure 2.2—figure supplement 1D).   

 

Euclidean distance silhouette scores 

To analyze SIMMER’s resilience to different reaction chemistry representations, I created a 

silhouette-like euclidean distance score. For the precomputed MetaCyc chemical dataset of 8,914 

reactions (i.e. the Tanimoto pairwise similarity matrix), I split all reactions into their top-level 

EC codes (i.e. EC class) and determined for each reaction its euclidean distance to all reactions 

within its EC class versus outside its EC class. From the two distributions (within EC and 

without EC distances) created, I computed a Kolmogorov-Statistic to determine if the 

distributions significantly (p<0.05) differed. I repeated this process for finer resolution EC 

classifications (sub-class, sub-sub-class, and serial designation). Euclidean distance silhouette 

scores were used to compare different chemical representations, such as fingerprint style, 

inclusion of products, and inclusion of cofactors. 
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Relationship between SIMMER’s underlying chemical and protein data  

For MetaCyc enzymes (N=34,279) associated with multiple reactions, one reaction was used as a 

SIMMER query, and the other reaction(s) searched for in the ordered reaction list output. As a 

negative control, these reaction similarity results were then compared to all pairwise 

combinations of MetaCyc enzymes (subsampled to N=34,279) that do not conduct the same 

reaction.  

 

I also assessed the relationship between chemistry and protein similarity for all pairwise 

combinations of a subset of MetaCyc reactions annotated with only one protein sequence 

(N=604 reactions). Chemical similarity was based on the Euclidean distance between two 

reaction fingerprint vectors in SIMMER’s precomputed chemical space (Figure 2.1A). Global 

protein similarity was determined via the Needleman–Wunsch algorithm. The relationship 

between chemical similarity and protein similarity was assessed with a Pearson’s correlation 

coefficient and P value calculated using a Wald Test with t-distribution of the test statistic. 

 

Creating a compendium of drug-metabolism use cases from the human gut 

To analyze SIMMER under the use-case of drug metabolism, I created a compendium of drug 

degradations that occur in the human gut microbiome. The compendium of reactions is based on 

a literature curation of hundreds of papers, and is organized by reactions producing 

known/unknown metabolites and driven by known/unknown bacterial enzymes. The drug-

metabolism positive controls used to assess SIMMER’s accuracy were drawn from the list of 

reactions possessing a structurally elucidated metabolite and driven by a characterized bacterial 

enzyme.  
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I further expanded the positive control list to include sequence-similar enzymes that likely 

perform the same function. For this expansion, I performed pHMM searches (when a positive 

control reaction had been characterized with multiple sequence-similar enzymes) and phmmer 

searches (when a positive control reaction had been characterized with only one sequence) of the 

UHGG database using HMMER3 software (Almeida et al., 2020; Eddy, 2009). High significance 

(e-value < 1E−5) hits were kept when the resulting alignment was at least 50% of the input 

pHMM or sequence length. This list of significant hits was filtered by presence in human ileum 

or jejunum (the site of human drug absorption) via DIAMOND searches against metagenomic 

reads from a published study that employed jejunum and ileum endoscopy (Buchfink et al., 

2021; Zmora et al., 2018). The hits were also filtered for presence in RNAsequencing data via 

DIAMOND searches of rnaSPAdes assembled reads from HMP2 metatranscriptomics control 

patient samples (Bushmanova et al., 2019; Integrative HMP (iHMP) Research Network 

Consortium, 2019). The hits were lastly filtered by predicted affinity for their substrates using 

the Similarity Ensemble Approach (Keiser et al., 2007). 

 

Corroboration of previous high-throughput experimental findings 

For the first experimental validation of SIMMER, I analyzed results from sequencing studies 

(NCBI BioProject: PRJNA593062) described in a previously published high-throughput 

investigation of bacterial drug metabolism in human stool samples (Javdan et al., 2020). The first 

sequencing set in this publication was a deep metagenomic sequencing of one pilot individual’s 

ex vivo stool originally evaluated for its ability to degrade hundreds of therapeutics. I used 

MetaSPAdes with default settings to assemble the metagenomics reads into scaffolds (Nurk et 
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al., 2017). I then queried SIMMER with eight reactions that were structurally elucidated (via 

nuclear magnetic resonance) by the previous publication, and ensured via TBLASTN searches 

that SIMMER predicted hits were found in the assembled metagenomic reads. The second 

sequencing set was a 16S rRNA sequencing experiment of twenty human donor stool samples 

originally evaluated for their inter-individual variation in bacterial drug degradation. I queried 

SIMMER with five of these reactions possessing structurally elucidated metabolites, and 

evaluated enrichment of SIMMER predicted bacterial species in metabolizing versus non-

metabolizing donors. Species matches between SIMMER predictions and the 16S study were 

made using the SequenceMatcher class from the difflib python module set to an 80% ratio cutoff. 

Enrichment of SIMMER predicted bacterial genomes was then assessed by computing a t-test for 

number of SIMMER genomes in metabolizers versus number of SIMMER genomes in non-

metabolizers for a given reaction. 

 

For experimental corroboration of dexamethasone metabolism, I accessed shotgun sequencing 

data (PRJEB31790) from a cohort of 28 human stool samples shown to metabolize 

dexamethasone to varying degrees (Zimmermann et al., 2019b). Shotgun reads were assembled 

using MetaSpades with default settings. Presence of SIMMER enzyme predictions was 

established via search with DIAMOND and normalized by sample read depth. Significance was 

established with a Pearson’s correlation coefficient and P value calculated using a student’s t-

distribution. 
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Web tool creation 

We used the python web framework Flask (https://flask.palletsprojects.com/en/2.1.x/) to make 

SIMMER available as a user-friendly website. The website accepts either a single query reaction 

or multiple query reactions via a file upload and provides the same outputs as the SIMMER 

command-line tool. The website also allows the user to download the outputs of interest. 

