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a b s t r a c t

In recent decades, environmental problems have enforced designers to estimate the level of envi-
ronmental emission of building design and reduce their environmental impact. On the premise of
ensuring indoor comfort, the cost-effectiveness of solutions for reducing the building’s greenhouse
gas has become a critical issue. Based on the Life Cycle Assessment (LCA), this paper establishes a
building performance trade-off framework for indoor thermal comfort, economics, and environmental
implication. This framework consists of four parts: the establishment of the optimization model;
sensitivity analysis; obtain of Pareto frontier solutions, and decision-making analysis. Optimization
variables involve envelope type and some envelope physical parameters. The ‘‘design variables-building
performances’’ database is obtained by using building simulation software combined with the Latin
hypercube sampling algorithm. Sensitivity analysis is used to extract the key factors affecting building
performance. The designer can prioritize these key factors and it can reduce the uncertainty of building
performance. A multi-objective optimization method coupling Gradient Boosted Decision Tree (GBDT)
and non-dominated sorting genetic (NSGA-II) algorithm is proposed to seek the trade-off between three
performances (obtain Pareto frontier solutions). The Pareto solution provides a more comprehensive
reference for the preferences of different stakeholders, and the set of alternative solutions is further
shrunk. Finally, take a specific residential building in China’s cold climate zone as a showcase of the
trade-off framework. According to the obtained Pareto frontier solution, the solution set is shrunk to
a certain range, and the distribution ranges of Life Cycle Costs, the greenhouse gas emissions, and
the annual thermal discomfort hour ratio are 122.3–137.1 USD/m2, 15.6–44.8 kg CO2/m2, and 19.1–
25.2%, respectively. The trade-off framework adopts the order of objective Pareto optimal and then
subjective preference selection, narrowing the scope of alternatives for designers and saving time-cost
of decision-making.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to the International Energy Agency (IEA), the build-
ngs and construction sector accounted for 36% of final energy
se and 39% of energy and process-related carbon dioxide (CO2)

emissions in 2018, 11% of which resulted from manufactur-
ing building materials and products such as steel, cement, and
glass (IEA, 2019). Given this, some high-performance buildings,
including green buildings and zero-energy buildings, emphasize
maximum energy conservation and reduce environmental im-
pact. The building design phase has great potential in terms of

∗ Corresponding author at: School of Environment Science and Engineering,
ianjin University, 92 Weijin Road, Tianjin, 300072, China.

E-mail address: lvshilei@tju.edu.cn (S. Lu).
ttps://doi.org/10.1016/j.egyr.2020.10.023
352-4847/© 2020 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
resource conservation, reduction of energy consumption and en-
vironmental impact because decisions at this stage will affect the
performance of the building’s entire life cycle (Kovacic and Zoller,
2015). The decision at this stage focuses on how to maximize
the use of natural resources to decrease the building energy
demand and improve occupant comfort. Therefore, it is also called
a climate responsive design (Chen and Yang, 2018; Alajmi et al.,
2018).

Building design in the early stages is an interdisciplinary issue
because its decision-making factors involve an initial investment,
building energy consumption, environmental benefits, and ther-
mal comfort. For example, a study compared the environmental
impact of four widely used building structures in Central Europe,

including reinforced concrete, brick, cross-laminated timber, and
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Nomenclature

ACH Air changes per hour (/hr)
BCAA The bridge-cutoff aluminum alloy
CEC The annual cooling energy demand

density (kWh/m2a)
CTR The annual thermal comfort hour ratio

(%)
Co The annual operation cost (USD/m2a)
CV-RMSE The coefficient of variation of root mean

square error (%)
DCTR The annual thermal discomfort hour

ratio (%)
EUh hourly heating load (kW)
EUc hourly cooling load (kW)
E East
GWP The greenhouse gas emissions
GBDT Gradient Boosted Decision Tree
GA The Genetic Algorithm
HEC The annual heating energy demand

density (kWh/m2a)
HS Harmony Search
IC The initial cost (USD/m2)
LCA Life cycle assessment
LCC The life cycle cost (USD/m2)
LHS Latin hypercube sampling
MC Monte Carlo
NSGA-II The non-dominated sorting genetic
N North
NMBE The standard mean deviation
ORNT Building orientation (o)
PRCC Partial Rank Correlation Coefficient
PSO Particle Swarm Optimization
SA Sensitivity analysis
S South
Tc The outdoor temperature (oC)
Tr The indoor neutral temperature (oC)
USPW The uniform series present worth factor
WWR Window to wall ratio
W West

timber-frame panel construction. The results show that a rea-
sonable choice of components and materials can significantly
increase the environmental potential of low-rise buildings (Ži-
gart et al., 2018). Besides, the initial investment is the main
reason that hinders the further expansion of markets for high-
performance buildings such as zero-energy buildings, especially
in developing countries (Feng et al., 2019). The European Union
has adopted the cost-optimized design as the main policy re-
quirement for zero-energy buildings. Then this energy policy has
driven corresponding scientific research. For example, a study
proposed a technology selection framework for new zero-energy
buildings based on cost optimization. The results highlight the
characteristics of cost-optimized design with climate change. For
cold regions, thermal insulation and airtightness are the most
important factors (D’Agostino and Parker, 2018). Furthermore,
building design is also important for thermal comfort during
operation. Due to economic constraints, the HVAC system in
China is not open all year round. The building is free-running
for several months, and some design parameters have a potential
impact on the thermal comfort impact of this period (Wang et al.,
3037
2019). Metrics for an optimized building change with different
stakeholders. From the government perspective, large-scale re-
ductions in energy consumption and environmental pollution are
primary goals. Usually, Developers pay more attention to initial
investment. Operating costs and comfort are key considerations
for the owner. The proper design should take into account the
interests of the government, investors, and owners. But in reality,
the passive scheme is usually determined by the architects, while
the lack of knowledge about the multidisciplinary expertise re-
sults in it is difficult to guarantee optimal application results (Gou
et al., 2018).

Decisions during the design phase will affect the entire life
cycle of the building, including construction, operation, mainte-
nance, demolition, and use of materials. Life-cycle assessment
(LCA) and life cycle cost (LCC) analysis are two commonly used
tools to measure the life cycle performance of a product. LCA is
a tool for systematically analyzing the environmental impact of
products or processes over the various life stages (International
Organization for Standardization, 2006). LCC is an economic eval-
uation technology that covers the total cost of a product including
initial investment and operating costs during its life cycle (Mearig
et al., 1999). Life cycle analysis has great significance for iden-
tifying specific design and decision making improvements in a
building (Cabeza et al., 2014; Hurst and O’Donovan, 2019). For
example, Jönsson et al. compared the environmental impact of
three flooring materials based on LCA and identified solid wood
flooring as the most environmentally friendly (Jönsson et al.,
1997). Wu et al. discussed the environmental impact of different
types of cement and steel on the life cycle (Wu et al., 2005).
Islam et al. performed LCA and LCC for typical Australian houses
and reported how different roofing and floor designs affect the
life cycle environmental impacts and cost (Islam et al., 2015).
Schmidt et al. built an integrated framework designed to assist
building design professionals in minimizing life cycle greenhouse
gas emissions and LCC a building (Schmidt and Crawford, 2018).

