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Abstract 

Chronic exposure to traffic-related air pollution (TRAP) is known to promote systemic 

inflammation, which is thought to underlie respiratory, cardiovascular, metabolic and 

neurological disorders. It is not known whether chronic TRAP exposure dampens inflammation 

resolution, the homeostatic process for stopping inflammation and repairing damaged cells. In 

vivo, inflammation resolution is facilitated by bioactive lipid mediators known as oxylipins, 

which are derived from the oxidation of polyunsaturated fatty acids. To understand the effects of 

chronic TRAP exposure on lipid-mediated inflammation resolution pathways, we measured total 

(i.e. free+bound) pro-inflammatory and pro-resolving lipid mediators in serum of female rats 

exposed to TRAP or filtered air (FA) for 14 months. Compared to rats exposed to FA, TRAP-

exposed rats showed a significant 36-48% reduction in fatty acid alcohols, specifically,  9-

hydroxyoctadecadienoic acid (9-HODE), 11,12-dihydroxyeicosatetraenoic acid (11,12-DiHETE) 

and 16,17-dihydroxydocosapentaenoic acid (16, 17-DiHDPA). The decrease in fatty acid diols 

(11,12-DiHETE and 16, 17-DiHDPA) corresponded to a significant 34-39% reduction in the diol 

to epoxide ratio, a marker of soluble epoxide hydrolase activity; this enzyme is typically 

upregulated during inflammation. The findings demonstrate that 14 months exposure to TRAP 

reduced pro-inflammatory 9-HODE concentration and dampened soluble epoxide hydrolase 

activation, suggesting adaptive immune changes in lipid mediator pathways involved in 

inflammation resolution. 

Running title 

Effects of chronic air pollution on rat serum oxylipins 

Keywords 

Oxylipins, blood, inflammation, resolution 
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Abbreviations: 

AA, arachidonic acid;  

ALA, alpha-linolenic acid; 

BHT, butylated hydroxytoluene; 

CHE, Center for Health and the Environment; 

COX, cyclooxygenase;  

CYP, cytochromes P450; 

DGLA, dihomo-γ-linolenic acid; 

DHA, docosahexaenoic acid; 

DiHDPA, dihydroxydocosapentaenoic acid ; 

DiHETE, dihydroxyeicosatetraenoic acid; 

DiHETrE, dihydroxyeicosatrienoic acid ; 

EDTA, ethylenediaminetetraacetic acid; 

EPA, eicosapentaenoic acid; 

EpDPE, epoxydocosapentaenoic acid ; 

EpETE, epoxyeicosateteaenoic acid; 

EpETrE, epoxyeicosatrienoic acid; 

FA, filtered air; 

HODE, hydroxyoctadecadienoic acids; 
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LA, linoleic acid; 

LOX, lipoxygenase;  

Oxo-ODE, oxo-octadecadienoic acid; 

PM, particulate matter; 

PGH, prostaglandin dehydrogenase; 

PUFAs, polyunsaturated fatty acids;  

sEH, soluble epoxide hydrolase; 

SPE, solid phase extraction; 

TRAP, traffic-related air pollution; 

TPP, triphenylphosphine; 

UPLC-MS/MS, ultra-high pressure liquid chromatography coupled to tandem mass-

spectrometry. 
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1. Introduction 

Ambient air pollution is a risk factor for metabolic (Paul et al., 2020; Persson et al., 2018; 

Voss et al., 2021; Zhang et al., 2020; Zhao et al., 2016), respiratory (Cesaroni et al., 2008; 

Oftedal et al., 2003; Shima et al., 2003) and cardiovascular disease (Gan et al., 2011; Pang et al., 

2021), as well as neurological impairments (Shi et al., 2020). It is one of the  leading risk factors 

for all-cause mortality worldwide, accounting for an estimated 10.2 million annual deaths 

globally (Landrigan et al., 2018; Vohra et al., 2021).  

Vehicles are a major source of traffic-related air pollution (TRAP), a heterogeneous mix of 

gases composed of CO, NOx, volatile organic compounds and particulate matter (PM) with an 

aerodynamic diameter <10 µm (PM10) including dominant size fractions  <2.5 µm (PM2.5, fine) 

and  <0.1 µm (ultrafine PM) (Suh et al., 2000). Concentrations of these pollutants are greatest 

near major roads (Karner et al., 2010). In the United States, an estimated 45 million individuals 

live, work or attend school within 100 m of a major transportation structure such as highways, 

railroads or airports (EPA, 2014).   