Keeping in mind the privacy and security of the data that a user might upload to the website, the 

website is designed to delete all uploaded data within 24 hours from the server. This will ensure 

security of the uploaded data. 

 

Data availability 

Data generated and analyzed during this study are provided in Figures 2.2-2.7 source data files, 

Table 2.1 source data file, supplemental files, and at https://github.com/aebustion/SIMMER. 

Accession numbers of previously published datasets are provided in the Materials and Methods 

section. SIMMER code can either be run at the SIMMER website 

(https://simmer.pollard.gladstone.org/) or downloaded directly from the above-linked GitHub.  
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2.5 Supplemental data 

Supplementary File 1 (attached). Literature curated list of drug-metabolism events in the human 

gut microbiome. 

Table 2.1 source data (attached) 

Figures 2.2,	2.4–2.7 source data (attached). 
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2.6 Supplemental figures 

 

Figure 2.2—figure supplement 1. SIMMER predicts an EC code (i.e. reaction type) for a 
query reaction if there is an enrichment of a particular EC at the top of the reaction list. 
(A) For each EC code associated with MetaCyc reactions, an enrichment score (ES) was 
calculated by walking down the ranked list of reactions. Starting with a score of zero, each time 
the given EC is encountered the score increases by one, and each time a different EC is 
encountered the score decreases by one. Panel A is an example of such a walk with MetaCyc 
reaction RXN-6763. (B) Significance is established by comparing the true ES to the ES achieved 
from 1000 permutations of a shuffled reaction list. Panel B is an example of how RXN-6763 
loses its EC enrichment structure after shuffling. (C) Because the MetaCyc database of reactions 
is unbalanced in its EC code representation, ES scores for a given EC type are divided by the 
number of times the EC in question occurs in the database. This yields a normalized ES (NES) 
for SIMMER reporting. This is also performed for the shuffled distributions. (D) For the serial 
designation of an EC code (the most granular description of an EC code), SIMMER’s 
performance diminished (Figure 2.2B), because enrichment calculations suffer from increased 
uniqueness in the ranked list and therefore reduced power to determine a match. This is proven 
here, as when the database is subsampled to ensure at least three of each unique serial 
designation, F1-scores (the harmonic mean of precision and recall) and accuracy remain high 
despite the increased EC resolution.   
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Figure 2.2—figure supplement 2. Euclidean distance distributions and silhouette scores for 
top-level EC codes are resilient to fingerprint type. Distributions are computed as described in 
Figure 2A.  
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Figure 2.2—figure supplement 3. Euclidean distance distributions and silhouette scores for 
top-level EC codes are sensitive to chemical representation type. Distributions are computed 
as described in Figure 2.2A. The resulting score distributions were used to compare SIMMER’s 
resilience to different chemical representations, such as removal of products and cofactors (the 
representation methods employed by DrugBug (Sharma et al., 2017) and MicrobeFDT (Guthrie 
et al., 2019) or the inclusion of exactly one substrate and exactly one product (the Mallory, et al. 
method (Mallory et al., 2018). For all EC classes, scores were smaller within versus between EC 
classes using SIMMER’s chemical representation, indicating that SIMMER can detect reaction 
similarity within EC classes. However, this was not consistently true when using only the input 
compound without cofactors or products (substrate), or when using only one substrate and 
product (one_substrate_one_product). From the pairs of distributions, I computed a 
Kolmogorov-Statistic to determine if the distributions significantly (p<0.05) differed. This 
showed that the differences were statistically significant for SIMMER chemical representations 
and reduced, or in the wrong direction, when using a reduced representation. X’s in the KS test 
heatmap indicate an incorrect direction of difference (without grouping closer than within).  
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Figure 2.4—figure supplement 1. An expanded list of gut bacterial enzymes relevant to 
known cases of drug metabolism. 52,849 total candidate homologs (a median of 1,087 
candidates per enzyme) were obtained via pHMM searches with sequences from the literature. 
These putative homologs were filtered for presence in the human jejunum/ileum, presence in 
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RNA-sequencing studies, and predicted affinity for the substrate in question using SEA. This 
resulted in 741 additional enzyme sequences for 31 positive control reactions. 
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Figure 2.5—figure supplement 1. Distributions of all MetaCyc reactions’ euclidean 
distances to the positive control list queries. For this analysis, each of the 31 positive control 
reactions was queried to SIMMER. Distributions were created based on all (N=8,914) MetaCyc 
reactions’ distance to a given input metabolism event, and colored by their EC class annotation 
in MetaCyc (oxidoreductases, transferases, etc.). The dashed blue line depicts the MetaCyc 
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reaction that yielded a gut microbiome homolog matching the known positive control sequence. 
For example, when queried with 5-ASA acetylation, SIMMER outputs a most-similar MetaCyc 
reaction (RXN-13871) that SIMMER linked (via sequence similarity) to an N-acetyltransferase 
known from previous literature to drive 5-ASA metabolism in the human gut. 
 

 

 

 

 

Figure 2.7—figure supplement 1. There was not a significant correlation between a human 
stool sample’s ability to consume dexamethasone (consumption slope, a.u.) or to produce 17-
oxodexamethasone (production slope, a.u.), and the number of aligned desAB sequences. Patient 
(N=28) conversion slopes and metagenomics data were accessed from the original study 
(Zimmermann et al., 2019). This adds confidence to the finding described in Figure 2.7B, as it 
means SIMMER predictions were not correlated with dexamethasone metabolism due to co-
occurrence in C. scindens with a gene previously reported to underlie bacterial side-chain 
cleavage of steroids (Ly et al., 2020). 
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Chapter 3  

Experimental validation of computationally predicted bacterial species and enzymes 

capable of methotrexate metabolism. 

