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Abstract: In practice cows are fed by pen, but a diet is formulated to the nutrient requirements of
a single cow. If the dry matter intake (DMI) of a pen were equal for all cows this
approach would have no error, but cows are grouped into pens on pregnancy and
other management factors creating a distribution of DMI. The goal of precision feeding
is to meet the requirements of individual animals to increase efficiency and reduce
environmental impact but is not achieved when a group is fed as if the individuals have
uniform requirements and the DMI distribution is not normal. The hypothesis of this
work is that the DMI of cow pens are not normally distributed and the total DMI from
the best fit distribution shape for a cow pen will have lower percentage error to the
observed DMI than a prediction of a single DMI that is fed at a uniform level and
assumes a normal distribution. Our objective was to describe the distribution shape of
DMI by week of lactation, and for different pen types. Pens were generated by
randomly assorting cows by week of lactation from a database into different categories
of pen for size and lactation period. These pens were fitted to the best distribution type,
and its parameters were used to randomly generate distribution plots that predict the
total DMI for each pen. A second predictive model estimated the DMI of each pen
using an empirical equation of DMI that was multiplied by the number of cows in the
pen to represent feeding of a uniform DMI quantity. The percentage error for the
distribution shape model was significantly lower than the empirical model with pen
errors being less than 1 %. The beta distribution type was the most common
distribution to best represent the data of pen DMI. Describing the distribution and using
it to predict a total pen DMI provides accurate estimates of feed quantity for a group.
Reducing error by using the distribution of DMI for feed formulation, instead of the
nutrient requirements of an individual animal can provide a precision nutrition approach
to group feeding.
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Abstract 9 

In practice cows are fed by pen, but a diet is formulated to the nutrient requirements 10 

of a single cow. If the dry matter intake (DMI) of a pen were equal for all cows this 11 

approach would have no error, but cows are grouped into pens on pregnancy and 12 

other management factors creating a distribution of DMI. The goal of precision 13 

feeding is to meet the requirements of individual animals to increase efficiency and 14 

reduce environmental impact but is not achieved when a group is fed as if the 15 

individuals have uniform requirements and the DMI distribution is not normal. The 16 

hypothesis of this work is that the DMI of cow pens are not normally distributed and 17 

the total DMI from the best fit distribution shape for a cow pen will have lower 18 

percentage error to the observed DMI than a prediction of a single DMI that is fed at 19 

a uniform level and assumes a normal distribution. Our objective was to describe the 20 

distribution shape of DMI by week of lactation, and for different pen types. Pens were 21 

generated by randomly assorting cows by week of lactation from a database into 22 

different categories of pen for size and lactation period. These pens were fitted to the 23 

best distribution type, and its parameters were used to randomly generate distribution 24 

plots that predict the total DMI for each pen. A second predictive model estimated the 25 

DMI of each pen using an empirical equation of DMI that was multiplied by the 26 

number of cows in the pen to represent feeding of a uniform DMI quantity. The 27 

percentage error for the distribution shape model was significantly lower than the 28 

empirical model with pen errors being less than 1 %. The beta distribution type was 29 

the most common distribution to best represent the data of pen DMI. Describing the 30 

distribution and using it to predict a total pen DMI provides accurate estimates of feed 31 

quantity for a group. Reducing error by using the distribution of DMI for feed 32 
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formulation, instead of the nutrient requirements of an individual animal can provide a 33 

precision nutrition approach to group feeding.  34 

 35 

Keywords 36 

Precision feeding, diet formulation, dairy production, mathematical modeling. 37 

Implications 38 

Precision feeding in dairy production can improve nutrient efficiency and reduce feed 39 

cost and environmental impact by meeting the requirements of each animal, but is 40 

not achieved in group feeding systems. This work describes the distribution of feed 41 

intake by pens of cows, and demonstrates that this calculates a pen feed quantity 42 

with very low error. This estimates the feed quantity that meets the needs of a pen 43 

and delivers population level precision feeding for commercial management that is 44 

not achievable when applying individual animal data to a population.  45 

Introduction 46 

In practice, cows are fed by pen, and a diet is formulated to a single estimate of dry 47 

matter intake (DMI) that represents the pen’s mean cow. This is scaled to the number 48 

of cows in the pen and a uniform quantity of feed per cow is provided. If the DMI of a 49 

pen were constant, there would be 0 feed quantity error in this approach. However, if 50 

DMI is not constant, the mean is not an appropriate parameter. It is accepted in the 51 

dairy industry that milk production and dry matter intake are not constant within cow 52 

pens. Feeding cows uniformly, consistently underestimates feed quantity. Then, 53 

mathematical corrections are employed to ensure sufficient feed to high production 54 

cows, such as feeding to the 83rd percentile nutrient requirements of the pen 55 
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(Stallings and McGilliard, 1984), or over-formulation where the estimated DMI 56 

quantity is increased by a fixed proportion (Weiss, 2019). Precision feeding of dairy 57 

cows requires accurate estimates of the pen feed quantity, as the goal of precision 58 

feeding is to minimize nutrient waste through minimizing leftover feed. But, pen level 59 

management prohibits individual cow feeding (Schulze, Spilke, and Lehner, 2007), as 60 

diets formulated for an individual do not meet the requirements of a group. 61 

 62 

Precision feeding addresses between-animal variation to deliver the correct amount 63 

of feed to each animal and can reduce nutrient excretion, feed cost, environmental 64 

impact and increase nutrient efficiency (Bewley, 2010; Pomar et al., 2011; Capper 65 

and Cady, 2020).  To employ precision feeding in a pen, the distribution of DMI by 66 

pen cannot be represented by a constant as cows are not uniform across a pen. For 67 

example, cows are sorted into pens based on pregnancy status, milk production level 68 

(low and high) and nutrient efficiency (St-Pierre and Thraen 1999). Variation in DMI is 69 

affected by milk yield (45 %), feed management (22 %), BW (17 %), climate (10 %) 70 

and body condition score (6 %) (Roseler et al., 1997).x Grouping cows by these 71 

same factors will create a distribution of DMI. The current assumption of uniformity 72 

when formulating pen diets does not address between-cow variation in DMI. There is 73 

concern in the applicability of individual cow studies to commercial operations where 74 

cows are grouped in pens (St-Pierre, 2007). Empirically derived predictions of DMI 75 

and nutrient requirements for an individual cow, such as Nutrient Requirements of 76 