Review existing relevant literature, the optimization objec-
tives involved in the issue of building performance optimiza-
tion can be divided into four categories: energy, economy, en-
vironment, and indoor comfort. Energy indicators mainly in-
volved in the existing literature include space heating/cooling
energy demand (Harkouss et al., 2018), peak cooling/heating
load (Samuelson et al., 2016), and total building energy con-
sumption (Chen and Yang, 2018). Economic indicators mainly
involved in the existing literature include initial investment,
operating costs, payback period (Wang et al., 2019), and life cycle
costs (Mostavi et al., 2017). Environmental indicators are mainly
life cycle environmental impact (Glick, 2007)and life cycle carbon
emissions (Huang et al., 2012). Comfort indicators mainly include
visual comfort (Chi et al., 2018) and thermal comfort (annual
comfort time ratio (Gou et al., 2018), utility theory thermal com-
fort index (Mostavi et al., 2017), the percentage of overheating
hours (Harkouss et al., 2018)). However, most research focused
on energy indicators, while a small number of studies considered
energy and economics or energy and comfort (Shi et al., 2016).

There are always competing relationships between different
building performance indicators, such as reduction of energy con-
sumption, financial costs, and environmental impacts. Moreover,
the interaction between multi-dimensional design parameters
constitutes a complex design space, which results in a lot of data
analysis in the optimization process (Lamé et al., 2017). There-
fore, the design is a challenging multiple input–multiple output
optimization problem. Several studies have performed different
mathematical algorithms to solve optimization problems such as
the Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
and Harmony Search (HS) (Kheiri, 2018). Lu et al. employed a

PSO to optimize the various factors (building shape parameter,
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nvelope parameters, shading system, and courtyard) affecting
he energy consumption (Lu et al., 2017). Fesanghari et al. em-
loyed an HS based optimization algorithm to determine the best
ombination of building envelope to minimize the LCC and life
ycle carbon emissions (Fesanghary et al., 2012). Ascione et al.
mployed the genetic algorithm (GA) to determine the best mix of
enewable energy for a residential building, aiming to minimize
he primary energy demand and investment cost (Ascione et al.,
016). Utilizing artificial neural network-based GA method, Asadi
t al. performed a study determined the best retrofit strategies
uantitatively, and made a tradeoff between retrofit cost, energy
onsumption, and hours of occupant discomfort (Asadi et al.,
014). In a word, each of these algorithms uses different strate-
ies to solve a specific range of problems. Compared with other
lgorithms, GA is more widely used to solve the multi-objective
ptimization problem in the field of building design.
This article mainly proposes a trade-off framework for build-

ng performance that considers economy, comfort, and environ-
ental impact. A specific building layout is selected to showcase

his framework. To attain this objective, different construction
aterials in various building components including the exter-
al wall, glazing system, and roof were investigated. Given the
nteractivity between design variables, some design parameters
hat have an indirect effect on the optimization goals are also
onsidered. Moreover, the window-ventilation model based on
ccupant comfort during the transition season is also consid-
red to improve the indoor thermal environment. To solve the
ulti-objective optimization problem, the GBDT based NSGA-

I algorithm is developed and employed. Finally, the optimized
ramework is applied to a specific type of residential building in
he cold climates of China as a display.

. Method

The main content of this article is to perform sensitivity anal-
sis on the building performance indicators, trade-off analysis of
uilding performance (Pareto frontier solution), and finally deci-
ion making analysis. Fig. 1 present the research framework. This
ection mainly explains the methodology used in the establish-
ent of the framework. Sections 2.1 to 2.3 present the establish-
ent of the optimization model. Section 2.4 describes the Latin
ypercube sampling method and the sensitivity analysis method.
ection 2.5 describes the optimization method including GBDT
eta-models technology and NSGA-II optimization algorithm.

.1. The optimization variables

Table 1 shows the optimization variables and their distribution
or the cold climate zone. To meet the energy-saving goals, the
ange of several envelope performance parameters is imposed
andatory in building design standards. Generally speaking, it
hould be satisfied in the building design. In this paper, the
ptimization variables mainly refer to the constraints of build-
ng design standards and the level that market technology can
chieve. According to the ‘‘Design Standards for Energy Conser-
ation of Residential buildings in Cold and Cold Regions’’ (Min-
stry of Construction P R China, 2010), for a three-story building,
he U-value of the external wall and the roof cannot be higher
han 0.45 W/(m2 K) and 0.35 W/(m2 K). On the other hand,
ccording to the field investigation, the lower limit of the U-value
chieved by increasing the insulation is 0.1 W/(m2 K). Therefore,
he range of the external wall and roof is 0.1–0.45 W/(m2 K) and
.1–0.35 W/(m2 K), respectively. Besides, the maximum window-
o-wall ratio for different orientations is also stipulated: north,
outh, west, and east directions are 0.4, 0.6, 0.45, and 0.45 respec-

ively. The range of the U-value and SHGC of the external window

3038
lso meets the requirements of the design standards. According to
arious studies on residential buildings and energy codes in China
nd the EU, the airtightness level should be between 0.5 and 1.5
CH (Chen et al., 2019). The types of external walls, external
indows, and roofs are commonly used in this climate zone
ased on field investigations. Mention cases of Wall type/Roof
ype/Window type will be documented later. The design variables
an be regarded as being equally probable in building design, they
hould be defined as uniform distributions when the aim is to
dentify effective energy-saving measures (Mechri et al., 2010).

The building orientation is also an important factor affecting
he heat gain/loss in the building envelope. The direct solar ra-
iation received by different building surfaces varies according
o their orientation (Dutta et al., 2017). When considering the
rade-offs between energy consumption, cost, and environmental
mpact, there may be differences in the optimal solutions for
xternal windows of different orientations. For example, in a
assive optimization study on new residential buildings in hot
ummer and cold winter regions in China, according to this study,
hen the goal is to improve indoor thermal comfort while re-
ucing building energy demand, the U-value ranges of external
indows in different orientations in the Pareto front solution is
ifferent (Gou et al., 2018). Therefore, this paper distinguishes the
xternal windows of different orientations, but the range is the
ame.
What needs to be mentioned is that external walls, external

indows, roofs, and floors are of the same grade. However, con-
idering the large fluctuations of the outdoor meteorological en-
ironment compared to ground temperature, this article mainly
ocuses on the external windows, roofs and external walls that are
n direct contact with the outdoor meteorological environment.