3.1 Introduction 

Oral methotrexate (MTX) is an anti-folate immunosuppressant, and the first-line therapy for 

individuals with Rheumatoid Arthritis (RA). Despite this designation, over half of the RA 

population receiving MTX exhibit suboptimal improvement (Emery et al., 2008; Scher et al., 

2020). This lack of efficacy may be due to altered pharmacokinetics, as oral bioavailability of 

MTX is subject to large interindividual variation with values ranging from 32-70% (Roon and 

Laar, 2006). Additionally, MTX is estimated to practice extensive enterohepatic circulation 

which results in increased exposure to gut bacteria in the small intestine (Roon and Laar, 2006). 

In line with this assumption, MTX degradation to inactive metabolites 2,4-diamino-N10-

methylpteroic acid (DAMPA) and glutamate has been observed in MTX dosed mice, but not in 

antibiotics pretreated mice (Valerino et al., 1972).  

 
In an early effort to characterize MTX host metabolites, an enrichment culture experiment 

isolated a soil Pseudomonas capable of rapid hydrolysis of MTX into DAMPA and glutamate 

(Levy and Goldman, 1967). Later purification and characterization of soil-based 

Carboxypeptidase G1 from Pseudomonas stutzeri and Carboxypeptidase G2 (CPG2) from 

Pseudomonas strain RS-16 resulted in the emergency therapy Glucardipase (recombinant CPG2) 

for patients experiencing MTX toxicity (Buchen et al., 2005; Chabner et al., 1972). 

Glucardipase’s efficient hydrolysis of MTX and knowledge of microbiome MTX degradation 
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suggest that CPG2 homologs in the human gut microbiome may exist, but no enzymes from gut 

bacteria have yet been characterized (Letertre et al., 2020; Scher et al., 2020). 

 
Increasingly, scientists use metagenomic sequencing to probe associations between the 

microbiome and RA and/or MTX (Artacho et al., 2020; Kishikawa et al., 2020; Zhang et al., 

2015). One such study was able to utilize metagenomics and clinical efficacy data to create a 

computational predictor of therapeutic outcome before beginning a patient on MTX (Artacho et 

al., 2020). When comparing the metagenomic data between MTX-responders versus MTX-non-

responders, the researchers found consistent differences in the metabolic features of patient 

metagenomes. Additionally, ex vivo stool samples from MTX-non-responders degraded MTX to 

a higher degree, though the relevant enzymes were not determined (Artacho et al., 2020).  

 
While enzymatic degradation is unlikely to be the only determinant of patient response to MTX, 

characterization of bacteria capable of MTX hydrolysis will improve RA precision medicine 

efforts. Using my in silico enzyme prediction method, SIMMER (described in Chapter 2), I 

retrieved bacterial sequences potentially responsible for MTX degradation in the human gut 

(Bustion et al., 2022). I demonstrated that these enzymes are enriched in MTX-non-responders 

and in isolates capable of degrading MTX. We also assessed metabolism of MTX in a strain-

collection and in a heterologous expression system, with both whole cells and purified proteins 

tested for activity. This work results in the first species-level characterization of MTX 

metabolism by bacteria in the human gut microbiome. 
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3.2 Results 

3.2.1 SIMMER predicts methotrexate metabolizing enzymes similar to known 

environmental methotrexate metabolizers. 

When queried with MTX and its gut bacteria associated metabolites DAMPA and glutamate, 

SIMMER calculated a most similar MetaCyc reaction (3.4.17.11-RXN) and a significant EC 

prediction (3.4.17.11, p-value<0.001). MetaCyc reaction 3.4.17.11-RXN describes the hydrolysis 

of folate into pteroate and glutamate, driven by a glutamate carboxypeptidase (Cpg2) found in 

environmental Pseudomonas aeruginosa. Hydrolysis of MTX is chemically similar to hydrolysis 

of folate (Figure 3.1) with a Tanimoto coefficient=0.6, and normalized euclidean distance=0.05 

in SIMMER’s precomputed chemical space. SIMMER predicted 2,286 human gut microbiome 

enzyme predictions that are most frequently Prokka annotated as Carboxypeptidase G2s (Figure 

3.2) due to their sequence similarity to MetaCyc’s environmental Cpg2. As a result of this 

similarity, SIMMER’s predictions may conduct hydrolysis of methotrexate, chemically similar to 

P. aeruginosa’s Cpg2 reaction.  

 

 

Figure 3.1 Methotrexate hydrolysis and its most similar MetaCyc reaction. 
When queried with MTX hydrolysis to DAMPA and glutamate, SIMMER found that folate 
hydrolysis was the most chemically similar MetaCyc reaction. 
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Figure 3.2 Human gut microbiome bacterial sequence predictions. 
SIMMER predicted 2,286 unique bacterial sequences putatively capable of MTX hydrolysis to 
DAMPA and glutamate. There was great variability in the prevalence and abundance of these 
sequences in healthy human metagenomic data. Among the predictions, Firmicutes members 
were most common. The most frequent Prokka annotation was Carboxy peptidase G2. 
 

3.2.2. SIMMER MTX predicted enzymes are enriched in MTX non-responders. 

Next, I investigated the presence of the above SIMMER predicted enzymes in metagenomics 

studies of RA patients on MTX therapy (Artacho et al., 2020; Zhang et al., 2015). Between the 

two studies, I was able to confirm via DIAMOND blastx searches that N=479 unique SIMMER 

sequence predictions were found across the patient stool samples. Both studies provided patient 

metadata such as disease severity (DAS28 scores) or whether individual patients responded to 

MTX (Table 3.1).  
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Table 3.1 Rheumatoid arthritis metagenomics studies assessed. 

Study Patient 
population 

Sample 
size 

Medications 
studied Measurements reported 

Zhang et al. 
2015. 
 