Dairy Cattle (NASEM, 2021) or the Cornell Net Carbohydrate and Protein System 77 

(Van Amburgh et al., 2015), assume all cows in a pen eat the same amount, and do 78 

not consider how distribution of DMI differs for groups of cows at different production 79 

levels. 80 
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 81 

The hypothesis of this model is that feeding a uniform DMI does not represent the 82 

distribution shape of DMI for cow pens, and the total DMI quantity for a pen 83 

calculated as the density of the best fitting distribution shape will be closer to the true 84 

DMI when compared to the empirically calculated DMI for the mean cow of the pen. 85 

Using a database of individual cow DMI by week we will first describe the skew and 86 

kurtosis of DMI of cows when grouped by week of lactation, then generate sample 87 

pens of cows within a range of weeks of lactation, describe the distribution type and 88 

parameters, and predict a total DMI. This will be compared to the observed total DMI, 89 

the total DMI that is predicted by the mean DMI of a pen by the NASEM 2021 90 

equation and the observed DMI.  91 

Material and methods 92 

No approval from the University of California, Davis, Animal Care and Use 93 

Committee was needed for this study as it was conducted using only previously 94 

collected data.  95 

Database description  96 

A database was constructed from datasets of nine research trials for this 97 

mathematical modelling study. All trials were nutrition or management-based 98 

interventions on lactating cows and seven of the nine have been published in peer 99 

reviewed journals. Each trial includes data for different ranges of the lactation period, 100 

with the recording period starting at 1 wk (first 7 d immediately after parturition) and 101 

extended up to 44 wk (Table 1). All cows had individual milk yield and components 102 
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recorded at each milking daily, and DMI recorded daily using Calan gates (American 103 

Calan, NH, USA). Data were averaged by week per cow for 426 cows in total. 104 

Inclusion criteria   105 

Every dataset needed to list individual records by unique cow identification number, 106 

identify treatment assignment, parity, diet composition, days in milk, weekly milk 107 

yield, weekly milk fat and weekly DMI consecutively for at least 4 wk. Some of the 108 

datasets also included milk protein, BW, and body condition score. 109 

Data cleaning  110 

Cows with missing values for weekly observations were not removed. Datasets were 111 

imported to a SQL database using an open database connector pipeline. Within the 112 

database, a variable for fat corrected milk was created using the formula 3.5% 𝐹𝐶𝑀 =113 

(0.4324 ∗ 𝑘𝑔) + (16.216 ∗ 𝑚𝑖𝑙𝑘𝑓𝑎𝑡) (Tyrrell and Reid, 1965). We used fat corrected 114 

milk instead of energy corrected milk because 1 dataset did not record milk protein 115 

values. A variable for feed efficiency (FE) was created using the formula 𝐹𝐸 =116 

𝐹𝐶𝑀 𝐷𝑀𝐼⁄  (Korver, 1988). We used FE to compare the metabolic efficiency of cows 117 

across trials despite differences in diet and environment to determine if data were 118 

reasonable and if these cows could exist on a single dairy and be grouped together 119 

into pens.  120 

Database variance assessment  121 

All datasets were compared for similarity of variance in DMI, milk yield and FE. The 122 

variance of FE by dataset and treatment group within dataset was used as the main 123 

measure of comparability as this represents metabolic efficiency and allows the 124 

comparison of cows with different levels of feed intake and milk yield. Data were 125 

retained in the overall database if 50% of the FE data overlapped with all other 126 
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datasets on boxplot analysis, and less than 20% of the weeks of lactation had a FE 127 

mean significantly different from other datasets on analysis of variance (ANOVA) 128 

analysis. The database was imported to R 4.2.1 (R Core Team, Vienna, Austria, 129 

2018) and milk yield, DMI and FE were examined visually using scatter plots to 130 

identify and remove outliers, and assess the range of the three variables (not shown). 131 

The mean and median of milk yield, DMI and FE was plotted by week for each 132 

dataset (Figure 1). Boxplots were examined at every week by dataset and treatment 133 

within dataset for visual comparison of the mean and variance of milk yield, DMI and 134 

FE (not shown). We used ANOVA models with R 4.2.1 base package to compare the 135 

means of the variables of milk yield, DMI and feed efficiency with cow as the unit of 136 

interest. Data were first evaluated using treatment group within dataset as the 137 

subgroup for the outcomes of milk yield, DMI and FE. Next the database was 138 

evaluated by ANOVA using dataset within database as the subgroup for the 139 

outcomes of milk yield, DMI and FE. Using the equation 𝑌𝑖,𝑗 = 𝜇 + 𝛽𝑖 +∈𝑖,𝑗, where  𝑌𝑖,𝑗 140 

is the 𝑗-th observation of the 𝑖-th group (𝑖 = 1, 2, … ,9 datasets or 𝑖 = 1, 2, … ,35 141 

treatment within dataset), 𝛽𝑖is the 𝑖-th subgroup effect and ∈𝑖,𝑗is the random error 142 

present in the 𝑗-th observation on the 𝑖-th treatment of these fixed effect models.  143 

Model description  144 

Skew and Kurtosis by week of lactation  145 

The skew, kurtosis and Shapiro-Wilk test for normality (Shapiro and Wilk, 1965) was 146 

calculated based on DMI data for each week of lactation separately starting at 1 wk 147 

to 44 wk using the Moments package of R 4.2.1 (Komsta, L., Novomestky, F., 2022). 148 

This was performed on all cows in the database, then with primiparous cows only, 149 

and then multiparous cows (Table 2). The null hypothesis of the Shapiro-Wilk test is 150 
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that the data come from a normal distribution. The null hypothesis was rejected at a 151 

significance level of P < 0.05. 152 

Creation of pens to simulate DMI distributions 153 

The database was used to generate multiple cow pens for a set number of cows 154 

within a range of weeks of lactation. Three pen types were created: fresh, high and 155 

low. Fresh pens were lactation range 1 – 3 wk, high range 4 – 18 wk and low range 156 