Fig. 2 shows the common practices of exterior walls and roofs
y investigating the local actual cases. The base layer of the exter-
al wall is the Aerated concrete block, and that of the roof is the
einforced concrete floor. Table 2 summarized the common type
f insulation and window. The four commonly used insulation
aterials are Rock wool, PU panel, EPS panel, and XPS panel. The

hermal characteristics of these building materials are shown in
able 3.

.2. The assessment indicators

In recent decades, environmental problems have enforced de-
igners to estimate the level of environmental emission of build-
ng design and reduce their environmental contribution (Maha-
atra, 2015). On the premise of ensuring indoor thermal com-
ort, the cost-effectiveness of solutions for reducing the build-
ng’s greenhouse gas has become a critical issue for building
wners (Ellis, 2009). Therefore, this article takes the economy,
nvironmental impact, and thermal comfort as optimization ob-
ectives. LCC is a commonly used economic evaluation indicator
n the building design and construction (Cabeza et al., 2014). The
lobal Warming Potential (GWP) is a commonly used environ-
ental impact evaluation indicator, which measures how much
eat Greenhouse Gas traps in the atmosphere and is expressed in
arbon dioxide equivalent (CO2e) (Schmidt and Crawford, 2018).
esides, the annual indoor thermal comfort time ratio (CTR) is
commonly used thermal comfort evaluation indicator (Wang
t al., 2019; Gou et al., 2018). Therefore, LCC, GWP, and CTR are
sed as indicators for the economy, environmental impact, and
hermal comfort, respectively.
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Fig. 1. The research framework.
Table 1
The distribution of thermal performance.
Categories Parameter Unit Probability density functions Range

Wall U-value W/(m2 K) Continuous uniform [0.1,0.45]
Roof U-value W/(m2 K) Continuous uniform [0.1,0.35]

Window

N U-value W/(m2 K) Continuous uniform [1.2,2.2]
SHGC / Continuous uniform [0.1,0.45]

S U-value W/(m2 K) Continuous uniform [1.2,2.2]
SHGC / Continuous uniform [0.1,0.45]

W U-value W/(m2 K) Continuous uniform [1.2,2.2]
SHGC / Continuous uniform [0.1,0.45]

E U-value W/(m2 K) Continuous uniform [1.2,2.2]
SHGC / Continuous uniform [0.1,0.45]

WWR

North / Continuous uniform [0.2,0.4]
South / Continuous uniform [0.2,0.6]
West / Continuous uniform [0.2,0.45]
East / Continuous uniform [0.2,0.45]

Airtightness ACH50 /hr Continuous uniform [0.5,1.5]
Orientation (ORNT) Building north axis ◦ Continuous uniform [0,360]
Wall type / / Discrete [1,2,3,4]
Roof type / / Discrete [1,2,3,4]
Window type / / Discrete [1,2,3]
Table 2
The common type of insulation and window.
Categories No. Type

Insulation

1 Rock wool
2 PU panel
3 EPS
4 XPS

Categories No. Type

Window
1 Plastic steel+ Double-layer ordinary glass
2 BCAA +Single layer Low-E glass+Single layer of ordinary glass
3 Plastic steel +Single layer Low-E glass+ Double-layer ordinary glass
3039
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Fig. 2. Schematic of common practices for exterior walls and roofs.
Table 3
Thermal physical properties of building materials.
Source: Ministry of Construction P R China (2016).
Materials Dry density

(kg/m3)
Thermal conductivity
[W/(m K)]

Heat storage coefficient
[W/(m2 K)]

Specific heat capacity
[kJ/(kg K)]

Cement mortar 1800 0.93 11.37 1.05
Aerated concrete block 500 0.14 2.31 1.05
Reinforced concrete floor 2500 1.74 17.2 0.92
Rock wool 60∼160 0.041 0.47∼0.76 1.22
PU panel 35 0.024 0.29 1.38
EPS 20 0.033 0.28 1.38
XPS 35 0.03 0.34 1.38
2.2.1. The economic indicator
The LCC is adopted to evaluate the building model’s cost-

ffectiveness. LCC is the most frequent method to estimate the
inancial benefits of energy conservation projects over their life-
ime.

CC = IC + USPW (N, rd) × Co (1)

USPW (N, rd) =
1 − (1 + rd)−N

rd
(2)

Where USPW is the uniform series present worth factor (it
converts future recurrent expenses to present costs) (years),
which can be obtained by Eq. (2). The Co (USD/m2) represents
annual operation cost, which can be obtained by Eq. (3); IC
(USD/m2) stands for the initial cost of implementing design and
operating conditions for building envelope, which can be ob-
tained by Eq. (8). The rd is the annual discount rate (%) and N
stands for the life period (year). Herein, the life period is set
to 30 years (Harkouss et al., 2018; Bichiou and Krarti, 2011).
There is a difference between ‘‘nominal interest rate’’ and ‘‘real
interest rate’’, that is, (1+real interest rate)=(1+nominal interest
rate)/(1+inflation rate). But considering that the future inflation
rate is difficult to assess, this article is based on the nominal inter-
est rate, that is, the static discount rate is used. With reference to
most previous studies (Harkouss et al., 2018; Bichiou and Krarti,
2011; Ouyang and Lin, 2014), the static discount rate is generally
set to 5%. It is worth mentioning that the construction costs of
various materials are just indicative due to the potential change
in prices in the market.

The Co is calculated as follows:

Co = Cheating + Ccooling (3)

The operating cost during the heating season (Cheating,
USD/m2a):

C = (HEC × HC)/M (4)
heating

3040
The operating cost during the cooling season (Ccooling,
USD/m2a):

Ccooling = (CEC × CC)/M (5)

Among then, HC is the local heating cost, 0.0186 USD/kWh.
CC is the electricity price, 0.0716 USD /kWh. M (m2) is the condi-
tioning area—1029.6 m2 in this paper. HEC (kWh/a) is the annual
heating energy demand and CEC (kWh/a) is the annual cooling
energy demand, they can be obtained by Eq. (6) and Eq. (7).

Same as most existing research, the entire building energy
consumption is obtained utilizing EnergyPlus software(Ver.9.0.1),
which is a highly validated simulation engine widely used in
building energy analysis (Crawley et al., 2001). Building energy
consumption mainly refers to space heating and cooling energy
consumption. Because less affected by the building envelope pa-
rameters, domestic hot water, and lighting energy consumption is
not considered. According to the actual operating characteristics
of local residential buildings, the urban heating network and the
household air conditioner is used in the winter and the summer,
respectively. The COP value of air conditioning for cooling is 2.8.