TRAP is known to induce systemic inflammation by activating macrophages (Chen et al., 

2018; Lam et al., 2020; Li et al., 2016) that increase pro-inflammatory cytokines  (TNF-α, IL-1, 

IL-8, IL-10 and others) in both rodents (Edwards et al., 2020; Li et al., 2015; Wei et al., 2016) 

and humans (Han et al., 2019; Lam et al., 2020). In vivo, the effects of macrophage-derived 

cytokines are facilitated by ‘lipid mediators’ (i.e. oxylipins) generated from the oxidation of 

polyunsaturated fatty acids (PUFAs) such as omega-6 linoleic acid (LA) (Mattmiller et al., 2014) 

and arachidonic acid (AA) (Merched et al., 2008; Wang et al., 2021a). Multiple enzyme isoforms 

of the lipoxygenase (LOX), cyclooxygenase (COX), prostaglandin dehydrogenase (PGH), 

cytochrome P450 (CYP) and soluble-epoxide hydrolase (sEH) are involved in oxylipin synthesis 

Jo
ur

na
l P

re
-p

ro
of



6 
 

(Arnold et al., 2010b; Chang et al., 2015; Earles et al., 1991; Fer et al., 2008a; Fer et al., 2008b; 

Funk, 2001; Greene et al., 2000; Inceoglu et al., 2007; Laneuville et al., 1995; Lee and Levine, 

1975; Murphy et al., 1995). As shown in Figure 1, LOX and COX hydroxylate PUFAs, PGH 

converts hydroxylated compounds to ketones (Lee and Levine, 1975), CYPs epoxidize PUFAs  

(Arnold et al., 2010a), and sEH converts epoxidized PUFAs into fatty acid diols (Moghaddam et 

al., 1996).  

In general, COX- and LOX-derived products of LA and AA are pro-inflammatory (e.g. 

octadecadienoic acids, hydroxyeicosatetraenoic acids, prostaglandins), as are CYP-derived 

epoxides of LA. Conversely, CYP-derived epoxides of AA (i.e. epoxyeicosatrienoic acids 

(EpETrEs)), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as well as 15-LOX-

1 hydroxylated metabolites of EPA and DHA  are pro-resolving (Hasegawa et al., 2017; Rao et 

al., 2019; Teixeira et al., 2020; Wagner et al., 2017; Werz et al., 2018). These pro-resolving 

oxylipins act via specialized receptors (Reviewed in (Chiang and Serhan, 2017)) to stop and 

resolve inflammation by promoting cellular repair and phagocytosis of dead cells and debris 

(Kohli and Levy, 2009; Lahvic et al., 2018; Serhan and Levy, 2018).  

To date, the majority of studies have focused on the role of acute or sub-chronic (weeks) 

exposure to TRAP components on the synthesis of pro-inflammatory oxylipins in rodents and 

humans. Mice exposed to ultrafine particle components of TRAP for 8 weeks showed increased 

plasma, liver and intestinal LA- and AA-derived hydroxylated and prostanoid lipid mediators of 

5-LOX and COX1/2, respectively, compared to mice exposed to filtered air (FA) (Li et al., 

2015). Similar findings were reported in human plasma and lung lavage following acute diesel 

exposure (Gouveia-Figueira et al., 2017; Gouveia-Figueira et al., 2018). A recent observational 

study in humans showed that exposure to elevated TRAP over a 3-day period was associated 
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with higher serum concentrations of hydroxylated LOX metabolites of AA, increased sEH-

derived diols of AA, and reduced COX-derived prostanoids of AA (Wang et al., 2021b). 

A critical knowledge gap in the field is whether chronic TRAP exposure for many months 

impairs the resolution of inflammation. In humans, acute TRAP exposure for up to 3 days was 

associated with increased LOX-derived 17-hydroxyDHA, a precursor to multiple pro-resolving 

lipid mediator species (Wang et al., 2021b; Yang et al., 2015). This highlights a possible role of 

acute TRAP exposure in regulating resolution pathways. However, chronic effects of TRAP 

exposure on both inflammation and resolution pathways have not been studied. 