19 – 44 wk. We also generated a large and small dairy pen size for each type. We 157 

chose pen size and lactation range as representative of management in the 158 

California dairy industry (M. Wukadinovich, personal communication, November 159 

2022). Fresh pens were set at 20 (FRESH20) and 60 cows (FRESH60), high at 50 160 

(HIGH50) and 200 (HIGH200), and low at 50 (LOW50) and 150 (LOW150). One 161 

additional high pen was created with 50 primiparous cows only (HIGHP50), resulting 162 

in seven pen types (Table 3). To create replicates of each pen type, data was 163 

prepared in longform with one row per cow per wk of data observation. The data 164 

were subset into the week of lactation ranges for each pen type, and 100 unique 165 

pens for each type were generated by selecting one weekly observation of DMI per 166 

unique cow within that week range. This pen generating code was nested in a FOR 167 

loop with a changing random seed number in R 4.2.1 for 100 replications. 168 

Observations were replaced between each pen generation. This resulted seven sets 169 

of 100 unique pen replicates via bootstrapping. Each bootstrapped pen contained 170 

unique weekly DMI observations by cow within the lactation range for that pen, no 171 

cow occurred at multiple time points as each pen represents a temporal snapshot of 172 

potential grouping on a dairy. Each replicate selected a random weekly DMI 173 

observation per cow from the data pool available for the pen constraints, and 174 

uniqueness comes from the diversity of arrangements of different cow week 175 
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observations, and different cows grouped within pens together. Bootstrap selection 176 

restores the data pool between each replicate, and random selection of DMI 177 

observations provides the potential for many unique pens. All weekly observations 178 

included DMI and milk information, cows with missing information of BW and body 179 

condition score were included in pen generation, and their missing information was 180 

excluded when calculating summary statistics of these variables.  181 

Best distribution type fitting of DMI 182 

All 100 replicates of each seven pen types were fit to the best probability distribution 183 

type using the ExtDist package in R 4.2.1 (Wu, Godfrey, and Pirikahu, 2020). The 184 

distributions Normal, 4-parameter Beta, Weibull and Logistic were selected by 185 

preliminary visual assessment of the distribution shape of DMI of replicated pens, 186 

then tested with maximum log likelihood estimation. The value closest to zero 187 

represented the best fit to the data of the four tested distributions. For each of the 188 

100 replicates of the seven pen types, the best distribution type to the DMI data of 189 

that pen replicate was calculated by this method. The number of occurrences of best 190 

fit for each tested distribution type were summed for each pen type to calculate the 191 

proportion of each’s 100 replicates that were best fit by each distribution candidate. 192 

The skew and kurtosis values of every replicate was calculated and the mean of both 193 

values for each pen type is reported (Table 3). This method described the distribution 194 

of DMI for multiple randomly generated pens to report the most common distribution 195 

shape that best fit these pen types. The observed total DMI for each of the 700 196 

replicated pens is known and calculated as the sum of observed DMI values per pen. 197 

Model results 198 

Predicting total DMI for a distribution shape 199 
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A total DMI for every replicate of the seven pen types was predicted using its best 200 

fitting distribution. This distribution type had its appropriate parameters calculated 201 

using the function for that distribution in the R 4.2.1 package ExtDist by maximum 202 

likelihood estimation (Wu et al., 2020). For each distribution and its parameters, we 203 

randomly generated DMI values that fit the shape of the curve (rBeta, rNormal, 204 

rLogistic, rWeibull functions, base R 4.2.1). The sum of these values was considered 205 

the prediction of DMI for each pen for that fitted distribution shape. This random 206 

generation and summing of DMI values was performed 1000 times for each pen 207 

replicate, then the mean value of total DMI for the 1000 iterations was taken as the 208 

final total DMI estimate. This was performed because of variance between the 209 

randomly predicted values for a given distribution’s parameters, and to standardize 210 

the prediction of total DMI across all replicates. (Table 4). 211 

Predicting total DMI by empirical equation  212 

The descriptive statistics of each of the 700 generated pen replicates of the seven 213 

pen types were used to calculate the predicted DMI by the NASEM 2021 equation 214 

(𝐷𝑀𝐼(𝑘𝑔 𝑑⁄ ) = [(3.7 + 𝑃𝑎𝑟𝑖𝑡𝑦 × 5.7) + 0.305 × 𝑀𝑖𝑙𝑘𝐸(𝑀𝑐𝑎𝑙 𝑑⁄ ) + 0.022 × 𝐵𝑊(𝑘𝑔) +215 

(−0.689 + 𝑃𝑎𝑟𝑖𝑡𝑦 × −1.87) × 𝐵𝐶𝑆] × [1 − (0.212 + 𝑃𝑎𝑟𝑖𝑡𝑦 × 0.136) × 𝑒(−0.053 ×216 

𝐷𝐼𝑀)]) (de Souza et al., 2019; NASEM, 2021) in R 4.2.1. The mean values of parity, 217 

milk energy (NRC, 2001), BW, body condition score and days in milk (DIM) for each 218 

pen replicate were used as the input values. The predicted DMI was multiplied by the 219 

n of cows in that pen replicate to produce a total DMI of the pen at an assumption of 220 

uniform DMI.  221 

Comparing predicted DMI to observed and model diagnostics 222 
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Every pen had predicted DMI compared to the observed DMI for percentage error 223 

with the formula 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐸𝑟𝑟𝑜𝑟 = (𝑉𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑– 𝑉𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 𝑉𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑⁄ ×224 

100. Observed total DMI was considered the sum of the observed DMI values of 225 

every cow in each pen replicate. The predicted total DMI for a distribution shape, and 226 

the predicted total DMI by empirical equation of every pen were both compared to the 227 

observed total DMI for their percentage error in total DMI prediction. The mean error 228 

for each of the seven pen types by both methods of prediction was compared for a 229 

difference in means by student’s t-test at a significance level of P < 0.05 (Table 4). 230 

Both prediction models, distribution fitting vs. NASEM, were compared to the 231 

observed data for their model fit to the data using mean squared prediction error 232 