The HEC and CEC can be calculated as follows:

HEC =

i=Nh∑
i=1

EUhi (6)

CEC =

i=Nc∑
i=1

EUci (7)

The EU i is hourly energy demand in kWh, which can be ob-
tained through building performance simulation; Nh is annual
heating hours, which is 1815 h; Nc is annual cooling hours, which
is 1861 h.

The IC is calculated as follows:
IC = (Eroof + Ewall + Ewindow)/M
Eroof = mroof × Croof
Ewall = mwall × Cwall

(8)
Ewindow = mwindow × Cwinodw
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able 4
he unit price of insulation and exterior windows.
ource: China Building Materials Online website. http://www.cnjcw.com/.
Categories No. Cost (CNY/m3) Cost (CNY/m2 mm)

Insulation

1 301.6 0.302
2 680 0.68
3 348 0.348
4 501 0.501

Categories No. Cost (CNY/m2 mm)

Window
1 310
2 450
3 483

Among them, mroof is the roof area, which is 343.2 m2 in this
tudy. mwall and mwindow are the external wall area and external
indow area, respectively. Since the window-to-wall ratio is an
ptimized variable in this study, the external window and wall
reas are both variable and related to specific sampling. Croof, Cwall
nd Cwindow represent the unit price of the roof, external wall, and
xternal window respectively. For this study, there are mainly
nsulation layers of wall and roof as well as external windows
hat cause differences in initial investment between different
lternatives. According to the latest material prices on the China
uilding Materials Online website (http://www.cnjcw.com/), the
rices of commonly used building materials are summarized in
able 4. This cost refers to the price of the insulation layer per
nit area and unit thickness. The unit area is ‘‘m2’’ and the
nit thickness is ‘‘mm’’. The numbers in the table are the type
umber of thermal insulation materials and exterior windows.
he detailed information is shown in Table 2.

.2.2. The thermal comfort indicator
It is necessary to specify indoor thermal comfort standards

or the design, energy calculations, and building operation. Ther-
al comfort is ‘‘that condition of mind that expresses satisfac-

ion with the thermal environment and is assessed by subjective
valuation’’ (ASHRAE, 2016). There are many ways to evaluate
hermal comfort due to differences in occupants, climate condi-
ions, usage scenarios, and stages of building. In this study, due
o the presence of HVAC systems in summer and winter, the
ndoor thermal environment can be considered comfortable. The
valuation object is mainly the transition season, during which
hinese buildings are generally free-running. The adaptive model
an be used to evaluate the thermal comfort of free-running
tatus, and it quantifies the relationship between indoor neutral
emperature and the outdoor environment. The ANSI/ASHRAE-55
daptive model is the most commonly used one that built on the
ield data from various climate zones (Carlucci et al., 2018).

The neutral temperature calculation based on the ASAHE-55
odel is shown in Eq. (9):

c = 0.31 × Tr + 17.8 (9)

Tc represents the indoor neutral temperature. Tr is the monthly
verage outdoor temperature, the data of a typical meteorological
ear are used here and see Table 6 for details. When considering
0% acceptability, thermal comfort fluctuates within 3.5 ◦C on
ither side of Tc (7 ◦C bandwidth). The model applies to an
utdoor average temperature between 10 and 33.5 ◦C.
The upper (Tupper ) and lower limits (Tlower ) of the thermal

omfort zone are:

upper = Tc + 3.5 (10)

Tlower = Tc − 3.5 (11)

In this study, Beijing is used as the case, Tupper and Tlower are
resent in Table 6.
3041
Based on the adaptive model, the CTR is used as a thermal
comfort measure. The calculation formula is as follows:

CTR =
1
m

k=m∑
k=1

⎛⎝ Np∑
j=1

wfj ·
1
Np

⎞⎠m

∈ [0, 1] (12)

wfj =

{
1,
0,

if
if

Tlower ≤ T ≤ Tupper
T ≺ Tlower or ≻ Tupper

(13)

Where T is the comfort indicator, which here is the indoor
operating temperature, which can be obtained through building
performance simulation. NP represents the total hours, which is
3900 h. The m is the number of the thermal zone. Each flat is
modeled as a thermal zone, and there are 9 thermal zones in the
whole building. For different thermal zones, the indoor thermal
comfort level is different. For the convenience of calculation, the
average comfort level of nine thermal zones is used to represent
the whole building.

Besides, indoor thermal comfort could be totally satisfied dur-
ing the summer cooling and winter heating periods. The building
is free-running in the transition season, so it is a goal to improve
the indoor comfort as much as possible by optimizing the passive
design of the building. Therefore, the optimization of the annual
CTR is actually the optimization of the transition season CTR.

2.2.3. The environmental impact indicator
Some high-performance buildings, such as green buildings,

generally stipulate that buildings should maximize energy con-
servation and emission reduction throughout the life cycle, cre-
ating a comfortable and efficient environment for occupants.
Therefore, when designing the envelope, attention should also be
paid to the environmental impact of building materials through-
out the life cycle. The greenhouse gas emission (GWP) is selected
as environmental impact assessment indicators.

GWP = mwall ·GWPwall+mroof ·GWProof +mwindow ·GWPwindow (14)

GWPwall, GWProof and GWPwindow are the units GWP for exte-
rior walls, roofs, and exterior windows, respectively.

The unit GWP of commonly used insulation layers and exter-
nal windows are shown in Table 5. The GWP value of different
materials comes from ‘‘Green Building Material Selection Tech-
nology’’ (China Building Materials Inspection and Certification
Group, 2015), which was jointly published by ‘‘China National
Building Material Inspection and Certification Group’’ and ‘‘China
National Building Materials Testing Center’’. The GWP values in
Table 5 are for the entire external window (including frame
and glazing). GWP is an indicator to measure the environmental
impact of the envelope material and has nothing to do with the
way of opening, mainly varies depending on the window frame
and glass material. If window frames and glass are used as the
basis for classification, there are three types of external windows
involved in this article. No. 1 is a plastic steel window frame +
ordinary glass. No. 2 is broken bridge aluminum alloy + Low-E
glass + ordinary glass, and No. 3 is plastic steel window frame
+ Low-E glass + ordinary glass. For different numbers of the
same external window type, only the thickness of the air layer
is different to obtain various thermal parameters. More detailed
physical information about these external windows is shown in
Table 2.