 The key objective of the present exploratory study was to investigate the chronic (14 

months) effects TRAP exposure on inflammation and resolution lipid mediator pathways in 

serum of female rats. We hypothesized that the acute TRAP-induced elevations in pro-

inflammatory oxylipins documented by several studies would be exacerbated by chronic TRAP 

exposure. The analysis was performed on a subset of serum samples from a prior study in which 

male and female rats were exposed to ambient TRAP or FA for 14 months to assess the effects of 

TRAP on Alzheimer’s disease phenotypes (Patten et al., 2021). We focused on female rats 

because they exhibited more pronounced elevations in circulating pro-inflammatory cytokines 

(IL-1α, interferon-γ and TNF-α) compared to males following 14 months TRAP exposure 

(Edwards et al., 2020). TRAP was collected from a heavily trafficked freeway tunnel in Northern 

California and delivered unchanged to the animals in real time to recapitulate the natural 

intensity and variability of vehicular emissions representative of real-world exposures for those 

living near highways (Allen et al., 2001; Gross et al., 2000). FA control animals were exposed to 

background ambient air that was subjected to multiple emission control technologies to remove 

residual air pollutants as previously described (Edwards et al., 2020). We measured oxylipins 
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covering the various PUFA-derived enzymatic pathways  shown in Figure 1, in view of prior 

studies showing acute or sub-acute effects of TRAP exposure on COX, LOX and sEH pathways 

in both rodents and humans (Gouveia-Figueira et al., 2017; Gouveia-Figueira et al., 2018; Li et 

al., 2015; Wang et al., 2021a). 

 

Materials & Methods:  

2. Methods 

Animals 

 All procedures were conducted in compliance with the University of California-Davis 

IACUC approved protocols and in accordance with ARRIVE Guidelines 2.0. Samples consisted 

of archived serum from a prior study in which rats were exposed to TRAP or FA from 1 to 15 

months of age (Edwards et al., 2020; Patten et al., 2021). As previously described, wildtype 

Fischer 344 rats used were obtained from mating Fischer 344 females (Charles River 

Laboratories) with hemizygous TgF344-AD male rats obtained from a colony established at UC 

Davis in 2016 (Patten et al., 2021). At postnatal day 28, male and female rats were randomly 

divided into two groups, filtered air (FA, n=45) and TRAP (n=45), and transported from the UC 

Davis campus to an IACUC-approved vivarium located adjacent to a freeway tunnel. Rats were 

exposed to FA or TRAP in this vivarium until they were 15 months old (Edwards et al., 2020; 

Patten et al., 2021). The analysis in the present study was performed on surplus female serum 

samples from Edwards et al. study (Edwards et al., 2020) of which 8 were exposed to FA and 6 

to TRAP.  
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 Details of the tunnel vivarium have been previously described (Berg et al. 2020; Edwards 

et al. 2020; Patten et al. 2020). The facility was maintained under controlled environmental 

conditions (20-26 °C, 12:12 light dark cycle) with food (Envigo Teklad Global 18% Protein 

Rodent Diet) and tap water provided ad libitum. While at UC Davis, the animals were housed in 

a vivarium at the UC Davis Center for Health and the Environment (CHE). The husbandry 

conditions and procedures at CHE were the same as those at the tunnel facility, except that rats in 

the CHE vivarium, there was no background traffic noise and vibration, the animals were 

exposed to standard vivarium air, and cages were housed within the same room/space.          

TRAP exposure  

 The tunnel vivarium was set-up within 50 m of a heavily trafficked freeway tunnel 

(approximately 60,000 vehicles/day) in Northern California as previously detailed (Geller et al., 

2005). The facility  (44 feet x 10 feet wide) contained three rooms, including the 1
st
 one (9 feet x 

13 feet) for monitoring TRAP and FA pollutant concentrations, a 2
nd

 one (9 feet x 18 feet) which 

contained exposure chambers (12.8 feet x 3 feet x 7.8 feet (LxWxH) with 6 shelves), and a 3
rd