(MSPE) (𝑀𝑆𝑃𝐸 = 𝑀𝐸2 + 𝑉𝐴𝑅, ME = mean error, VAR = variance) using Microsoft 233 

Excel (Microsoft, WA, USA) and partitioned into error due to mean, slope and 234 

random bias as described by Benchaar et al., 1998 and Theil, 1966). 235 

Results & Discussion 236 

The goals of this modeling study were to create a pool of cows that could be 237 

assembled into virtual pens that represent possible grouping of cows as may occur 238 

on a commercial dairy, determine the best fit DMI distribution, and then estimate DMI 239 

of the pen using the distribution. With bootstrap sampling, we generated virtual pens 240 

by selecting a different weekly observation per unique cow and assembling them into 241 

pens of cows for a range of weeks of lactation. To observe the distribution in DMI of a 242 

pen and represent how this truly may occur on a dairy, it was important to examine 243 

many possible cow groupings for the consistency of distribution shape and estimate 244 

the group level variables that defined the distribution.  Because dairies are composed 245 

of many different cows, variance between cows in the dataset was desired. But to 246 
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avoid generating pens of cows that would not realistically be grouped together, FE 247 

was used to compare metabolism between cows. Cows are most commonly grouped 248 

by reproductive status, lactation stage and milking performance (Contreras-Govea et 249 

al., 2015), so we assumed FE should be comparable across the database as a 250 

measure of the cow’s ability to produce milk from feed, and to avoid skew by 251 

introducing an artifact from combining metabolically dissimilar cows.  252 

Database construction  253 

Inclusion Criteria 254 

Three of the nine datasets were different (P < 0.05) in milk yield or DMI due to the 255 

intervention in their publication. All datasets had overlap of at least 50 % of the data 256 

on boxplot analysis by treatment group. Results of the ANOVA analysis showed 257 

differences between treatment groups for multiple datasets at occasional weeks of 258 

lactation. But there were no differences observed for a period of three or more 259 

consecutive weeks, and differences did not occur for more than 20% of all weeks of 260 

lactation of the trial. Therefore, all treatment levels of each dataset were retained. 261 

Datasets were compared to each other visually using boxplots and statistically by 262 

ANOVA with dataset within database as the level for the means of DMI, milk yield 263 

and FE. Dataset seven had consistently lower DMI and milk yield than other 264 

datasets, and the range of these did not overlap by at least 50 % of the data of other 265 

datasets at all weeks of lactation. This dataset also had repeated weeks of milk yield, 266 

DMI and FE that were different from other datasets (P < 0.05). All observations from 267 

dataset seven were removed from the database, resulting in a total of 375 cows with 268 

8,982 weekly DMI observations retained and used in this study.  269 

Database variance assessment  270 
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Bootstrapping of pen groups allows the generation of many virtual cow pens, but as 271 

the pen size approaches the total number of unique cows available, or number of 272 

replicates increases, the variation between replicates will diminish. To generate 273 

reasonable pens from this database, a high tolerance for variation in milk yield and 274 

DMI within and between datasets was accepted, including reported significant 275 

differences by the published studies. Dairies intentionally group cows of similar milk 276 

production levels, and low milk yield accounts for 21 % of all cow culling removal 277 

(USDA, 2014). To satisfy that the cows in the database could be grouped together on 278 

a dairy, metabolic efficiency as FE, and the overlap in the variance of milk yield and 279 

DMI was used to validate that generated virtual pens are reasonable, as dairies will 280 

group cows to reduce variance in these variables. 281 

Distribution of DMI by week of lactation  282 

Week of lactation was the grouping factor for this study and is an important 283 

determinant of DMI as energy demand of milk production changes with DIM. To 284 

understand how this contributes to the distribution of DMI for pens, we first described 285 

DMI distribution at each week of lactation. Skewness is an asymmetry in a 286 

distribution, and a normal distribution is considered to have no skew. Positive 287 

skewness indicates the mass of the distribution is shifted to the lower value of the 288 

variable with a right tail (right skew), and the median is lower than the mean. 289 

Negative skewness indicates the mass of the distribution is shifted to the higher 290 

value of the variable with a left tail (left skew), and the median is higher than the 291 

mean. Kurtosis is a measure of the data in a distribution’s tails. The normal 292 

distribution has a kurtosis of three, with higher values indicating more data in the 293 

tails.  294 
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 295 

Cows were first examined together, then the primiparous and multiparous separately 296 

(Table 2) for skew, kurtosis, and Shapiro-Wilk test of normality for DMI. Best 297 

distribution fit was not presented for these data as cows would not be grouped in 298 

pens or fed by individual week on a dairy. For all cows together 2 – 10 wk of lactation 299 

were non-normal except for 6 wk. Normality was observed from 11 – 35 wk for these 300 

cow groups at almost every week, then non-normality was again observed at 301 

occasionally between 37 – 44 wk. Almost all non-normal weeks were left skewed. For 302 

primiparous, non-normality was observed at 20 and 28 wk with left skew at a n of 56 303 

cows. For multiparous, non-normality was observed for the fresh and early high 304 

period (2-6 wk), and 16 to 23, 36, 40 and 43 wk. For all three animal groups at most 305 

weeks of lactation the DMI distribution shape was negatively skewed (left skew).  306 

 307 

Under the central limit theorem, we expect that the random variable of DMI at each 308 

week of lactation would assume a near-normal distribution for a large sample size. 309 

This is only observed when looking at primiparous cows. For all cows in the early 310 

lactation period the effects of parturition on energy balance, metabolism and 311 

immunity (Pascottini, Leroy, and Opsomer, 2020) may be creating a non-normal 312 

distribution of DMI. This distribution in the early lactation period is not considered in 313 

empirical prediction equations of DMI. The NASEM 2021 and Cornell Net 314 

Carbohydrate and Protein System are both calculated using observed data of cows 315 

after their peak lactation milk yield. Normality was observed for early lactation 316 

primiparous cows. Primiparous cows may be more uniform in their milking potential 317 

and DMI as these animals still have growth energy demands and lower incidence of 318 

production diseases or intramammary infections than older animals. Further non-319 
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normality was observed in the multiparous cows after the milk yield peak (6 – 9 wk, 320 

Figure 1), and this distribution may be introduced by factors such as the age 321 

diversity, pregnancy status, disease history or management differences.  322 

 323 

The mean and median of all cows were presented by week for the variables milk 324 

yield, DMI and FE (Figure 1). There was a rapid increase in DMI and milk yield 325 

across the early lactation period. This difference in DMI level early in lactation will 326 

impact the DMI distribution of fresh pens. Later in lactation we see a gradual decline 327 

in DMI. Pens at this period of the lactation usually include cows across a wider range 328 

of weeks, and the number of cows at each week will influence the DMI distribution for 329 

a pen. The median and mean lines of Figure 1 deviate when skew occurs, as the 330 

mean is drawn away from the median by outliers. These factors, the construction of 331 

pens across a range of the lactation, and skew in DMI within cows at the same week, 332 

both highlight the concern in assuming uniformity of DMI for a pen.  333 

Distribution fitting by pen type  334 

One hundred replicates of the seven pen types were randomly generated and each 335 

one was fit to the best distribution. The 4-parameter Beta was the best distribution for 336 

all the pen types. For pens FRESH20 and FRESH60 the Beta was the best fit for 85 337 

and 87 % of replicates respectively. For HIGH50, HIGHP50 and HIGH200 the Beta 338 

was the best fit for 77, 80 and 60 % of replicates respectively, and for LOW50 and 339 