PMID26214836 

RA N=25 

MTX, 
MTX+HCQ+ 
etanercept, 
MTX+T2 

Disease activity score 
(DAS28) 

Artacho et al. 
2020. 
 
PMID33314800 

New-onset 
RA 

N=47 MTX 
Disease activity score 
(DAS28) delta after 4 months 
MTX therapy 

 

For the Zhang et al. cohort therefore, I was able to assess whether or not patients with low, 

moderate, or high disease differed in their abundance of SIMMER enzyme predictions present 

(Figure 3.3A-B). Of SIMMER’s 2,286 enzyme predictions for MTX hydrolysis, N=289 were 

found in the Zhang et al. metagenomics data. While there was a slight association between 

presence of SIMMER predictions and disease severity, no association was statistically significant 

(Figure 3.3A).  
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Figure 3.3 SIMMER predictions are found in the Zhang et al. cohort of arthritis patients. 
N=289 of SIMMER predicted sequences for MTX hydrolysis are found in a cohort of RA 
patients of varying disease severity. (A) No association was found between number of SIMMER 
predictions and a patient’s disease grouping (GLM Poisson), (B) or between number of 
SIMMER predictions and a patient’s disease activity score (Pearson correlation, student’s t-test). 
 
Next, due to the study design of the Artacho et al. cohort of new-onset RA (NORA) patients, I 

was able to assess whether or not a relationship existed between abundance of SIMMER 

predictions within a patient stool sample and that patient’s resistance or response to MTX 

treatment. Response in the study was defined as a DAS28 score improvement by at least 1.8 

points within four months of MTX therapy (Artacho et al., 2020). Of SIMMER’s 2,286 enzyme 

predictions for MTX hydrolysis, N=386 were found in the Artacho et al. metagenomics data. A 

significant negative correlation was seen between patients’ disease score improvements and 

abundance of SIMMER predictions (Figure 3.4B). Similarly, MTX non-responders (defined 

above) exhibited a significant enrichment of SIMMER MTX predictions in their stool samples 

(Figure 3.4A). While unlikely to be the complete story of MTX non-response in patients, this 

analysis points to MTX degradation playing a role in the lack of therapeutic efficacy in these 

patients.  
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Figure 3.4 SIMMER predictions are enriched in RA patients unresponsive to MTX. 
N=368 of SIMMER predicted sequences for MTX hydrolysis are found in the Artacho et al. 
cohort of new-onset RA patients with variable MTX response. (A) SIMMER predictions were 
enriched in patients non-responsive to MTX (GLM Poisson, p-value=0.001), (B) and a 
significant negative association between disease severity improvement and number of SIMMER 
predictions was observed (Pearson correlation=-0.4, student’s t-test p-value=0.01). 
 

3.2.3 Experimental validation of SIMMER predicted species capable of MTX metabolism 

We next screened an existing collection of 42 diverse bacterial strains found in the human gut for 

its ability to degrade MTX to metabolites DAMPA and glutamate. This collection was of interest 

due to previously determined inter-strain variation in growth inhibition by MTX (Nayak et al., 

2021). Each isolate was incubated with MTX (100 μg/mL), and degradation of MTX determined 

by high-performance liquid chromatography (HPLC) (Figure 3.3). Metabolism varied across the 

strain collection, with ten isolates capable of metabolism. SIMMER significantly predicted 

which strains in the library were capable of MTX metabolism (Fishers Exact Test, OR=5.4, p-

value<0.05, Figure 3.3). Of note, SIMMER predicted seven isolates in the collection were 

capable of MTX hydrolysis that did not degrade the drug in the HPLC assay. One of the 
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predicted strains with negative metabolism results, E. coli BW25113, possesses AcrAB 

multidrug resistance efflux pump, an efflux pump that actively exports MTX (Kopytek et al., 

2000).  Due to the possibility that similar machinery might exist in the other isolates negative for 

MTX metabolism despite being predicted by SIMMER, I looked for AcrAB sequence in the 

genomes of all 42 bacterial strains. From this analysis I found two more SIMMER predicted, 

MTX negative strains containing sequences similar to AcrAB: Edwardsiella tarda and 

Providencia rettgerri (Figure 3.5). Thus, it is possible that these SIMMER predicted MTX 

degraders are functional, but failed HPLC detection because active MTX efflux prevented 

interaction between substrate and enzyme. 
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Figure 3.5 SIMMER accurately predicted bacterial strains capable of MTX degradation. 
A diverse panel of 42 isolates was incubated with MTX, and degradation (yes/no) measured via 
HPLC. SIMMER predicted (yes/no) that thirteen of the 42 isolates were capable of MTX 
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metabolism, and HPLC experiments showed that ten isolates were capable of MTX degradation 
(SIMMER prediction p-value=0.046). The approximately-maximum likelihood phylogenetic tree 
(FastTree) was created using 16S rRNA gene sequences from the 42 organisms.  
 

 

3.2.4 Experimental validation of SIMMER predicted enzymes capable of MTX metabolism 

Before experimental validation of SIMMER’s enzyme candidates, I narrowed in on the subset of 

hits most likely to be physiologically relevant for MTX metabolism. As discussed in Chapter 2, 

while SIMMER provides highly accurate enzyme predictions, there is the possibility of false 

positives in its sequence output that could not be computationally assessed. To mitigate this 

potential, I filtered SIMMER results before experimentation, as recommended in Chapter 2. 

SIMMER automatically filters by length; target sequences must be at least 50% the length of the 

input pHMM. I additionally filtered SIMMER’s output by sequences’ predicted ligand affinity, 

localization in the human gastrointestinal tract, and presence in metagenomics data. To predict 

SIMMER output sequences’ affinities for MTX, I used the Similarity Ensemble Approach which 

filtered SIMMER’s output down to 158 sequences (Keiser et al. 2007). Because MTX is 

absorbed in the proximal intestine (Murakami and Mori, 2012), I also filtered SIMMER’s output 

to sequences (N=289) found in the ileum and jejunum via DIAMOND searches against 

metagenomic reads from a study that employed jejunum and ileum endoscopy (Buchfink et al., 

2021; Zmora et al., 2018). Lastly, SIMMER hits were filtered for their presence (N=479 

sequences) in two metagenomics datasets, as described above in section 3.2.2.  