2.3. The optimization function

The adopted objective functions in this optimization problem
are to minimize LCC and GWP as well as maximize CTR. Hence,
the optimization function can be summarized as follows:

F (x⃗) =

{ f1 = f (x⃗, LCC)min
f2 = f (x⃗,GWP)min (15)

f3 = f (x⃗, CTR)max

http://www.cnjcw.com/
http://www.cnjcw.com/
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able 5
he GWP of insulation materials and external windows.
ource: A book called ‘‘Green Building Material Selection Technology’’ (China
uilding Materials Inspection and Certification Group, 2015), which was pre-
ared by the ‘‘China Building Materials Inspection and Certification Group’’ and
he ‘‘National Building Materials Testing Center’’.
Categories No. GWP (kgCO2/kg)

Insulation
1 5.02
2 11.5
3/4 12.1

Categories No. GWP (kgCO2/m2)

Window
1 9.88
2 15.25
3 11.7

Among then, the represent the optimization variables set.

.4. The statistical method

.4.1. Sampling method
Most of the optimization variables in this paper are ‘‘contin-

ous uniform distribution’’, and continuous uniform distribution
eans that each value within the range of the variable has the
ame probability of being selected. The diversity of design vari-
ble values is called the uncertainty of design variables. For design
ariables that have been assigned a distribution, the sampling
ethod can be employed to obtain a sample of each design
ariable. Monte Carlo is a widely used method of uncertainty
nalysis in building performance assessment (Silva and Ghisi,
014). Moreover, Latin hypercube sampling (LHS) is a stratified
ampling method for the Monte Carlo method that divides the
ange of each input variable into N segments with the same
robability distribution. With the same statistical accuracy, the
equired sample size of LHS is smaller than that of random
ampling (Helton et al., 2006). Therefore, LHS is more suitable
or complex computational models that contain many uncertain
ariables. It is generally recommended for the minimum sampling
ize to be 10 times the number of variables (Levy and Steinberg,
010).

.4.2. Sensitivity analysis method
Sensitivity analysis is the science that studies how the uncer-

ainty in the output can be apportioned to the various uncer-
ainties in the input (Pang et al., 2020). In this article, sensitivity
nalysis is used to extract the influence of design variables on
uilding performance. Commonly used global sensitivity analysis
ethods include linear regression, Fourier sensitivity analysis,
nd Sobel sensitivity analysis methods. Since the calculation is
ast and easy to understand, the regression method is the most
ommonly used method (Tian, 2013). Many sensitivity indicators
re derived based on regression methods, such as SRC (Stan-
ardized Regression Coefficients), PCC (Partial Correlation Co-
fficients), SRRC (standardized rank regression coefficient), and
RCC (partial rank correlation coefficient). The PRCC is usually
sed for problems where the input and output are nonlinear and
onotonic (Gagnon et al., 2018). PRCC indicators can show the

nfluence level and influence direction of optimization variables
n each optimization objective. The influence level is represented
y the absolute value of PRCC. The influence direction is indicated
y positive and negative signs.

.5. The optimization method

To reduce the call of programming software to the simulation
oftware and thereby improve the optimize efficiency, the meta-
odels participate in the optimization process as the fitness
3042
function of the optimization algorithm is the main trend (Oster-
gard et al., 2018). Select the appropriate meta-model construc-
tion methods and optimization algorithms are the two keys to
multi-objective optimization.

The meta-model in building optimization design refers to
using mathematical algorithms to learn the relationship between
optimization variables and building performance based on a
small amount of data obtained from the simulation software
and then constructing a substitute model to predict the building
performance. Machine learning algorithms are commonly used
methods for building meta-models, including the multiple lin-
ear regression (MLR), multivariate adaptive regression splines
(MARS), support vector machines (SVM), artificial neural network
(ANN), Gradient Boosted Decision Trees (GBDT), etc. For example,
a study built meta-models of building performance using ANN
and dynamically coupled with the Non-dominated Sorting Ge-
netic Algorithm-II (NSGA-II) to obtain the best trade-off between
heating and cooling performance (Bre et al., 2020). In a study on
the passive design optimization of high-rise residential buildings
in Hong Kong, MLR, MARS, and SVM were employed to develop
meta-models (Chen and Yang, 2017). In a previous study on the
optimization design of a passive house by the author, GBDT was
used to construct meta models of building energy consumption
and thermal comfort ratio, and the results proved that GBDT has
better robustness and fitting characteristics (Wang et al., 2019).
This research continues the previous research and adopts GBDT
to develop meta-models. The applicability of model accuracy is
generally measured using the standard mean deviation (NMBE)
and the coefficient of variation of root mean square error (CV-
RMSE), which are specified in ASHRAE Guideline 14-2002. When
NMBE and CV-RMSE less than ±5% and ±15%, respectively, the
meta-model is accurate and reliable (ASHRAE, 2002).

The concept of ‘‘optimal’’ between multi-objective optimiza-
tion and single-objective optimization problems are different.
When dealing with multi-objective optimization problems with
multiple conflicting objectives, the idea of Pareto optimal so-
lutions can help the decision-makers decide among the best
alternatives (Kheiri, 2018). Pareto optimal when there is not any
other feasible solution that improves one objective without dete-
riorating at least another one. Different non-dominated solutions
are identified rather than one optimal solution. The set of best al-
ternatives, Pareto-optimal, is called Pareto-front (Machairas et al.,
2014). Therefore, the ‘‘Pareto optimal’’ concept is not equivalent
to the common ‘‘optimal’’. Since no weights are given, Pareto op-
timal is less subjective and fair to all optimization objectives (Deb,
2015). The Pareto solution can be used as a reference for the
trade-off between different candidate solutions. After obtaining
the Pareto front, it is usually necessary to make further deci-
sions based on different preferences of stakeholders (Harkouss
et al., 2018). Early discussions about Pareto optimal in building
design optimization can be traced back to 1980 Radford and
Gero (Radford and Gero, 1980). Subsequently, the application
of Pareto optimal solution in building design became more and
more common. For example, in a multi-objective optimization
problem on rural tourism buildings in north China, a Pareto fron-
tier solution set considering energy consumption, daylighting,
and thermal comfort performance is given (Zhu et al., 2020).
Another study proposed a multi-objective optimization method
for building renovation. The objectives include energy-demand
reduction, energy-cost reduction, investment cost reduction, and
CO2 emissions reduction. The Pareto frontier solution was applied
to a residential building in Rome, Italy (Rosso et al., 2020).