LOW150 it was the best fit for 62 and 36 % respectively (Table 3). The shape and 340 

scale parameters of the beta distribution allow it to accommodate right and left 341 

skewness in its shape and made it the best distribution to represent these data. For 342 

FRESH20 and FRESH60, the mean skewness of all the replicates were close to 0, 343 
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indicating an even number of positive and negative skew values in the replicates, and 344 

the mean kurtosis was less than three, describing a platykurtic distribution with flat 345 

tails and small outliers.  The HIGH50 and HIGH200 pens both had negative mean 346 

skewness, indicating a left sided tail, and mean kurtosis close to three, describing 347 

tails similar in weight to a normal distribution. The HIGHP50 pen had a negative 348 

mean skew value and normal mean kurtosis. Both LOW50 and LOW150 had a mean 349 

negative skewness and mean kurtosis values higher than three. This positive excess 350 

kurtosis indicates a leptokurtic distribution with heavier weighted tails, describing 351 

large outliers. This may be due to the largest week range of the LOW50 and 352 

LOW150 pens at 19 – 44 wk. The skew values of all pen types led to the beta 353 

distribution as the best overall fit. The pens FRESH20 and FRESH60 had a mean 354 

skewness close to zero, but when examining each replicate separately pens were 355 

equally dispersed as either heavily negative or heavily positive in skewness (not 356 

shown), resulting in a mean skewness close to zero.  357 

 358 

This demonstrates that in the early lactation fresh cow pens may have non-normal 359 

distributions, with outliers to either the right or left side, depending on the cows in the 360 

group. Pens later in the lactation, HIGH50, HIGH200, LOW50 and LOW150 were 361 

consistently left skewed and best described by the beta distribution as it 362 

accommodates this spread of data. The proportion of replicates best described by 363 

normal was higher for HIGH200, LOW50 and LOW150 than other pens. The 364 

HIGH200 pen may move closer to the normal as the n of this pen was the largest, but 365 

beta was still a better distribution fit for most of these replicates. Pens LOW50 and 366 

LOW150 had the normal as the best fit for 10 and 29% respectively, and the logistic 367 

distribution as best fit for 24 and 34 % of replicates respectively. These pens were 368 
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spread across the longest lactation range, and at the lower milk production period, 369 

when most cows that remain in the herd would be pregnant and at a lower intake 370 

level so the decline in DMI is less steep for these weeks. The HIGHP50 pen was still 371 

described best by the beta distribution but had a skewness and kurtosis close to the 372 

normal. This pen only consisted of primiparous cows, and as only three of the eight 373 

final datasets in the database included primiparous, this pen had less variation by 374 

DMI. But the beta distribution was still most appropriate, indicating that skewness 375 

was an important component of these pen groups at that lactation range. 376 

 377 

The description of these pens as a beta distribution indicates that uniform feeding of 378 

cows within a pen to a fixed DMI value is not appropriate. When a DMI value is 379 

estimated for a hypothetical cow of a pen and that number is multiplied by the 380 

number of cows, not all cows are eating at the same level. There is an assumption 381 

that the symmetric tails of a normal distribution will correct for this feeding rate. By 382 

feeding as if every cow will eat the same, it is expected that cows who eat less will 383 

have their excess feed consumed by cows who require more DMI. But if distributions 384 

are not normal, the pen will be over or underfed depending on how the distribution is 385 

skewed. Correction factors are routinely applied to increase the pen DMI as this 386 

method under-supplies the pen in practice. This is proven by the description of the 387 

pen distributions in this study. All high and low yielding pens, except for HIGHP50, 388 

had consistent left skew and non-normal distributions. With left sided outliers the 389 

main mass of the data is in the upper range of values for these pens. The mean is 390 

only an appropriate parameter of the normal distribution, and the mean is pulled 391 

towards extreme outliers. For these pens, the mean value will be below the center of 392 
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mass of this distribution leading to an underestimate of total DMI when the pen is fed 393 

at a uniform rate.   394 

Total DMI prediction  395 

Predicting total DMI for a distribution shape 396 

All 100 replicates of the seven pen types had a total DMI by pen predicted using the 397 

best fit distribution shape for those data (Table 4). The observed DMI for every pen 398 

replicate of the seven pen types was calculated by summing the observed DMI of the 399 

cows in each replicate, and the pen DMI predicted by its best distribution shape was 400 

compared to the observed for percentage error. A percentage error was calculated 401 

for every replicate and the mean percentage error by pen type is presented. All 402 

seven pens had a percentage error less than 1 % for the best distribution prediction 403 

of DMI.  404 

Predicting total DMI by empirical equation  405 

Pen DMI was also predicted for all replicates by calculating a DMI value with the 406 

NASEM 2021 equation with the inputs as the mean values of the pen for each, and 407 

multiplying that value by the n of cows in the pen. These predicted values were 408 

compared to the observed DMI by pen type for mean percentage error and ranged 409 

from 11 to 22 %.  410 

 411 

The mean squared prediction error of each pen type was calculated for both 412 

prediction models to assess the fit of the predicted values to the observed (Table 4, 413 

Figure 2). Every pen type had a lower mean squared prediction error for the 414 

distribution shape prediction model as compared to the empirical equation model 415 

showing a better fit to data of the distribution shape model. This analysis 416 
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demonstrates the model fit of a DMI predicted by an estimated distribution shape is 417 

more appropriate than assuming uniform feeding. The model error was partitioned 418 

into error due to bias, random variance and slope not equaling one. For the 419 

distribution prediction model 77 – 98 % of error was due to random variation in the 420 

data indicating that the model is well fitted to the data. For HIGHP50 the mean bias 421 

error was 21 % suggesting systematic error in prediction of the DMI mean by the 422 

model for this group. For the NASEM prediction model random error ranged from 6 – 423 

68 % with the HIGHP50 pen type at 6 % error due to random variation and 93 % due 424 

to mean bias. This HIGHP50 group was made up of primiparous only animal and 425 

from a smaller subset of possible animals and both models demonstrated systematic 426 

error in their prediction of mean producing this proportion of error in the model fit.  427 