 
SIMMER’s predicted enzymes had a median global identity of 33% to a Carboxypeptidase G2 

enzyme with solved crystal structures and validated activity assays (Jeyaharan et al., 2016). As 

such, we were able to adapt the previously developed methods to test MTX metabolism activity 
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of my SIMMER predicted enzymes. From the filtered enzyme prediction list, we chose twenty 

candidates (Table 3.2) for experimental validation using a heterologous expression system. Ten 

of the twenty SIMMER predicted enzymes were chosen due to their presence in isolates capable 

of MTX degradation (Figure 3.5), and the other ten chosen due to their presence in uncultured 

metagenome-assembled genomes.  

 

Table 3.2 SIMMER MTX metabolism predictions chosen for enzyme activity experiments. 

UHGG ID ExperimentID Genus species Prokka function Length 
(amino acid) 

GUT_GENOME
141054_02582 RAB005 Clostridium asparagiforme Carboxypeptidase 

G2 386 

GUT_GENOME
096178_00385 RAB006 Clostridium symbiosum Carboxypeptidase 

G2 392 

GUT_GENOME
000594_01519 RAB007 Blautia producta N-acetyl-lysine 

deacetylase 419 

GUT_GENOME
096250_01715 RAB008 Clostridium innocuum Putative 

dipeptidase 463 

GUT_GENOME
095973_00847 RAB009 Clostridium scindens 

putative succinyl-
diaminopimelate 
desuccinylase 

437 

GUT_GENOME
001261_02056 RAB010 Blautia obeum 

putative succinyl-
diaminopimelate 
desuccinylase 

436 

GUT_GENOME
000237_01573 RAB011 Eubacterium eligens 

Cytosol non-
specific 
dipeptidase 

493 

GUT_GENOME
001689_01808 RAB012 Eubacterium halliii N-acetyl-lysine 

deacetylase 467 
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UHGG ID ExperimentID Genus species Prokka function Length 
(amino acid) 

GUT_GENOME
095982_01544 RAB013 Clostridium sporogenes Putative 

dipeptidase 463 

GUT_GENOME
143497_01051 RAB014 Lactonifactor longoviformis Acetylornithine 

deacetylase 394 

GUT_GENOME
001770_03586 RAB015 Roseburia inulinivorans Carboxypeptidase 

G2 369 

GUT_GENOME
096166_03560 RAB016 Bilophila wadsworthia Carboxypeptidase 

G2 409 

GUT_GENOME
096292_02896 RAB017 Alistipes senegalensis 

Succinyl-
diaminopimelate 
desuccinylase 

358 

GUT_GENOME
115272_01369 RAB018 Akkermansia s__ Peptidase T 423 

GUT_GENOME
159026_01716 RAB019 Adlercreutzia s__ Peptidase T 396 

GUT_GENOME
103893_02292 RAB020 Coprococcus_A catus 

putative succinyl-
diaminopimelate 
desuccinylase 

387 

GUT_GENOME
258044_01425 RAB021 Dialister invisus Peptidase T 399 

GUT_GENOME
001208_00104 RAB022 CAG-81 sp900066535 Carboxypeptidase 

G2 374 

GUT_GENOME
096178_00659 RAB023 Clostridium_Q symbiosum 

N-carbamoyl-L-
amino acid 
hydrolase 

413 

GUT_GENOME
143760_01903 RAB024 Enterobacter himalayensis Peptidase T 409 
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Prior to gene sequencing, N-terminal signal peptides, when present, were removed from all 

SIMMER candidates and controls (Almagro Armenteros et al., 2019; Jeyaharan et al., 2016). All 

candidates were then codon optimized and successfully cloned into pET28a vectors with a 6X 

histidine affinity tag (Figure 3.6). After transformation into BL21 (DE3) cells, high expression 

was achieved with an Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction system for N=6 

of the 20 candidates (Figure 3.7). These six proteins were then purified with immobilized metal 

affinity enrichment and elution supernatant (Figure 3.8) taken forward for UV/Vis activity 

assays. 

 

  
pET28a vector design with candidate insertion site shown in 
purple (RS-16 positive control example).  

Figure 3.6 Constructed expression plasmid. 



 69 

 

Figure 3.7 Six candidates were expressed via IPTG induction system. 
Of the twenty experimental candidates (Table 3.2), six could be overexpressed with IPTG as 
confirmed by SDS-Page gel. His6-TEV-Cpg2 weight is ~43 kDA. There are two lanes for each 
experimental sample, one labeled ‘-’ as a pre-induction sample, and a second labeled ‘+’ as a 
post-induction sample. Overexpression is observable (except for RAB005) based on the 
darkened post-induction labels at 43 kDa for each sample. 
 
 

 
 
Figure 3.8 His-tagged heterologous candidates were enriched from expression cultures. 
The six candidates overexpressed with IPTG were enriched before conducting activity assays 
with elution supernatant. Of note, most of candidate RAB016 was found in insoluble fraction 
after the immobilized metal affinity enrichment. Also, candidates RAB020 and RAB022 appear 
to form dimers.  
 
Activity of SIMMER candidates was assessed with UV/Vis, and defined as a purified 

candidate’s ability to cleave MTX (absorbs at 320nm) into DAMPA (non-absorbing) as 

previously demonstrated in the literature (Jeyaharan et al., 2016). Positive control protein (WT 

RS) efficiently broke down MTX, and negative control protein (RS with a scrambled active site 
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design) did not (Figure 3.8). When SIMMER candidates were tested, however, no activity was 

observed. Metabolism experiments were repeated in whole cells assessed via HPLC to follow up 

on this lack of activity, but again, no degradation of MTX was observed outside of the positive 

control assay. 