 

one (9 feet x 12 feet) for on-site laboratory work. Each chamber accommodated 18 cages with 

dimensions of 18.75 inches x 10.25 inches x 8 inches. One of the chambers was used for TRAP 

exposure, while the other for FA exposures. For TRAP exposure, air was continuously drawn 

from the eastbound exit of the tunnel bores with an air flow rate of 35 cubic feet per minute in 

each chamber (Edwards et al., 2020; Patten et al., 2021). FA was delivered to rats in a separate 

exposure chamber within the second room. As previously reported, for FA, the average particle 

number filtration efficiency, average PM2.5 mass filtration efficiency, and average total 

suspended particulate mass filtration efficiency were 97.7±0.7%, 89±5%, and 89±5% 

respectively (Edwards et al., 2020). This was achieved by drawing air surrounding the facility 
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and sequentially processing it using coarse filtration to remove large debris/dust,  an activated 

carbon scrubber (Phresh® HGC701018 Air Carbon Filter; 8”×39”; 950 cfm max flowrate) to 

remove volatile organic compounds,  an inline activated carbon scrubber (Phresh® HGC701180 

Inline Air Carbon Filter; 8”×24”; 750 cfm max flowrate) and three-way catalytic converters 

(MagnaFlow® 445006; CARB-compliant) to remove nitrogen oxides, hydrocarbons and carbon 

monoxide, and an inline, custom-made, ultrahigh-efficiency particle filtration system to remove 

ultrafine, fine and coarse mode PM.  Animals (8 FA and 6 TRAP) were exposed continuously 24 

hours a day, 7 days a week for a total of 427 days (about14 months). Mean daily PM2.5 in the air 

delivered to the chambers was 15.6±3.7 µg/m
3
 in TRAP and 0.25 ± 0.11 µg/m

3
 in FA (Patten et 

al., 2021). At the end of the exposure, animals were transported to the UC Davis campus where 

they went through MRI/PET imaging before being euthanized 23 days later. Rats were 

anesthetized using 4% isoflurane (Southmedic Inc., Barrie ON) in 2/3 medical grade air and 

medical grade oxygen, delivered via inhalation at a rate of 1.5 L/min. Following deep anesthesia, 

the chest cavity was opened and blood was obtained from the heart via cardiac puncture. 

Samples were collected into serum separator tubes (Becton-Dickinson, East Rutherford, NJ) 

which were allowed to sit at room temperature for 30 min before centrifugation at 1500 x g for 

10 min. The resulting serum was transferred to microcentrifuge tubes and immediately frozen 

and stored at -80 C (Patten et al., 2021).  

 

Serum total oxylipin extraction  

Total oxylipins (i.e. free + esterified oxylipins) derived from the n-3 PUFAs, alpha-linoleic 

acid (ALA), EPA and DHA, and from the n-6 PUFAs LA, dihomo-γ-linolenic acid (DGLA) and 

AA were measured with targeted mass-spectrometry analysis as previously described (Zhang et 
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al., 2021).  Oxylipins were extracted from archived rat female serum that had been previously 

subjected to one freeze-thaw cycle for cytokine measurements (Edwards et al., 2020). The 

samples were thawed on ice for approximately 2 hours, vortexed and 100 µL was transferred into 

an 8 mL Kimble Borosilicate glass tubes (100 x 13mm, Cat. No. 73750-13100, Thomas 

Scientific) with PTFE-Faced Rubber Liner caps (Cat. No. 45066C-13, Thomas Scientific). Three 

100 µL water blank samples were subjected to parallel procedures. To each sample, 500 µL 

solution of 1 mM disodium EDTA (Cat No. E5134-50G, Sigma) and 0.9% sodium chloride (Cat. 

No. S7653-250G, Sigma), and 2.4 mL of chloroform and methanol (v/v, 2/1) containing 0.002% 

butylated hydroxytoluene (BHT) were added. Samples were vortexed and centrifuged for 15 min 

at 2000 rpm (SORVALL RT 6000D, rotor H1000B) at 0 
o
C. The lower chloroform phase was 

transferred into new 8 mL glass tubes using a glass pipette. Another aliquot of 1.6 mL 

chloroform was added to the first test-tube, vortexed and centrifuged for 15 min. The lower 

chloroform phase was combined with the first chloroform phase.  