 428 

The NASEM 2021 empirical equation was derived using post milking peak cow data 429 

so estimates for early lactation pens may be inaccurate. High and low lactation range 430 

pens were all underestimated by this equation. High pen underestimation by the 431 

empirical model of this study agrees with the observed practice of necessary over-432 

formulating diet on commercial dairies, as underfeeding cows can limit milk 433 

production. Describing a distribution type for a pen DMI predicts a DMI closer to the 434 

observed DMI of a pen, allowing diets to be calculated to a more accurate amount at 435 

formulation rather than utilizing an imprecise correction factor. The practice of 436 

formulating diets by increasing DMI by a fixed level is not precision feeding, and 437 

ingredient composition may change if DMI is a binding constraint in the formulation.  438 

Model assessment  439 
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This modeling study was conducted by generating virtual pens with data of known 440 

DMI values. But the application of this work relies on the future ability of predicting 441 

the distribution shape of a cow pen with unknown DMI. For group housed dairy cows, 442 

DMI estimation is crudely approximated by measuring the feed remaining after a 443 

given time-period from the supply of a known feed quantity. Individual DMI 444 

measurements, such as Calan gates, are not feasible for large groups as one gate 445 

would be needed per cow, and would probably change inter-cow feeding behavior 446 

(Seymour et al., 2019). Sensor technology attempts to measure individual cow DMI 447 

with accelerometers and cameras at feed bunks, and if the data are validated could 448 

contribute to pen calculation of total DMI.  449 

 450 

Pens with known individual cow DMI values can describe the distribution shape and 451 

parameters. This model generated virtual pens to build a labelled database of known 452 

distribution shapes. For pens on commercial dairies where individual DMI is not 453 

known, supervised learning could predict the distribution characteristics of a pen by a 454 

model trained with a labeled database. The model presented in this study 455 

demonstrates that predicting pen DMI with a distribution can provide accurate 456 

estimates. Current group feeding approaches supply a uniform level of DMI and are 457 

not precision feeding. Utilizing the distribution of DMI for each pen of cows is a 458 

necessary factor in achieving precision feeding aims for group feeding methods.   459 

Conclusion 460 

Precision feeding for cow pens is not achieved by formulating a DMI value for an 461 

individual cow and feeding it uniformly. Describing the distribution shape of DMI for 462 
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cow pens predicts a pen DMI with less error and can provide an approach to 463 

precision feeding in this industry.  464 
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Table 1. Description of the trial datasets used in the database of this dairy cow 586 

study  587 

  n1   

Trial Index2 Total Primi3 Multi4 Breed 

Lactation 

range, wk5 Intervention6 

Difference 

(P < 0.05)7 

DePeters et al. 

19858 
1 55 15 40 Holstein 1 – 44 Management No 

Dhiman and 

Satter 19979 
2 74 29 45 Holstein 1 – 36 Diet Yes 

Greenfield et 

al. 200010 
3 37 0 37 

Holstein & 

Jersey 
1 – 8 Therapy Yes 

Unpublished10 4 45 0 45 Not stated 3 – 18 Not stated Not stated 

Unpublished10 5 40 0 40 Not stated 1 – 21 Diet Not stated 

Huyler et al. 

199910 
6 31 0 31 Holstein 1 – 10 Diet No 

Livesey et al. 

199811 
7 51 0 51 Holstein 1 – 14 

Diet & 

management 
No 

Chalupa et al. 

19968 
8 36 12 24 Holstein 3 – 43 Diet Yes 

Dann et al. 

199910 
9 57 57 0 Holstein 1 – 9 Diet No 

Total  426 113 313     

Primi = Primiparous 588 

Multi = Multiparous 589 

1 Cow population per trial as the total, and primiparous and multiparous separately.  590 

2 Identifying index of each dataset. 591 

3 Primiparous dairy cows in their first lactation. 592 

4 Multiparous cows. 593 

5 The weeks of lactation for which each dataset recorded weekly individual cow milk yield and dry 594 

matter intake. 595 

6 The type of treatment intervention studied by each trial. 596 

7 Publication reported significant difference in the milk yield or dry matter intake of a single treatment 597 

group in the dataset. 598 

8 Dataset recorded weekly average dry matter intake, milk, milkfat, milk protein and BW.  599 

9 Dataset recorded weekly average dry matter intake, milk, milkfat, and milk protein. 600 
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10 Dataset recorded weekly average dry matter intake, milk, milkfat, milk protein, BW, and body 601 

condition score.  602 

11Dataset recorded weekly average dry matter intake and milk, and monthly milkfat, BW and body 603 

condition score. 604 
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Table 2 Skew, kurtosis and Shapiro-Wilk test of goodness of fit to normal distribution for dry matter intake values of all 605 