In addition, there are often non-linear interactions of building
variables on the objectives of building issues, and the properties
of these variables may be continuous or discrete (Nguyen et al.,

2014). The GA, which belongs to the evolutionary algorithms, has
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he advantage of handling both continuous and discrete variables,
eanwhile having good robustness for handling discontinuity,
ulti-modal and highly-constrained problems without trapped

nto a local minimum. These make GA an effective tool to deal
ith complex and multivariate building problems (Nguyen et al.,
014). A study counts the optimization algorithms commonly
sed in the literature on building optimization design, and the
esults show that there has been a rapid increase in the utilization
f GA, considerably higher than the other methods (Kheiri, 2018).
here have been also many GA-based algorithms developed to be
dapted for different specific problems, among which, the NSGA-
I algorithm, developed by Deb (Deb, 2001), has been recognized
s one of the most efficient algorithms (Zitzler et al., 2000) and
uccessfully implemented in the field of building performance
ptimization. For example, Multi-objective optimization of build-
ng renovation in the Mediterranean climate (Rosso et al., 2020),
nergy and daylight optimization of shading devices (Kirimtat
t al., 2019), window design considering energy consumption,
hermal environment and visual performance (Zhai et al., 2019),
nd optimization design of low-rise commercial buildings under
arious climates (Lapisa et al., 2018).
Therefore, this paper uses the GDBT based NSGA-II algorithm

o solve the established multi-objective function. The final result
n this paper also proves that the method is effective with a set
f Pareto solutions that are finally obtained.

.6. Case study

.6.1. The base building model
As detailed in previous articles published by the author (Wang

t al., 2019), a generic building model (see Fig. 3) is developed
n EnergyPlus. The case building is a slab-type apartment, which
s the most popular form of residential buildings in China. The
ectangular footprint of the total building is 31.2 m×11.0 m
length×width) with three flats of each story. Each flat is modeled
to a thermal zone, and there are 9 thermal zones in the whole
building. The layer height is 2.9 and the shape coefficient is 0.299.
The building long axis is oriented East–West. The internal thermal
load from lighting, equipment, and people are assumed to be 4.3
W/m2 on average. It is assumed that three persons live in each
flat, and their schedule of a workday is 16:00 to 8:00 the next
day. The using schedule of lighting is 8:00–9:00 and 16:00–23:00;
the using schedule of the equipment is 8:00–9:00 and 18:00–
19:00. When the iterative simulation is performed for each set of
design scenarios, in turn, building geometry and operation are the
same, and all building properties not governed by optimization
variables are consistent in all models. Considering that during
the actual operation of the building, when occupants feel un-
comfortable, they may adjust the indoor temperature by opening
windows (Yun et al., 2008). The ‘‘window-opening model’’ here is
established based on the occupants’ thermal comfort, can be used
to simulate the window opening behavior of occupants when
they are uncomfortable. The adaptive thermal comfort model
is used as a metric for opening and closing windows. The ex-
ternal window is openable with the minimum opening angle
being 0.3. The establishment of the model refers to the ‘‘Input
and output reference’’ file of EnergyPlus (DOE. Documentation
Input Output Reference. https://energyplusnet/sites/all/modules/
custom/nrel_custom/pdfs/pdfs_v890/InputOutputReferencepdf).

2.6.2. The meteorological condition
The cold climate of China is dominated by heating, and the

central heating system is used in winter. According to the design
orientation in the existing building standards, the building design
features in the climate are mainly thermal insulation in winter,
and some areas of the climate zone take into account the heat
3043
dissipation in summer (MOHURD, 1993). The main features of
the cold climate are: the average temperature in January is −10
to 0 ◦C, and the average temperature in July is 18 to 28 ◦C.
Select a typical city — Beijing as a representative city. Beijing is
located in eastern China (39.8N, 116.47E, and elevation 31.3 m).
Its HDD18 and CDD26 are 2794.8 and 70.9 respectively. Typical
meteorological year data is used as the meteorological parameter.
The Tr, Tlower and Tupper are presented in Table 6. Tlower and Tupper
are calculated according to Eqs. (10) and (11), respectively.

The division of the heating season, the cooling season and the
transition season of the building are determined by combining
government policies and the living habits of the local occupants.
For the cold climate zone of China, the district central heating is
used to maintain indoor comfort in the winter. The heating period
is approved by the local government, which is generally from
mid-November to mid-March next year. Household air condition-
ers are used to maintain indoor comfort in summer. Although
the cooling period is not restricted by the government, according
to the local weather network survey, the cooling period is gen-
erally from mid-May to mid-September (The-weather-network.
Tianjin’s air conditioning opening hours in summer. https://www.
tianqi.com/news/145484.html). The period other than the cooling
period and heating period is the transition season. Its indoor
thermal comfort could be totally satisfied during the summer
cooling and winter heating periods. The building is free-running
during the transition season, so the indoor thermal comfort can-
not be fully guaranteed. During this period, the building mainly
relied on the performance of the envelope to adjust the indoor
thermal comfort. Therefore, it is the main goal to optimize ther-
mal comfort during this period by adjusting the envelope design
parameters.

3. Result and discussions

3.1. Characteristics of energy demand

Fig. 4 shows the distribution of HEC and CEC under the inter-
action effects of uncertain design parameters and the variation
of Co with HEC and CEC. The horizontal and vertical coordinates
are HEC and CEC, respectively, and the unit is ‘‘kWh per square
meter per year’’. Points with different colors are used to describe
the distribution of Co, and the unit is ‘‘USD per square meter per
year’’. Co is calculated according to Eqs. (3)–(5), and HEC and CEC
are calculated according to Eqs. (6) and (7), respectively. Uncer-
tainty in design variables has less impact on CEC than on HEC
with a fluctuation range of CEC and HEC being 34–44 kWh/(m2a),
and 5–45 kWh/(m2a), respectively. The CEC exhibits a normal
distribution but HEC is relatively average in different frequency
bands. Colors are used to represent the size of the Co value. For
example, red and blue represent Co values of 7.3–7.8 USD/m2 and
9.5–10 USD/m2, respectively. Through color mapping, Co changes
with CEC and HEC can be intuitively displayed. As the CEC and
HEC increase, Co gradually increases with a certain slope. CEC
contributes the most to Co.

3.2. Impact of optimization variables on optimization objectives

Fig. 5 shows the PRCC indices for all three optimization ob-
jectives. In terms of CTR, almost all optimization variables have
an impact on it in addition to ACH, ORNT, roof type, and wall
type. Among then, the south-facing WWR is ranked first with
PRCC equal to 0.89. Followed by north-facing WWR, south-facing
window U-value, south-facing SHGC, north-facing SHGC, north-
facing U-value, and wall U-value with PRCC over 0.30. Then,
west-facing WWR, roof U-value, east-facing WWR, east-facing
window U-value, and west-facing window U-value also have

https://energyplusnet/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v890/InputOutputReferencepdf
https://energyplusnet/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v890/InputOutputReferencepdf
https://energyplusnet/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v890/InputOutputReferencepdf
https://www.tianqi.com/news/145484.html
https://www.tianqi.com/news/145484.html
https://www.tianqi.com/news/145484.html
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Fig. 3. Elevation and isometric view of base building.
Fig. 4. The distribution of building cooling and heating demand.
Table 6
The Tr , Tlower and Tupper of Beijing.