The combined chloroform extracts were evaporated under nitrogen and spiked with 200 µL 

ice-cold methanol containing 0.1% acetic acid and 0.1% BHT, 10 µL of antioxidant mixture 

containing 0.2 mg/mL triphenylphosphine (TPP), 0.2 mg/mL BHT and 0.2% mg/mL EDTA, and 

10 µL surrogate mix containing 2 uM deuterated surrogate standard mix (d11-11(12)-EpETrE, 

d11-14,15-DiHETrE, d4-6-keto-PGF1a, d4-9-HODE, d4-LTB4, d4-PGE2, d4-TXB2, d6-20-

HETE and d8-5-HETE) dissolved in LCMS methanol. The mixture was vortexed and 300 µL 0.4 

M sodium hydroxide dissolved in methanol and water (v/v, 1:1) was added. The mixture was 

vortexed and heated at 60 
o
C for 30 min to catalyze the hydrolysis of bound oxylipins. Following 

hydrolysis, the samples were cooled for 5 min. Acetic acid (37.5 µL) was added to bring the pH 
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of the samples to 4-6. Water (1796 uL) was added to adjust the methanol content to 

approximately 15%.  

The samples were vortexed and subjected to solid phase extraction (SPE) using 60mg Oasis 

HLB columns (Waters Coorp) pre-washed with 1 column volume of ethyl acetate and 2 column 

volumes of methanol, and equilibrated with 2 column volumes of SPE buffer containing 0.1 % 

acetic acid and 5% methanol in MilliQ water. The columns were washed with 2 column volumes 

of SPE buffer, and dried with vacuum suction (~20min, 15~20psi). Oxylipins were eluted into 2 

mL centrifuge tubes with 0.5 mL methanol and 1.5 mL of ethyl acetate.  

The extracts were reconstituted with 100 µL methanol, vortexed and centrifuged for 2 min at 

15,871 ×g (13,000 rpm)  on an Eppendorf, 5424 R centrifuge,  at 0°C. The reconstituted samples 

were transferred to centrifugal filter unit (PVDF 0.1 µm) and centrifuged for 20 min at 15,871 

×g,  0°C. The filter was discarded, and the filtrate was transferred into LC-MS vials with inserts.  

Mass-spectrometry analysis 

Oxylipins were analyzed on an Agilent 1290 Infinity UPLC system coupled to an Agilent 

6460 triple-quadrupole tandem mass spectrometer (UPLC-MS/MS) with electrospray ionization 

(ESI) (Agilent, Palo Alto, CA, USA). Analyte separation was achieved using an Agilent 

ZORBAX RRHD Eclipse Plus C18 column (2.1 × 150 mm, 1.8 μm Agilent Corporation). 

Mobile phase A consisted of MilliQ water containing 0.1% acetic acid, and mobile phase B 

consisted acetonitrile/methanol (v/v, 80/15) containing 0.1% acetic acid. Samples were 

maintained at 4 °C during the analysis. The column temperature was 45 °C. The injection 

volume was 10 µL and the run time was 20 min. The mobile phase gradient and flow rate were 

set as follows: 1) 0-2 min, 65% A, 0.25 mL/min; 2) 2-12 min, 65 to 15% A, 0.25 mL/min; 3) 12-
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15min, 15% A, 0.25 mL/min; 4) 15.1-17 min, 0% A, 0.4 mL/min; 5) 17.1-19 min, 65% A, 0.4 

mL/min; and 6) 19-20 min, 65% A, 0.3 mL/min. The MS ion source parameters were set as 

follows: gas temperature 300 °C, gas flow 10 L/min, nebulizer gas 35 psi, sheath gas heater 

temperature 350 °C, and capillary voltage 4000 V. Oxylipins were captured using optimized 

dynamic multiple reaction monitoring parameters shown in Supplementary Table 1.   

 

Effects of freeze-thawing 

 Because the oxylipin measurements were done using previously thawed samples, we 

tested whether one freeze-thaw cycle alters total oxylipin concentrations. Three randomly 

selected samples that were thawed and assayed for oxylipins (as described above) were thawed 

and re-extracted one month later. Oxylipins were quantified with UPLC-MS/MS as described 

above. 