dairy cows by parity 606 

 All cows  Primiparous  Multiparous 

Week1 n2 Skew3 Kurtosis4 

Shapiro-
Wilk P-
value5  n Skew Kurtosis 

Shapiro-
Wilk P-value 

 n Skew Kurtosis 

Shapiro-
Wilk P-value 

1 294 -0.10 2.70 0.5  101 -0.49 3.24 0.08  193 -0.04 2.31 0.1 
2 294 -0.32 2.93 0.01  101 -0.012 2.61 0.2  193 -0.47 3.43 0.03 
3 342 -0.34 3.02 0.05  102 0.10 2.28 0.2  240 -0.56 3.87 0.004 
4 360 -0.45 3.22 0.001  109 0.10 2.38 0.5  251 -0.77 4.40 < 0.001 
5 364 -0.30 3.24 0.06  110 -0.031 2.52 0.2  254 -0.47 4.04 0.001 
6 374 -0.24 3.21 0.5  113 0.24 2.78 0.4  261 -0.42 4.20 0.008 
7 375 -0.37 3.15 0.006  113 0.072 3.00 0.4  262 -0.29 3.19 0.1 
8 373 -0.30 2.69 0.003  113 0.014 2.33 0.4  260 -0.23 2.79 0.005 
9 337 -0.36 2.79 0.003  113 -0.022 2.37 0.3  224 -0.30 3.07 0.1 
10 280 -0.11 2.33 0.02  56 0.063 2.69 0.6  224 -0.18 2.68 0.2 
11 250 -0.21 2.61 0.09  56 -0.61 3.46 0.09  194 -0.16 2.79 0.3 
12 250 -0.21 2.47 0.05  56 -0.13 2.46 0.5  194 -0.37 3.29 0.1 
13 250 -0.15 2.91 0.8  56 -0.47 3.70 0.4  194 -0.11 3.37 0.5 
14 250 0.052 2.65 0.9  56 -0.012 3.11 0.8  194 -0.071 3.21 0.7 
15 250 -0.091 2.72 0.8  56 -0.26 2.58 0.7  194 -0.33 3.52 0.1 
16 250 -0.27 3.05 0.3  56 0.35 3.06 0.4  194 -0.70 4.67 < 0.001 
17 250 -0.22 2.78 0.4  56 -0.32 3.18 0.4  194 -0.55 3.68 0.01 
18 250 -0.20 3.40 0.1  56 0.25 2.83 0.8  194 -0.65 4.71 < 0.001 
19 205 -0.23 3.69 0.2  56 -0.12 3.06 0.7  149 -0.67 4.14 0.003 
20 205 -0.42 3.96 0.002  56 -1.8 9.34 < 0.001  149 -0.66 3.93 0.003 
21 205 -0.18 3.67 0.1  56 -0.40 3.16 0.3  149 -0.54 4.05 0.01 
22 164 -0.16 3.65 0.04  56 0.21 3.03 0.9  108 -0.68 4.33 0.008 
23 162 -0.16 4.01 0.2  56 -0.062 2.73 0.6  106 -0.59 4.59 0.02 
24 162 0.34 2.93 0.2  56 -0.50 2.78 0.04  106 0.051 2.59 0.3 
25 162 0.32 2.49 0.03  56 -0.052 2.45 0.5  106 -0.023 2.21 0.1 
26 162 0.21 3.03 0.5  56 -0.53 3.32 0.4  106 -0.082 2.73 0.9 
27 162 0.52 3.01 0.01  56 0.012 2.79 0.6  106 0.20 2.48 0.2 
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28 162 -0.082 3.46 0.6  56 -1.2 5.94 0.001  106 -0.081 2.63 0.7 
29 162 0.16 2.58 0.2  56 0.19 2.29 0.3  106 -0.22 2.49 0.2 
30 162 0.11 2.88 0.8  56 -0.17 3.63 0.4  106 -0.062 2.59 0.9 
31 162 0.033 2.60 0.9  56 0.48 3.33 0.4  106 -0.23 2.43 0.3 
32 162 0.11 2.74 0.2  56 0.68 3.55 0.05  106 -0.19 2.44 0.2 
33 161 -0.18 2.66 0.4  56 -0.062 2.91 0.9  105 -0.39 2.45 0.03 
34 161 -0.11 2.74 0.09  56 -0.13 3.55 0.5  105 -0.31 2.37 0.02 
35 161 -0.21 2.84 0.1  56 0.17 3.47 0.2  105 -0.42 2.57 0.03 
36 160 -1.2 8.10 < 0.001  56 -0.082 2.70 0.8  104 -1.4 7.31 < 0.001 
37 86 -0.29 3.44 0.2  27 0.053 2.18 0.7  59 -0.29 3.07 0.3 
38 85 0.094 4.16 0.08  26 -0.19 2.14 0.6  59 0.034 3.64 0.3 
39 83 -0.27 4.15 0.07  26 -0.23 2.64 0.5  57 -0.22 4.10 0.1 
40 82 -0.36 4.27 0.2  26 -0.20 2.07 0.4  56 -0.45 4.45 0.09 
41 65 -0.46 3.72 0.3  21 -0.64 2.62 0.1  44 -0.39 4.14 0.5 
42 62 -0.80 3.62 0.02  21 -0.86 2.48 0.01  41 -0.72 4.28 0.1 
43 58 -0.87 3.92 0.01  21 -0.64 2.63 0.3  37 -0.97 5.19 0.03 
44 26 -0.26 2.39 0.5  8 -0.091 1.68 0.5  18 -0.15 2.69 0.9 

1 The week of lactation of data observation 607 

2 The population of cows observed at the given week of lactation 608 

3 Measure of data skew. Negative values indicate left skew, positive values indicate right skew.  609 

4 Measure of data in tails of distribution. Kurtosis of 3 is considered normal.  610 

5 A P < 0.05 rejects the null hypothesis that the data are normally distributed.611 
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Table 3 Proportion of best distribution fit for 100 replicates of each dairy cow pen class 612 

 

   

 

DMI Distribution 

description1 

Proportions of best distribution of DMI for 

all replicates2 (%) 

Pen type 

index3 Cows, n 

Lactation 

range4, wk 

Pen 

replicates5, n 

Mean DMI, 

cow6 (kg) Skew kurtosis Normal Beta Weibull Logistic 

FRESH20 20 1 – 3 100 17.06 0.07 2.76 8 85 1 6 

FRESH60 60 1 – 3 100 16.97 -0.03 2.49 8 87 0 5 

HIGH50 50 4 – 18 100 22.71 -0.2 2.99 8 77 0 15 

HIGHP50 50 4 – 18 100 20.51 0.05 2.87 7 80 8 5 

HIGH200 200 4 – 18 100 22.97 -0.2 3.12 28 60 0 12 

LOW50 50 19 - 44 100 20.90 -0.2 3.22 10 62 4 24 

LOW150 150 19 – 44 100 20.86 -0.2 3.43 29 36 1 34 

FRESH20 = Pens of 20 random cows within the lactation range 1 – 3 week. 613 

FRESH60 = Pens of 60 random cows within the lactation range 1 – 3 week. 614 

HIGH50 = Pens of 50 random cows within the lactation range 4 – 18 week. 615 

HIGHP50 = Pens of 50 random primiparous cows within the lactation range 4 – 18 week. 616 

HIGH200 = Pens of 200 random  cows within the lactation range 4 – 18 week. 617 

LOW50 = Pens of 50 random  cows within the lactation range 19 – 44 week. 618 

LOW150 = Pens of 150 random  cows within the lactation range 19 – 44 week. 619 

1 The mean distribution statistics of skew and kurtosis for all replicates of each pen type.  620 

2 The proportion of each distribution type occurring as the best fit for DMI of a pen across all replicates of pen types.  621 

3 Index of generated virtual pen type for given lactation range and population size. 622 

4 The range of weeks of lactation the pen type was constructed across. 623 

5 The number of replicates generated for each pen type with a random and unique selection of cows in each replicate. 624 
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6 The mean cow DMI of all replicates of each pen type.625 
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Table 4 DMI predictions by best distribution type and by NASEM equation of all pen replicates of each dairy cow pen class 626 

and model fit statistics 627 

 628 
   Predicted pen DMI by distribution1  Predicted pen DMI by NASEM2 

Pen type 
index3 

Observed pen 
DMI (kg)4 

 