 

 
Figure 3.9 MTX degradation is observed only in positive control Cpg2. 
Degradation of MTX, defined as a shift from 320nm absorption, was only observed in purified 
Cpg2 RS-16 positive control (green line). None of the six purified SIMMER candidates 
exhibited metabolism activity. 
 
 
From previous literature on CPG2, we were aware that these proteins are often improperly folded 

and require extensive testing with refolding protocols to restore activity. Following a previously 

established protocol that determined the optimal assay for RS16 CPG2, we were able to 

reproduce RS16 CPG2 as a soluble protein with MTX degrading activity as a positive control 

(Jeyaharan et al., 2016). We also produced soluble fractions of our SIMMER candidates, but the 

proteins may have been different enough in sequence that the folding protocol for RS16 was not 

sufficient to yield active proteins.  
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3.3 Discussion 

While it has been suspected for some time now that inter-individual variation in patient response 

to oral MTX may be due to bacterial hydrolysis of the therapeutic, no characterizations have yet 

been made of the species of enzymes responsible. This chapter demonstrated the utility of using 

SIMMER in such a use-case. The most similar MetaCyc reaction to MTX hydrolysis, folate 

hydrolysis, that SIMMER identified makes much logical sense based on substrate and metabolite 

structures, and overall reaction chemistry. Similarly, SIMMER’s enzyme predictions, largely 

annotated as Carboxypeptidase G2s, are in line with what would have been expected from the 

existing glucardipase literature. Further adding confidence to SIMMER’s sequence predictions 

was their enrichment in the shotgun sequenced stool samples of RA patients exhibiting little 

response to MTX treatment over the course of four months.  

 
This same study of MTX responders versus non-responders also demonstrated for the first time 

depletion of MTX in human ex vivo stool samples (Artacho et al., 2020). Here, we demonstrate 

for the first time a species level characterization of MTX metabolism in the human gut 

microbiome. SIMMER significantly predicted which isolates would or would not be able to 

metabolize MTX in a diverse collection of 42 species representative of the gut environment. 

When we went on to directly test the SIMMER predicted enzymes harbored in the metabolizing 

genomes, however, we were unable to demonstrate activity.  

 
While this might signal false-positive enzyme predictions on the part of SIMMER, it may also be 

the case that despite proper induction and enrichment, candidates were inactive due to protein 

misfolding. To rule out such a possibility, future experiments will employ a range of treatment 

conditions while purifying protein candidates. Indeed, the original study that our treatment 
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conditions are based upon required multiple treatment condition iterations before finding a 

method that consistently yielded soluble, active protein (Jeyaharan et al., 2016). 

 
In sum, this work grows the body of experimental evidence pointing to the microbiome as a 

source of interindividual variation in response to MTX therapy. It also demonstrates for the first 

time that human gut microbiome species are directly capable of MTX metabolism, providing a 

potential mechanism for the aforementioned non-response to the drug. Lastly, this work also 

provides experimental validation of a SIMMER species-drug metabolism prediction.  

 

3.4 Materials and methods 

Methotrexate metabolism predictions 

Bacterial enzymes capable of metabolizing MTX were predicted using SIMMER software 

(Chapter 2, (Bustion et al., 2022)). Input substrates, cofactors, and products were formatted as 

isomeric SMILES obtained from compounds’ PubChem entries. Before input to SIMMER, all 

SMILES were protonated based on the pH environment of 7.4 in the human small intestine, 

where most oral drug absorption occurs. Protonation states were calculated using ChemAxon’s 

cxcalc majorms software (“cxcalc calculator functions,” n.d.).  

Analysis of RA metagenomics data 

Presence of SIMMER sequences was assessed in two metagenomics studies of RA patients on 

MTX therapy. Both sequencing studies’ raw reads were assembled using MetaSpades with 

default settings (Nurk et al., 2017). After assembly, DIAMOND was used to search for SIMMER 

sequences in reads, with presence defined as at least 50% coverage and at least 97% identity. All 
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abundance measures were normalized by read depth. For the Zhang et al. cohort, correlation 

between disease severity and number of aligned SIMMER predictions was assessed using 

 Pearson’s correlation coefficient and p-value calculated using a student’s t-distribution. 

Enrichment of SIMMER predictions in low, moderate, or high activity disease groups was 

assessed using a generalized linear model, glm(count~disease, family = poisson). For the 

Artacho et al. cohort, correlation between MTX response and number of aligned SIMMER 

predictions was assessed using Pearson’s correlation coefficient and p-value calculated using a 

student’s t-distribution. Enrichment of SIMMER predictions in MTX responders versus non-

responders was assessed using a generalized linear model, glm(count~response, family = 

poisson).  

Bacterial isolate screen for MTX hydrolysis 

42 isolates commonly found in the human gut microbiome were obtained from the Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ) culture collection and subcultured 

as previously described (Nayak et al., 2021). MTX (100μg/mL) was added to cultures, samples 

then spun down, and supernatant injected to HPLC. MTX was dosed based on the predicted 

concentration of the drug in a human gastrointestinal tract, as previously described (Nayak et al., 

2021). An approximately-maximum likelihood phylogenetic tree (FastTree) was created using 

16S rRNA gene sequences from the 42 organisms. SIMMER predicted enzymes’ presence or 

absence in the 42 isolates was determined by downloading genomes for all 42 isolates and 

conducting DIAMOND searches. Presence was defined as at least 97% global percent identity. 