 

Data and Statistical analysis 

There were no animal or data exclusions for this study, meaning that all available samples 

from 8 FA (control) and 6 TRAP rats were analyzed with mass-spectrometry and corresponding 

data reported below. The sample size is similar to a prior study which reported significant 

effects of TRAP exposure during the prenatal period until 8 weeks postpartum on circulating 

lipid, inflammation and oxidative stress markers in rats (Wei et al., 2016).  Sample extractions 

and UPLC-MS/MS peak analysis was performed in a blinded manner. Oxylipin quantitation was 

achieved using a standard curve for each analyte to correct for the response factor on the mass-

spec detector, and deuterated surrogate standards to account for losses during the extraction. 
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Compounds that used d4-PGE2 as a surrogate standard were not analyzed due to degradation of 

the deuterated standard during hydrolysis, consistent with previous reports (Emami et al., 2020; 

Ostermann et al., 2020). The ratio of PUFA diol to precursor epoxides (x 100) was calculated to 

estimate in vivo sEH activity (Stefanovski et al., 2020). Only detected oxylipins in all rats were 

subjected to statistical analysis. An unpaired t-test (two-tailed distribution) was performed using 

Microsoft Excel to compare the effects of TRAP vs FA on oxylpin concentrations. A paired t-

test was used to test the effects of freeze-thawing on oxylipins. Statistical significance was set at 

P<0.05. 

3. Results 

9-Hydroxyoctadecadienic acid (9-HODE), an LA metabolite formed by autooxidation or 5-

LOX, was significantly reduced by 36% (P=0.038) in TRAP-exposed rats compared to FA 

controls (Figure 2). The concentration of 9-oxo-octadecadienoic acid (9-oxo-ODE), a ketone 

metabolite of 9-HODE formed by PGH (Earles et al., 1991), was reduced by 36% in TRAP-

exposed rats relative to FA rats, but this difference did not reach statistical significance 

(P=0.060;  Supplementary Table 2). EPA-derived 11,12-dihydroxy-eicosatetraenoic acid 

(11,12-DiHETE) and DHA-derived 16,17-dihydroxy-docosapentaenoic acid (16, 17- DiHDPA), 

two products of sEH, were reduced by 48% (P=0.049) and 39% (P=0.012), respectively, in 

TRAP-exposed rats compared to FA controls (Figure 2). Similar reductions of 38-39% were 

observed in AA-derived 8,9- dihydroxyeicosatrienoic (DiHETrE) and 11,12-DiHETrE, but these 

changes were not statistically significant (P=0.062 and 0.084). Precursor PUFA epoxides 

including 11(12)- wpoxydocosapentaenoic acid (EpETE), 16(17)-epoxydocosapentaenoic acid 

(EpDPE), 8(9)-EpETrE and 11(12)-EpETrE did not change significantly.  
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The diol to epoxide ratio, an in vivo marker of sEH activity (Stefanovski et al., 2020), was 

reduced by 34% and 39% for the ratios of 16,17-DiHDPA/16(17)-EpDPE (P=0.005) and 11,12-

DiHETrE/11(12)-EpETrE (P=0.026), respectively, in TRAP compared to FA rats (Figure 3). 

There were no significant changes in COX, CYP or other LOX/PGH metabolites 

(Supplementary Table 2) or diol to epoxide ratios of other PUFAs (Supplementary Table 3).  

Freeze-thawing did not have a major impact on total (free+esterified) oxylipin concentrations. 

As shown in Supplementary Table 4, freeze-thawing significantly altered the concentration of 

only 6 out of 66 detected oxylipins in serum (P<0.05 by paired t-test). None of these oxylipins 

were altered by TRAP exposure. 

4. Discussion  

Chronic exposure of female rats to ambient TRAP for 14 months reduced serum 

concentrations of LA-derived 9-HODE, EPA-derived 11,12-DiHETE and DHA-derived 16,17-

DiHDPA compared to FA controls. The diol to epoxide ratio, a marker of sEH activity, was also 

reduced by TRAP compared to FA exposure. 9-HODE can be formed by LOX catalysis or 

autooxidation of LA, whereas 11,12-DiHETE and 16, 17-DiHDPA are synthesized by sEH from 

their corresponding epoxides. Thus, our findings demonstrate that chronic TRAP exposure 

reduced LOX/autooxidation and sEH pathways. 