The Months 1 2 3 4 5 6 7 8 9 10 11 12

Tr (◦C) 16.6 17.3 20.2 22.3 23.8 25.4 26.0 25.7 24.1 21.8 19.5 17.7
Tlower (◦C) 13.1 13.8 16.7 18.8 20.3 21.9 22.5 22.2 20.6 18.3 16.0 14.2
Tupper (◦C) 20.1 20.8 23.7 25.8 27.3 28.9 29.5 29.2 27.6 25.3 23.0 21.2
some certain impact with PRCC between 0.1 and 0.3. What needs
to be mentioned here is that since the annual CTR is mainly
determined by the indoor thermal environment during transition
season, it is assumed that window ventilation can be carried
out during the transition season, which weakens the impact of
airtightness.

In terms of LCC, ACH rank first, then followed by south-
acing SHGC, north-facing SHGC, and south-facing WWR. The roof
ype, wall type, ORNT, west-facing window U-value, and south-
acing window U-value almost do not affect LCC with PRCC less
han 0.1. In terms of GWP, Only four variables have significant
mpacts, namely the roof type, roof U-value, the wall type, and
3044
wall U-value, especially wall U-value with PRCC equal to 0.72. The
remaining variables have little effect on GWP with PRCC less than
0.1.

Compare the differences in the parameter sets that affect the
three optimization objectives. The number of variables that have
a significant impact on GWP and LCC is less than the CTR. The
sign of PRCC represents the overall influence direction of design
parameters on optimization objectives. When a design parameter
has inconsistent influence direction on all three optimization
objectives, it indicates that the design parameter is a trade-off
variable. For example, the WWR in all orientations is negatively
correlated with CTR and GWP but positively correlated with the
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able 7
he NMBE and CV-RMSE of meta-models.
Indicator DCTR GWP LCC

NMBE [%] 2.63 3.28 1.78
CV-RMSE [%] 3.00 4.52 1.36

Table 8
The setting of the NSGA-II algorithm.
Parameter Value

Population size 500
The number of maximum generation 2000
Generation gap 0.8
Crossover probability 0.8
Mutation probability 0.6

LCC, moreover, they are more sensitive to CTR than LCC and GWP.
The U-value in all orientations negatively correlated with both
CTR and LCC, and SHGC in all orientations positively correlated
with both CTR and LCC. Besides, CTR is more sensitive to the
U-value and SHGC of the external window than LCC with the
relatively large absolute value of PRCC. The U-value of both roof
and wall is positively correlated with CTR, GWP, and LCC. The
ACH has a relatively large impact on LCC but hardly affects GWP
and CTR. The main reason is that ACH significantly affects HVAC
energy consumption, especially heating energy demand, which in
turn affects the LCC.

3.3. The Pareto frontier solution

The optimization model established aimed to improve CTR
nd reduce LCC as well as GWP. However, multi-objective opti-
ization problems generally refer to optimize either minimum
r maximum objectives. Therefore, DCTR minimization is used to
epresent CTR maximization. Performing the GBDT-based NSGA-II
ethod to solve multi-objective function in Python language.
Based on the GBDT algorithm, meta-models of optimization

ariables to DCTR, LCC, and GWP are established. According to
ig. 6, there is a better fit performance between the simulated
nd predicted data value with the R2 of LCC, GWP, and DCTR being
.996, 0.998 and 0.991, respectively. Table 7 presents the accuracy
easures of various meta-models. The accuracy of meta-models
stablished by the GBDT algorithm for each performance indica-
or meets the technical requirements with NMBE and CV-RMSE
ess than ±5% and ±15%, respectively.

In terms of the main parameters in the NSGA-II algorithm,
he roulette selection method and two-point cross are selected.
he default value of several other important optimization set-
ings, including the population size, number of maximum gen-
rations, generation gap, and crossover and mutation probability
re summarized in Table 8.
Fig. 7 shows the Pareto frontier solutions when optimizing

hree objectives at the same time. To visually show the rela-
ionship between any two objectives, it is displayed by a 2-D
oordinate graph. The distribution ranges of LCC, GWP, and DCTR
re 122.3–137.1 USD/m2, 15.6–44.8 kg CO2/m2, and 19.1–25.2%,
espectively. Fig. 7(a) shows the mapping of DCTR on the graph of
he LCC-GWP plot. When LCC and GWP are the main optimization
argets, solutions are concentrated in the frontier, and the bound-
ry is very clear. DCTR has significant changes in both directions
‘a’’ and ‘‘b’’, gradually reduced along with the two directions. At
he frontier of the LCC-GWP plot, the DCTR of ‘‘area A’’ is minimal.
rom the ‘‘area A’’ along with the ‘‘a’’ and ‘‘b’’ directions, as well
s the direction of ‘‘c’’, the DCTR gradually increases. Fig. 7(b)
hows the mapping of the LCC on the DCTR-GWP plot. The LCC
as a significant change in the‘‘a’’ and ‘‘b’’ direction. When in
3045
the frontier solution (only for the DCTR-GWP plot), LCC is the
largest relative to other solutions. As the GWP decreases, the
DCTR increases dramatically along with the direction ‘‘a’’. Fig. 7(c)
shows the mapping of GWP on the DCTR-LCC plot. On the whole,
the GWP at the frontier is the largest. In the direction of ‘‘a’’, the
GWP gradually increases. Comparing Figs. 7(a), (b) and (c), it can
be found that when any two optimization targets are used as the
analysis object, the third targets of the solution on the forefront
is the largest.

Fig. 8 shows the distribution space of optimization variables
corresponding to the Pareto frontier solution. The variables are
normalized so that the distribution of all variables can be dis-
played in one figure. The distribution preference of each variable
is determined by the level and direction of their influence on each
optimization objective. We can use the position of the mean and
median to represent the distribution preference. In terms of wall
U-value and roof U-value, they prefer to be distributed near the
upper limit, especially the roof. This is in contrast to our con-
ventional energy-efficient building design which stipulates that
the insulation level should be as high as possible. This is because
when the life cycle cost and environmental benefits are taken
into account, the reduced operating costs due to the increased
insulation are less than the other adverse effects that increase. In
particular, the thermal insulation of roofs only has a direct impact
on the units on the top floor and has little impact on the entire
building, especially high-rise buildings. For external windows,
parameters of north-facing and south-facing have more concen-
trated distributions. The U-value of north-facing and south-facing
windows distributed in the middle and SHGC prefer to distribute
near the lower limit. For WWR, the south-facing is more concen-
trated than other orientations. The east-facing and north-facing
have no obvious distribution preference being concentrated in the
intermediate position. The west-facing and north-facing prefer to
the upper limit. ACH prefers relatively small values. The optimal
orientation of the Building North Axis concentrated in 130–180◦.
The optimal type of exterior wall is type 3, that is, EPS is used as
the insulation material. Optimized roof types include type 1 and
3, with Rock wool or EPS as insulation material.