DMI (kg) 
% Error of 

distribution5 MSPE6 

% 
Bias7 

% 
Slope 
not 18 

% 
Random 
variation9  

DMI 
(kg) 

% Error 
of 

NASEM MSPE 
% 

Bias 

% 
Slope 
not 1 

% 
Random 
variation 

FRESH20 341.09  342.43 + 0.4a 55.64 0 5 95  291.66 - 14.37b 211.4 0 32 68 
FRESH60 1 018.17  1 019.8 + 0.09a 60.42 0 2 98  876.96 - 13.82b 641.6 0 42 58 
HIGH50 1 135.61  1 136.6 + 0.09a  43.63 0 2 98  937.45 - 17.42b 545.9 0 35 65 
HIGHP50 1 025.69  1 026.2 + 0.05a 55.28 21 2 77  921.81 - 10.11b 7 612 93 1 6 
HIGH200 4 593.08  4 595.1 + 0.04a 182.8 2 2 96  3761.0 - 18.11 b 1 573 0 33 67 
LOW50 1 044.79  1 045.6 + 0.08a 47.44 0 2 98  810.67 - 22.38b 587.1 0 64 36 

LOW150 3 127.82  3 131.1 + 0.1a 81.99 0 3 97  2 427.9 - 22.37b 803.2 0 82 18 

DMI = Dry matter intake 629 

MSPE = Mean squared prediction error 630 

FRESH20 = Pens of 20 random cows within the lactation range 1 – 3 week. 631 

FRESH60 = Pens of 60 random cows within the lactation range 1 – 3 week. 632 

HIGH50 = Pens of 50 random cows within the lactation range 4 – 18 week. 633 

HIGHP50 = Pens of 50 random primiparous cows within the lactation range 4 – 18 week. 634 

HIGH200 = Pens of 200 random  cows within the lactation range 4 – 18 week. 635 

LOW50 = Pens of 50 random  cows within the lactation range 19 – 44 week. 636 

LOW150 = Pens of 150 random  cows within the lactation range 19 – 44 week. 637 

1 Distribution type prediction model. The mean total pen DMI of 100 replicates of the given pen type from the predictive model of the best fitted distribution 638 

shape for each replicate. 639 

2 Empirical predication model (NASEM, 2021). The mean total pen DMI of 100 replicates of the given pen type from the predictive model of a single empirical 640 

DMI estimate that is fed uniformly to the population of cows. 641 
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3 Index of generated virtual pen type for given lactation range and population size. 642 

4 The observed mean total pen DMI for 100 replicates of each pen type.  643 

5 Mean percentage error of each predicted pen DMI estimate from the observed value for each replicate. Means of percentage error for each pen replicate 644 

were compared across both prediction models using Students t-test. 645 

6 Model fit evaluated as the predicted total pen DMI of both prediction models to the observed values of each replicate. Mean square prediction error to 646 

evaluate the error in model fit. 647 

7 Proportion of model error as MSPE due to bias (Benchaar et al., 1998). 648 

8 Proportion of model error as MSPE due to the slope of data not equal to 1 (Benchaar et al., 1998).  649 

9 Proportion of model error as MSPE due to random variation in the data (Benchaar et al., 1998). 650 
a-b Values within a row with different superscripts differ significantly at P < 0.05 for t-test comparison of mean percentage error of both prediction models. 651 



 
 

 Figure captions 652 

Fig. 1. Line plots of the mean and median of milk yield, DMI and feed efficiency of 653 

dairy cows by week of lactation and dataset. Abbreviations: DMI = Dry matter intake. 654 

A. Mean and median milk yield (kg) of dairy cows by week of lactation for each 655 

dataset in this study separately.  656 

B.  Mean and median DMI (kg) of dairy cows by week of lactation for each 657 

dataset in this study separately. 658 

C.  Mean and median feed intake (milk kg/DMI kg) of dairy cows by week of 659 

lactation for each dataset in this study separately. 660 

Fig. 2. Scatter plots of observed versus predicted model diagnostics for each of the 7 661 

dairy cow pen types for both the Distribution and NASEM model. Abbreviations: DMI 662 

= Dry matter intake. FRESH20 = Pens of 20 random cows within the lactation range 663 

1 – 3 week. FRESH60 = Pens of 60 random cows within the lactation range 1 – 3 664 

week. HIGH50 = Pens of 50 random cows within the lactation range 4 – 18 week. 665 

HIGH50Lact1 = Pens of 50 random primiparous cows within the lactation range 4 – 666 

18 week. HIGH200 = Pens of 200 random  cows within the lactation range 4 – 18 667 

week. LOW50 = Pens of 50 random  cows within the lactation range 19 – 44 week. 668 

LOW150 = Pens of 150 random  cows within the lactation range 19 – 44 week. 669 

   670 

 671 



1. Is the feed quantity for a pen calculated accurately when using the mean cow? 
2. Dry matter intake is not normally distributed for dairy cows by week of lactation. 
3. The beta distribution shape best described dry matter intake for pens of cows.   
4. The beta had lower error than calculating the pen’s mean cow dry matter intake.   
5. Increasing precision and accuracy will improve the formulation of pen diets.  
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Appendix: Example of table format 

Table 1  

Effect of x and y on z in w; tables should be sufficiently detailed for being understood without any 

reference to the text, but do not give details of the Material and methods.  

 Heading   

 Heading1  Heading    

Items ColH12 ColH2  ColH3 ColH4 ColH5 RMSE P-value 

Row heading (units)         

Row subheading         

Row sub-subheading Value Value  Value Value Value Value Value 

Row sub-subheading Value Value  Value Value Value Value Value 

RSSH Value Value  Value Value Value Value Value 

Row subheading         

Row sub-subheading Value Value  Value Value Value Value Value 

Row sub-subheading Valuea Valueab  Valuebc Valuec Value Value Value 

Row heading3 Value Value  Value Value Value Value Value 

Row heading Value Value  Value Value Value Value Value 

Row heading Value Value  Value Value Value Value Value 

Abbreviations: ColH1 = Column heading 1; ColH2 = Column heading 2; ColH3 = Column heading 3; ColH4 = Column 

heading 4; ColH5 = Column heading 5; RSSH = Row sub-subheading. 

1 Footnote explaining heading. 

2 Footnote explaining column heading 1. 

3 Footnote explaining row heading. 

a,b Values within a row with different superscripts differ significantly at P<0.05. 

  

 