LOX/autoxidation and sEH pathways are typically upregulated during inflammation 

(Patwardhan et al., 2010; Trindade-da-Silva et al., 2020; Warner et al., 2017), and inhibition of 

5-LOX and sEH has been shown to halt and resolve inflammation (Fredman et al., 2014; 

Hiesinger et al., 2020; Liu et al., 2021; Teixeira et al., 2020; Yang et al., 2015). In this study, 

TRAP exposure dampened LOX/autoxidation and sEH pathways despite increasing pro-

inflammatory cytokines (Edwards et al., 2020). This may reflect adaptive changes to chronic 

Jo
ur

na
l P

re
-p

ro
of



16 
 

TRAP exposure, potentially aimed at counteracting systemic inflammation, as observed in one 

study showing a downregulation of Th1 immune cells following acute and sub-chronic intranasal 

exposure to PM in an autoimmune encephalomyelitis mouse model of immune activation 

(O'Driscoll et al., 2019). Thus, based on the observed reduction in pro-inflammatory 9-HODE 

and sEH-derived EPA/DHA diols, chronic TRAP exposure appears to dually suppress 

inflammation and upregulate resolution by sparing pro-resolving PUFA-epoxide breakdown into 

less active PUFA diols.  

Our results are opposite to prior studies which reported an increase in circulating pro-

inflammatory mono- and di-hydroxylated oxylipins of LOX and sEH following acute TRAP 

exposure. Mice exposed to ultrafine particles for 8 weeks, and humans exposed to diesel exhaust 

acutely or TRAP for up to 3 days exhibited elevations in LA or AA mono- and di-hydroxylated 

metabolites of LOX and sEH (Gouveia-Figueira et al., 2017; Gouveia-Figueira et al., 2018; Li et 

al., 2015; Wang et al., 2021b). The observed reductions in mono- and di-hydroxylated lipid 

mediators in this study suggest differing effects of acute versus chronic TRAP exposure, and 

point to temporal changes in oxylipin metabolism depending on the duration of exposure.  

One factor potentially confounding our interpretation is that the animals were moved from the 

exposure tunnel to the UC Davis main campus vivarium for 23 days (for MRI/PET imaging) 

prior to euthanasia. It is possible, therefore, that the observed lipid mediator changes reflect an 

adaptive response to withdrawal from TRAP exposure, rather than a direct effect of TRAP. This 

is unlikely, however, for several reasons. First, PM and various dust elements are known to 

accumulate in tissues (Leffler et al., 1984; Patten et al., 2020), and reside there for up to 6 

months (e.g. lungs) after the initial exposure is removed (Parkhomchuk et al., 2016; 

Parkhomchuk et al., 2019). This means that TRAP-related effects are likely to persist even after 
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the exposure is removed, consistent with studies showing that acute exposure to PM causes long-

lasting (order of weeks) effects on lung inflammatory pathways in rats (Kodavanti et al., 2002). 

Second, there is evidence of transfer of leukocytes and myeloperoxidase from the lungs to blood 

after pulmonary PM exposure, suggesting that systemic changes in lipid mediator levels 

observed in this study reflect PM-induced effects in the lungs and possibly other tissues, 

followed by transfer to the blood (Nurkiewicz et al., 2006). Regardless, it is acknowledged that 

the current experimental design cannot establish whether the observed lipid mediator changes are 

due to chronic effect of TRAP or withdrawal from TRAP exposure. Future studies are needed to 

address this limitation, and to better understand the time-course of lipid-mediated changes 

following cessation of TRAP exposure.  

 There are other limitations worth acknowledging. The small sample size (6 to 8 per 

group), although similar to other rodent TRAP studies, may have increased the risk of a type I 

statistical error. However, significant changes within an oxylipin pathway were corroborated by 

changes in other lipid mediator(s) within the same network, thus strengthening our findings. For 

instance, the significant reduction in 9-HODE in TRAP-exposed rats was corroborated by the 

36% reduction in 9-oxo-ODE (a metabolite of 9-HODE), which was not significant but had a 

large effect size (d > 1.0). Changes in fatty acid diols were also confirmed across multiple 

compounds, thus strengthening the evidence. Another limitation is that the present analysis was 

confined to females; future studies should explore sex differences in lipid mediator response to 

TRAP exposure. Although measurements were done in previously freeze-thawed serum samples, 

we confirmed that this process does not impact the majority of oxylipins, particularly lipid 

mediators that were altered by TRAP exposure. An important strength of the study is the long-
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term exposure model involving real-world TRAP, which makes our findings translationally 

relevant to humans.   