3.4. Decision-making analysis

For multi-objective optimization problems, the Pareto frontier
solution only provides a set of alternatives rather than any final-
ized and determined solution, which can provide a reference for
decision-makers. Decision-makers can assign weights to the three
optimization objectives according to their preferences, and then
further refine the solution from the Pareto frontier solution. In
short, the Pareto solution is objective, while the decision maker’s
option is subjective. After obtaining the Pareto frontier solution, it
is generally necessary for the designer to decide to obtain a more
detailed solution.

This article selects three typical situations from the Pareto
front solution for further analysis. That is, decision-makers, pri-
oritize the economy, thermal comfort, and environmental impact
respectively. For example, when decision-makers prioritize the
economy, the Pareto front solutions are sorted in the order of
LCC from small to large, and the minimum LCC is 122.3 USD/m2.
he solution with the smallest LCC among the Pareto frontier
olutions can be selected as shown in Fig. 9(a). What needs to
e mentioned is that there may be multiple solutions that meet
he minimum LCC. Similarly, the smallest DCTR and GWP are
9.1% and 15.6 kg CO2/m2, respectively. The solution sets for the
mallest DCTR and smallest GWP are shown in Figs. 9(b) and
c), respectively. It can be seen from Fig. 9 that the Knee point
nder the three decision criteria is point A, point B, and point
, respectively. To visually compare the three cases, these points
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Fig. 5. The result of redundancy analysis.
Fig. 6. The fit of simulated values and predicted values based on the GBDT meta-model.
re displayed on the same coordinate axis, as shown in Fig. 10.
he X, Y, and Z coordinates are LCC, DCTR, and GWP respectively.
he LCC, DCTR, and GWP of point A are 122.3 USD/m2, 23.6%, and

33.4 kg CO2/m2, respectively. The LCC, DCTR, and GWP of point
B are 125.3 USD/m2, 19.1%, and 17.2 kg CO2/m2, respectively.
The LCC, DCTR and GWP of point C are 133.6 USD/m2, 22.3%
nd 15.6 kg CO2/m2, respectively. Obviously, point B is closest

to the coordinate origin. When comprehensive considering the
three optimization objectives, point B is the best choice. The cor-
responding design schemes of these three points are summarized
in Table 9. The WWR, airtightness, external window parameters
for north and east between the three points differed slightly. For
the three points, the insulation type for both external walls and
roofs is almost EPS. The exterior window type on the north, south,
and east is type 2 (bridge-cutoff aluminum alloy +Single layer
Low-E glass+Single layer of ordinary glass), and the most suitable
exterior window form on the west is Type 3 (Plastic steel +Single
layer Low-E glass+ Double-layer ordinary glass).

3.5. The limit and future research

The specific building layout limits the generalization possi-
bilities of optimization results. However, it is important to note
3046
Table 9
The corresponding design schemes of three decision points.
Categories Point A Point B Point C

Wall U-value 0.23 0.40 0.44
Roof U-value 0.23 0.30 0.30
N-U-value 2.19 2.18 2.17
N-SHGC 0.10 0.24 0.10
S-U-value 2.20 1.41 2.20
S-SHGC 0.10 0.30 0.28
W-U-value 1.36 1.27 1.32
W-SHGC 0.14 0.40 0.39
E-U-value 2.20 2.04 2.04
E-SHGC 0.10 0.10 0.10
E-WWR 0.35 0.33 0.32
S-WWR 0.40 0.40 0.40
W-WWR 0.44 0.44 0.44
N-WWR 0.42 0.43 0.45
ACH 0.50 0.54 0.52
ORNT 180.00 20.93 178.29
Wall type EPS EPS EPS
Roof type Rock wool EPS EPS
N-window type 2 2 2
S-window type 2 3 2
W-window type 3 3 3
E-window type 2 2 2
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Fig. 7. The Pareto frontier solution targeting minimum LCC, DCTR, and GWP.
hat this paper provides a trade-off framework for the apart-
ent building in the cold climate of China. The framework can
e extended to various building typology and climate contexts.
esides, the sensitivity analysis results obtained in this study will
ary depending on the specific form of the building. For example,
he thermal insulation of roofs only has a direct impact on the
3047
units on the top floor and has little effect on the entire high-rise
buildings.

4. Conclusion

In the early stage of building design, making proper deci-
sions can assist designers to attain the best sustainability. This
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Fig. 8. The corresponding solution set of Pareto frontier solution.
Fig. 9. The decision making (a) With minimum LCC; (b) With minimum DCTR; (c) With minimum GWP.
article establishes a trade-off framework for multiple building
performance. Optimization objectives include environmental im-
plication, indoor thermal comfort, and economic benefits. The
optimization variables involve envelope type and some key phys-
ical parameters. A building information database is generated by
employing simulation software and the Latin hypercube sampling
methods. The trade-off framework is mainly composed of three
parts: sensitivity analysis, Pareto optimization, and decision mak-
ing analysis. The sensitive analysis method is used to identify and
compare the key factors affecting each optimization objective.
These key factors should be given priority in the building design
stage. It can reduce the uncertainty of building performance and
thereby reduce the decision-making difficulty of designers. Then,
the multi-objective optimization method based on the coupling
of the meta-model technology and genetic algorithm is used to
obtain the Pareto frontier solution. This set of Pareto frontier
solutions can provide a more comprehensive reference for the
different stakeholders. Stakeholders can weight the optimization
objective according to their preferences, and then extract the final
solution from Pareto solutions.
3048
To visually demonstrate the working process of the trade-
off framework, it is applied to a specific residential building in
cold climate zones of China. According to the obtained Pareto
frontier solution, the solution set is shrunk to a certain range,
and the distribution ranges of Life Cycle Costs, the greenhouse
gas emissions, and the annual thermal discomfort hour ratio
are 122.3–137.1 USD/m2, 15.6–44.8 kg CO2/m2, and 19.1–25.2%,
respectively. Then, three typical decision-making that decision-
makers prioritize comfort, economy, and environmental impact
are compared, and the set of alternative solutions is further
shrunk. In short, the trade-off framework adopts the order of
objective Pareto optimal and then subjective preference selection,
narrowing the scope of alternatives for designers and saving
time-cost of decision-making.

It should be mentioned that the output of the whole opti-
mization process is based on a specific case, and it will vary
depending on the user-defined variables, constraints, and objec-
tives. Although the specific results of this research do not apply
to other cases, the framework of this research is generalizable.
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Fig. 10. The solution of three decision points.
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