Presence of AcrAB was determined in this manner as well. 
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Selection of enzyme candidates for heterologous expression 

SIMMER candidates for MTX hydrolysis were at adequate percent identity (median 33% global 

percent identity) to previously expressed proteins for this reaction, but underwent additional 

filtering for biological relevance. First, SIMMER sequences were filtered by predicted affinity 

for MTX using the Similarity Ensemble Approach webserver (Keiser et al., 2007). Any 

SIMMER sequences matched (E-value <= 0.05) to Chembl proteins with predicted affinity (p-

value <= 0.05) for MTX were retained. 

 
The hits were next filtered by presence in human ileum or jejunum (the site of methotrexate 

absorption) via DIAMOND searches against metagenomic reads from a published study that 

employed jejunum and ileum endoscopy (Buchfink et al., 2021; Zmora et al., 2018). Before 

running DIAMOND, sequencing runs from the study were decontaminated of any host reads via 

KneadData with default settings and assembled via MetaSpades with default settings 

(kneaddata: Quality control tool on metagenomic and metatranscriptomic sequencing data, 

especially data from microbiome experiments, n.d.; Nurk et al., 2017). Finally, twenty candidates 

were chosen from this list based on their presence in MTX metabolizing organisms described in 

Section 3.2.3 or based on their presence in metagenome-assembled genomes (i.e. as yet 

uncultured organisms). In addition to these candidates, we chose Pseudomonas sp. RS-16 CPG2 

(Uniprot P06621) as a positive control for MTX metabolism (Jeyaharan et al., 2016), and 

Pseudomonas sp. RS-16 CPG2 with a mutated active site (D119A) as a negative control for 

MTX metabolism (Jeyaharan et al., 2018). 
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Candidate cloning into pET28a vectors 

All MTX metabolism candidate and control sequences were assessed for the presence of a signal 

peptide using the SignalP 5.0 web server for gram-negative bacteria (Almagro Armenteros et al., 

2019). Only the positive and negative controls were predicted to possess signal peptides, and 

these were truncated before designing constructs. All candidates and signal peptide cleaved 

controls were then constructed with flanking sequences for insertion into a pET28a vector 

(Figure 3.6) and synthesized as codon optimized gBlocks Gene Fragments from Integrated DNA 

Technologies. The synthesized gBlocks were assembled into linearized pET28a using NEB 

Gibson Assembly. Gibson products were transformed into NEB 5-alpha Competent E. coli (High 

Efficiency) cells and their sequences confirmed by Sanger Sequencing. 

Protein expression 

After PCR and sequence confirmation, constructed plasmids were transformed into E. coli 

expression strain BL21 (DE3) cells (Thermo Scientific). After overnight incubation at 37C in TB 

broth supplemented with 50 μg/mL kanamycin, cells were subcultured 1:200 into TB + KPO4 

media supplemented with 50 μg/mL kanamycin and grown at 37C. Once overnight cultures 

reached OD600~0.6, the protein candidates were induced by adding isopropyl β-d-1-

thiogalactopyranoside (IPTG) to concentration of 0.5mM and left to shake overnight at 16C. 

Adequate expression was confirmed by SDS Page Gel for 6 of 20 constructs (Figure 3.7), and 

cells were harvested by centrifugation at 4000g for 15 minutes at 4C. Before protein purification, 

samples were flash frozen in liquid nitrogen, and stored at -80C.  
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Protein purification 

Harvested cell pellets from the overnight induction were resuspended in Buffer A (50 mM 

sodium phosphate, 150 mM NaCl, and 5% glycerol) supplemented with 110 mM benzamidine, 

0.4 mM AEBSF, 0.3 mg/mL DNase, Lysozyme, and 5mM β-Mercaptoethanol. Resuspensions 

were lysed by sonication (1/8” microtip, 2 seconds on, 2 seconds off, for six minutes, at 20% 

amplitude). Lysis product was then centrifuged at 4C and 30,000g for 30 minutes. 500uL of 

clean (cleaned 1X in 20% ethanol, and 3X in lysis buffer) Contech TALON Superflow Resin 

was added to each supernatant and batch bound for thirty minutes at 4C. Beads were then spun 

down at 500rpm for 1-2 minutes at room temperature, supernatant poured off, and washed 2X at 

500rpm with 5mL of Buffer A plus 5mM β-Mercaptoethanol. Buffer B (Buffer A supplemented 

with 400 mM imidazole) plus 5mM β-Mercaptoethanol was added, and beads spun down a final 

time at 500rpm for 1-2 minutes. Elution supernatants were snap frozen and stored at -80C until 

used in activity assays. 

Protein activity assays 

Purified proteins were assessed for their ability to degrade MTX (absorbs at 320 nm) into 

DAMPA and glutamate (lower absorption species) via UV/VIS Spectrometer as described 

previously in CPG2 research literature (Jeyaharan et al., 2016). 100uL of purified protein 

samples were loaded into quartz cuvettes with 900uL of Minimal Hepes Buffer (25mM Hepes, 

25mM NaCl, 0.2mM Zinc acetate) + 100μM MTX solution, and A320 measured on UV-VIS for 30 

second kinetic cycles for 800-200nm wavelengths, stopping at ten minutes. Absorbance versus 

time was plotted for each sample. 
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Whole cell activity assays 

In addition to activity assays of purified protein we tested activity of the transformed E. coli 

BL21 (DE3) cells expressing our protein candidates. For this, the protein expression process was 

identical to above, except that MTX (100μg/mL) was added to overnight cultures two hours after 

induction with IPTG. Induced samples were then spun down and pulled supernatant injected to 

HPLC. When activity was not seen with pulled supernatant, we also assessed the saved cell 

pellets. For this, we thawed pellets from overnight cultures at room temperature, and then 

resuspended in 1mL methanol before sonicating (1/8” microtip, 2 seconds on, 2 seconds off, for 

one minute, at 20% amplitude). Sonicated samples were spun down at 15,000g for 15 minutes at 

4C, and the resulting supernatant injected to HPLC.   