In summary, this preliminary study provides new evidence of dampened inflammatory 

signaling and enhanced resolution pathways following chronic TRAP exposure in female rats. 

This points to adaptive lipid-mediated mechanisms that may mitigate the effects of pro-

inflammatory cytokines. Our findings also point to clear differences in lipid mediator response to 

acute versus chronic TRAP exposure; acute exposure increases pro-inflammatory lipid mediators 

(Gouveia-Figueira et al., 2017; Gouveia-Figueira et al., 2018; Li et al., 2015; Wang et al., 

2021b), whereas chronic exposure reduces them and decreases sEH-mediated breakdown of pro-

resolving oxylipins. These distinct oxylipin changes may potentially serve as biomarkers of acute 

versus chronic exposure to TRAP. Future studies should evaluate the time-course of lipid-

mediated inflammation resolution in this real-world exposure model to better characterize 

windows of opportunity for interventions targeting inflammation and resolution pathways. 
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Figure 1: Biosynthesis of oxylipins from polyunsaturated fatty acids. 

Biosynthesis of oxylipins from polyunsaturated fatty acids (PUFAs) via lipoxygenease (LOX), 

prostaglandin dehydrogenase (PGH), cyclooxygenease (COX), cytochrome P45 (CYP) and 

soluble epoxide hydrolase (sEH). PUFAs that serve as precursors to aoxylipins include linoleic 

acid (LA), dihomo-gamma-linolenic acid (DGLA), arachidonic acid (AA), alpha-linolenic acid 

(ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). LOX enzymes are 

involved in the synthesis of LA-derived hydroxyoctadecadienoic acid (HODE), DGLA-derived 

hydroxyeicosatrienoic acid (HETrE); AA-derived hydroxyeicosatetraenoic (HETE) and 

leukotrienes (LTs), ALA-derived hydroxyoctadecatrienoic acid (HOTrE), EPA-derived 

hydroxyeicosapentaenoic acid (HEPE) and DHA-derived hydroxydocosahexaenoic acid. PGH 

concerts hydroxyl fatty acids into ketones such as oxo-octadecadienoic acid (oxo-ODE) and oxo-

eicosatetraenoic acid (oxo-ETE). COX enzymes are involved in the synthesis of DGLA- and 

AA-derived prostaglandins (PGs) and thromboxanes (TXs), and EPA-derived PGs. Both COX 

and LOX are involved in resolvin synthesis. CYPs are involved in epoxide synthesis; e.g. 

epoxyoctadecenoic acid (EpOME), epoxyeicosadienoic  acid (EpEDE),  epoxyeicosatrienoic 

acid (EpETrE), epoxyeicosateteaenoic acid (EpETE) and epoxydocosapentaenoic acid (EpDPE). 

sEH converts PUFA epoxides into diols including dihydroxyoctadecenoic acid (DiHOME), 

dihydroxyeicosadienoic acid (DiHEDE), dihydroxyeicosatrienoic acid (DiHETrE), 

dihydroxyeicosatetraenoic acid (diHETE) and dihydroxydocosapentaenoic acid (DiHDPA).  The 

exact mechanism of for LA-derived trihydroxyoctadecamonoenoic acid (TriHOME) synthesis is 

not known. 
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Figure 2: Serum concentrations (nM) of total (i.e. free+bound) oxylipins in serum of rats 

exposed to filtered air (FA) or Traffic related air pollution (TRAP) for 14 months.  

 

Data are mean ± SD of n=8 FA and 6 TRAP. (*) denotes significantly different means by 

unpaired t-test at p<0.05. 
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Figure 3. Fatty acid diol to epoxide ratios in serum of rats exposed to filtered air (FA) or Traffic 

related air pollution (TRAP) for 14 months.  

 

 Data are mean ± SD of n=8 FA and 6 TRAP. (*) denotes significantly different means by 

unpaired t-test at p<0.05. 
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Highlights: 

 Rats were exposed to traffic-related air pollution (TRAP) or filtered air for 14 months. 

 Serum was analyzed for inflammation and resolution lipid mediators. 

 TRAP reduced pro-inflammatory lipid mediators. 

 TRAP reduced the degradation of pro-resolving lipid mediators. 

 The data suggest adaptive immune changes to chronic TRAP exposure. 
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