Methotrexate HPLC method 

HPLC assays were performed on an Agilent HPLC (1220 Infinity), and data collected with 

OpenLAB CDS (Agilent Technologies). Solvent A was 0.1% formic acid, and solvent B was 

100% methanol. Solvent B concentration was 10–30% from 0–1 minute, 30–100% from 1–

7 minutes, and then 100–10% from 7–7.5 minutes. The flow rate was 0.6 mL/min. A C18 

column (Kinetex 2.6 µM; 100 Å; 15 cm × 0.46 cm; Phenomenex; 00F-4462-E0) was used with a 

SecurityGuard ULTRA cartridge guard column (Phenomenex part number AJ0-8768). The 

injection volume was 30 µl. At 320 nm, MTX retention time was 5.5 minutes. We compared the 

amount of MTX present in the bacterial supernatant compared to sterile and DMSO controls to 

assess MTX metabolism. 
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Chapter 4  

Conclusions and Perspectives 

While the field of pharmacogenomics is well established, pharmacomicrobiomics lags behind. In 

part this can be attributed to the added complexity of many, rather than one, genomes that must 

be evaluated for drug metabolism genes. The number of studies exploring drug metabolism 

within the human gut microbiome is growing constantly, and recent studies employ higher-

throughput analysis of representative strain collections or ex vivo human stool samples. 

Analyzing the genetic elements responsible, however, is still a low-throughput process. In this 

dissertation, I have made the case for developing computational methods that can rescue current 

bottlenecks in pharmacomicrobiomics data, specifically identification of the bacterial species and 

enzymes responsible for single step biotransformations. I laid out the landscape of current tools, 

commented on needed improvements, and then created an accurate predictive method based on 

my proposed recommendations. 

 
This project leveraged the wealth of recent experimental data that points to the gut microbiome 

as a source of drug-metabolizing enzymes and expanded prior work by determining the specific 

genes (i.e., enzyme sequences) responsible for xenobiotic degradations. From this work, a more 

complete picture emerged for interindividual variation in the metabolism of drugs such as 

dexamethasone and methotrexate. Beyond species predictions though, more experimental work 

is required to verify that the predicted enzymes are sufficient for the metabolism events in 

question. As discussed in Chapter 2, the possibility of false positive output from SIMMER is 

high, as this was not computationally assessed. For this reason, despite having a high true 

positive rate, SIMMER predictions will not be immediately relevant in a clinical setting. To 
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demonstrate clinical utility of SIMMER enzyme predictions, subsequent analysis must be 

performed against site-specific human gut microbiome metagenomics studies, as shown in 

Chapter 3 of this dissertation. Future work must also employ pharmacokinetic modeling (PK) to 

disentangle the effects of host and microbial metabolic machinery (Mendez-Catala et al., 2020; 

Wu, 2012; Zimmermann et al., 2019b). Other recent xenobiotic metabolism modeling efforts 

include the use of metabolic reconstructions that leverage community interactions to explain 

interindividual variation in drug conversion (Heinken et al., 2020). 

 
Related to clinical efficacy, to date there are no systematic analyses that can be performed on the 

full set of FDA compounds to assess potential for bacterial metabolism. While the tool 

developed here is currently focused on known drug metabolism events, in the future SIMMER 

could be applied to all FDA-approved compounds and their theoretical metabolites predicted 

using tools like Biotransformer (Djoumbou-Feunang et al., 2019). Introducing these theoretical 

drug metabolism events to the gene retrieval pipeline may enable the discovery of new chemical 

transformation events. 

 
A benefit of SIMMER’s design is that its underlying chemistry and protein spaces can easily be 

modified to reflect updates to the MetaCyc and UHGG databases. This can also be extended to 

pharmacomicrobiomics databases once they become more comprehensive. What results is a 

method whose accuracy and resolution improve as the field’s knowledge-base grows.  

 
During the course of conducting this research, staggering technical advances were made in the 

field of protein structure predictions, and now methods like AlphaFold and the ESMFold 

(evolutionary scale modeling) allow users to predict 3D structures from any primary protein 

sequence (Jumper et al., 2021; Lin et al., 2022). ESMFold research presents a resource 
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particularly relevant to microbiome research in the form of the ESM Metagenomic Atlas, a 

compendium of over 600 million structural predictions from largely unannotated metagenomic 

sequencing data (Lin et al., 2022). As they immediately relate to this thesis work, use of such 

structural prediction tools and atlases may be an aid while designing heterologous expression and 

protein activity assays for validation of enzyme predictions.  

 
One day, structural prediction tools like AlphaFold and ESMFold may additionally enable large-

scale and accurate reverse molecular docking (the docking of a small molecule against many 

potential protein targets), which would be a valuable augmentation to the work presented in this 

thesis (e.g., by replacing the filtering step of SEA in Chapter 3). As combined protein structure 

prediction and docking methods currently stand, however, reverse docking with predicted 

structures has resulted in weak model performance (Wong et al., 2022). Another future 

application of structure prediction methods as they relate to my thesis work are improved 

homology searches. In Chapters 1 and 2 I stressed the importance of using sequence search 

algorithms like pHMMs which retain evolutionarily meaningful information, such as binding and 

active sites. As protein structure prediction algorithms improve, one could further improve 

homology searches by directly comparing overall 3D structure (van Kempen et al., 2022). 

 
All in all, what stems from my thesis research is a novel computational tool that can rescue the 

knowledge bottlenecks that plague pharmacomicrobiomics research. By using it, scientists 

researching drug metabolism in the human gut can filter their search space down to the species 

and enzymes most likely relevant to the biotransformation in question. An exciting aspect of this 

work is that it can easily scale to accommodate additional database knowledge, whether it be 
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bacterial chemistry reflected in MetaCyc, new sequencing data reflected in UHGG, or improved 

protein structural prediction data. 
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